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Introduction

It is well known that in frictional contact of solids, a contact point may have a slip or sticlc or separation regime according to Coulomb's law of dry friction. For dynamical problems, the study of the propagation of these zones on the contact surface may be interesting in different ap plications : ultrasonic motors (cf. [START_REF] Zharii | Frictional contact between the surface wave and a rigid strip[END_REF], seismic predictions and simulations (cf. [START_REF] Cochard | Dynamic faulting under rate-dependent fric tion[END_REF], mechanical vibrations and instabilities induced by friction (cf. [START_REF] Martins | On some sources of instable/illposedness in elasti city with Coulomb's friction[END_REF][START_REF] Vola | Friction and instability of steady sliding squeal of a rubber/glass contact[END_REF][START_REF] Oancea | Stability analysis of state-dependent dynamic frictional sliding[END_REF][START_REF] Oestreich | Bifurcation and stability analysis for a non-smooth friction oscillator[END_REF]. In the particular case of a solid in contact with a moving obstacle, some recent results of the literature on the flutter instability of the steady sliding solution (cf. for example [START_REF] Adams | Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction[END_REF][START_REF] Martins | On some sources of instable/illposedness in elasti city with Coulomb's friction[END_REF][START_REF] Vola | Friction and instability of steady sliding squeal of a rubber/glass contact[END_REF] have suggested that we investigate dynamic periodic responses. A possible transition of this response to a cyclic response in the spirit of Poincare-Andronov-Hopf bifurcation, cf. [START_REF] Nguyen | Stability and Nonlinear Solid Mechanics[END_REF], is the long term goal. As an example, the study of the phenomenon of brake squeal has been discussed in this context, [START_REF] Moirot | Etude de la stabilite d'un equilibre en presence du frottement de Coulomb. Application au crissement des freins a disque[END_REF]. A simple modelling of a drum brake le? Js to the study of an academic example of encased c ylinders, and h as enabled us to obtain an in teresting example of stick-slip waves. Such an example is new in the literature.

An encased-cylinder problem and the reduced equations

The mechanical response in plane strain of an elastic cylinder, of in ternal radius R and external radius R * , in frictional contact on its inner surface with a rotating rigid cylinder of radius R + d and of angular rotation n as shown in Figure 1, is considered when the displacement is assumed to be homogeneous on its outer surface. Coulomb's law of dry friction is assumed with a constant friction coefficient f . An in teresting approximation reducing this two-dimensional problem to an one-dimensional problem of contact with friction is discussed here. Our objective is to demonstrate the existence of periodic dynamic responses in the form of stick-slip waves. Although stick-slip solutions have often been discueeds in statics, we emphasize that such a non-trivial example of stick-slip vibrations is not classically known in the literature for conti nuous systems. The construction of periodic dynamic responses has prin cipally been discussed numerically, ( cf. for example Oancea and Laursen, 1997, Oestreich et al. , 1996, Vola et al. , 1999), the work of Zharii, 1996 on surface waves generated by piezo-electrical sources on a half-space boundary in contact with an obstacle remains an exception, and his re sults deal only with slip waves. Non-dimensional variables are introduced
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Governing equations are the kinetic relations, the fundamental law, the linear elastic constitutive equations, the boundary conditions, the uni lateral contact conditions and Coulomb's laws :

E = (\7 u ) s , Diva= /U, a = (l+ v) ( 1-2 v)Tr( E) I+ 1iv€' u (�, (), t) = v(�, (), t) = 0 , (1) arr (l, 0, t) = -p(O, t), aro (l, 0, t) = -q (O, t), u � 8, p � 0 , p( u -8 ) = 0 , l q l ::; f p, q (l -v) -fpll -vl = o.
The steady sliding solution is

Ue -8 �Ll ( rr) , Ve -8f e-1 ( rr) (l + e( l-2 v) '

(2)

{ -1 r_ -1 r_ 1 ) Pe = 8 e�11iv ( e 2 + 1! 2 ) > 0, Qe = f Pe•
An interesting modelling of the problem is obtained when the displace ment is approximated in the form

u = U(O, t)X (r ), v = V(O, t)X (r ), 1 e X (r ) = e 2 -1 ( -;:--r }. {3}
In this approximation, the following local equations are obtained from virtual work equation

{ (J -bU" -DV' + gU = P, V -a V" +DU' + h V = Q, P � O, U -8 � 0, P(U -8) = 0, I Q I � f P, Q(l -V ) -f P ll -V I = o.
(4)

where ' denotes the derivative with respect to 0 and a Thus two harmonic waves propagating in opposite senses of the form cos (kO ± wkt + ip ) are obtained as in classical elasticity. If f > 0 and D > 0, then s = ±(s r k +isik), S r k > 0, Sik < 0, thus a general solution of the form V* = e± s rkt COS (k8 ± Sikt + <p) is obtained and represents two waves propagating in opposite senses : an exploding wave in the sense of the implied rotation, and a damping wave propagating in the opposite sense. If f > 0 and D < 0, the exploding wave propagates in the opposite sense since the previous expression of s is still valid with S r k > 0 and Sik > 0.
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Existence of stick-slip waves

It is expected that in some particular situations, there is a dynamic bi furcation of Poincare-Andronov-Hopf's type. This means that since the steady sliding response is unstable and there is a flutter instability, the perturbed motion may eventually become a periodic response. This tran sition has been obtained numerically in many examples, cf. for example [START_REF] Oestreich | Bifurcation and stability analysis for a non-smooth friction oscillator[END_REF][START_REF] Vola | Friction and instability of steady sliding squeal of a rubber/glass contact[END_REF], but a mathematical proof is still lacking since the classical proof in Hopf's theorem cannot be applied to the dynamic equations with unilateral contact and dry friction. The existence of possible periodic dynamic solutions is our centre of inter est. A periodic solution is sought in the form of a wave propagating at constant velocity :

U = U (</>), V = V(</>), </> = 0-ct (6)
where c is the non-dimensional wave velocity, U and V are periodic functions of period T = 2 '{. The physical velocity of the wave is thus c = lclRO and the associated dynamic response is periodic of frequency lclkO. The propagation occurs in the sense of the rotation when c > 0.

According to the regime of contact, a slip wave, a stick-slip wave, a slip separation wave or a stick-slip-separation wave can be discussed. Only the two first cases will be discussed here. The governing equations of such a wave follow from (1) :

{ (c2 -b)U" -DV' + gU = P, (c 2 -a)V" +D U'+ hV = Q, P � 0, U � o, P(U -o) = 0, I Q I � f P, Q(l -V) -f Pll -V I = 0. (7)
For a slip wave, there is no separation and Q = f P everywhere when there is positive slip (1 -V � 0). Thus the governing equations of a positive slip wave are :

U = o, -D V' +go= P, (c 2 -a)V" + hV = f P (8) It follows that V = Ve + A with (c 2 -a).Li"+ f DA' + hA = 0 (9)
Thus A = e r <f> with r 2 -2ar + /3 = 0, a = 2 ci!!a), /3 = c2h_a • It follows that r =a± ./a2 -{3. This expression shows that no periodic solution can be obtained and thus no periodic response under the form of a positive slip wave can be found.

A solution of (7) in the form of a stick-slip wave is now sought. It is assumed that there is a positive slip regime in the interval (0, 'WT) and a stick regime in the interval ('WT, T) :

-in the stick region (WT, T), governing equations are

I 1 D U = 8, V = --, P = -+ g8 > 0, Q = hV, (10) e e 
-in the slip region (0, WT), governing equations are

U = 8, P = g8 -DV' 2 O, Q = f P, 1 + eV' 2 O, {11 ) (e2 -a)V" + f DV' + hV -fg8 = 0. {12)
The last equation shows that V = Ve+ Ll. in the interval (0, WT) with (9). The case a2 < (3 is considered thus e2>a+1:f2• Let w = ../(3 -a2• Since r = a ± iw, the general expression of Ll. is Ll. = e04>(M cos w<f> + Nsinw<f>). There are 4 unknowns {e, w, M, N). The continuity of the displacement gives V(O) = V (T). The stick region leads to two supple mentary equations V' ( 0) = V' (WT) = -1 /e. Thus, the following system of equations must be satisfied :

{ M = eaif!T ( M cos wiJ!T + N sin wiJ!T)-T (l; if! ), � 1 = a M +wN, � 1 = aeaii!T ( M cos wiJ!T + N sin w WT)+ weaif!T(-M sinw'I!T + N cosw'I!T) { 2 � e >a+ 4h '
If g8 + hLl. I < f ( � + g8) V</> E ('WT, T), g8 -DLl.' 2 0, 1 +ell.' 2 0 V<f> E {O, 'WT) .

{13) (14)

A family of stick-slip waves is considered for which the continuity of Q at </> = T is ensured :

Q(T_) = Q(O + ) • (15)
This condition implies that hV(T_) = fg8 + if!and leads to the follo wing system of governing equations and inequalities after the elimination of M and N:

{ T{ l -iJ!) + �eaif!T sinw'I!T = 0, 1 + � eaif!T sinwiJ!T -eaif!T cos wiJ!T = 0, - -fD (3 - h -1 (3 2 a -�' -c2-a' w -V -a '
If g8 + hLl. wl ::; if!-+ f g8, 1 +ell.' 2 0.

(16)

The equations can be solved numerically by Mathematica for different values of k and f . It is found that e must have the sign of D; these waves propagate in the sense of the previous exploding perturbed mo tions. The value of 8 must be strong enough to avoid possible separations.

The results {phase diagram, displacement and reactions) are given res pectively in Figure 2 and Figure 3 for the particular case of a common metal with f = 1, k = 8 and D < 0. In this case, the physical velocity is c = 1255m/s and the wave propagates in the opposite sense to the implied rotation.

4. Transition of the steady sliding to a stick-slip wav e after perturbations

Since the steady sliding solution is unstable, a small or finite pertur bation of this solution will lead to a different response. Some numerical calculations of the system (4) have been performed in order to study the possibility of transition to a periodic response. It has been found that the rate of convergence and the limit response depend strongly on the initial conditions. Some stick-slip solutions are stable and present a specific domain of attraction. Figures 4,5 and 6 present the numerical results obtained after a direct integration of the system following an ex plicit scheme of time integration with a common regularization of the friction force-slip velocity relation. 

  The coupling coefficient D between the normal and tangential displacements can be positive or negative according to the values of v and e. The steady sliding solution is given by Ue = 8, Ve= 8f g/h, P = Pe and Qe = f Pe.The steady sliding response is unstable, cf. Martins and Simoes, 1995 or Adams, 1995. The proof of this result is straightforward under the assumption of sliding motions. In this case a small perturbation motion is described by U = Ue, V = Ve+ V*, P = Pe + P* and Q = Qe + Q*. It follows that V* -av:' + f nv: + hV* = 0.(5)A general solution is sought in the form v* = e8te ik O. It follows that -s 2 = ak2 + h + ikf D. If f = 0, then s = ±iwk with w� = ak2 +h.
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 1 Figure 1 -An example of encased cylinders with a stick-slip wave in the case k = 2.
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 2 Figure 2 -The phase diagram of the periodic solution associated with a stick-slip wave is given for k = 8, f = 1 and 8 = 0.005.
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 456 Figure 4 -A numerical illustration of the transition to a periodic li mit response. A mode-3 stick-slip wave is obtained here from a par ticular initial condition of displace ment and velocity lr , , , , I I ... . . ,, ,,,,
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