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Quasicontinuous Atom Laser in the Presence of Gravity

F. Gerbier, P. Bouyer, and A. Aspect
Groupe d’Optique Atomique, Laboratoire Charles Fabry de l’Institut d’Optique, UMRA 8501 du CNRS, Bâtiment 503,
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We analyze the extraction from a trapped Bose-Einstein condensate to a nontrapping state of a coherent
atomic beam and its subsequent fall, at T � 0 K. Our treatment fully takes gravity into account but
neglects the mean-field potential exerted on the free falling beam by the trapped atoms. We derive
analytical expressions for the output rate and the output mode of the quasicontinuous “atom laser.”
Comparison with experimental data of Bloch et al. [Phys. Rev. Lett. 82, 3008 (1999)] is satisfactory.
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Bose-Einstein condensates (BEC) of dilute alkali vapors
[1] constitute a potential source of matter waves for atom
interferometry, since they are first-order coherent [2]. Vari-
ous schemes for “atom lasers” have been used to extract a
coherent matter wave out of a trapped BEC. Pulsed devices
have been demonstrated by using an intense spin-flip radio
frequency (rf) pulse [3], gravity-induced tunneling from an
optically trapped BEC [4] or Raman transitions [5]. Qua-
sicontinuous output has been obtained by using a weak rf
field that continuously couples atoms into a free falling
state [6]. This “quasicontinuous” atom laser promises
spectacular improvements in application of atom optics,
for example, in the performances of atom-interferometer-
based inertial sensors [7].

Gravity plays an important role in outcoupling: in the
case of rf outcouplers, it lies at the very heart of the ex-
traction process, as will be shown in this Letter. However,
most of the theoretical studies do not take gravity into ac-
count (for an up-to-date review, see Ref. [8]). Although
gravity has been included in numerical treatments [9] rele-
vant for the pulsed atom laser of [3], to our knowledge,
only the one-dimensional (1D) simulations of Refs. [8,10]
treat the quasicontinuous case in the presence of gravity,
and the results of [10] compare only qualitatively to the
experimental data of [6].

In this Letter, we present a three-dimensional (3D)
analytical treatment taking gravity fully into account. To
compare with the experimental results of [6], we specifi-
cally focus on rf outcouplers. The extraction of the atoms
from the trapped BEC and their subsequent propagation
under gravity are analytically treated in the case of quasi-
continuous outcoupling with appropriate approximations,
discussed in the text. We derive an expression for the
atom laser wave function and a generalized rate equation
for the trapped atoms that agrees quantitatively with the
experimental results of [6].

We consider a 87Rb BEC in the F � 1 hyperfine level
at T � 0 K. The m � 21 state is confined in a harmonic
magnetic potential Vtrap �

1
2M�v2

xx
2 1 v

2
�y2 1 v

2
�z2�.

A rf magnetic field Brf � Brf cos�vrft�ex can induce tran-
sitions to m � 0 (nontrapping state) and m � 11 (ex-
pelling state). The condensate three-component spinor
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wave function C 0 � �c 0
m�m�21,0,11 obeys a set of cou-

pled nonlinear Schrödinger equations [11]. We consider
the “weak coupling limit” [12] relevant to all experiments
done so far with a quasicontinuous atom laser [6]. In
this regime to be defined more precisely later, the cou-
pling strength is low enough that the populations Nm of
the three Zeeman sublevels obey the following inequality:
N11 ø N0 ø N21. In the rest of this paper, we therefore
restrict ourselves to m � 21 and m � 0, and set the total
atomic density n�r� � jc21�r, t�j2.

At this stage, the components cm � c 0
me

2imvrft obey,
under the rotating wave approximation, the following two
coupled equations:

ih̄
≠c21

≠t
� �h̄drf 1 H21�c21 1

h̄Vrf

2
c0 , (1)

ih̄
≠c0

≠t
� H0c0 1

h̄Vrf

2
c21 , (2)

with H21 � p2�2M 1 Vtrap 1 Ujc21j
2 and H0 �

p2�2M 2 Mgz 1 Ujc21j
2. The strength of interactions

is fixed by U � 4p h̄2aN�M, a � 5 nm being the diffu-
sion length, and N the initial number of trapped atoms.
The rf outcoupler is described by the detuning from the
bottom of the trap h̄drf � Voff 2 h̄vrf and the Rabi
frequency h̄Vrf � mBBrf�2

p
2 (taking the Landé factor

gF � 21�2). The origin of the z axis is at the center of
the condensate, displaced by gravity from the trap center
by zsag � g�v

2
�. We have taken the zero of energy at

z � 0 in m � 0, so that the level splitting at the bottom
of the trap is Voff � mBB0�2 1 Mg2�2v

2
� (B0 is the

bias field).
The evolution of the m � 21 sublevel at T � 0 K is

described [13] by a decomposition of the wave function
into a condensed part and an orthogonal one that describes
elementary excitations (quasiparticles). As H21 depends
on time through jc21j, both the coefficients and the eigen-
modes depend on time. However, we assume an adiabatic
evolution of the trapped BEC [14], so that the uncondensed
component remains negligible and

c21�r, t� � a�t�f21�r, t�e2i
Rt

0
�m�t0�� h̄1drf�dt0 , (3)
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where a�t� � �N21�t��N�1�2. The time-dependent ground
state f21, of energy m is, in the Thomas-Fermi (TF)
approximation [13], f21�r, t� � �m�U�1�2�1 2 r̃2

� 2

z̃2�1�2, where r̃2
� � �x�x0�2 1 � y�y0�2 and z̃ � z�z0

are such that r̃2
� 1 z̃2 # 1. The BEC dimensions

are, respectively, x0 � �2m�Mv2
x�1�2 and y0 � z0 �

�2m�Mv
2
��1�2. The condensate energy is given by m �

�h̄v�2� �15aN21�s�2�5 [we have set v � �vxv
2
��1�3

and s � �h̄�Mv�1�2]. The time dependence of f21

is contained in m, x0, y0, and z0, which decrease with
N21�t�. In the following, we will take typical val-
ues corresponding to the situation of [6] (reported in
[10]): N � 7 3 105 atoms initially, vx � 2p 3 13 Hz
and v� � 2p 3 140 Hz, which gives x0 � 55.7 mm,
z0 � 5.3 mm, and m�h � 2.2 kHz.

For the m � 0 state, the Hamiltonian of Eq. (2)
with Vrf � 0 becomes in the TF approximation [15]:
H0 � p2�2M 2 Mgz 1 m max�0, 1 2 r̃2

� 2 z̃2�.
There is a clear hierarchy in the energy scales associated
with each term in H0. For the atom numbers involved in
current experiments, m�Mgz0 is small, and the mean-field
term is only a perturbation as compared with gravity. The
leading term is therefore the gravitational potential that
subsequently converts into kinetic energy along z. By
contrast, the transverse kinetic energy (along x and
y) remains small. Therefore, we neglect the spa-
tial variations of the mean field potential and con-
sider in the following the approximated Hamiltonian
H0 � p2�2M 2 Mgz.

The eigenstates of H0 are factorized products of one-
dimensional wave functions along the three axes. In the
horizontal plane �x, y�, the eigenstates are plane waves
with wave vectors kx , ky that we quantize with periodic
boundary conditions in a 2D box of size L. Conse-
quently, the wave function is f

�
0 �x, y� � L21ei�kxx1kyy�

and the density of states rxy � L2�4p2. Along the
vertical direction z, the normalizable solution of the
1D Schrödinger equation in a gravitational field is [16]

f
�zEz �
0 � A ? Ai�2zEz �, where Ai is the Airy function

of the first kind and zEz � �z 2 zEz ��l. The classical
turning point zEz � 2Ez�Mg associated with the vertical
energy Ez labels the vertical solution; l � �h̄2�2M2g�1�3

is a length scale, such that l ø x0, y0, z0 (for 87Rb, l �
0.28 mm). In order to normalize Ai and to work out
the density of states, we restrict the wave function to
the domain �2`,H�, where the boundary at z � H
can be arbitrarily far from the origin. In �2`, zEz �,
Ai falls off exponentially over a distance l, while it
can be identified with its asymptotic form Ai�2s� �
p1�2s21�4 cos�2s3�2�3 2 p�4� for s * 0. To lead-
ing order in H, by averaging the fast oscillating
cos2 term to 1�2, we obtain the normalization factor
A � �pH21�2�l�1�2. The longitudinal density of states
follows from rz�Ez� � h21dV �dEz , where V �R
dz dpz u�Ez 2 p2

z�2M 1 Mgz� (with u the step
function) is the volume in phase space associated with
4730
energies lower than Ez . We restrict the z space to the
domain defined above, and the pz space to pz $ 0.
In this way, we do not count the component of Ai
that propagates opposite to gravity [17]. We obtain
rz�zEz � � �1�2pl�H1�2. Finally, the output modes are

given by f
�n�
0 �r� � f

�
0 �x, y�f

�zEz �
0 �z�, where n stands

for the quantum numbers �kx , ky , zEz �, and the density of

modes is r
�n�
3D � �1�8p3�L2H1�2�l.

Thus, the problem is reduced to the coupling of
an initially populated bound state m � 21, of en-
ergy E21 � h̄drf 1 m to a quasicontinuum of final
states m � 0, with a total energy E

�n�
0 � h̄2�k2

x 1 k2
y ��

2M 2 MgzEz . A crucial feature in this problem is
the resonant bell shape of the coupling matrix element
Wfi � �h̄Vrf�2� �f�n�

0 jf21�. We work out the overlap
integral I �n� � �f�n�

0 jf21� in reduced cylindrical coor-
dinates � ˜r�, u, z̃� and set k̃2 � �kxx0�2 1 �kyy0�2. We
integrate over u and ˜r�, and transform the sum over z
with the Parseval relation [18] to obtain I �n� � 2pAx0y0�
L�m�U��1�2�

R
`
2` g̃�k̃, y�ei�z0�l��y3�32yzEz �l� dy. In this

integral, g̃ is the Fourier transform with respect to
z of g�k̃, z̃� � �p cosp 2 sinp��k̃3, with p�k̃, z̃� �
k̃�1 2 z̃2�1�2, and �2p��21�2�ei�y

3�32yzEz �l� the Fourier
transform of Ai. Since z0�l ¿ 1, the integrand averages
to zero out of a small neighborhood of the origin, where
the linear term in y is dominant. We obtain in this way

I �n� � 2p
Al
L

r
m

U
x0y0g�k̃, ˜zEz � . (4)

This overlap integral is nonvanishing only if the ac-
cessible final energies E

�n�
0 � E21 are approximately

restricted to an interval �2D�2, D�2�, where D �
2Mgz0 	 22.7 kHz. This gives a resonance condition for
the frequency vrf [6,14]:

jh̄drfj & Mgz0 . (5)

Two different behaviors can be expected in such a situa-
tion [14,19]. In the strong coupling regime (hG ¿ D,
where G is the decay rate worked out with the Fermi golden
rule), Rabi oscillations occur between the BEC bound state
and the narrow-band continuum. This describes the pulsed
atom laser experimentally realized by Mewes et al. [3].
Conversely, in the weak coupling limit (hG ø D), oscil-
lations persist only for t # tc � h�D, while for t $ tc,
the evolution of the BEC bound state is a monotonic de-
cay. We have numerically verified this behavior on a 1D
simulation analogous to [10] (see Fig. 1a).

Equation (2) can be formally integrated [14] with
the help of the propagator G0 of H0: C0�r, t� �
Vrf

2i

Rt
0 dt

0
R
d3r0G0�r, t; r0, t0�C21�r0, t0�. Together with

Eqs. (1) and (3), we can derive an exact integro-
differential equation on a2, the fraction of atoms re-
maining in the BEC. In the weak coupling regime, the
condition hG ø D expresses the fact that the memory
time of the continuum tC is much shorter than the damping
time of the condensate level. This allows one to make
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FIG. 1. (a) A 1D numerical integration of the time evolution of
the laser intensity starting with 	2000 atoms for Vrf � 300 Hz
shows that, for t ¿ tc, a quasisteady state is achieved. (b) The
spatial intensity profile of the atom laser according to Eq. (9) is
shown for t ¿ tc.

a Born-Markov approximation [14,20], which yields the
rate equation:

dN21

dt
� 2G�N21�N21 . (6)

The output rate G is given by the Fermi golden rule. By
neglecting the transverse kinetic energy as compared to
E21, we obtain

G

V
2
rf

�
15p

32
h̄
D

max�0, 1 2 h2�2, (7)

with h � 22E21�D. The rate equation (6) is nonlin-
ear, since G depends on N21 through D � 2Mgz0. From
Eq. (7) and the condition for weak coupling hG ø D,
we deduce a critical Rabi frequency V

C
rf 	 0.8D�h̄ below

which a quasicontinuous output is obtained. Moreover,
we have assumed from the beginning that the BEC decay
was adiabatic. This requires j≠h21�≠tj 	 Gm ø e

2
�i��h̄,

where e�i� is the energy of the ith quasiparticle level in the
trap. Taking e�i� * h̄v�, we deduce from Eq. (7) a con-
dition on the Rabi frequency: Vrf ø 1.6�g�z0�1�2. This
condition turns out to be much more stringent than the con-
dition for weak coupling Vrf ø V

C
rf .

To compare our model to the data of Bloch et al. [6], we
have numerically integrated Eq. (6) with the output rate (7)
and their experimental parameters. We show in Fig. 2a (re-
spectively, Fig. 2b) the number of atoms remaining in the
jF � 1;mF � 21� (respectively, jF � 2;mF � 2�) con-
densate after a fixed time as a function of the detuning. In
the latter case, the condensate is coupled to the continuum
via the intermediate state jF � 2;mF � 1�. If we neglect
the mutual interaction between these two bound states, the
FIG. 2. The number of trapped atoms after 20 ms of rf out-
coupling, starting with �7.2 3 105 condensed atoms, Vrf �
312 Hz for the j1; 21� sublevel (left), and �7.0 3 105 atoms,
Vrf � 700 Hz for the j2; 2� sublevel (right) is plotted versus the
coupler frequency. Diamonds are the experimental points from
[6]; solid line is the prediction based upon our model using the
experimental parameters. The experimental curves have been
shifted in frequency to match theory, since Voff is not experi-
mentally known precisely enough (within a kHz uncertainty).

upper level acquires a decay rate G2,2 	 G2,1�2 for near
resonant coupling and for Vrf ¿ G2,1 [19]. Here G2,1 re-
sults from Eq. (7) applied to the relay state.

The quantitative agreement between theory and experi-
ments underlines the importance of gravity and dimension-
ality in this problem. On one hand, the width and depth
of the resonance curve depend directly on the strength of
gravity g. On the other hand, in a 1D calculation, the
output rate is found to be roughly 3 times higher [10].
The discrepancies on the wings might be explained by
the presence of uncondensed atoms near the condensate
boundaries [14].

Finally, we want to point out that, since hG ø D, the
spatial region where outcoupling takes place, of vertical
extension dz 	 hG�mg, is very thin compared to the BEC
size. Outcoupling can thus be understood semiclassically,
in analogy with a Franck-Condon principle [21]: the cou-
pling happens at the turning point of the classical trajectory
of the free falling atoms. Neglecting the transverse kinetic
energy in the calculation of G amounts to approximating
the Franck-Condon surfaces, whose curvature should be
small over the size of the BEC, by planes.

We have analyzed so far the extraction of the atoms from
the trapped BEC. We address now the question of the
propagation of the outcoupled atoms under gravity. For
times t ¿ tc, the explicit expression of the propagator G0
of H0 is [22]

G0�r, r0, t � t 2 t0� �

µ
M

2p h̄t

∂3�2

eiSclass�r,r0,t�t2t0�u�t� .

(8)

Here, the classical action is given by Sclass�r, r0, t � t 2

t0� � �M�2h̄t� ��r 2 r0�2 1 gt2�z 1 z0� 2 g2t4�12�
and u is the step function. We compute the output wave
function C0 with stationary phase approximations. This
amounts to propagating the wave function along the
4731
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classical trajectory: in the limit where Sclass ¿ h̄ (this is
true as soon as the atom has fallen from a height l), this is
the Feynman path that essentially contributes. We obtain
the following expression for the outcoupled atomic wave
function i.e., the atom laser mode [23] (see Fig. 1b):

c0�r, t� �
p

p
h̄Vrf

2Mgl

3 C21�r�, zres, t 2 tfall�
ei2�3jzresj

3�22i�drftfall�p
jzresj1�2

3 M�t, tfall� . (9)

In this expression, zres � hz0 is the point of extraction,
tfall � �2�g�1�2�z 2 zres�1�2 is the time of fall from this
point, zres � �z 2 zres��l, and M�t, tfall� is unity if 0 #

tfall # t and zero elsewhere: it describes the finite ex-
tent of the atom laser due to the finite coupling time. We
can deduce from Eq. (9) the size of the laser beam in
the x direction xout � x0�1 2 �2E21�D�2�1�2, and a simi-
lar formula for yout. Because the semiclassical approxi-
mation neglects the quantum velocity spread due to the
spatial confinement of the trapped BEC, this wave func-
tion has planar wave fronts. This property will not per-
sist beyond a distance zR � y4

out�4l3 	 a few mm, analog
to the Rayleigh length in photonic laser beams, where the
transverse diffraction �h̄�Myout� �2zR�g�1�2 becomes com-
parable to the size yout. Beyond zR , diffraction has to be
taken into account.

In conclusion, we have obtained analytical expressions
for the output rate and the output mode of a quasicontinu-
ous atom laser based on rf outcoupling from a trapped
BEC. Our treatment, which fully takes the gravity and the
3D geometry into account, leads to a quantitative agree-
ment with the experimental results of Ref. [6]. This points
out the crucial role played by gravity in the atom laser
behavior. Generalization to other coupling schemes is
straightforward and should allow one to investigate the role
of gravity in these cases. In more elaborated treatments,
interactions between the trapped and the outcoupled atoms
should be taken into account to describe the transverse dy-
namics. Finite temperature effects [14] might be relevant
as well. Nevertheless, the good agreement with experi-
mental data shows that the present zero-temperature theory
is a valuable starting point to describe experiments with the
atom laser.
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