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Abstract

Our goal is to understand the dynamics of neural computations in low-level
vision. We study how the substrate of this system, that is local biochemical neural
processes, could combine to give rise to an efficient and global perception. We will
study these neural computations at different scales from the single-cell to the whole
visual system to infer generic aspects of the underlying neural code which may help
to understand this cognitive ability. In fact, the architecture of cortical areas, such as
the Primary Visual Cortex (V1), is massively parallel and we will focus on cortical
columns as generic adaptive micro-circuits. To stress on the dynamical aspect of
the processing, we will also focus on the transient response, that is during the first
milliseconds after the presentation of a stimulus.
In a generic model of a visual area, we propose to study the neural code as
implementing visual pattern matching, that is as efficiently inverting a known
model of image synthesis. A possible solution offered by the architecture of the
visual pathways could be to represent at first on the surface of the cortical area how
well the prototypical visual features are matched by a combination of inferential
mechanisms as ideal observers. We studied the efficiency of this representation by
rating the statistics of the output using natural scenes, that is scenes occurring
frequently. We show that this may be finally used to provide a behavioral output
such as an eye movement.
However, constraints specific to the visual system imply that the set of prototypical
features is not independent and that the cortical columns should communicate to
produce an efficient, sparse solution. We will present efficient algorithms and
representations based on the event-based nature of neural computations. By
explicitely defining this efficiency, we propose then a simple implementation of
Sparse Spike Coding using greedy inference mechanisms but also how the system
may adapt in a unsupervised fashion. These computations may be implemented
in simple models of neural networks by explicitly setting the lateral connectivity
between populations of columns. Using natural scenes, this algorithm provides a
model of V1 which exhibit prototypical properties of neural activities in that area.
We show simple applications in the field of image processing as a quantitative
method to evaluate these different cortical models.
Keywords: Neuronal representation, over-complete dictionaries, inverse linear
model, distributed probabilistic representation, spike-event computation, efficient coding,
Matching Pursuit, Sparse Spike Coding, Sparse Spike Learning.
PACS: 87.19.Dd: Information processing, in vision, 07.05.Mh: Neural networks,
42.30.Sy: Pattern recognition, 07.05.Pj: Image processing, 02.50.-r: Probability
theory, stochastic processes, and statistics, 02.50.Tt: Inference methods, 42.66.Si:
Psychophysics of vision, visual perception.
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What is the substrate of our cognitive abilities? How much do we differ from
other forms of intelligence, such as animals or computers? How do we adapt in
harmony with the outside world and other individuals? And how can we interact
with the brain to cure pathologies from neuro-degeneration to autism? These
broad questions still have no clear answer today and scientists agree that we still
stand at the Middle Age of our knowledge of the brain.
A major challenge in neuroscience is to understand the content of the activity
that is observed in biological neurons. This neural activity constitutes the link
between the structure of the nervous system and the function of our cognitive
abilities. However, these complex activity patterns that are the basis of our
cognitive abilities remain a mystery and there is yet no known unifying model
explaining the "language", or neural code, that could be eventually used by neurons
at the various scales of the central nervous system.
Herein, we will approach this challenging question by focusing on the particular
efficiency of low-level vision. In fact, vision is an apparently simple cognitive
ability, which has always been a very active research area at the convergence of
neurophysiology, psychology and computational neuroscience.

1 Neural computations in low-level vision

Along the history of cognitive and mind sciences, metaphors were used to help us
understanding the mechanisms generating our thoughts. In the 18th century for
instance, painting dominated the cultural world and the mind was imagined as a
painter depicting ideas, thus using the thoughts as brush strokes. Similarly, the
brain was depicted in the century of industrialism alternatively a steam engine, a
precise clock or an automaton. The major metaphor is nowadays the computer and
many neuroscientists take this analogy as a source of inspiration to understand
neural computations. As we will show, this metaphor has shown limits and
new candidates emerge with the raise of distributed communication systems —
such as the omnipresent IN and more generally to multi-scale networks,
e.g. communication, political or social nets [Barabasi and Bonabeau, 2003]. We
may therefore think of the emerging rules of these networks —such as a crowd in
an urban area— as a novel metaphor of the dynamics of the brain.
We are interested in this paper in understanding the processes that give raise to our
cognitive abilities and we will focus on low-level vision in humans. In particular,
we will review some of the dynamics of the electrochemical signals occurring in the
brain —especially the brief peak of activity known as action potentials or spikes—
and their link to the efficiency of neural computations in populations of neurons
(see also the paper of Bruno Cessac in the same issue for a more detailed account
on spike dynamics). Following the particular example of a visual neural implant
as a full-featured model of low-level vision, we will put at stake the metaphor of
the computer to describe the algorithms that may take place in the brain. We will
review some facts on neural computations and on vision and some new insights
into the dynamical processing of neural information will help us to propose some
alternatives to the computer architecture that are more adapted to mimic and
understand the brain.
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1.1 What’s special about the brain?

1.1.1 Efficiency of low-level vision

Vision is our ability to extract information from the luminous energy reflected by
our environment by using the image1 focused by the eye on the retina2. In fact,
pushed by evolution’s pressure, a majority of animals have developed the ability of
seeing. This is particularly proeminent in primates which devote a large proportion
of their brain resources to visual processing (in proportion of cortical tissue, approx.
52% in monkeys and 27% in humans [Orban et al., 2004]) and allow for that quick
and reliable perception of the visual world. The information is processed in the
Central Nervous System (CNS), that is the system constituted by the brain and the
spinal chord, until it may reach a behavioral decision. But this task of statistical
pattern recognition (or "feature detection") proves to be very difficult because a
striking aspect of the visual information is the inherent ambiguity of low-level
images. This is well illustrated in the rich collection of visual illusions, such as the
Necker cube (see Fig. 1), proving that a given retinal stimulation may correspond
to a multitude of different configurations. These ambiguities are omnipresent in
natural images (i.e. images that are behaviorally relevant) and arise for instance
from occlusions, transparencies and conflicting 3D features. However, our daily
experience shows us that our visual system resolves these ambiguities —and in
most of the time in an effortless and unconscious fashion— quickly and reliably.
However complex these mechanisms may appear, they are particularly robust in
biological vision. In fact, this system remains efficient during development from
a newborn child to adulthood despite the changes in our environment such as
the growth of our body, which implies drastic changes of configuration. In fact,
the genetical material is not sufficient to code for all the architecture of the visual
system, and adaptive strategies should exist to tune the system according to the
visual function. This plasticity is illustrated by artificial changes of configuration,
such as when using continuously during several weeks transforming glasses such
as prisms. After some time, the world is perceived such as it was before this change
: the system adapted so as to come back to a perception which is coherent with
the outside world3 [O’Regan and Noë, 2001]. However, this system is relatively
fragile to particular pathologies such as age-related macular degeneration (ARMD)
and a clearer understanding of the mechanisms underlying the robustness of
neural mechanisms could provide solutions, such as efficient alternatives for these
different cases of blindness.

1.1.2 Shortcomings of the sequential computer metaphor for vision

The situation is different with present models of cognitive abilities which usually
follow the computer metaphor. In fact, for cognitive tasks such as vision which

1We will use the term image in his generic meaning of a topological map of —possibly vectorial—
values. A PNG or even compressed JPEG image being particular architectures of images.

2Note that the retinal image is inverted optically by the eye’s lens, both upside-down and left-right.
3More surprisingly, when removing this perturbation, the system as to adapt (though on a shorter

time scale) to go back to the original configuration. It has also been reported that in case of the reversing
glasses, text and characters still appeared reversed after adaptation. This is arguing for a modularity
of the visual systems capability, since positioning the body in the visual world is somewhat separated
from reading.
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Figure 1: Ambiguity of visual information. To illustrate the ambiguity of visual
stimuli, we show how a simple visual stimuli could generate different interpretations.
When looking at the central cube, the most probable interpretations oscillate between
two configurations of a plain and solid cube, as seen on the left and right of the figure.
One of these configurations may be favored (e. g. by masking with the hand the other
one), thus changing the context. Theoretically, an infinite set of different polyhedrons,
of solids or networks of lines could have given raise to the stimulation (such as this flat
figure printed on paper or elongated "cubes"). We argue that the visual system assigns
probabilities to all these possible and ambiguous configurations knowing the context
to finally choose the most appropriate solution.

does not require an expert’s knowledge (in opposition to playing chess, inverting a
matrix, searching in a database), computer solutions to vision so far are ineffective
either by their lack of functionality or by their energy consumption. For instance,
autonomous retinal implants at present may only process a few pixels or else they
will produce too much heat (by their own power consumption) for their practical
use on the retina. Applications of automated visual systems based on sequential
computers (such as desktop computers) are today still seldom and limited to
simple tasks (such as segmentation or intrusion detection). More importantly,
they apply only to a very limited range of situations which exclude their use
in natural conditions (for instance when changing the context). More complex
applications of feature detection, for instance the automated processing of satellite
images, are very demanding in computer power and mobilize the most powerful
computers in the world such as the most efficient solution available in 2006, IBM’s
BlueGene/L4. This system consumes 2 MW while the visual system, as a part of
the central nervous system, uses only a fraction of the estimated 20 W used by the
brain5. Let’s explore what may be the key difference that makes computers still so
ineffective compared to brains.
First, computers have historically privileged sequential algorithms for the resolution
of experts’ problems. Today, most computer solutions use the architecture inherited
from the Van Neuman computer which may be linked to the early computers
engineered by Blaise Pascal or Charles Babbage and formalized by the one-tap
universal Turing machine. However, sequential processing is different from

4Such as found on http://www.top500.org/.
5In humans, we may therefore estimate that the first levels of the visual system consume of the order

of 5 W.
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parallel processing since some computations are done without knowing the state of
some variables and with many different simultaneous threads6. As a metaphor, on
one side verbal communication is sequential: it is difficult for us to hear different
conversations at the same time. This type of processing therefore relies on a
sequence of processes. On the other side, the visual system implements a huge
memory by its structure and by the interaction of a multitude of parallel events
allowing to process different qualities (shape, motion, identity) of the image in
parallel and finally to give a result at any time.
Secondly, unlike computers, we saw that the central nervous system is adaptive
and may learn new configurations according to given functions. In particular, most
classical algorithms use knowledge that is clearly defined from the programmer
(that is for instance the collection of all famous chess moves in a chess simulator)
and rarely adapt to interpret and include new knowledge. For instance, most
feature detection systems assume that the features may be found at any position,
and therefore that detection is translation invariant. In the brain, though, this
knowledge is learnt by the stability of a corresponding physical law in time (namely
of the translation of objects) and is not implemented a priori on the visual areas.
However, there is no unified theory for unsupervised learning (that is without any
"teacher"). As the Baron Münchhausen, who was able to lift himself out of the
sea by pulling himself up by his own boot straps7, the system may autonomously
emerge from the interaction of the visual system with the outside world.

1.1.3 Computational neuroscience & new computing paradigms

We saw the superiority of neural computations in handling cognitive tasks such
as vision: the response is quick and reliable and at a longer time scale it is also
robust and adaptive. However, in order to understand neural computations and
their efficiency, we are bound to explore the properties of the brain as a "black
box": we don’t know a priori its mechanisms. As stated by Marr [1982], this
may be understood by studying the different levels of the problems a neural
function has to face : a definition of the function (computational level), a notion
of the form it takes (algorithmic level) and eventually the generic rule that
implement it (implementation level). This method may be approached by using an
integrated methodology: by interacting with neuroscience (as neuro-physiology
or psychology), we may propose models which can then be validated by using
simulations to a wider range of neuroscientific data. This methodology for finding
an eventual "neural code" defines the goal of computational neuroscience8.
At present, many computational neuroscientists claim here that the set of neural
computations that give raise to cognitive abilities such as vision may be understood
as generic rules and are expressed in the behavior of populations of neurons. In
the following, we will describe generic principles of neural computations and
then in particular in the visual system. In this view, the brain is constituted by a
multi-scale network of different modules (or micro-circuits) which have a common

6It should be noted that parallel architectures are thus necessarily dynamical systems.
7This tale seems to be at the origin for the terminology of the bootstrap theory.
8There is however some confusion in the community, leading to an understanding of computational

neuroscience as using computers as a tool of analysis in neuroscience rather than a theory of
computations in neural systems. The term "theoretical neuroscience" [Dayan and Abbott, 2001] stands
then in this perspective as an alternative but is certainly inadequate from its etymology.
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generic structure but that each adapt their interactions according to the function to
perform. The success in modeling this "neural code" is then validated by studying
how well the implementation in the neural activity (the structure of the code)
corresponds to the particular cognitive ability that is being modeled (its function).
Going further in the direction of David Marr, we may also state that to understand
this "black box", we have to understand the function it provides. We may then
propose respectively an algorithm and an implementation of this function. One
should however note that this methodology is by no way finalist: more efficient
functions emerged blindly against other functions from natural selection since
they are more fit for survival and therefore of being present in the future. This
observation applies also for the learning mechanisms: a learning algorithm that
will adapt at best to the environment and that may replicate itself at best will
therefore have a better chance of survival in its progeny. In fact, models at the
different levels of the network may use a high number of free parameters and
constraining the function and task in a sub-system of the model allows to constrain
some of these parameters. Neural computations may therefore be understood at
different spatial time scales in terms of an optimization problem.

1.2 The different scales of neural computations

To define this hypothetical neural code, we will review some generic properties
of the CNS, from its basic elements to the whole system. These results have been
revealed using a multitude of techniques which permits the observation of neural
anatomy and activity at different spatial and temporal resolutions.

1.2.1 Are neurons and spikes the elementary bricks of neural computa-
tions?

In fact, since the seminal work of Cajal [1911] which closely followed the technical
advances in staining neural tissue from Golgi, we know that the brain is not
a continuous medium, but that is rather a dense network of specialized cells,
the neurons. Neurons9 are specialized cells in the CNS which are supposed to
form the substrate of neural computations. These may be distinguished in three
classes : sensory neurons (such as the photoreceptors neurons), then motor neurons
which are connected to muscles and the vast majority of remaining neurons, the
associative neurons which are neither sensory nor motor. In fact, the brain is
constituted by approx. 1012 neurons which are supported by approx. 10 fold more
supporting cells, the glial cells, the role of which is still not completely determined.
Neurons vary in size from 4µm to 100µm in diameter and from a fraction of a cm
to a meter in length. Neurons are very diverse but are prototypically constituted
of a cell body, the soma, and of an arborization of their membrane which take
different shapes, thanks to an inner architecture (cytoskeleton) modulated by the
synthesis of spiraling polymers, the micro-tubules. Anatomically, dendrites are
arborized and closer to the soma, integrating signals from all its surface and the
axon is on the other hand most frequently elongated and terminates far from the
soma.
The membrane of the neuron is covered with a variety of ionic gates whose goal

9For a more precise account on neurons and spikes see the paper of B. Cessac in this issue.
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is to modulate the ionic concentrations inside the cell and therefore the electrical
potential through the membrane. In addition to the passive propagation along
the membrane, these ionic gates may actively modulate the propagation of this
potential along the membrane. These variations of electrochemical potential may
be propagated to other cells (neurons or muscles fibers) and the morphology and
direction of this propagation separates functionally the arborization between a
receiving dendritic tree and an emitting termination, the axon. This propagation
is denoted respectively feed-forward, in the direction from sensory neurons to
motor neurons, feed-back in the opposite direction or lateral if no preferred
direction may be determined. With their supporting cells, neurons may be
considered as elementary bricks of the CNS where the information is processed in
its arborizations by variations of its membrane potential.
The neuronal connections occur at special contact points called synapses. They
are very dense, approximately 104 per neuron (and thus there is an estimated
total of 1016 synapses in humans) and transmit the signal from neuron to neuron
through direct electrical junctions (the so-called gap junctions) or more frequently
through chemical synapses. These chemical contacts are mediated through the
release of vesicles of neurotransmitters (in the milli-second temporal scale) the
type of which determines specifically the quality of the connection both pre- and
post-synaptically. Finally, they are highly plastic and may change in morphology
and strength in short time scales, changing locally the response characteristics of
the neuronal circuitry, as will be discussed in Sec. 3.2. Synapses thus constitute
the locus of information transmission between neurons and their plasticity plays
a major role in the adaptation of the neural computations.
In certain conditions, the raise of the membrane potential may drive the neuron to
an all-or-nothing state: the Action Potential (AP, or spike). Depending on the local
morphology of the membrane and of ion channels, the propagation mechanism
may enter a positive feed-back, thus an "exploding" state, which elicits a rush of
ions and produces a brief (approximately 1 ms) change of membrane polarity. This
’spike’ propagates then along the membrane, until it reaches synapses where it is
often necessary for the release of neuro-mediator, hence the name action potential.
Even if spikes may also occur in dendrites, this signal is particularly adapted to
the propagation of all or none signals along the axon. This is particularly true for
myelinated axons for which a sheath of specialized glial cells permits the fast and
robust propagation of spikes (90 m/s in sheathed axons vs. less than 0.1 m/s in
unsheathed axons). In general, the raise of potential occurs when excitatory post
synaptic potentials converge from the branches of the dendrite and cross a certain
threshold. In general, one may observe that the spike will be released faster if the
driving input is faster. Moreover, the spiking signal is a robust, timely precise [Bair
and Koch, 1996] and reproducible [Mainen and Sejnowski, 1996] signal. In the
framework of single-neuron computing [Koch and Segev, 2000], knowing the exact
mechanisms of neuronal integration and transmission and given the current state
of all neurons, one may predict that a sensory input will propagate along axons, be
integrated analogically through the synapses and then integrated by the dendrites
of further associative neurons [Koch, 1998]. This chain will generate a dynamical
flow of spikes until it reaches motor neurons, thus closing the loop from perception
to action. Spikes —associated with corresponding neurons— appear to be thus
the unit of neuronal information and one could understand a neuron with a label
corresponding to a set of preferred stimulations it is selective to.
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1.2.2 Cortical columns

However, the situation is not so simple and in contrast with what was often
assumed in theoretical models of neural networks there is a great influence from
the context in the network. This is implemented by the feedback and lateral links
that occur in the network at different scales and which thus form recurrence loops
of signal propagation, thus defining indivisible populations of neurons, or cell
assemblies [Hebb, 1949] . Actually, if we consider that the low-level system has
evolved to form an efficient canal of information, one could see the population of
cells as a democratic network where every cell tries to maximize its metabolism
by adapting his configuration. Neurons are therefore in a constant competition to
produce the highest activity (and the highest metabolism). But at the same time, as
in a theoretically democratic society, a neuron that would monopolistically transmit
all information would lower the overall efficiency of the whole assembly. Thus,
neurons have to cooperate to maximize the global metabolism of the assembly
in the long term. In this view, the smallest scale for describing the coding of
the information is not on individual neurons but seems rather to lie on the scale
of cell assemblies and that these constitute local circuits based on generic rules
by implementing efficiently tuned cooperation (i.e. homeostatic) and competition
rules. Economical laws are thus more appropriate than logical ones to describe
neural computations.
A prototypical example of cell assemblies is given by the columnar structure of
the cortex which will be of particular interest in this paper. In fact, the cortex
reveals paradoxically a wide diversity of functionalities but a similar repetitive
structure. It is anatomically constituted by a laminated surface (approx. 2 mm
deep in total) with a vertical organization of bundles of approx. 110 neurons10 —a
cortical column— receiving and emitting spikes to the rest of the CNS or from other
columns. These columns (of a diameter of approx. 20 − 60µm) have vertically
a similar 6-layer organization across the cortex [Mountcastle, 1998] : the middle
layer (granular or layer IV) receives input from the thalamus, relays it to the
upper layer (supra-granular). Cortico-cortical connections run then horizontally
or through the white-matter for far-ranging interactions. This layer is connected
to the deep layers (infra-granular) which connect back to the thalamus (layer VI)
or directly to the basal ganglia and the spinal cord (layer V). As we saw, the
propagation of information takes more time with distance and by economy we
may predict that inside an area the columns in cortical areas will be arranged
so as to minimize the time of local cooperation by arranging similar features
on neighboring cortical locations (as will be implemented in Sec. 3.3.4). This
principles is generally observed in biology and is at the base of Self-Organizing
Maps [Kohonen, 1982]. The approx. 600 million cortical columns of the human
cortex therefore constitute a network of micro-circuits with an apparently generic
architecture.
However, it is not clear if neural computations may be reduced to the scale of the
cortical column (for a review, see [Horton and Adams, 2005]). In fact, depending on
the function of the cortical area, the code produced by this population of neurons
may have different characteristics. In the cortical motor areas, for instance, the
infra-granular layers are thicker and the average output firing rate of a population

10This number is stable in mammals except a count of around 260 in the primary visual cortex of
primates.
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of columns correlates well with the action actually being done [Georgopoulos et al.,
1986]. In low-level perceptual areas on the other side, the activity of neighboring
columns may have drastic and highly non-linear effects and a column activated
by a preferred stimulus may be excited or inhibibited depending on its surround
(see [Ringach, 2002] and section 3.3.3). In fact, cortical columns may often be
horizontally organized in assemblies or hyper-columns (of a diameter of approx.
0.4 − 1.0 mm) and seem to interact by cooperation and competition rules therein.
Populations of neurons or of mini-columns interact therefore recursively and non-
linearly, and this behavior may be understood functionally as an enhancement of
the efficiency in terms of information processing.

1.2.3 The CNS as a dynamical architecture

We may extend this analysis to the scale of the CNS to reveal a complex modular
architecture. Anatomically, the CNS may be subdivided in different parts which
correlate with their apparition during evolution and also with the development
of the embryo. Respectively, the oldest parts are the spinal cord (over 450 million
years old, controls movements of limbs and trunk), the brain stem and the midbrain
(approx. 200 million years old, which receive sensory information and control
most vital functions), and the diecephalon which contains the thalamus (where
most sensory information converges) and the hypothalamus (which seems to
modulate emotions and the homeostasis of brain activity). More recently in
evolution, appeared the cerebral hemispheres with in their center the hippocampus
(or archeo-cortex) and in the deep layers the basal ganglia (which regulates
motor performance). On its surface, lies a thin layer wrapped in the skull
on top of the midbrain : the cerebral cortex (or neocortex, aprox. 0.4 million
years) which is supposed to play a major role in our cognitive abilities (from
perceiving to reasoning). The CNS also includes the cerebellum on the dorsal
part of the midbrain and the function of which is to coordinate planning, timing
and patterning of motor responses at the interface with the cerebral hemispheres
[Kandel et al., 2000, p. 292]. This introduces a hierarchy in the CNS from the most
primitive to earlier modules which are built successively on the top of the oldest.
As was stated before, information flows in parallel in the architecture along
feed-forward, lateral but also in feed-back pathways. First, the propagation on
the membrane of neurons takes time and this parallel architecture implies the
existence of a dynamical hierarchy in the CNS depending on the latency of an
area compared to an other [Bullier, 2001]. In fact, a sound evolutionary strategy
is to propagate the most relevant information first and this dynamical architecture
must therefore minimize in the architecture of the CNS the delay between the
sensation and a behaviorally relevant response. This constraint on the shortest
path will be naturally driven by the hierarchy of the feed-forward links between
the modules of the CNS. Secondly, the lateral and feed-back loops may explain
mechanisms of memory or of a progressive maximization of the efficiency of the
activity. This interpretation may therefore explain the different rhythms that may
be observed during different cognitive tasks [Freeman and Barrie, 1994; Rodriguez
et al., 1999] but also more generally the relative synchronization of large groups of
neurons [Fries et al., 2002]. It is therefore necessary to consider the role of lateral
and feed-back connections to understand dynamical properties of perception such
as temporal masking or multi-stability [Logothetis et al., 2001]. In particular these
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studies show that the dynamics of this network may correlate with cognitive
abilities and thus seem to give hints on the neural code at the scale of the CNS [Jirsa,
2004].
Anatomical and functional observations reveal that the cortical surface is itself
divided in modules —or cortical areas— corresponding to different functions which
are themselves organized in association maps. In the human cortex, it may
be subdivided anatomically in 52 areas (categorization from Brodmann [1909]),
which are themselves assembled in 32 functional areas. These areas are inter-
connected by 232 reciprocal cortico-cortical connections11. The cortex is a highly
convoluted surface in humans and when flattened, it may be considered as a surface
(approx. 1.4 m2 in humans) which consists of sensory areas, associative areas, the
somato-sensory areas and the prefrontal cortex. The function of these areas may
be described by exploring the general condition they are specifically selective to
(for instance, to all auditory signals or speech)12. The cortex is therefore a complex
network of maps interacting to transform sensations into a dynamical flow of
spikes which may generate actions. Dynamics of neural computations should
therefore be studied at all these rather different scales : the neuron, the cortical
area, the CNS (see Tab. 1 for a synthesis).

spatial scale unit temporal scale relevant technique
0.001 mm-0.01 mm synapses 2 − 5 ms electrode

0.1 mm-0.1 mm neurons 10 ms electrode
1 mm columns 10 − 50 ms electrodes - LFP

10 mm hyper-columns 20-50 ms optical imaging
10 mm 100 mm cortical areas ms optical imaging

1000 mm CNS 110 ms EEG / MEG / fMRI

Table 1: Scales of neural computations This table summarizes the scale order in
temporal and spatial domains for neural computations in human for the different
bricks that we extracted in Sec. 1.2. It lists some particularly relevant techniques used
in neuroscience to study that particular scale.

1.3 Properties of the low-level visual system
The prevalence of the study of vision correlates with its importance and relative
size in the brain. It constitutes a major theme in neuroscience and the amount of
literature makes it the best known cognitive function. The general properties of
the CNS that we reviewed above showed some general principles that apply to the
visual system and we will now focus on the particularities of the low-level visual

11For these connections, an important and rather unexplained feature is that the time of upstream in
the hierarchy is equal to the time of downstream.

12One should note that this popular view and caricatured in phrenology, is in mathematical terms
intractable, since one may only guess from the neural response the selectivity to a limited range of the
presented stimuli (which are themselves often chosen according to this guess). However, an actual
response may take different forms and be selective to a wider range of stimuli and interactions of stimuli
in a non trivial way, leading to a biased description of the function of neuronal structures [Olshausen,
2004]
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system (by definition the part of the CNS which is specially devoted to vision) at
the different scales of description.

1.3.1 Hierarchical and dynamical architecture of the low-level visual
system

As seen above for the whole CNS, we may describe a hierarchy in the visual system
going from sensation to action. We may review it by studying the propagation of
visual information elicited by the presentation of an initial image between two
saccades or blinks of the eyes13 or more precisely by a "flashed" image to reveal
the transient dynamic of the network [Bullier, 2001]. First, the retina captures the
luminous information that hits the back of the eye. The retina consists of approx. 108

neurons, among them 4 million photo-receptors, and one million output neurons,
the ganglion cells, whose axons form the optic nerve. These are of several types, in
majority M and P cells : the 105 magno-cellular (in short M) cells which are quick
(responding after approx. 10 ms) but at a lower spatial resolution (coarse coding of
up to 100 rods) and the 8.105 parvo-cellular (or in short P) cells (after a latency of
over 30 ms) which have a better spatial resolution (up to a one to one connection
with photoreceptors). These cells convey information about the local contrast in the
image and is relayed by the optic nerve to the Lateral Geniculate Nucleus (LGN),
an olive shaped nucleus of the thalamus which keeps the M and P cells segregated
into its different layers and adds a delay which is the sum of the propagation time
(from 2.5 ms to 10 ms, depending on the fiber) and an integration time depending
on the stimulus (see Fig. 2). This nucleus concentrates the luminous sensory input
and separates rough information (such as the information used to regulate the
circadian rythm) while the visual information heads toward the cortex.
This information is then conveyed by the optic radiations through the white
matter and enters the thick granular layer of the Primary Visual Area (labelled
V1 in humans; the granular layer is easily observable anatomically, hence the
name striate cortex). The information from the magno and parvo cells still keeps
segragated and enters after resp. approx. 40 ms and 60 ms (Fig. 2-Middle) in
separate sub-layers of the granular layer. V1 is situated in the occipital lobe and
is the convergent area for up-stream and down-stream visual information in the
visual system’s hierarchy, thus forming a "black-board" for all visual information.
As suggested by Marr [1982], the function of this cortical area could be to form a
synthetic representation of the visual information gathered from the converging
visual input, as an elaborate sketch of the visual world, relatively independant of
some crude lighting conditions such as the global luminance or contrast. This area
could also serve to segregate the figure from the ground [Bullier, 2001].
After V1, the visual information branches in two pathways which originate from
the M and P pathways and gradually represent more "abstract" visual features.
First, the dorsal pathway is particularly sensitive to the position and motion of
objects, hence the name of "Where" pathway: the heavily myelinated path from V1
to mediotemporal area (MT) leads to fast activation of this area selective to local
velocities (the earliest latencies lying at 45 ms). The major part of this pathway
naturally originates from the fast cells of the magno-cellular pathway. On the
other hand, the ventral pathway (areas V4 to the infero-temporal areas) shows a

13To keep the description simple we will abstract binocular and color cues and the eye will be
considered as fixed but also micro-saccadic movements [Martinez-Conde et al., 2000].
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Figure 2: Simplified dynamical view of the visual "Where" pathway. When
presenting a full contrast image, the corresponding information flows from the retina
to higher visual areas to finally reach an eye movement. The time of propagation of
information builds a parallel and hierarchical order of activation of the different visual
areas until a —possibly progressive— decision is taken. Indicative latencies are given
in milli-seconds for the macaque brain (numbers in italics). At the activation of an
area, the information may be fed-back to a lower-level area with a similar propagation
time. The dashed line correspond to the early "Magno pathway" —that is to the earliest
possible latencies reached by the information transmitted through the M cells— while
the dotted line corresponds to the later "Parvo pathway". It should be noted that until
an eye movement decision is made, the oculo-motor system is still in an open-loop
phase.

selectivity to the identity of features or objects and is progressively independent to
object position or motion, hence the name of "What" pathway. Moreover, there exist
also cross-links in the low-level visual system between cortical areas which enable
the sharing of inter-modal features and, as time goes, the anatomical separation
between the M and M+P pathways progressively vanishes (for a review, see [Salin
and Bullier, 1995]). This distinction remains functionally and we may consider
the visual pathways as a "fast brain" driven by M cells and then a finer pathway
which allows for a progressively more reliable output [Bullier, 2001]. The visual
system thus consists in a dynamically functional hierarchy which progressively
transforms the retinal information in more abstract maps progressively losing the
retinotopical information.
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1.3.2 Receptive fields

A major breakthrough in our knowledge of the visual system was the discovery
of the specific response of neurons in these cortical areas [Hubel and Wiesel, 1959;
Henry et al., 1974]. In fact, by exploring the firing rate response of neurons of the
primary visual cortex (V1), they observed that most neurons responded preferently
to local oriented edges, thus bridging for the first time the presentation of visual
features with a selective cortical activity. By moving the measurement electrode
in V1, the preferred orientation evolved as they moved tangentially to the cortical
surface, forming a series of interdigidated stripes on the surface of V1. However,
the corresponding preference did not change when moving perpendicularly to
the surface [Mountcastle, 1957; Hubel and Wiesel, 1962] (as we mentioned in
Sec. 1.2.2). For any neuron, the corresponding field of visual space that helped
to change significantly the response of the neuron is called its Receptive Field (RF)14

and Hubel and Wiesel [1968] proposed a model to explain these results, for which
neurons integrate information on their RF and that the final response, mediated
by the mean firing rate, is non-linearly transformed to match neurophysiological
observations [Carandini et al., 1997]. This popularized the view of neurons as
simply matching templates field [Barlow, 1972] and that, by extending this theory
to higher levels, one neuron could be preferentially activated by the image of one
own’s grand-mother image, hence the nick-name of a "grand-mother cell".
However, this theory is not sufficient to describe all observations and tends to
be incomplete or to reflect a distorted description of natural conditions. First,
the experimental conditions tend to remove arbitrarilly "outliers" and to use non-
natural stimuli [Olshausen, 2004], leading to an over-estimation of the overall
mean firing rate and of a biased sampling of neurons’ properties in V1. Secondly,
as was suggested in Sec. 1.2.2, dynamics of the signal on the RF of a column may be
influenced by the context and this dynamic may be a necessary condition for the
emergence of a percept [Jancke et al., 2004]. In particular, there is an intracortical
propagation of information tangential to the area (at approx. 0.2 − 1 m.s−1

corresponding to approx. 1.5 ms between two neighboring cortical columns) but
also a back-propagating flow from higher level areas (see Sec. 1.2.3) which greatly
influences the response of cortical columns. These results in selectivity differences
which may influence the shape of the RF [Gilbert and Wiesel, 1979; Monier et al.,
2003].
This non-linear weighting may be related to a generic interaction taking
functionally the form of a divisive normalization [Schwartz and Simoncelli, 2001;
Wainwright et al., 2001] which basically optimizes the independance of the output
of the local circuit. This may be related to the extraction of the maximum
likelihood of the feature [Denève et al., 1999] and there is a trend in explaining these
behaviors as the emergence of a generic local microcircuit that would implement
an efficient coding of the neural information. Other models such as those proposed
by Grossberg [2003] implement in recurrent circuits of cortical columns a similar
optimization argument and give raise to functional algorithms which are applied to
image processing [Grossberg and Yazdanbakhsh, 2005]. This introduces an indirect
dynamical influence, the response of columns in the area being influenced by the

14Functional definition of the RF were first defined by Sherrington [1906] for the tactile sense as "the
whole set of points of skin surface from which the scratch-reflex can be elicited", and then in other areas,
for instance by [Hartline, 1940].
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direct feed-forward visual input but also by the converging dynamical context of
lateral interactions.
We may therefore rather describe the function of the RFs of columns by dynamically
separating the function of the fast statistical pattern matching from the latter slower
interactions within the population using lateral connections. First, columns quickly
integrate afferent information to match the feed-forward visual input with some
range of features which are specific to the column (this will developed in Sec. 2).
Secondly, the neighboring columns —which were also excited by some correlated
activity if their RFs overlap— interact at the same time to form a robust and efficient
representation of the visual map according to the range of selective features which
are specific to the area. We will develop this hypothese in section 3 and propose
a model of the behavior of the population of columns. In parallel, we will study
how slowly varying rules may adapt the weights of the cortical micro-circuitry
to achieve an efficient processing of natural images (see Sec. 3.2). In this view,
the overall system will achieve at best to alleviate visual ambiguities by locally
detecting features on their RF while dynamically optimizing the representation.

1.3.3 Feature maps: distributed visual representations

A key concept in this dynamical model of the visual system is the topological
organization of the visual information on the surface of the cortex, forming
dynamical feature maps [Miikkulainen et al., 2005]. We saw that cortical areas are
in general organized in maps of features and that these are organized by arranging
neighboring features in close cortical positions (see Sec. 1.3.1). We will in our
models isolate a function for every visual area and thus consider that the different
visual images will correspond to a special filtering of the retinal image to extract a
set of features relevant to that function and independently to another set of features.
These particular sets of features are most often defined by their intuitive level of
complexity and are tested experimentally on the different cortical areas. The retina
seems to represent the possible levels of contrast at different scales in the image
rather independently to smooth illumination variations. In V1, the representation
on the cortical map is more complex and maps are selective to several variables (for
instance, edge orientation and phase in V1) on the flat surface of the cortex [Basole
et al., 2003]. It seems to be rather independent of the global complexity of local
contrast values, a visual scene eliciting the same map if it was presented as a
drawn sketch. It is argued that this is in general achieved by bundling in macro-
columns sets of micro-columns centered on the same spatial position but consisting
of the set of different variables to code (see Fig. 3). In a higher visual level area,
such as the cortical area MT, macro-columns regroup mini-columns sensitive to
different possible local speeds relatively independent of other features of the visual
image (such as the local texture) [Albright, 1984], mapping therefore an image of
the motion flow of the visual scene. The dynamical propagation of information
therefore creates an architecture of feature images which represent different aspects
of visual features in parallel and which correspond to progressively more abstract
functions in the hierarchy of the visual architecture.
Thus, these feature images are vectorial images of features organized by the spatial
topology. This organization reflects at a first order the regularity due to the
translation of objects in the visual space and therefore that features in the similar
portion of visual space should be located on neighboring sites in the cortex. It is in
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Figure 3: Feature images. (Left) Anatomical studies show that neurons on cortical
surfaces share the same selectivity to visual features (in this example an elongated
edge as in V1) perpendicularly to the surface but gradually change tangentially to
the cortical area according to the retinotopy (visual space). These populations of
neurons may be grouped by cortical columns in an "hyper-column" sharing a whole
set of features at approx. the same visual space position. (Right) A useful view is to
understand this topological arrangement as a feature image, that is as the representation
of the selectivity to the different features (a vector) as a function of space. We may
understand the previous arrangement as an optimal projection of this feature space on
the two-dimensional map of the cortex [Petitot, 2003].

particular retinotopic in low-level visual areas (that is that they represent the space
as it is on the image formed on the retina). In particular, the arrangement of cells
shows a structure centered on the axis of the eye, at the fovea, with a sampling
which is approx. uniform on the macula (the region around the fovea) and than
logarithmically proportional to eccentricity. This structure may be interpreted as
a way for the visual system to focus information located around the axis of the
eye. This structure must therefore be related to the mechanisms of attention and
the dynamics of eye movements. On cortical areas, the density of neurons is
uniform (2.105 neurons/mm2 in V1 [Hubel and Wiesel, 1974]) but the log-polar
topological representation is preserved. However, it is progressively less precise in
higher visual areas ( In humans, at visual eccentricities of resp. 5 and 20 degrees, the
diameter of V1 neurons’ RFs is resp. 1 and 5 deg. while it is 5 and 20 degrees in MT)
and in particular in the ventral pathways where the cortical areas are progressively
independent on the position of the objects. It is also known to be less anchored on
the retinal space (which in particular moves with every eye movement) and may
get instead anchored on an ego-centered spatial reference. Low-level visual areas
may thus be more generally described as these feature maps, the "closer" in feature
space, the closer on the cortex.
From the columnar architecture of the cortical surface, features are projected on
this two-dimensional surface and activities may be interpreted as a distributed
representation of the quality of the match with the features. In fact, the structure of
V1 revealed for instance by optical imaging [Grinvald et al., 2001] shows that the
information of orientation is distributed in macro-column, forming "pin-wheels"
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of orientation selectivity15. This representation may be viewed as an optimal
projection of the multidimensional feature image on the cortical surface [Petitot,
2003] (see Fig. 3), thus forming a distributed representation of the different
features16. However, it is not clear what and how information of the feature
image is encoded in the neural activity, should it be explicitely (for instance in the
neuronal firing frequency [Adrian, 1928]) or non-explicitely (through a non-linear
transform of the feature image). Cortical maps therefore represent in a distributed
manner the feature images at different positions and we will study this hypothesis
in the following section.

2 Matching of low-level visual features
As we saw in the previous section, the goal of low-level vision is first to detect
different known visual patterns rapidly and at best by using the actual visual
input. We will in this section propose a generic inferential model thanks to an
explicit representation of the quality of a match. In this framework, columns
in a representation map will be regarded as ideal observers representing locally
the probability of having matched the features they are selective to. We will
illustrate this method on models of progressively higher visual areas: from the
photoreceptors layer, to the output of the retina and finally to a model of the
perception of motion for the control of the motion of the eyes.

2.1 Neural computations and the ideal observer approach
We will first present the problem of feature detection in the classical statistical
pattern matching framework. It will be based on a generative model of the signal
that will allow to represent explicitly the probability of feature detection.

2.1.1 Distributed probabilistic representation: example of photorecep-
tors

As an illustration, let us first understand the map of photoreceptors in the retina
as transforming the image of luminosities (that is of the energy of absorbed light,
the actual physical image measured in Trolands which corresponds to a physical
energy of the incoming photonic flow) to a relevant variable, the luminance which,
as we will see, is directly related to a probability. In fact, the light emitted
or reflected by the various objects in our environment is concentrated by the
eye on an image of photoreceptors of which the electrical activity is modified
proportionally to the energy of the light influx. It was observed that this transform
may be well described by a generic point-wise operation. It is implemented by
the roughly logarithmic response of the aligned photoreceptors which transforms
the probability distribution function of luminosities into a flatter distribution
of luminances. This is similar to the histogram equalization operation which
maximizes the entropy (for a bounded output O(~x) at location ~x) and therefore the

15This is not true for all species, such as the cat, and may reveal a hierarchy of organizations during
evolution

16This principle may be true also at the scale of the CNS, and for instance neighboring areas (e.g. V1
and V2) represent relatively reflection symmetric visual maps along their common border.
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coding efficiency of the representation in terms of compression [van Hateren, 1993]
or dually of the minimization of intrinsic noise [Srinivasan et al., 1982]. This process
has been observed in a variety of species and for instance perfectly illustrated in
the salamander [Laughlin, 1981]17. It may evolve dynamically to slowly adapt to
varying changes in luminances, such as when the light diminishes at dawn but
also to some more elaborated scheme within a map [Hosoya et al., 2005]. The
photoreceptor array thus non-linearly processes the image of luminous energies
into a more tractable and robust image.
Let’s understand this transformation mathematically thanks to the simple hypoth-
esis that the output of the array should remain bounded. Let’s note P(I(~x)) the
probability of the luminosity I(~x) at position ~x. This probability is highly skewed
toward low energies in natural images (and generally independent on ~x if the
lighting conditions are uniform). Let’s now note

f~x =

∫ I(~x)

∞

dP(I(~x)) (1)

the cumulative probability distribution18 computed over a certain time period.
Under the hypothesis that the output is bounded, the output maximizes entropy
if it has uniform probability distribution over this range and a characteristic time
period19 and the solution may be written

L(~x) = f−1
~x (I(~x)) (2)

We therefore have an uniform distribution of the output probability distribution
and in particular L(~x) =

∫
dP(L(~x)) models well the normalized luminance at

position ~x (assuming that the output is in the range between 0 and 1). This process
therefore allows a transformation of the image into a more efficient representation
which directly derives from a probability.
Let’s draw from this example general principles for understanding and modeling
neural computations in low-level vision. The new variable, the luminance, is
transformed into a variable independent of a global choice of a measurement unit: it
is therefore more adapted to statistical pattern matching where the choice of a match
should be for instance independent of the lighting conditions. This important
transformation, also called histogram equalization, transforms arbitray values in
an efficient representation and we will see how it may be used in practice below for
the construction of look-up-tables (see for instance Sec. 2.2.2, Eqs. 1 or 58). It may
be linked to the rank of the ordered values [Perrinet, 1999]20 and therefore may be
a pre-processing stage which may have a role in transforming generic analogical
values in a value which may be of relevance for detecting features. In fact, this
variable is optimally sampled on its dynamic range as it is adaptive to slightly
varying change of luminosity’s statistics. Secondly, this statistical measurement
is particularly adapted to inference mechanisms but also to the convergence of
features from possibly different modalities as seems to be omnipresent in the

17This non-linear operation is by coincidence similar to the response of the cathode tubes used in
traditional monitors and incidentally to the gamma correction applied to images.

18the symbol dP(X) will here denote in general the probability distribution measure over variable X.
19This assumes the stationarity of the signal over this time period or over the image under the

assumption of ergodicity.
20This was further applied to the retina, see [van Rullen and Thorpe, 2001] and Sec. 2.2
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CNS. This representation, from the direct relation to a probability measure, seems
therefore to provide creative insights into the mechanisms underlying neural
computations.

2.1.2 The ideal observer as a generic function

Let’s define here a functional methodology to understand the mechanisms of
neural computations. In fact, a recurrent problem in computational neuroscience
is the under-constrainted number of free parameters which prompts a fastidious
exploration of parameters. Testing the validity of fits between models and
biological data may then reveal ambiguous results since they may not reveal
general principle of computing but only a mere ad hoc description. As in the
example above, a solution is rather to understand the functionality of the process
(there from luminosity into luminance) in terms of its efficiency and thereby
lowering the number of the parameters. Similarly, to resolve this problem in higher
visual maps, we will thus assume that visual computations are tuned so as to match
at best known visual features (knowing neural physiological constraints) and that
they will do so in an optimal way, that is as an ideal observer [Geisler and Albrecht,
1997; Mamassian, 2002]. This view will allow us to explicit an interpretation for
neural activity as directly linked to a probability measure and then model neural
mechanisms as elementary inferences.
As coined by von Helmholtz [1925] under the term of unconscious inference,
the goal of the visual perceptual system is to optimally solve an estimation
problem of matching visual features for which we will see that probabilistic
representation may give a generic computational scheme. This ecological view has
multiple ramifications in the fields studying vision and there is growing evidence
that neuro-physiological signals [Zemel and Sejnowski, 1998] and psychological
responses [Kersten et al., 2003; Rao et al., 2002] may be interpreted as the response
of an ideal observer according to an hypothesized model of the function of the
system under consideration. This evolution is not in rupture with previous work
based on linear models but rather extends these models to larger set of hypotheses.
Moreover, these models and their emergent properties may now be explicitly be
confronted with the hypotheses and physical causes they explicitly represent and
thus allow a "dialectical" validation process. They may also explain the need of
complex non-linear responses as the response of a network of inferences as an
ideal observer is related to a particular information (should it be "the pixel ~x is at
luminance 0.9", "there is a vertical edge at ~x" or "the most likely motion is leftward").
The notion of ideal observer may thus provide a common language to understand
some cognitive abilities.
In that view, the system should have a knowledge of the statistics of the patterns
forming natural images. In fact, the underlying concept of an ideal observer is inter-
dependent with the concept of patterns, or more generally of causes, and if we need
to estimate a probability of a match we should first establish a model of the synthesis
of the physical signal. According to the mathematician and economist Antoine-
Augustin Cournot (1801-1877), the collection of physical signals, and therefore of
images, may be understood as the fortuitous interference of independent causes,
that is as the interplay of independent unknown sources. However, these patterns
interfere according to known physical laws (such as transparency or occlusion in
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optics) which allow to build a model for image synthesis21. This generative model
for the features that constitute the image is therefore necessary to describe inference
mechanisms [MacKay, 2003, p.55]. In that sense, we may understand a goal of the
feature images (see Sec. 1.3.3) as representing the probability of a match knowing
a model of the synthesis and of the mixing of the causes they correspond to.

2.1.3 The Linear Generative Model (LGM) and natural scenes

Let’s first try to find a general model of physical image formation which should
encompass diverse levels of complexity. In fact, let’s try to model the combination
of simple luminous static features which interact according to the laws of
transparency. It will be used in our model of the retina (see Sec. 2.2) for static images
and is only valid on a local visual distance where occlusions are not predominant.
If we consider that thanks to the adaptation of the photoreceptors, the incident light
energy is roughly uniform, the luminosity from a position ~x in the visual space X
is by the multiplicative law of light absorption the product of the reflectance of the
different primitive causes (in a dictionaryS) that transformed the luminous influx:

I(~x) ∝
∏
j∈S

R
s j

j~x
(3)

In this equation, the R j correspond to spatial shapes (such as edges) which
correspond to stable physical topological objects while s j is its relative strength
or contrast. This regularities may then be transformed in hypotheses which would
be transcribed in ideal answers thanks to the bayesian formulation [Purves and
Lotto, 2003] . This “laws” also correpond also to psychological experiments on
the perception of transparency [Metelli, 1974] when manipulating the overlap of
different simple transparent shapes. By the log-transform of photoreceptors (see
Sec. 2.1.1), we thus have

L(~x) ∼ log(I(~x)) ∝
∑
j∈S

s j.(log R j)(~x) (4)

A simple physical description of the image as the superposition of transparent
patterns may therefore be given in terms of this Linear Generative Model (or
LGM).
The LGM may be also understood in a statistical framework similarly as we
understood the transformation of luminosities into luminances [Atick, 1992].
In fact, the luminance as a probability measure may be seen as the factorial
combination of independent features (or sources). These maps for the luminance
of source probabilities (that we note respectively L(~x) and s j) thus by the causal
link between the hypothetical sources A j ∝ log R j and the input image (see Fig. 12):

L =
∑
j∈S

s j.A j (5)

where S is the set of sources. This defines the receptive field of a neuron as
mapping explicitly the causal link between sources and luminance. This model is

21In that sense, the different visual areas may correspond to relatively independent models or concepts
of the visual features in an image: motion, detection of a pattern, ...
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thus more general (and corresponds more to statistical pattern matching) since it is
not strictly corresponding to physical assumptions as before. This will allow us to
derive simple inference mechanisms using bayesian inference since we explicitly
use probabilities [MacKay, 2003, p. 27].

2.1.4 Computing the probability of a match

Having set the forward model we are now interested in computing the match of a
particular instance of the signal (here an image) with the model.

Theorem 1 (Best Match of a Single Source) In the low-noise limit, for a given signal
L ∈ I, the log-probability corresponding to a single source s.A j ∈ I knowing it is
a realization of the LGM as it is defined in Eq. 5 (and for which we assume no prior
knowledge) is maximal for

s =< L,
A j

‖A j‖2
>=

∑
~x∈X L(~x).A j(~x)∑
~x∈XA j(~x)2

(6)

and is then up to a constant proportional to

< L,
A j

‖A j‖
>=

∑
~x∈X L(~x).A j(~x)√∑

~x∈XA j(~x)2
(7) 2

P We will note in general a single source by its index and strength by { j, s} so
that the corresponding vector in S corresponds to a vector of zero values except
for the value s at index j. First, given the signal L ∈ I, we are searching for the
probability corresponding to a single source s.A j ∈ I knowing it is a realization of
the LGM. It is defined thanks to the conditional probability (Laplace, 1774) as the a
posteriori probability noted P({ j, s}|L). To evaluate this probability, we derive from
this definition the theorem of Bayes [Bayes, 1764]:

P({ j, s}|L) = 1/Z.P(L|{ j, s}).P({ j, s})] (8)

where Z is a normalization constant independent of the source22, P(L|{ j, s}) is the
likelihood probability of a signal knowing the single source and P({ j, s}) is the
a priori probability of the sources. The prior thus corresponds to the available
information when nothing is known from the input signal.
Following the interpretation of Cournot, we will first assume that we are in a
low-noise limit environment (the global contrast is optimal and the eye/camera is
adapted to the scene) so that we have no or little measurement noise. Knowing
one component { j, s}, the only "noise" from the viewpoint of our ideal observer,
that is the column j, is the combination of the unknown sources {αk}1≤ j≤N:

L = s.A j + ν with ν =
∑

k
αk.Ak (9)

The residual of the signal (an image) is thus considered as an undetermined
perturbation23. Assuming that the αk are independent random variables (since

22We will keep this notation even if the constant may be different in the following.
23It should be stressed that the image model is still deterministic.
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we know only { j, s}), from the central limit theorem it comes that for a sufficiently
high number of sources, the distribution of the random variable ν converges
to a normal distribution with known mean and covariance matrix. From the
work of Field [1987], we know that for natural images this normal distribution
is fairly homogeneous so that we may assume some prior knowledge on these
second order statistics. In fact, over natural images, the correlation between the
luminance of neighboring pixels is known to decrease inversely proportional to
the distance, so that the covariance matrix has a regular shape [Atick, 1992]. We
may therefore either use another metric (based on the Mahalanobis distance, as
exposed in [Perrinet et al., 2004]) or use a decorrelating kernel such as is defined
in [Olshausen and Field, 1998] to transform this “noise” into a spherical probability
distribution centered around the origin (E(ν) = 0 with a covariance matrix equal to
the identity times a variance σ2, corresponding to the mean energy of images in I).
Note that this re-normalization according to the scale (or temporal frequency when
using moving images [Dong and Atick, 1995]) leads to a different distribution of the
Fourier components in the spatial frequency space: the image’s power spectrum
distribution is "spherized"24. This decorrelation process corresponds simply to a
pre-process of filtering by the decorrelating kernel. It roughly corresponds to the
physiological response of the layer of horizontal and bipolar cells in the retina
between the photo-receptors and the ganglion cells. It results in modifications
in the spatial frequency tuning of cells [Enroth-Cugell and Robson, 1966] which
may be observed by the contrast sensitivity of retinal columns as a function of
spatial contrast (see Fig. 4) and matches with the response measured in visual
neurons [Dan et al., 1996]. This step will provide a preprocessing stage which
spherize the non-gaussian statistics of natural images on the receptive fields of
neurons.

The residual signal is thus considered as a decorrelated noise and from
P(L|{ j, s}) = P(L − s.A j) = P(ν), it follows

P({ j, s}|L) =
1
Z
.P(L|{ j, s}).P({ j, s})

=
1
Z
. exp(−

‖L − s.A j‖
2

2.σ2 ).P({ j, s}) (10)

We will further consider that the dictionary A was learned so that over a long
period the different sources have similar statistics: the prior is uniform across
sources and values (we thus have no prior knowledge or preference for any source
and was proposed in Sec. 1.3.3 and will be implemented in Eq. 55).

log P({ j, s}|L) = − log Z + ‖L − s.A j‖
2/σ2/2

= − log Z + [s2.‖A j‖
2
− 2.s. < L,A j >]/σ2/2

It should be noted that to minimize this bi-variate function in s and j, we may
first minimize for every element j the coefficient s j to get the corresponding s∗j =

ArgMaxsP({ j, s}|L). From the above equations, this is equivalent to minimizing

24This is similar with the maximum entropy principle studied in Sec. 2.1.1. It extends to a fair
competition between all different contrasts shapes. It should be noted that this is similar to diagonalizing
the covariance matrix, such as in Principal Component Analysis and that this normalization could be
easily learned by a linear hebbian rule [Oja, 1982].
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Figure 4: Spatial decorrelation (Left) Profile of pairwise spatial correlation in a set of
natural images. It shows the typical decrease in 1

f 2 of the power spectrum. (Middle)
decorrelation filter computed from the methods of [Olshausen and Field, 1998] (see
text). This profile is similar to the interaction profile of bipolar and horizontal cells in
the retina. (Right) Profile of pairwise spatial correlations of the filtered images . As
observed in the LGN [Dan et al., 1996], the power spectrum is relatively whitened.

in the last equation the quadratic function of s which is minimal for the scalar
coefficient

s∗j =
< L,A j >

‖A j‖2
(11)

that is for the scalar projection of the input on A j. Then, since for every element
j, s∗j.A j is the projection of L on A j, so that s∗j.A j and L − s∗j.A j are orthogonal, it
follows from Pythagoras’s theorem:

− log P({ j, s}|L) = log Z +
< L,A j >2

2.σ2.‖A j‖2
(12)

and that the filter with maximum a posteriori probability is given by:

j∗ = ArgMin j[‖L − s∗j.A j‖
2]

= ArgMax j| < L,
A j

‖A j‖
> | (13)

Finally, as defined in Eq. 13, we found that the source component that maximizes
the probability is the projection of the signal on the normalized elements of the
dictionary, that is up to ‖L‖, to the cosinus of the angle between the data and the
feature vectors. �

This justifies the computation of the correlation in the perceptron model [Rosen-
blatt, 1960] as it provides a measure of the log-probability under the assumptions
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that we used. Moreover, it is popular to introduce a prior favorizing small
coefficients as it is similar to a regularization strategy. One should note that we
could easily constrain for the scalar values to be positive by setting an appropriate
prior or simply by only looking for positive correlations in Eq. 13. Finally, using
a generative model for the image, we could easily compute —under defined
hypotheses — the argument of the maximum of this probability , that is the
Maximum A Posteriori ((or MAP)) of the different sources. This log-probability
correlates with the linear component of a good proportion of visual neurons in
the low-level visual system and may be used to model the first level in the visual
hierarchy, the retina.

2.2 Application to modeling the retina: transforming light
into a wave of spikes
Based on the previous results, we will design a simple model of the transform of
luminances into a contrast map. We will in particular explore how this map can be
translated into a spiking pattern and build an efficient code for the transmission of
information to the LGN and the visual cortex.

2.2.1 Architecture: detecting multi-scale contrasts

The retina is a thin layer at the back of the eye (see Sec. 1.3.1) which transforms
the signal of the photoreceptors into an image of multi-scale contrasts. This
feature map (see Sec. 1.3.3) is itself converted into a spiking signal along the
optic nerve. We will further assume that the transform should be invariant to
some translations and scaling and thus that the features to detect are generated
by one similar mother function which will be replicated at different positions and
scalings. This assumption is the natural counterpart of the changing position
of objects in tridimensional space. A continuous sampling would constitute a
continuous wavelet transform. However, the limited number of neurons constrains
the transform to be discrete. The geometric sampling of the scale of the discrete
wavelet optimizes a compromise of precision versus localization in the case of a
uniform repartition of the spectral information. A popular solution (chosen for
instance in van Rullen and Thorpe [2001]) is to choose a dyadic progression, that
is where filter radius and grid spacing both grow as powers of two25. From these
assumptions, we can define a single mother function ψ from which every filter can
be derived using translation and scaling.
As the architecture is defined, an important task is to choose an appropriate mother
wavelet to detect contrasts in the image. As in [van Rullen and Thorpe, 2001] and
from [Field, 1994], neurons j are defined here according to their position ~x∗ and
scale σ as dilated, translated and sampled Mexican Hat (or Difference Of Gaussian
— DOG) filters (see [Mallat, 1998, pp. 77], and Fig. 5) as

A j =
1
σ
DOG(

~x − ~x∗

σ
) with DOG = G1 − 1/K2.GK (14)

and Gσ(~x) =
1

2π.σ2 . exp(−
‖~x‖2

2.σ2 ) (15)

25The total number of columns is thus proportional to the number of pixels by a factor of approx. 4/3.
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Figure 5: Mother function for the filters in the retina. (Left) The DOG filter is a
center-OFF (in black) surround-ON (in white) contrast detector. (Right) Central profile
of the DOG filter. As a unit measure, the vertical striped lines represent the variance
of the narrower Gaussian used to generate the DOG filter and thus corresponds to the
center of neighboring filters.

where we denote Gσ as the 2D Gaussian function of variance σ which equals .5 for
the mother function. These filters fit to the receptive fields that can be observed
in the biological retina for a constant K approx. equal to 5 [Enroth-Cugell and
Robson, 1966]. It also fits the Laplacian-of-Gaussian function defined by [Marr,
1982] with K ∼ 1.6. The choice of the mother function defines the prototypical
contrast to detect. In accordance with the previous results using the LGM model
(see Sec. 2.1.4), we will set the linear representation at the output of the retina to be
the a posteriori log-probability of a match with a set of features. This is in accordance
with neurophysiological data on the linear response of retinal neurons [Rodieck,
1965], and will drive the activity of the retinal “columns” according to :

C j :=< L, p j.A j >= p j.
∑

~x∈R j
L(~x).A j~x (16)

where L(~x) is the luminance at pixel ~x andR j is here the receptive field of the column
j. Instead of differentiating ON or OFF cells (so that the number of neurons
is doubled), we will consider for simplicity and because it is exactly equivalent
that each neuron ~x is assigned a polarity p~x which is either +1 or −1, so that the
coefficients are rectified (i.e. |C~x| = p~x.C~x). To compare this algorithm with standard
computerized images, the photo-receptors and neurons are here placed uniformly
over rectangular grids26. The bayesian inference is here synthesized by a linear
filtering with filters corresponding to luminous contrasts.

26A more biological mapping would be a log-polar such as described in Sec. 1.3.3
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2.2.2 Method: transmission of the spiking image

We will consider the optic channel as an information channel and rate the quality of
a reconstruction using the coefficients computed above. In fact, there may certainly
not be an explicit reconstruction of the image in the visual system, but as proved by
Sec. 2.1.4, the squared error between the original and reconstructed image gives an
explicit measurement of how well the parameters extracted conform to the model of
natural images that we use. Here, this transform forms an approximate orthogonal
wavelet transform [Mallat, 1998] of the image, i.e. the responses of different fibers
are approx. uncorrelated (that is < A j,A j′ >∼ 0 for j , j′) and may be inverted
simply by the Calderón formula :

Lrec := 1/Z.
∑

j∈D
C j.A j = L ∗ PSF (17)

where PSF =
∑

1≤s≤smax

1
σ2

s
DOG(

~x
σs

) ∗ DOG(
~x
σs

) (18)

where ∗ represents the correlation. The PSF function is the "point spread function"27

of the coding system and acts as a blur on the image. This linear layer therefore
exhibits two problems : first, the reconstruction is approximate and second, its
implementation may be computationally slow because the size of the filters can
become very large. A common alternative is to use a Laplacian pyramid as defined
by [Burt and Adelson, 1983] which is computationally more tractable and since it
is perfectly orthogonal, the reconstruction of the image is then perfect.
When presenting an image at an initial time, the output ganglion cell neuron
of each column of the model integrates the analog contrast information C j at its
soma until the activity eventually reaches a threshold: it then emits an action
potential or spike (see Sec. 1.2.1). As in most models of neuronal integration, we
will simply assume that the stronger the activation, the earlier the cell will reach
the threshold. Such behavior happens in most biological neurons and can be be
implemented [Perrinet, 2005] by both detailed and more simple models such as
the Integrate-and-Fire neuron [Lapicque, 1907]. Finally, the spike then propagates
along the axon and the neuron’s activity is reset. Classically, this generates a
pattern of spikes whose firing frequency may constitute the image’s code. But the
code may also be equivalently carried by the exact spiking time (or latency) of the
first spike. We may thus consider that the code consists of this latency for each of
the different fibers j and which is inversely proportional to the neuron’s excitation
current, that is to the corrected activity. This algorithm defines a coding scheme
that transforms an analog matrix pyramid into a spike ’wave front’ that travels
along the optic nerve.
Using this framework, the coefficients are emitted and transmitted in order, starting
with the highest rectified contrast. If we know exactly the corresponding contrast
values when trying to decode the spike wave, we may reconstruct progressively
the image as

Lrec(t) =
∑

r=1...t
Co(r).Ao(r) (19)

where t is the corresponding discrete time corresponding to the count of fired
spikes (i.e. their rank) that we use for the reconstruction and o(r) is the address of

27Similarly as in optics, this is the response of the whole system (coding and decoding) to an impulse,
here to the image of a single pixel of luminance 1. From the linearity of the transform, it proves the
assertion.
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the neuron of rank r. In fact, if we assume that the filters are orthonormal and
from Pythagoras’ theorem, since o is a permutation of the addresses of neurons,
the squared error SE(t) at time t is simply:

‖Lrec(t) − L‖2 = ‖

∑
r=1...t

Co(r).Ao(r) −
∑

j
C j.A j‖

2

= ‖

∑
r=t+1...rmax

Co(r).Ao(r)‖
2

SE(t) =
∑

r=t+1...rmax
|Co(r)|

2 (20)

where rmax is the final time (and therefore corresponds to the total number
of rectified coefficients). From Eq. 20, this strategy of coefficient propagation
corresponds thus to a "greedy" minimization of the MSE at each step of the
algorithm. This also leads to the convergence of Lrec(t) toward Lrec (and therefore
to L for the Laplacian Pyramid), leading to a progressive compact coding of the
image (see Fig. 6).
But, how can this information be encoded and decoded using only one spike per
axon? In fact, these contrast values observe regularities across natural images as
they were ordered from the largest to the lowest. A solution is therefore to use the
mean analog value to form a Look-Up Table (LUT) to decode the analog values back
from their rank. Let’s thus define

LUT(r) = E[|Co(r)|] (21)

where E denotes the average over a set of randomly chosen images from the
database28. In practice, the average was computed using a stochastic algorithm.
For instance in that case, after the nth image using LUT(n) as a modulation function,

LUT(n+1)(r) = (1 − µ(n)).LUT(n)(r) + µ(n).|Co(r)
| (22)

where t is as before the discrete time corresponding to the decomposition and µ(n)

the stochastic learning gain (typically, µ(n) = 1/τ where τ is the characteristic time
scale of the learning). Then, we can reconstruct the image from the spike list using

L̃rec(t) =
∑

r=1...t
LUT(r).po(r).Ao(r) (23)

where L̃rec(t) is the image reconstructed using the spikes rank at step t and po(r) the
polarity of neuron corresponding to the rth spike. Using the orthogonality of the
filters, the error SELut(t) is therefore using a same method as above (see Eq. 20)

SELut(t) := ‖L̃rec(t) − L‖2 (24)
= ‖(L̃rec(t) − Lrec(t)) + (Lrec(t) − L)‖2

=
∑

r=1...t

(LUT(r) − |Co(r)|)2 + SE(t) (25)

The reconstruction error is therefore the sum the quantization error added to the
energy that has not yet been transmitted. Eq. 25 also justifies the choice of the LUT
as the mean (see Eq. 21) since it is the optimal estimator for the rectified coefficient
as a function of its rank in the MSE metric. Neuro-physiological mechanisms

28Further averaging or learning schemes used here 200 randomly chosen images.
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for producing this decrease of the coefficients may involve a set of separate
neurons (namely fast spiking inter-neurons) using shunting inhibition [Delorme
and Thorpe, 2003] or directly the collaterals of afferent fibers to a pool of inhibitory
neurons. We propose in Eq. 58 that these "rank counter interneurons" could
be tuned used an incremental adaptive rule with an on-line hebbian learning
scheme. In a more general framework, instead of using explicitly a rank, which
mathematical definition is hard to relate with a sound biological interpretation29,
this modulation may be based on a divisive normalization by using the contextual
information (see Sec. 3.1.4) instead of the rank the probability of the match.

2.2.3 Results: Spike Coding of natural images

This algorithm was experimentally validated using a database of natural images.
These images were chosen in the publicly available database of linearly calibrated
natural images from van Hateren and van der Schaaf [1998]. These images were
corrected using a γ correction [Poynton, 1999] to assure the balance of luminance
and mimic the analogical response of photo-receptors to luminosity, i.e. to light
intensity (see Sec. 2.1.1).
The coding efficiency of this analog-to-spike scheme is dependent on the regularity
of the contrast coefficients. In fact, when analyzing this regularity separately for the
different scales, the coefficients of particular scales are not well tuned to the overall
LUT (see Fig. 7-Left). The coefficients corresponding to the lowest frequencies
have a priori a higher probability to be transmitted first whatever the image to be
coded [Perrinet et al., 2002]. From the "donut" shaped Fourier transform of the DOG
filters, it is easy to see that there is a direct correspondence between the activities of
the neurons at a given scale and the Fourier components of the image at a certain
frequency. From what we saw in Sec. 2.1.4, there is also a direct relation between
the probability distribution of contrast coefficients and the power spectrum which
was observed on natural images. The mistuning of neurons at different scales thus
corresponds in Fourier space to the shape of the mean power spectrum function
in natural images. From Eq. 25, and since this leads to less variance, we are thus
assured that this regularity results in a more effective information transmission, a
result that was verified experimentally (see Fig. 8 and [Perrinet et al., 2004]). The
regularity of contrast coefficients is therefore better when considering the second
order statistics of natural images.
When the scales are tuned, rectified coefficients follow a very regular linear
decrease (see Fig. 7-Right) in the log-linear plot, starting at rank 1 to a value
proportional to the mean energy in the image and ending at the final rank at
zero. It suggests the existence of a relation of the rectified contrast value as a
function of the logarithm of the relative rank, that is a power-law probability
distribution of contrast coefficients and one may wonder of the origin of this
regularity. In our framework, since this multi-scale contrast representation gives
a local measurement of the Lipschitz exponents in the image [Mallat and Hwang,
1991]. In fact, this regularity may be linked to the distribution of these exponents in
natural images since they correspond to a measure of the order of the singularities
which are present in the image, and that can be qualitatively ranked from the
highest to the lowest Lipschitz exponents as : isolated dots, lines, edges, slopes,

29How for instance is it possible to define an initialization time in the brain? How to handle ex-aequos
or analog precision?
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Figure 6: Progressive reconstruction of the spiking image in the retina. We compared
for a natural image the model retinian code as defined in Sec. 2.2. We show the
reconstructed images from the spike code after resp. 100, 750, 3000 and 9000 spikes
from up to down. We recognize the original image in both cases after a few hundreds
spikes as the coefficients rapidly decrease to zero.31
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Figure 7: Optimization of the regularity of the wavelet coefficients with harmonized
scales. (Left) The LUT (Eq. 21) is shown in the background in plain color as a function
of the relative rank (in %) using a logarithmic scale on the abscissa. When separating
the LUT for the different scales (from lowest to highest : s1 to s7 in the legend), one may
observe that they correspond to similar regularities —linked to the regular distribution
of singularities at different scales— but are mistuned (lower frequencies, as the 7th scale
’s7’ are stronger and thus decrease more rapidly as a function of the overall rank). These
regularities are therefore lost and mixed when ranking all scales together. (Right) By
normalizing the different scales according to the statistics of natural images, the "vote"
by the ranking process becomes "fair" and the LUTs for the different scales better
match. The resulting LUT for harmonized scales preserves the underlying regularity
and information transmission is therefore more robust (see Eq. 25): it represents a more
effective way to encode the analog value by the rank of a spike.
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gradients until uniform surfaces [Mallat, 1998, p.513]. We may interpret the relative
regularity of the distribution of Lipschitz exponents physically as (1) the whitening
process removes the correlations between spatial frequencies due to size and depth
of objects [Alvarez et al., 1999], (2) then, the distribution of complexity of shapes
and textures of objects in nature is regular. This last point is linked to the inherent
properties of auto-similarity in images [Turiel et al., 1998]. This generative model
approach justifies the use of the LUT along with the decorrelation in the algorithm
since it corresponds to a more robust physical interpretation of the visual input.
We estimated the efficiency of this coding scheme on the set of natural images.
The Mean-Squared Error (MSE) and Mutual Information (MI) are popular criteria
to rate the efficiency of the coding and we measured these values for different
numbers of propagated coefficients and compared this result to the case where we
used or not the LUT. In our framework, we defined the MSE based on the new
metric, which leads to a new distance between images directly proportional to the
log-likelihood defined in Sec. 2.1.4. The MSE appears then to be more correlated
to a subjective measure of distances between images, and since there is a non-
uniform prior in the energy of coefficients as a function of spatiall frequency, it
corresponds in fact to the Mahalanobis distance [Mahalanobis, 1936] applied to
our set of natural images. It removes some of the disadvantages of the standard
MSE measurement, such as its dependence to a constant component and provides
thus a more robust criteria for image reconstruction (see Fig. 8). As a conclusion
for this model, we have provided a general scheme for spike coding in the retina
using the relative rank and using the statistics of natural images. It also provides
an efficient code for the preservation of edges [Sen and Furber, 2006]. This proves
that this strategy can build a complete and efficient code from the retina (analog
to spike coding) which can be decoded (spike to analog coding) using solely a
temporal cooperation and provides a compact temporal spike code in the retina.
However, this dynamical algorithm transforming an analogic image in a train of
spikes may be adapted to different goals such as is inspired by the architecture
of the visual system (see Sec. 1.3.1). In fact, it may be behaviorally more
relevant to still propagate the lowest frequencies, that is potentially closer contrast
features first. As is implemented in the retina by the differentiation between the
Magno- and Parvo- cellular pathways, low and high spatial frequency bands show
different initiation latencies, the neurons from the Magno-cellular pathway being
significantly faster (by approx. 20 ms). At the same time, we can still evaluate
the weighted coefficients to produce a highly regular LUT (as in Fig. 7-Right),
hence a better transmission of the coefficients but now rank the propagation of
the coefficients according to their energy so as to choose the order in which the
spikes are emitted (therefore using a similar algorithm as the first scheme)30. In
a statistical inferential model, this will correspond to the inclusion of a gain for
low frequencies. Practically, the scheme uses two parallel sorting mechanisms,
one based on the regularity of the distribution of Lipschitz exponents and the
other based on the progressive transmission of the parts of the image starting with
the most informative. Together, they provide an algorithm that can efficiently
decode the analog values corresponding to each spike using only the relative rank
information and we will show now how it may be applied to a model of short

30These constraints of course don’t occur in biology where all the processing is parallel and LUTs may
be computed individually at every point.
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Figure 8: Progressive reconstruction of the image from the spike list using rank-
order coding. We plotted (Left) the Mean-Squared Error (MSE, logarithmic scale on
the abscissa) and (Right) the Mutual Information (MI) using the different temporal
spike codes described in the text. We compared the results of the propagation when
knowing the coefficients (exact) with the method described in Eq. 21 (LUT) which
uses an optimized Look-Up-Table to "guess" the value of the coefficients from their
rank. Finally we compared these strategies to the optimized method that uses the
regularity found in natural images through the statistics of natural images (wLUT).
The reconstruction from this latter method is close to the method with exact values
and proves that the analog values may be transmitted using rank order coding. It
therefore constitutes a compact spike code which provides a simple implementation
of rank-order coding for static images.
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latency ocular following.

2.3 Application to modeling short-latency ocular following
To further validate the previous hypotheses, we will describe an application of this
method to describe a particular behavioral output through psycho-physical results
on the visual perception of motion. In particular, ocular following is a reflexive
and continuous pursuit by the eyes of an object which unexpectedly moves in
the field of view and we will show here how the quantitative theory of matching
visual features that we derived above may contribute to the understanding of
the psychological results. This dynamical probabilistic model will be built in
interaction with psycho-physical results and will be validated in comparison with
other models.

2.3.1 Experimental psycho-physical setup

Motion processing is an essential piece of the complex visual machinery involved
in controlling our actions. For instance, a brief and unexpected translation of a
large visual scene elicits machine-like ocular following responses at ultra-short
latencies in both humans (∼ 85 ms) and monkeys (∼ 55 ms, see [Masson, 2004] for
a review). The initial, open-loop part of these reflexive eye movements exhibit
many of the properties attributed to low level motion processing. These results
suggest that the very earliest phase of reflexive tracking initiation relies on a linear
motion detection followed by a rapid linear integration over a large part of the
visual field. A key to understand the information flow is to study how this system
reacts to different levels of information quality by measuring its output, the eye
movements.
The experiment consisted in presenting different moving stimuli under strictly
controlled conditions (see Fig. 9) to the subjects while measuring their eye
movements with a very precise temporal and spatial precision thanks to the search
coil technique [Masson et al., 2000]. The stimuli are standard in the sense that
(1) they all elicit a very early horizontal motion with a latency ∼ 85 ms in the
direction of the grating for humans (or 1D) motion; (2) ocular following responses
to the motion stimuli such as in the diagonal of the barber-pole stimulus [Masson
et al., 2000] or of the uni-kinetic plaid [Masson and Castet, 2002] exhibit a later
component with a latency ∼ 105 ms which rotates the tracking direction towards
the global motion direction of the surface. This late component seems to depend
on 2D local motion cues such as line-endings in barber-poles and blobs in uni-
kinetic plaids: affecting one or the other specifically changes the late component
but leaves the early component intact [Masson et al., 2000; Masson and Castet,
2002] (see Fig. 11). Several recent studies have found similar dynamics directly at
the level of MT neurons suggesting a direct link at short latencies between neural
activity and the ocular response. With barber-pole motions, the direction selectivity
of MT neurons evolves over time from grating (1D) to global (2D) motion-driven
responses [Pack et al., 2004]. The latency between these two components is fairly
constant across conditions at ∼ 20 ms (with an added delay inversely proportional
to the contrast) and suggest that the 1D and 2D components are driven by two
different independent visual pathways.
To quantify the characteristics of the two components in the different stimuli we
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Figure 9: Stimuli for ocular following experiments. The presented stimuli were
chosen as prototypical examples of the composition of 1D and 2D features in natural
images, resp. from left to right Grating, Plaid and Barberpole. All three have the same
main horizontally drifting vertical frequency with a velocity of 1 pixel/frame (grating),
but merged with a static slanted frequency (plaid) or through an occluding aperture
(barberpole). For the latter two, non-Fourier components (see text) are almost the only
to contribute to vertical speed.
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measured their contrast response functions (CRFs). To achieve these experiments,
the different stimuli were presented at different contrasts and we measured the
dynamics of the gaze in both the 1D (horizontal) and 2D (vertical) directions (see
Fig. 11). These curves show that from the onset of the response, the acceleration
gain is fairly constant on the early part and we therefore measured this slope as
the increase of speed in a 20 ms time window. Results show that the CRFs are very
similar across stimuli for the 1D component but that, as perceived intuitively, the
response to the unikinetic plaid is rather sluggish as the contrast increases, while
the response to the barber-pole saturates quicker, in a more "binary" fashion (see
Fig. 11).

2.3.2 A 2-pathway Bayesian model

We will create a probabilistic map (as described in Sec. 1.3.3 which quantitatively
represents the probability of different possible translation speed ~v according
to an internal model of the translation [Weiss et al., 2002]. This area will
roughly correspond to area MT in primates (see Sec. 2) which is known to be
organized retinotopically and representing specifically velocities [Albright, 1984].
As described before (see 2.1.3), we make the assumption of a generative model for
translation in the input flow :

L(~x, t) = L(~x − ~v.dt, t − dt) + ν (26)

This means that knowing the translation speed vector ~v, the image intensity is
approximately conserved along this direction. This approximation is noted as ν
which is a noise image flow that is in general a colored Gaussian noise (with an
emphasis on low frequencies in natural scenes [Dong and Atick, 1995]). If we
observe an image flow L defined in space and time, and we wish to determine the
probability a posteriori P(~v|L) of the speed of translation ~v knowing L , we have
similarly as in Sec. 2.1.4:

log P(~v|L) = Z +
−‖L(~x, t) − L(~x − ~v.dt, t − dt)‖2K

2.σ2 + log P(~v) (27)

Since the background noise is constant across experiments, we will assume that
the Michelson contrast C (the ratio of the extremal amplitudes of luminance over
the extremal possible amplitude of luminance) of L controls the overall amount
of noise to signal ratio31. Moreover, we will assume that the prior is normal with
variance σp so as to favor slow speeds [Weiss et al., 2002]. Finally,

log P(~v|L) = Z − [
C2

σ2 ∆L100(~v) −
1
σ2

p
.‖~v‖2]/2 (28)

where L100 = 1/C.L is the normalized 100% contrasted image and ∆LC = C−2.∆L100
is the contrast-normalized gradient constraint for the normalized image32. It is
therefore only necessary to know the constraint for the full contrast image flow to

31We may thus compute theoretically the probability for all contrasts. The visual system of course
computes it on every instance of the signal.

32This formulation is very similar to the luminance conservation equation[Aubert et al., 2000] but
gives a more rational explanation for this choice.
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deduce analytically the probability in any case.
To overcome the static structure of the model from Weiss et al. [2002] and render the
dynamical properties of short-latency ocular following suggested by the psycho-
physical results, we designed explicitly a duplexing in the input flow. This
description is separated in the information conveyed quickly about raw 1D features
and then by a more precise 2D information.

1. a first early component which computes linearly the transient temporal aspect
of the image flow. It has a low spatial resolution, hence the name of 1D
input (or Fourier since it is obtained by a simple convolution). It may yield
ambiguous cues (such as for the grating), and static features are removed
(for instance, the unikinetic plaid’s 1D component becomes equivalent to the
grating).

2. a later response which is selective to the outline of objects, hence the name of
2D input (or non-Fourier since it is obtained by non-linear operations). It is
computed by selecting the most salient features in the moving flow.

Since these images carry the relevant information for each channel they each
become an input flow for the probabilistic representation (Eq. 28).
Finally, the probabilistic information is then pooled to provide an optimal decision
by minimizing the risk of error. If we consider the motor response as a simple
first-order linear system acting as an ideal observer (see Sec. 2.1.2), we may predict
that the eye’s velocity gain is proportional to the mean velocity γ = E(~v)/τ and that
its latency is inversely proportional to the gain added to a fixed latency. To model
the short-latency gain, we thus simply need to compute the mean translation speed
command ~v knowing the visual input. As in [Weiss et al., 2002], if the constraint
map is quadratic, then the a posteriori probability is Gaussian (and its mean is
equivalent to its maximum). This allows us therefore to bridge an input image
flow with a behavioral response and thus to validate the model by comparing it to
the biological data.

2.3.3 Results : predicting CRFs using the model

A common procedure in psycho-physics that was also applied here is to study
the results of the experiment with varying levels of noise [Albrecht and Hamilton,
1982]. However, it is in general analytically intractable from Eqs. 28 and γ = E(~v)/τ.
As in Weiss et al. [2002], we may assume that the log-likelihood is quadratic. This
assumption is very accurate for the grating and still a very good approximation
for the plaid, in both 1D and 2D pathways. From Eq. 28, we deduce that the log-
posterior is also quadratic and that the mean coincides with the MAP. Moreover, if
we write that ∆L100 = K.‖~v− ~v0‖

2 (where K and ~v0 are constants), then the solution
~vm satisfies :

d
d~v

log P(~vm|L) =
K2.C2

σ2 (~vm − ~v0) +
~vm

σ2
p

= 0

that is

~vm =
C2

C2 + C2
50

.~v0 with C50 ∝
σp

σ
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Grating Barber-pole Unikinetic plaid

Figure 10: Probabilistic motion constraints maps. According to the model of short-
latency ocular following, (Left) grating, (Middle) unikinetic plaid and (Right) barberpole.
The (Top row) shows the result from the 1D early response and the (Bottom row) the late
2D response. The maps from the 1D information and for both the grating and plaid are
quadratic and the CRFs are slope 2 Naka-Rushton curves. The map for the barberpole
is however multi-modal and non-quadratic and generates a different CRF.
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We recognize here the prototypical Naka-Rushton curve of slope 2 [Naka and
Rushton, 1966], which is characteristic of the CRF at multiple levels of the visual
system. Contrast dynamics of 1D and 2D motion for ocular tracking with the
quadratic approximation involves thus necessarily that the Contrast Response
Functions all follow a Naka-Rushton function with a slope of 2.
However, before making any such assumptions, we will at first keep all generality
and try then to validate them. The algorithm will compute ∆L100(~v) for each
stimulus as a measure of the ambiguity of the motion and then compute the mean
velocity E(~v) =

∫
~vP(~v|L) to compute the contrast response functions of the 1D

and 2D motion processing for short-latency ocular following. As expected, the
constraint maps for the grating and the 1D component of the unikinetic plaid are
quadratic along the line of constraint (a result that may be analytically proved).
However, this distribution keeps quadratic for the 2d component of the unikinetic
plaid but with a lower standard deviation, while it is multi-modal for the 2D
component of the barberpole33 (see Fig. 10). We used the Nelder-Mead simplex
method [Lagarias et al., 1998] to fit the models with the data. Knowing the
variability of the data, we minimized the χ2 value to evaluate how close the model
described the data [Cavanaugh et al., 2002] :

Naka-Rushton Bayesian model
Horizontal gain (1D) 0.1943 0.1324

Vertical gain (2D) 0.1567 0.0929

We have thus shown that the fit of the data obtained with our full model and the
quadratic approximation (i.e. the model presented by Weiss et al. [2002] on the
2-pathway architecture) were comparable [Perrinet et al., 2005]. Moreover, when
integrating in a time window of increasing size ∆t and assuming that noise is
independent over time, we found that the C50 was inversely proportional to ∆t.
This approach provides a general framework for describing our model of
translation in natural scenes. The explicit detail of the derivatives used to extract
1D and 2D features allows to draw analytically the similarity with techniques
used in image processing and which use the luminance conservation constraint
while providing a Bayesian explanation. We have also shown that the time course
of this mechanism is separated in 2 distinct pathways with distinct CRFs. In
particular, constraint map may not be quadratic and correspond to a different
distribution of the visual information across different possible visual features.
Moreover, this model does not use an hypothese concerning the quadratic shape
of the constraint function. In our model, the resulting contrast response function is
in general analytically intractable, resulting in a richer family of possible functions.
In particular, a higher kurtosis as in the 2D component of the barber-pole resulted
in a CRF which fitted a Naka-Rushton with a slope higher than 2. The quantitative
results suggests that the full model is already justified in this simple example, but
this should be even more salient in more complex (and natural) experiments. This
framework allows us thus to study how different features may be compared to be
finally pooled together to give a single sensory-motor decision. In particular
this should be extended to a model of a functional receptive field for ocular
following which accounts for the spatial integration of local motion features as is
for instance done by Bayerl and Neumann [2004]. A further extension is to study

33the second peak corresponds to the probability of a motion parallel to the narrow width of the
aperture and grows as the ratio of the aperture gets closer to 1.
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Figure 11: Eye velocity in the ocular following task. We show here the averaged
velocity response of the eye on (Up) the horizontal axis and (Down) on the vertical
axis in response to the barberpole stimulus (see Fig. 9). In the open-loop condition,
responses follow a ramp pattern. The latency of the horizontal response is earlier of
20 ms. As the contrast decreases, both the gain decreases and the latency increases.
The observation (stars) are well fitted by the Naka-Rushton (continuous line) and the
bayesian model (dotted line).
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the rules of spatio-temporal integration of local features [Perrinet et al., 2006] and
the adaptation of the visual system to repeated stimulations [Montagnini et al.,
2006]. However, we will see in the next section that to efficiently represent multi-
modular features, we need to extend our model to take into account "neighboring"
information.

3 Sparse Spike Coding: building efficient repre-
sentations
In the previous section, we were confronted to a main limit of classical feed-forward
representations which is crucial for low-level visual processing. In fact, whether
filters have to be orthogonal or the representation will necessarily be redundant
(see Sec. 2.2.2). However, we will see that this constraint is incompatible with
efficient visual algorithms and we will show here how to build a dynamical and
adaptive algorithm resulting in an efficient representation that we will apply to a
model of V1. We will then propose an implementation using Integrate-and-Fire
neurons and test the efficiency of this artificial neural code and finally try to define
a generic event-based computational approach.

3.1 Sparse Spike Coding for low-level visual processing

3.1.1 Low-level vision as a (hard) inverse problem

We saw that we may describe the goal of vision as representing matches according
to an internal model (see Sec. 2). To further go in this direction, we will describe
the goal of each low-level visual map as implementing an inverse problem. This goal
is that for any of these images, this map must efficiently and rapidly (in the order
of a fraction of a second) represent a set of relevant features characteristic of this
map (see Sec. 1.3.3). This representation, including for instance in V1 the location
and orientation of the edges that outline the shape of an object, is then relayed to
higher level areas to allow, for instance, a recognition of more complex patterns
(shape or motion of an object). The hypothesized function over the long term (in
the order of hours to years) will thus be to adapt to natural scenes (that is images
that occur most frequently) so as to progressively build this model. Actually, this
is similar to numerous tasks in engineering and applied mathematics, where a
reverse-engineering process allows to find a representation of the data (such as an
estimation of the internal state of a system in control theory) by identifying the so-
called hidden parameters of the system (see Fig. 12). The success of this algorithm
over the long term (in the order of days to generations) allows then to validate
through the pressure of evolution the model that was learned. In this framework,
we will thus describe neuronal activity as the result of the efficient inversion (or
analysis) of an internal model of the world.
To simplify the problem of the inverse problem, a first solution is to constrain
the LGM to use orthogonal filters that form a complete basis as in Sec. 2.2.2.
However, in this case, slight continuous transforms of the input may yield non-
continuous transforms of the representation although it is highly desirable for the
representations of natural images to be robust to these natural transforms (see
Sec. 1.3.3). This view is similar to the ’rules’ that were described by psychologists
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Figure 12: Inverse-mapping as a a goal for sensory neural coding. The visible world is
modeled as the interaction of a large set of hypothetical physical sources (world model)
according to a known model of their interactions ("synthesis"). We will consider that
for sensory cortical areas, the goal of the neural representation (and its implementation
by the neural code) is to analyze the signal so as to recover at best and as quickly as
possible the sources that generated the signal ("analysis") . The analysis may thus
be considered as an inverse mapping of the synthesis. A proposed solution for this
problem is to infer at best the most probable hidden state.

of the Gestalt school as Metzger [1936] since the system will exploit the regularities
of the world to efficiently extract relevant information. As is the case for natural
images in low-level vision, we will consider that the observed signals are generated
by sources that share certain features which differ by continuous transformations
such as edges at different time, position, orientation or scale. Since these regularly
occurring changes in the physical world (translations, rotations and scaling)
are very common, if there exists a corresponding transformation in the source
space (that is if this transformation of all sources are in the dictionary), the
resulting representation of the transformed image should simply be derived by
a transformation (in the source space) of the original representation. This idea is
supported as well by neuro-physiological data (see Sec. 1.3.3) as by psychological
experiments [Shepard and Metzler, 1970] and may also be a feature of some mid-
level visual area, for instance with dynamic remapping [Pouget, 2002]. Typically,
this robustness constraint implies in a wavelet architecture that the tiling of the
filters is smoother than an orthogonal representation [Perrinet et al., 2004]34. As
a consequence, the dictionary will be over-complete, i.e. the number of dictionary
elements will be of several orders of magnitude larger than the dimension of the
image space. We deduce that the efficiency of the inverse mapping in low-level
visual areas, conditioned by the relevance of the LGM , requires for the dictionary
to be over-complete.
Given this constraint on the forward model, the representation should also
optimize its information capacity [Atick, 1992; van Hateren and van der Schaaf,
1998], a task which may therefore relate to remove redundancies, but more

34Another argument says that this could solve the binding problem by distributing the information
of multiple copies of the neurons.
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generally to separate features into independent features. Using the linear forward
model, for any signal L, there exist at least one set of parameters s which
recovers the observed signal if the dictionary A is complete. However, in this
case where the dictionary is over-complete, the inversion of the LGM will not
yield an unique solution in S to any given signal in I: the problem is ill-posed.
To any observation may correspond a wide range of causal configurations: the
overlap between atoms generates a potential ambiguity as was illustrated in
Fig. 1. The coding strategies corresponding to possible ’analysis’ algorithms (see
Fig. 12) have different efficiencies and, in particular, the solution given by the
wavelet coefficients (as in [van Rullen and Thorpe, 2001]) with an over-complete
dictionary yields an highly redundant —hence inefficient— representation. More
importantly, they do not correspond to the actual physical causes and thus do not
invert the forward problem (which is as we will see especially inappropriate for
the learning). According to Barlow [2001], the goal of sensory processing would be
rather to choose the most efficient representation: for instance the representation
should reduce its redundancy. In a more general view and following the same
argument as the Occam razor, whenever there is the choice between two equivalent
representations, the most probable is the one that is the most sparse [Perrinet,
2006], a property supported by physiological experiments [Hahnloser et al., 2002;
Deweese and Zador, 2003]. A possible goal would thus be to achieve the coding
strategy that describes at best the images with the least coefficients [Olshausen and
Field, 1998]. This sparseness constraint thus allows to restrict the different solutions
of the inversion of the forward model so as to find an appropriate candidate for
the neural code.
However, the combinatorial complexity of the inverse problem for the LGM
grows very quickly as the dimension of the dictionary increases (it’s NP-complete,
see [Mallat, 1998]). There exists therefore no simple algorithm that optimizes
exactly the problem in reasonable time as we handle more complex signals such as
natural images, but acceptable sub-optimal strategies to approach this problem
do exist (see a review in [Pece, 2002]). Most popular solutions optimize the
reconstruction error and the sparsity by using a Lagrangian multiplier to tune
the compromise between both constraints [Olshausen and Field, 1998]. Their
solution is based on a gradient-based optimization approach (for a review,
see [Simoncelli and Olshausen, 2001]) which are heuristics particularly well
adapted to computations on sequential computers. Focusing on the nature of
neural computations, we will rather present an alternate parallel and event-driven
heuristic.

3.1.2 One solution: Greedy inference pursuit

Let’s first define a sparse spiking algorithm in mathematical terms. It is a dynamical
algorithm which should provide from an input (should it be continuous or spiking)
an output consisting of a list of spikes that we may for instance define at time t as a
list Λ(t) = {λk : ( jk, tk, sk)}t0≤tk≤t of events to which different values may be attached
(here respectively address, latency and amplitude). We will restrict first the input
to this model to flashed static images35. Assuming that the LGM is known, we will

35In particular, we will study the transient response of the network and neglect the information fed
back by higher areas. This latter information will be necessary in more complex algorithms which take
into account the context of a local feature.
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define the goal of our sparse spiking algorithm as recovering the correct sources
(corresponding to some hidden state variables, see Fig. 12) from an observed static
image as quickly as possible. Spikes are fairly similar across time and over the
CNS (they have metabolically the same cost and their precision make them carry a
priori the same information). In an over-complete parallel scheme all information
should therefore be in the address and timing of the spiking neurons neuron (rather
than than in the activity it represents), so that it is proportional to Ispike = log2(N),
where N is the number of filters In the dictionary. We may define the cost for any
algorithm to be a cost over the transmitted information as a function of the number
n of emitted spikes. The information knowing Λ(t) may be evaluated for the list of
generated spikes as I(t) = − log(P(L|Λ(t)) so that the dynamical cost (in bits) may
be evaluated for instance as

T(t) = − log(P(L|Λ(t)) − log2(N) ∗ ‖Λ(t)‖0 (29)

where ‖Λ(t)‖0 is the number of spikes in the list (its l0-norm)36. This formalization
could be used in a cost function to reflect how much we do care about the
transmission of information as a function to the number of spikes and thus give
an explicit definition of the Occam’s razor for our system. This expression allows
thus one to compare different dynamical spiking algorithms knowing solely the
LGM (which is necessary to derive the probability) and the expression of the cost.
We will here propose a solution for inverting the forward model that we defined for
natural images based on a Bayesian inference framework using feature-matching
neurons and spikes as events representing primitive "decisions". In fact, as in
numerous optimization problems, a solution is to begin the algorithm with a subset
of the problem which is easy to solve, take it into account and then to resume the
algorithm in a recursive manner on the transformed observation signal : it’s the
greedy approach [Perrinet, 2004b]. Following this process and focusing on every
single spike, a greedy solution could use recursively two steps: Matching (M) and
Pursuit (P).

(M) To each neuron is assigned a vector (or weight pattern) corresponding to its
preferred stimulus. Neurons compete in parallel to find the most probable
single source component by integrating evidence according to their weight
patterns (see Sec. 2.1.4). The first source to be detected should be the one
corresponding to the highest activity, that is to the most information about
the image knowing that source.

(P) A decision is assigned to this best match which, once it has been taken, is taken
into account before performing any further computations (and in particular
finding a new match). It thus yields a new observation signal (and therefore
a modified internal representation) where we ’removed’ the detected source.

We will see that this method is similar to the approach developed in the method
of Matching Pursuit [Mallat and Zhang, 1993] but also to other techniques such as
Projection Pursuit in statistics [Friedman and Stuetzle, 1980]. However, instead of
a heuristic scheme, and thanks to the description of the successive steps that may
lead to the greedy pursuit, it may be considered as an optimization strategy of the
goal that we defined above (namely maximizing the transfer of information).

36This definition is similar to measure of model complexity such as AIC [Akaike, 1974].
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Greedy inference pursuit

Theorem 2 (Gredy Inference Pursuit) Under the same hypotheses as Eq. 10, the
greedy algorithm optimizing the goal set in Eq.29 for the succession of spikes is set for
a known architecture A by transforming any image L in a event list Λ by

• initializing activities as

C(0)
j =< L,

A j

‖A j‖
> (30)

• and recursively generating a new event {( j(n), t(n), s(n))}n by:

j(n) = ArgMax j|C
(n−1)
j | (Matching) (31)

C(n)
j = C(n−1)

j − s(n).R{ j, j(n)} (Pursuit) (32)

where R{ j, j(n)} =<
A j

‖A j‖
,

A j(n)

‖A j(n)‖
> and s(n) = C(n−1)

j(n) .

• the input signal may be reconstructed from the spike list as

L =
∑

k=1...n
s(k).A j(k) + L(n) (33)

where L(n) is the residual image at rank n. 2

One can note that in this formalization, the timing is carried by the relative
succession of the spikes and not in the absolute timing. This is coherent with
the homeostatic processes occurring in the system which make the average firing
frequency stationary. Moreover, we keep for the moment in the spike list the
amplitude of the coefficients, but we will see that in natural images they obey to
regularities and therefore carry little information knowing their rank in the list.

P Since the property has to be sound for all spike lists until a certain time, it
has to be right for the first spike. From section Sec. 2, we computed the probability
of any possible source as :

P({ j, s}|L) ∝ exp(−
‖L − s.A j‖

2

2.σ2 ) (34)

The cost defined in Eq. 29 is equivalent to minimizing

C =
‖L − s.A j‖

2

2.σ2 + log2(N) ∗ ‖s‖0 (35)

which is a hard problem [Chen, 1995]. Initializing the activity as C(0)
j =< L, A j

‖A j‖
>

and selecting j(1) = ArgMax j|C
(0)
j will give the best first single source match of the

greedy algorithm.
As we found the MAP source knowing the signal L, we may pursue the algorithm
by accounting for this inference on the signal knowing the element that we found
before detecting another single source component. Sources are supposed to have
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conditionally independent activities37 and the pursuit algorithm assumes that —
knowing the previous detection— we may resume the detection on this residual
signal:

P({ j, s}|L, { j∗, s∗}) = P({ j, s}|L − s∗.A j∗) (36)

with s∗ given by Eq. 11: s∗ = C j∗/‖A j∗‖. We will thus use this new residual signal
in which we will then find a new component corresponding to the most probable
single source.
In this recursive approach, we will note as n the rank of the step in the pursuit
(which begins at n = 0 for the initialization). Let’s therefore set initially L(n) the
successive residuals and L(0) = L. Let’s also note the address of the successive
winning neuron from the first step n = 1 as j(n) = ArgMax j|C

(n−1)
j |. Knowing

j(n), in order to resume the pursuit at the next step, we saw that we need to
compute the projection of the signal on the elements of the dictionary. In this
greedy approach, we may thus update the residual and the corresponding activities
C(n−1)

j =< L(n−1),
A j

‖A j‖
>by subtracting to L(n−1) its projection on the winning element

of index j(n) (see Eq. 11):

L(n) = L(n−1)
− C(n−1)

j(n) .
A j(n)

‖A j(n)‖
(37)

Furthermore, we don’t need to feed this information back to the signal (which
would be very inefficient in a neural implementation) and we may directly compute
the activity again for all vectors thanks to the linearity of the scalar product
operator:

C(n)
j = < L(n),

A j

‖A j‖
>

= < L(n−1)
− C(n−1)

j(n) .
A j(n)

‖A j(n)‖
,

A j

‖A j‖
>

and finally

C(n)
j = C(n−1)

j − C(n−1)
j(n) . <

A j

‖A j‖
,

A j(n)

‖A j(n)‖
> (38)

This activities’ update (Eq. 38) corresponds in neuro-physiological terminology to

a lateral interaction. It will be proportional to R j, j(n) where R j, j(n) =<
A j

‖A j‖
,

A j(n)

‖A j(n)‖
> is

the normalized correlation of any element j with the winning element j(n). This is in
accordance with neuro-physiological data suggesting that most lateral interactions
are symmetric and often proportional to the similarity of neurons receptive fields [].
The greedy pursuit therefore transforms an incoming signal L in a spike list with
decreasing coefficient values { j(n), s(n)

}From Eq. 37), the signal may be reconstructed
as in Eq. 33 which should converge to L if the norm of the residual signal L(n)

converges to zero. �

37For any realization of the images, individual sources have independent activities since in our
framework they would correspond to different independent causes. Thus, by removing one source, one
gets a new image (conform with the LGM model) and one does not change the probability distribution
of the other sources.
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Properties of the greedy pursuit In this algorithm, the choice of the best
match and the update rule are independent of the choice of the norm ‖A j‖ of
the filters (see Eq. 30 and 31), so that we may indifferently use in the following
normalized filters (that is ‖A j‖ = 1 for all neurons) so as to simplify the equations.
This algorithm is exactly equivalent to Matching Pursuit [Mallat and Zhang, 1993].
This algorithm is familiar in signal processing and is increasingly used for image
and video processing [Neff and Zakhor, 1997; Durka et al., 2001; Capobianco, 2003;
Fischer et al., 2006, 2007a] and signal processing [Blinowska and Durka, 1994].
Moreover, we have shown that the use of the statistics of natural images statistically
optimizes the coding efficiency by modifying the image space metric [Perrinet et al.,
2004] compared to an heuristic optimization of Matching Pursuit [Pati et al., 1993].
The Bayesian inference framework allows to precisely tune the heuristic approach
of the Matching Pursuit and is somewhat similar in the approach developed
by Denève et al. [1999] for “reading” neural population codes by matching activity
responses with the envelope of the correlation of neighboring neurons. It allows for
instance to set a different prior or to include knowledge of the measurement noise
that is adapted to the goal of the system (and hence a different matching criteria
that may depend on the norm ‖A j‖). This algorithm presents similar computational
complexity and properties [Mallat, 1998, pp.412–9] which is suboptimal but more
rapid compared to Basis Pursuit [Chen, 1995]. In particular

C(n)
j(n) = C(n−1)

j(n) − C(n−1)
j(n) = 0 (39)

and as a consequence the activity of a winning neuron is totally canceled.

Theorem 3 (Convergence of Greedy Inference Pursuit) The residual squared error
is strictly decreasing and may be computed recursively as

SE(n) = ‖L(n)
‖

2

= SE(n−1)
− |s(n)

|
2.‖A j(n)‖

2 (40)

In addition, the algorithm converges (that is limn→∞ ‖L(n)
‖ = 0) exponentially in the space

generated by the dictionary (that is in the image space if it is complete). 2

In practice, it implies that the stopping criteria may be computed using this
computation without computing ‖L(n)

‖.
This theorem gives a practical way of controlling the convergence of the algorithm
and gives the proof that the algorithm will stop, that is that the residual error
energy will be in finite time below the threshold ε.

P Although filters in the dictionary are here generally not orthogonal, the
residual image is orthogonal to the winning filter and from Pythagora’s theorem

‖L(n−1)
‖

2 = ‖L(n)
‖

2 + |s(n)
|
2.‖A j(n)‖

2 (41)

so that we may easily compute the Squared Error (SE) of the residual signal at
every step of the coding :

SE(n) = − log P(Λ|L(n))
= ‖L −

∑
k=1...n s(k).A j(k)‖

2 = ‖L(n)
‖

2
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= SE(n−1)
− |s(n)

|
2.‖A j(n)‖

2 (42)

SE(n) = ‖L‖2 −
∑

k=1...n |s(k)
|
2.‖A j(k)‖

2

= ‖L‖2 −
∑

k=1...n |C
(k−1)
j(k) |

2 (43)

The exponential convergence is e.g. provided in [Gribonval and Vandergheynst,
2006]. �

The residual squared error is a highly significant criteria here since it is proportional
to the probability of the image knowing the spike list and therefore of how well
the image is described by the coefficients already propagated (see Eq. 34). We
see also from Eq. 40 that the SE is strictly decreasing and since it is bounded, it
therefore converges. A further consequence of the monotonous decrease of the SE
from Eq. 40 is that under the condition that the dictionary is at least complete, it
convergences to the exact reconstruction [Mallat, 1998, p.414]. Moreover, Frossard
and Vandergheynst [2001] has shown that it is still true up to an upper bound in a
case where the coefficients are quantized.

Theorem 4 (Transformation invariance of the representation) If the architecture A
is invariant to a transform T (and therefore, there exist a dual transform F between the
elements of the dictionary), then the spike list obtained for the transformed image T(L) is
the transformed spike list of the original image.

MP(T(L) = F(MP(L)) (44) 2

This feature complies with our constraint that we set at the beginning of this section.
In practice, this will be applied in low-level areas for usual spatial transform such
as translations and scalings but also to shifts in time. However, since both the
images and the dictionaries are finite, the invariance will always be approximate
for these transforms.
Though simple, the greedy pursuit is a complex non-linear algorithm. In fact, the
study of its behavior is non trivial and may involve chaotic dynamics [Davis, 1994].
In particular, it is obvious that the choice that is made at a giving step may influence
all future steps. This implies that a failed match may propagate wrong information
to following steps and therefore that the probability of a failure grows higher as
the rank increases. These properties are discussed in [Perrinet et al., 2004] and in
particular we illustrated that the speed of convergence increases as the dictionary
becomes more over-complete so that it provides an efficient representation for
natural scenes in image processing tasks.

3.1.3 Results for a multi-resolution model of the retina

This algorithm was first tested by extending the model of the retina presented in
Sec. 2.2 with an over-complete set of DOG filters corresponding to more accurate
neuro-physiological data. Considering the same spike coding scheme, we may ask
whether an increase in the number of filters used to describe the image can enhance
the representation, i.e. if there would be an advantage in using an over-complete
representation in the retina. The filters are thus defined as the standard dyadic
scale, but the image pyramid now includes respectively {1, 2, 4, 8} scales per octave,
i.e. the scale level characteristic variances now grow as σ(s) = σ(1).ρs where s is the
scale index and ρ = {2,

√
2, 4√2, 8√2}.
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Figure 13: Is the spike representation over-complete in the retina? (Left) We compared
the progressive transmission of information for different degrees of over-completeness
in the retina by plotting the average MSE of the residual as a function of the information
to code the spike list (in logarithmic scale, propagation up to 12.5% of the relative rank
for clarity). The set of neurons used rotation symmetric Mexican hat filters, with
scales from layer to layer growing as ρ = {2,

√
2, 4√2, 8√2} (and denoted on the legend

respectively as 1, 2, 4 and 8). As a comparison we plotted the method used in [van
Rullen and Thorpe, 2001] (line ’Wav’). As a function of rank, the MSE decreases more
rapidly for increasing degrees of over-completeness. (Right) But if we plot the trade-off
of MSE with CPU usage as a function of the over-completeness, we find that for the
same amount of information the adaptive dyadic strategy is optimal. One should note
that the results of the method described in the text is better than the wavelet method
of [van Rullen and Thorpe, 2001] since it is adaptative.

These experiments proved that as the number of neurons increased, the coefficients
decreased more rapidly as a function of the relative rank and also the MSE.
This behavior is understandable, because choosing a higher number of filters
allows the construction of a more fine grained multi-scale representation of the
image. In fact, the number of neurons is multiplied by a factor of approximately
χ = (1 − ρ−2)−1. This results in our different cases to an over-completeness
of respectively {4/3, 2, 2 +

√
2 ∼ 3.41, 1/(1 − 1/ 4√2) ∼ 6.28}. The information

(in bits) needed to code the address of each spike (position and scale) is thus
log2(npixel) + log2(1− (1/ρ)2) + 1 (npixel being the number of pixels and one bit being
allocated for the polarity). We may therefore compute the performance of the
coding scheme in terms of the mean decrease in MSE as a function of the number
of bits necessary to code the spike list (see Fig. 13-Left). However, the situation
is different if we compare the trade-off between efficiency (MSE decrease) and the
architecture’s complexity (we assumed here that it is proportional to the number
of neurons). We obtained different results as a function of the degree of over-
completeness (see Fig. 13-Right) and thus conclude that under this constraint, the
greedy dyadic algorithm seems to be optimal in the retina [Perrinet et al., 2004].

This appears to be mainly due to the nature of DOG filters (and to circularly
symmetric wavelet filters in general) which to a certain extent overlap too much
and do not capture any new information since their complexity is low. In fact, the
evolution of the retina is certainly constrained by its function, so that the argument
may be reversed. First, the retina plays a key role in the visual pathways since it
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Figure 14: Efficiency of the matching pursuit compared to conjugate gradient.
We compared here the matching pursuit (’mp’) method with the classical conjugate
gradient function (’cgf’) method as is used in [Olshausen and Field, 1998]. We present
the results for the coding of a set of image patches drawn from a database of natural
images. These results were obtained with the same fixed dictionary of edges for both
methods. We plot the mean final residual error for two definitions of sparseness:
(Left) the mean absolute sum of the coefficients and (Right) the number of active (or
non-zero) coefficients (the coding step for MP). For this architecture, the sparse spike
coding scheme appears to be more efficient to code natural image patches.

is the first processing layer : it is therefore very demanding in terms of robustness
and the neurons are highly active. Moreover, the eyes are in a wide range of living
species are mobile elements which permit the active exploration of the visual
environment. Thus, the number of neurons in the retina is presumably limited
not only by the total energy it can devote but also by physical restrictions such as
the size of the optic nerve. Since this number is limited (its over-completeness is
limited), the representation may only use more general filters.
We further compared the method we describe here with similar techniques used

to yield sparse and efficient codes such as the conjugate gradient method used
by Olshausen and Field [1998]. We used a similar context and architecture as these
experiments and used in particular the database from the S algorithm.
Namely, we used a set of 105 10 × 10 patches (so that M = 100) from whitened
images drawn from a database of natural images. From the relation between the
likelihood of having recovered the signal and the squared error in the new metric,
the mean squared reconstruction error (L2-norm) is an appropriate measure of
the coding efficiency for these whitened images. This measure represents the
mean accuracy (in terms of the logarithm of a probability) between the data
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and the representation. We compared here this measure for different definitions
and values for the "sparseness". First, by changing an internal parameter tuning
the compromise between reconstruction error and sparsity (namely the estimated
variance of the noise for the conjugate gradient method and the stopping criteria
in the pursuit), one could yield different mean residual error with different mean
absolute value of the coefficients (see Fig. 14, left) or L1-norm. In a second
experiment, we compared the efficiency of the greedy pursuit while varying the
number of active coefficients (the L0-norm), that is the rank of the pursuit (as
defined in Eq. 29). To compare this method with the conjugate gradient, a first
pass of the latter method was assigning for a fixed number of active coefficients the
best neurons while a second pass optimized the coefficients for this set of "active"
vectors (see Fig. 14, right). Computationally, the complexity of the algorithms and
the time required by both methods was similar, though an advantage came for
MP on larger dimensions (for M > 200). However, the pursuit is by construction
more adapted to provide a progressive and dynamical result while the conjugate
gradient method had to be recomputed for every set of parameter. Best results
are those giving a lower error for a given sparsity or a lower sparseness (better
compression) for the same error. In both cases, the Sparse Spike Coding provides
a coding paradigm which is of better efficiency as the conjugate gradient.

3.1.4 Neural implementation of Sparse Spike Coding

We will derive now an implementation of this algorithm using a network of spiking
neurons [Perrinet, 2005]. It is based on the same feed-forward architecture as the
perceptron (see Fig. 15) since this architecture provides a simple ArgMax operator
(see Sec. 1.1.3) and we will implement the greedy pursuit using lateral interactions.
To implement the computation of the match of an input with stored patterns, we
first define a dictionary which will be implemented by normalized weight vectors
A j and —assuming that the raw input was pre-processed as described in Sec. 2.1.4—
the input activity L is decorrelated. The linear feed-forward perceptron integrates
synaptically the input into an initial activity C j such that

C j = p j. < L,A j > (45)

The neurons are duplicated with opposite polarity p j = ±1 so that C j = p j.|C j| to
model the ON / OFF symmetry of simple cells [Ringach, 2002]. The scalar projection
will therefore drive the potential of the neuron.
The activity is represented by a driving current C j(t) that drives the potential V j
of leaky Integrate-and-Fire neurons [Lapicque, 1907] from the initialization time.
This model gives a good fit of the dynamical behavior of neurons [Carandini et al.,
1997]. For illustration purposes, the dynamics of the neurons will here be modeled
by a simple linear integration of the driving current C j (other monotonic integration
schemes lead to similar formulations):

τ.
d
dt

V j = −V j +
1
g j
.C j if V j ≤ θ (46)

where τ is the time constant of membrane integration and g j an inverse gain (in
Siemens if C j is considered as a current) corresponding to the conductance of the
membrane (this may act as a modulator in time, which is important in integrating
the influence of context).
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Figure 15: Model of a neuronal layer as a communication channel. To understand
the content of neural activity, we consider here that the neuronal layer implements the
inverse of a forward model (that is the analysis in Fig. 12). The architecture is similar
to the perceptron: the input (noted xi) is matched with normalized weight patterns A ji

(which are fixed in this section) so as to provide an integrative activation value (the
membrane potential) which in turn is non-linearly transformed to achieve a membrane
potential which grows proportionally to the probability of matching a feature. Spikes
represent decisions that are fed back on the correlated neighboring neurons using
lateral interactions (that we represented for the first spiking neuron) but also on the
axonal output which yield a spiking output s j.

Neurons generate a spike when their potential reach an arbitrary threshold θ that
we set here to 1. We may predict from the monotonous integration that the first
neuron to generate a spike will be the one that corresponds to the maximal rectified
scalar projection of the input signal with the weight vectors of the network, that is

j∗ = ArgMax j

C j

g j
(47)

at the latency

t∗ = −τ. log(1 −
θ.g∗j
C j∗

) (48)

This is therefore a simple and biologically plausible implementation of a MAP
estimate (Matching step of Eq. 31) using the parallel architecture of the network
which is in contrast with the complexity of this implementation on a single-
processor computer.
To further implement the greedy algorithm (the Pursuit step given in Eq. 31), we
then need to implement a lateral interaction on the neighboring neuron. In our
scheme the interaction should yield the same configuration in the network (activity
and potential) as if the source that was detected was originally absent from the

53



signal. In this model, if j∗ is the winning neuron, the activity should have been
subtracted by |C j∗ |.R{ j, j∗} (see Eq. 31) and the potential by this value integrated over
t∗. The lateral interaction is thus achieved by updating after each spike the activity
of the neighboring neurons proportionally to their cross-correlation R{ j, j∗} with the
corresponding winning neuron:

C j ← C j − |C j∗ |.R{ j, j∗} (49)

and therefore of the potential of every neuron by the potential C j∗/R{ j, j∗}.(1− e−t∗/τ),
that is simply by:

V j ← V j − R{ j, j∗} (50)

and then resume the algorithm. This lateral interaction is here immediate and
behaves as a refractory period on the winning neuron (in fact C j∗ ← 0 and
V j∗ ← 0) but also on correlated neurons. It involves a subtractive hyper-polarizing
term on the potential and on the activity. Biologically, it is improbable that the
lateral interaction could be instantaneous, but this lateral interaction could be
implemented in a fast manner using a lateral interaction mediated by fast-spike
inter-neurons38. Finally, this simple implementation therefore implements the
Matching Pursuit algorithm that we defined in Eq. 31 and we will apply it to
simple visual tasks.
Moreover, we may as in Sec. 2.2.2 use the regularity of the decrease of the
coefficients as a function of their rank to be able to reconstruct the signal39. A
similar equation as Eq. 25 may be written so that the energy of the quantization
error adds to the error of the coefficients given by the matching Pursuit [Frossard
and Vandergheynst, 2001]. This could be implemented in cortical areas by shunting
inhibition [Borg-Graham, 1999] or synaptic depression. The best estimator for the
squared error is therefore the one minimizing the variance, that is the mean of the
absolute coefficient:

LUT(r) = E[|Cr
j|] (51)

This representation proposes an alternative to classical paradigms of neural coding
such as the spike-rate coding approach of the perceptron (see Fig. 15). Instead
of coding information in the mean firing frequency of neurons, it proposes an
original approach solving the problem that we defined above. It uses a distributed
probabilistic representation constituted by two signals. On one side, we assumed
here that the continuous activity of neurons (such as the membrane potential) in
the layer represented the evidence of a correct match such as defined in Sec. 2. On
the other side, the discrete spiking signal signifies a set of elementary decisions
made by the neurons.
To illustrate the properties of the algorithm, we may model a network of linear
Integrate-and-Fire neurons forming a simple model of an hyper-column in the
granular layer of the primary visual area (V1). This model consist of an isolated
network of 16 neurons selective to different orientations of contours and which are
modeled as Gabor filters (which are here symmetric with circular envelopes, see
Sec. 3.3 for a more detailed account on V1). We compared a pure feed-forward

38It should be stressed that we don’t explicitly integrate a refractory period in these equations.
39It should be again noted that this is not actually used in the visual system (there is no reconstruction

of the image) but that this scheme provides a tool to quantify the information transfer contained in the
spike list thanks to Eqs. 33 and 40.
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Figure 16: Implementation of the greedy pursuit using Integrate-and-Fire Neurons.
We simulated here the activity of a network of Integrate-and-Fire neurons tuned to form
a simple model of an hyper-column in the primary visual area (V1) to the presentation
of a horizontal edge at t = 0. We show in this image the output spiking activity of
16 neurons tuned for different orientations for the feed-forward (black bars) and the
sparse spike coding (white bars) models during the first 150 ms. In this latter model,
the correlation linked to the information already detected is propagated as a hyper-
polarizing and shunting lateral interaction to the neighboring neurons: the response
in both latency and spiking frequency to the oriented edge is clearly more selective.
(Right Inset) Output spike firing rate to the presentation of a horizontal edge at time
t = 0. For the linear feed-forward model (plain line), the sparse spike coding scheme
(filled curve) for different orientations of the input stimulus. The narrower tuning
curve for the latter method represents a more selective response to the features learned
in synaptic weights and mimics the behavior of the neural response in the primary
visual area [Ringach, 2002].

model to a network implementing the lateral interactions that we described above
(see Eq. 49 and 50). We show here the resulting spiking activity when one of the
preferred stimuli (the horizontal edge) was continuously presented from time t = 0
(see Fig. 16).

We observe that the neuron corresponding to that preferred stimulus fires with
the shortest latency but also produces the highest spike rate. Moreover, the activity
of the neurons corresponding to non-preferred directions shows a lower spiking
activity when implementing the greedy pursuit. This dynamic reflects the lateral
interaction (here an inhibition to the positively correlated neurons) generated at
every spike which is observed in V1 [Celebrini et al., 1993]. In fact, compared
to the linear model, the latency and the frequency of the neighboring neurons
show a sharper response for neighboring edge orientations (see Fig. 16) which
corresponds to the high selectivity observed in simple cells from V1 [Ringach
et al., 2002]. The selectivity of this model was compared with the model of
divisive normalization [Schwartz and Simoncelli, 2001], suggesting that this simple
implementation of Integrate-and-Fire neurons —linked by lateral interactions and
removing dynamically the redundancy in the signal— could provide a functional
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model for the complex processing occurring in cortical areas.

3.2 Building adaptive low-level vision systems
As was emphasized in the first section, the connectionist view of cognitive
functions emphasizes on the construction of a network of similar micro-circuits
(see Sec. 1.1.3). To allow an efficient processing of the input, these should therefore
adapt according to variable internal parameters (such as the weights of the neural
connections) thanks to a generic “learning program” . However we miss a general
theory for learning in the CNS and in particular for low-level visual system. We
will here try to define and study a learning rule based on an efficiency criteria at
the level of a neural assembly and then apply it to a model of adaptation in the
primary visual cortex.

3.2.1 Sparse Spike Learning: adapting towards efficient representations

Let’s first formalize the long-term goal of a neural assembly —such as cortical mini-
columns defined in Sec. 1.2.2— as the optimization of the efficiency defined in the
previous section. A major keystone in modeling learning in neural assemblies was
established by Hebb [1949]. It simply stated that :

"When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased."

It should be noted that this "Hebb rule" was only a small fraction of Hebb’s theory
which insisted on the notion of cell assemblies and of associative memories as was
defined above in Sec. 1.3.3. In this aspect, the rule takes another formulation than
what is usually applied to the single neuron and rather focuses on populations of
neurons. In fact, applying simply the "Hebb rule" on a linear representation using
the correlation generates preferred directions as the axis of a Principal Components
Analysis [Oja, 1982], which is in particular known to badly represent natural visual
scenes (but which may serve as a processing as explained in Sec. 2.1.4). In our
framework, we would rather interpret this statement as adjusting the relation
between different points in the inferential network, for instance : "if a set of events
A is more probable than expected in successfully causing an event B, then increase
their link to adjust the prediction of B knowing the set A".
The dictionary should adapt in an unsupervised manner as a function of the input
’s statistics so that the coding is the most efficient, that is that the data is at best
explained by the LGM model. Inspired by the measure of the log-likelihood of the
data knowing the model as an upper-bound for the description length [Shannon
and Weaver, 1964], we may thus try to maximize it over a subset I of images
corresponding to natural behavioral conditions:

L = E[− log(P(L|A)]L∈I (52)

where E[.] represents the mean. However, maximizing this cost requires the
evaluation over a huge set of images and conditions, a task which is not compatible
with biological constraints.
Based on the work of Olshausen and Field [1998], we will derive a learning as
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an algorithm gradually optimizing this efficiency criteria. A solution is to use the
Sparse Spike Coding representation that we defined in the previous section since
we have an evaluation of the log-likelihood by the distance of the residual image
to the selected filter (see Eq. 34), the rest being regarded as a perturbation which
should cancel out by integrating it in time. Translating the Hebb rule to our model
of sensory coding (see Fig. 12) at every single coding step n, it could be translated
in "if an image L is causing the efficient response of j, then A j should be adjusted
toward L". At this step of the pursuit and using the gradient descent approach as
in [Olshausen and Field, 1998], we infer that we may slowly modify the weight
vector corresponding to the winning filter A j(n) . This learning consists in taking the

winning weight vector closer to L(n)

s(n) by applying:

A j(n) ← A j(n) + η.s(n).(L(n−1)
− s(n).A j(n)) (53)

or equivalently
A j(n) ← A j(n) + η.s(n).L(n) (54)

where η is the learning rate (this is exactly Eq. 17 in [Olshausen and Field, 1998]). By
slowly adjusting A, this will therefore in the long term enhance the coding efficiency
of the coding algorithm. Moreover, this method provides when it converges a set
of optimal filters in the sense that their activity is optimally independent [Lewicki
and Sejnowski, 2000]. It is thus a hebbian-like learning, but instead of being applied
to the linear representation it is based on the sparse representation implemented
by the Sparse Spike Coding.
Moreover, to keep the assumption of an uniform prior (see Sec. 2.1.4), it is important
to include a regulatory mechanism in the learning algorithm. This will correspond
to an implementation of the homeostatic aspect of the "fair competition" among
neurons as stated in Sec. 1.2.2. In fact, the first neurons to learn will be more
prone to be selected again and the following representations will have a non-
uniform prior on the probability of being activated. Inspired by the SN
algorithm, we introduced a gain control mechanism which influenced the choice
of the winning neurons. By taking advantage of the probabilistic representation by
explicitly changing the probability of being selected, we may for instance modify
Eq. 31 as

j(n) = ArgMax j[P(L(n)
|A j)/P(n)( j)] (55)

where P(n)( j) is the probability of choosing a neuron j at rank n computed over the
previous coding steps 40. This provides an homeostatic parameter which ensures
that the competition in the neural assembly keeps fair in a certain time window.
This sparse hebbian rule is therefore a simple approach that has many similarities
with other algorithms. It may be proved that in a stationary environment,
this rule would yield progressively sparser representations [Perrinet, 2004a] and
would converge to the optimal solution defined by Independent Component
Analysis [Bell and Sejnowski, 1995, 1997]. In fact, the learning rate gives a temporal
scale and the learning focuses on slowly varying features as is used in Slow Feature
Analysis [Wiskott and Sejnowski, 2002]. We may also compare the algorithm as

40We will see that it is easy to compute P(L(n)
|A j) using a similar LUT as in Sec. 2.1.1. This homeostatic

constraint could be included in the generic cost defined above since a variability in the behavior of the
neurons would result in a quantization cost as in Eq. 25.
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Vector Quantization (VQ) which would be applied on a multidimensional unit
sphere corresponding to the different features. Our approach is therefore relatively
conservative, and we will see its implications on modeling learning in a population
of neurons.

3.2.2 Neural implementation of Sparse Spike Learning

Similarly as the Sparse Spike Coding algorithm and since they are based on similar
mechanisms, this set of linear event-based computations are easily implemented
in a network of spiking neurons. We may extend the neuronal implementation of
the Sparse Spike Coding by integrating the Hebbian rule at every event. Using
similar assumptions and notations as in Sec. 3.1.4, only the winning neuron will
be modified and as in 54 :

A j∗ ← A j∗ +
1
τ
.s∗.L∗ (56)

where τ = 1/η is the learning time constant (in number of spikes) as in Eq. 22 and
L∗ the residual image. We may at the same time modify the correlations (that is
the lateral connections) with

∆R{ j, j∗} =
1
τ

(<
L∗

C j∗
,A j > −R{ j, j∗}) =

1
τ

(
C j

C j∗
− R{ j, j∗}) (57)

and implement a rule to learn the LUT :

LUT(r)← (1 − 1/τLUT).LUT(r) + 1/τLUT.C j∗ (58)

where τLUT is the learning time constant of this rule. For a given value C j this
function gives a way to compute P(L(n)

|A j). Finally, we may implement the
homeostatic rule in this distributed approach by changing the gain of the activity.
More simply, using Eq. 48, we may vary the threshold by setting a different
threshold θ j for every neuron and at step n:

θ j = −θ.P(n) with (59)

P(n)( j) ← (1 − 1/τhomeo).P(n)( j) + 1/τhomeo.δ( j(n) = j∗) (60)

where τhomeo is the homeostatic time constant and δ is the Kronecker function.
As a causal temporal learning rule, the sparse hebbian rule is related to Spike-
Time Dependent Plasticity (STDP) [Debanne et al., 1995; Bell et al., 1997; Bi and
Poo, 1998; Abbott and Nelson, 2000]. In fact, this algorithm enhances temporally
causal relationships, and is by construction similar to STDP, but the exact learning
modification will depend in this functionalist view to the activity of the whole
population of neurons. The net weight change between neurons may thus be
alternatively hebbian and non-hebbian, and the learning time window in particular
may have varying shapes during the learning. In particular this shows that the
hebbian learning on the linear representation defined in the method of van Rullen
and Thorpe [2001], that is the learning proposed in [Guyonneau et al., 2005]
could not yield independent components when applied to multiple inputs. Our
approach may therefore explain the variety of learning time windows that may be
observed [Abbott and Nelson, 2000] and that may be a consequence of this more
general rule. The importance of the learning lies instead in constantly maximizing
the efficiency of the network which should —in a stationary environment—
increase monotonously.
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Figure 17: Results using the sparse-hebbian learning scheme with 196 filters. Starting
with random filters, we compared here the results of the learning schemes using (Left)
the classical conjugate gradient function (’cgf’) method as is used in [Olshausen and
Field, 1998] with (Right) the Sparse Spike Coding method. Results replicate the original
results of [Olshausen and Field, 1998] and are similar for both methods: both dictionary
consist at convergence of Gabor-like filters which are similar to the receptive fields of
simple cells in the primary visual cortex [Ringach, 2002]. Edges appear in these
conditions to be the independent components of natural images. However, it should
be noted that the Sparse Spike Coding method introduces less localized filters and a
higher proportion of high-frequency Gabors when no efficient homeostatic rule was
defined [Perrinet, 2004a, 2006]. All scripts generating figures and control experiments
are available, see Sec. 3.4.3)

3.2.3 Performance of the Sparse Spike Learning and Coding

We compared this "sparse-hebbian" learning scheme with the SN algorithm.
In fact, our algorithm (equations 30, 31 with 55 and 54) mainly differs by the
method used to obtain the sparse representation. The latter uses the conjugate
gradient method [Olshausen and Field, 1998] to optimize a trade-off between
sparseness and reconstruction quality. We used a similar context and architecture
as these experiments and used in particular the database of inputs of the SN
algorithm. Here, we show the results for 12×12 patches (so that M = 144) from the
whitened images and we chose to learn 169 filters. We optimized some parameters
for instance by evaluating the variance of noise in the database. However, varying
every learning parameter showed to rarely change the results qualitatively and
illustrated the stability of both algorithms41. The convergence was mostly quick
(after ∼ 500 learning steps for η = 1/20) and the homeostatic rule was efficient to
keep the prior flat. As in SN, we observe the emergence of similar structure

41In particular, we studied modifications —such as the use of natural gradient [Lewicki and Sejnowski,
2000] or using rectified coefficients— with little qualitative differences.
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Figure 18: Efficiency of the matching pursuit compared to conjugate gradient.
We compared here the matching pursuit (’ssc’) method with the classical conjugate
gradient function (’cgf’) method as is used in [Olshausen and Field, 1998] for the
coding of a set of 10000 image patches drawn from a database of natural images. We
plot the mean final residual error and the signal to noise ratio (in dB) as a function
of two definitions of sparseness : (Left) the mean absolute sum of the coefficients (the
sparseness defined in [Olshausen and Field, 1998]) and (Right) the number of active (or
non-zero) coefficients (the coding step for MP) which provides an estimate of the coding
efficiency (in bits) for the image patch. The conjugate gradient function approach was
applied twice ( ’cg X2’, see text). For this architecture, the sparse spike coding scheme
proves to be more efficient to learn and code natural image patches. The approximate
solution for the hard constraint (Eq. 29) is therefore more efficient on both constraints
costs.

as the receptive fields of simple cells in the primary visual cortex [Ringach, 2002]
(see Fig. 17). It thus experimentally provides a simple neural implementation for
Independent Component Analysis [Lewicki and Sejnowski, 2000].
We also compared the efficiency of both coding algorithms on the learned repre-

sentation basis (see Fig. 18) with a similar method as in Fig. 14. Computationally,
the complexity of the algorithms and the time required by both methods was
similar on the different simulations on a computer. However, the Sparse Spike
Coding is by construction more adapted to a parallel architecture. It also provides
a progressive result while the conjugate gradient method had to be recomputed
for different number of coefficients. Best results are those giving a lower error (or
higher SNR) for a given sparsity or a lower sparseness (better compression) for the
same error. In both cases, the Sparse Spike Coding provides a coding paradigm
which is of better efficiency as the conjugate gradient and of lower complexity.
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3.3 A model of computations in the Primary Visual Cortex
(V1)
To illustrate the efficiency of the Sparse Spike Coding on a larger and more realistic
scale model of a low-level visual area, we applied the algorithm to a model of
the primary visual cortex (V1). As was stated in Sec. 1.3.1, we will assume that
the function of V1 is to represent a "sketch" of the visual scene. We will restrict
here the model to the response to a flashed static grayscale image (as in Sec. 2.1.3)
and in particular study the dynamics of the response to the oriented edges that
delimit visual objects. We will present some particular extensions permitted by this
algorithm such as adding long range prediction interactions which may enhance
the overall efficiency of the algorithm and that we will put in a neuro-physiological
perspective.
In fact, a model of the edge content of natural images is of great importance for
understanding the visual scene. It is widely used in image processing for multiple
tasks the human visual system is supposed to perform such as segmenting objects
by their shape or denoising using prior knowledge on the statistics of edges. This
has led to numerous formalizations [Marr, 1980; Canny, 1986; Deriche, 1987; Castan
et al., 1990] which we will try to understand in the framework of our formalization.
This extension of the previous framework will serve to forge a general framework
of an efficient dynamical distributed event-based computing scheme.

3.3.1 Multi-scale edge representation: Sparse Edge Coding

In natural scenes, edges exist at multiple scales and we may extend the previous
algorithm (see Sec. 3.1.4) to a more appropriate architecture such as multi-scale
edge detection [Mallat, 1998, p. 452]. As in section 2.2, we will generate all filters
by replicating mother functions according to translations and scalings so as to
transform the image in a map as in Sec. 1.3.3. As pointed by Jones and Palmer
[1987], simple cells in V1 approximately fit Gabor filters which in turn are well
approximated by partial derivatives of 2D-Gaussians. In particular, from the
sensibility of vision to the relative frequency (an effect known as Weber’s rule),
the mother wavelet may be defined in the polar coordinate (r, θ) of the Fourier
domain as log-Gabor filters [Field, 1987] :

Gk(r, θ) = exp(−
log2(r/rk)

2.σr2 ). exp(−
(θ − θk)2

2.σθ2 ) (61)

where (rk, θk) is the center of the filter and (σr, σθ) are respectively the frequency
and angular bandwidth of the filter (see Fig. 19). Optimizing this representation,
we may set up the tiling of the discrete wavelet architecture using 5 scales and 6 to
8 different orientations [Fischer et al., 2005a,b; Redondo et al., 2005; Fischer et al.,
2007b]. In particular, the activity images are complex numbers and the argument
(the angle of the complex number) of a particular neuron will in fact correspond
to the phase of the Gabor filter (see Fig. 19). This analytical formalization permits
thus to capture the diversity of receptive fields types in a simple abstract fashion.

As a linear over-complete transform, it fits particularly well to the Matching
Pursuit algorithm. As in Sec. 2.2, the modulus operator will be used to detect
the best match and we then extract at every step the particular location, phase,
orientation and scale of the winning neuron. It thus implements in a simple
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Figure 19: Multiresolution scheme with 6 orientations and 5 scales. (Left) Schematic
contours of the filters in the Fourier domain. The Fourier domain origin (DC
component) is located at the center of the inset and the highest frequencies lie on
the border. (Right) Real (symmetric) part of the filters in the space domain. Scales
are arranged in rows and orientations in columns. The two first scales are drawn at
the bottom magnified by a factor of 4 for a better visualization. The low-pass filter is
drawn in the upper-right part.

manner a population of simple cells with different phase preferences and gives
a phase-independent evaluation of the edge content on the receptive field as
may be observed in complex cells of V1 [Liu et al., 1992]. In this particular
case, the correlation between filters could be analytically computed in the Fourier
domain and the algorithm is therefore of relatively low-complexity (see [Fischer
et al., 2005a] for details). Moreover, this transformation was designed to be self-
invertible [Fischer et al., 2007b] to ease the reconstruction of the image from the
coefficients and applications to image processing (as a consequence the point
spread function from Eq. 18 is a discrete dirac function). As in Sec. 2.2.2, we
observed that over a database of natural images, the decrease of coefficients as
a function of their rank was smooth (see Fig. 20). This observation extends the
experiments of Ruderman and Bialek [1994] which suggest that the local contrasts
of different orders follow regular statistics to this non-linear transformation. The
Sparse Spike Coding approach would thus yield here a small quantization error.
To evaluate the efficiency of this algorithm, we compared it with existing solutions
on a set of natural images. We first computed on a first set of natural images the
LUT (see Fig. 20). The LUT was then used to code the amplitude of coefficients
according to their rank and was used to code a second set of 200 natural images.
We therefore could compare the efficiency of this algorithm in terms of data
compression with the standard JPEG method and the SEC algorithm described
in [Fischer et al., 2005a]. We varied the entropy of the output signal by varying the
quality parameter in JPEG and the number of chosen coefficients (that is the rank)
in both other methods. Assuming that the goal of low-level sensory system is to
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Figure 20: Regularity of edge coefficients distribution in natural images. We plotted
for 200 natural images the mean and variance (depicted by the dotted lines representing
the mean ± one standard deviation) of the decrease of coefficients values in the
probabilistic Matching Pursuit scheme described above as a function of the rank.
Assuming that these values represent the edge content of the images, it shows that the
probability distribution of edge coefficients is regular in natural images and may be
used in an efficient compression scheme. It permits to evaluate the coefficients quickly
as a function of the rank, and since the transmission error being proportional to the
variance to transform efficiently an analog image in a wave of spikes. It should be
noted that this decrease is much more rapid than the one observed in the model retina
the coefficients are below .15 after 1% of relative rank (to compare with Fig. 7).
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Figure 21: Compression efficiency of MP compared to SEC and JPEG. We compared
the coding efficiency measured as the normalized root mean squared error (RMSE) as
a function of the coding entropy (in bytes per pixel). A RMSE of 0 means a perfect
reconstruction, while a RMSE of 1 means that the error is maximum (null image).
Three phases corresponding to the three method appear in the graph. The MP method
is capable of coding with very low entropy starting at relatively low efficiency, but
getting progressively better. The JPEG method is not adapted to low-entropy coding
but gets very good results after a medium quality parameter (around 60 and 1 bpp).
The SEC method gives intermediate results of good efficiency in rather low entropy
ranges.

transform the representation while loosing the least information, we measured the
RMSE (see Fig. 21 ) as a measure of the efficiency of the methods. The RMSE was
computed after decorrelation which accounted for the spatial frequency sensibility
of the human visual system (as seen in Sec. 2.1.4). As a conclusion, the MP
method appears to be particularly efficient for a crude and quick "sketch" of the
image. Adaptive methods as the SEC algorithm appears therefore to be a promising
method for an efficient coding scheme on a wider range of behavioral situations in
particular in noisy environments.

3.3.2 Handling uncertain input and filters

In Eq. 31, we made at every step the "greedy" assumption that the detection of
an edge and its amplitude was correct and we explore here if we may enhance
the algorithm by accounting that our knowledge is non-uniform on the image
and receptive field. In fact, it is often argued that the Matching Pursuit scheme
provides an approximate solution since the decisions made at every step influence
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Figure 22: Edge extraction using the multi-scale representation. (Left) 128×128 pixel
image "Boats". (Middle) Edges extracted by sparse Gabor wavelets. 1st scale and 2nd
scale edges appear in black. The 3rd scale edges appear in gray, they are plotted larger
since the 3rd scale is downsampled and offers coarser spatial localization. (Right)
Edges extracted by Canny method [Canny, 1986; Deriche, 1987]. The SEC method
extracts edges which are subjectivelly more accurate. Reconstruction of the image
using these edges revealed qualitatively better results (see [Fischer et al., 2007a]).

the rest of the algorithm. An error at a given step may therefore be propagated and
amplified in the following steps. Though the squared error is bound to decrease,
the activity may at certain steps increase. A first solution is to introduce a prior
in Eq. 13 that favors small amplitudes and which implies that only a fraction of
the correlation is removed to neighboring neurons is removed at every step (this
"smoothness" regularization factor is determined by the variance of the prior).
This comes however on a price for the sparsity of the signal (correlated neurons
are more likely to be selected when this factor increases). Another solution is to
take into account our knowledge of the evidence of the inferential decision: the
"greediness" of the algorithm being now regulated by our actual evidence of the
action potential.
However, a problem with Matching Pursuit [Mallat and Zhang, 1993] is that any
decision in this recursive scheme is propagated to the following steps and that
the algorithm is progressively more prone to detection errors. Thanks to the
interpretation of MP in a probabilistic framework [Perrinet, 2004b], we may lower
the risk of false detection by explicitly taking into account the variability of image
formation in space but also specifically to the knowledge of one source:

L − s.A j = n j (62)

with n j being a gaussian centered noise image totally characterized by the image
of variances Â j.
As in Sec. 2.1.4 and [Perrinet et al., 2005], we may derive the optimal choice as the
maximum a posteriori now as:

j∗ = ArgMax j|C j|with C j =

∑
i α ji.A ji.Li√∑

i α ji.A2
ji

(63)

with i spanning the indexes of image pixels and α ji = 1/Â ji acts as a "transparency"
channel on the image or the receptive field j: all pixels will not have the same
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weight on the decision, typically, the surround accounting for less information
than the center. This new metric measure is equivalent to a dot product and similar
to the χ2 measure, accounting for the non-uniform variability of measures in the
receptive field of the neuron. It is also somewhat similar to the Mahalanobis [1936]
distance if we measure statistically the variances Â ji. We may also implement in this
framework a image based alpha-channel corresponding to outside the image (and
for which αi = 0) or for retinotopic areas, as the scotoma, where the information is
permanently uncertain. This is for instance present in the blind spot, an area of the
retina where the convergence of the axons from ganglion cells doesn’t allow for
the reception of luminous information.
We may then resume the algorithm as in MP by removing the pattern correspond-
ing to the winning neuron as:

L← L − s∗.A j∗ with s∗ =

∑
i α j∗iA j∗i.Li∑

i α j∗i.A2
j∗i

(64)

It corresponds to the mean estimated best source, and it is in this framework
minimizing the risk of a false detection. This may be implemented directly by a
lateral interaction using for all j

C j ← C j − s∗.R{ j, j∗} (65)

where

R{ j, j∗} =

∑
i α ji.A ji.A j∗i√∑

i α ji.A2
ji

(66)

is the correlation of the neurons with the winning neuron. Note that the activity of
the winning neuron is canceled.
We applied this framework to a simple reconstruction task where

1. the alpha-channel of each receptive fields was circular

2. the scotoma was defined as the border of the image and a known image of
alpha values (by modeling the extent of the blind spot)

The results show that an original image could be reconstructed despite the
incomplete input information. This method provides therefore an explicit method
for handling uncertainties by taking advantage of the probabilistic representation.
It also provides a generic method for handling edges which outperforms heuristic
methods which are typically used (e.g. mirroring) and which could be of use in
image processing when having an a priori knowledge of the non-uniformity of
uncertainties.

3.3.3 Predicting cocircular edges using the local context

It is a priori more probable in natural images that edges are aligned according to
smooth contours and we may introduce this knowledge in our algorithm. This has
been exploited in numerous studies and models and has been formalized using
neuro-physiological evidence [Kovacs et al., 1999; Geisler et al., 2001; Sigman et al.,
2001] by defining an associative field [Field et al., 1993; Seriès et al., 2002]. It also
correlates with the observed lateral propagation of information in V1 [Grinvald
et al., 1994; Georges et al., 2002; Bair et al., 2003; Jancke et al., 2004] and could serve
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to understand the functionality of the flow of information at the different scales of
V1. This field modifies the excitability of neighboring neurons knowing one edge
and is implemented by long-range lateral interactions modifying the threshold or
equivalently the global conductance. It may be understood physically by the larger
co-occurrence of oriented edges in natural scenes and is related to the Gestalt law of
good continuity. It may be formally modeled as a prior on co-circular edges with a
prior for low curvatures (that is for straight lines). Introducing this information will
enhance the fair competition between neurons of V1 and thus increase efficiency.
This information is particularly adapted to the dynamical approach of our
distributed probabilistic method. In fact, the probabilistic representation enables
to combine information from different modalities, as here the information from the
input image (that is the residual image at rank n) and the information from the
edges already extracted at this time. This knowledge modifies the assumption of
independence of the activity of neighboring cells at a larger scale than a cell’s RF
and we may assume that the a posteriori probability from Eq.13 is modified by the
knowledge on the edge that we already extracted (noted J = { j(k)

}1≤k<n) by:

P({ j(n), s(n)
}|L,J) = P({ j(n), s(n)

}|L).P({ j(n), s(n)
}|J) (67)

The prior from the known edges combines (by conditional independence) as

log P( j(n)
|{ j(k)
}1≤k<n) =

∑
1≤k<n

log P( j(n)
| j(k)) (68)

The probability of occurrence of an edge k knowing an edge l is here parametrized
by

− log P(k|l) = log Z +
d( j, k)2

2.σ2
d

+
c( j, k)2

2.σ2
c

+
δ( j, k)2

2.σ2
δ

(69)

where d( j, k), c( j, k) and δ( j, k), are respectively the distance, the curvature and the
angle between the two edges (see Fig. 22-Left) and σd, σc and σδ the respective
standard deviations for the measures. This parameters are tuned to match the
effective probability in natural images, but from the circular definition of the
edges obtained by the method, special care has to be put on the stability of this
tuning. In fact, even if it is intractable on a sequential machine, the strategy
used in cortical columns is certainly simpler and based on a slowly varying rule
which statistically "computes" the a priori co-occurrence between neurons. From
the extension presented in Sec. 3.3.3, we may implement a simple rule to learn
associative fields. This rule is again based on an evaluation of the probability of
the activation of one neuron k knowing that another neuron l was activated before.
This may be written :

P(k|l)← (1 − 1/τpred).P(k|l) + 1/τpred.δ(l) (70)

where τpred is the time constant of this learning rule. Finally, this approach similar
to advanced algorithms in image processing such as contourlets [Le Pennec and
Mallat, 2005] but it introduces a more general adaptive framework which reflects
aspects of the processing occuring in V1. These extensions suggest that local
information is integrated (up to the cost in metabolic "wet-ware") using a generic
predictive mechanism which could be described in terms of the local micro-
circuitry of cortical columns.
Let’s draw an application from these formalizations. In particular, if we note in
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Figure 23: Denoising results. (Left) This 120 × 120 detail of the image "Boats" is
corrupted by Gaussian noise for a Peak-Signal to Noise Ratio (PSNR) of 20.22 dB
and contains an important level of noise. (Middle) After denoising by bi-orthogonal
wavelets ’db4’ and soft-thresholding a high level of artifacts appears, PSNR=24.65
dB. In "Boats" many details, i.e. the wires, appear smoothed and almost disappear
while some noise points still remain. (Right) The image denoised by sparse log-Gabor
wavelets shows a dramatic decrease of the level of artifacts, moreover some important
details now appear preserved and the blur is lower. The PSNR shows an important
improvement up to 25.30 dB.

a matrix form W the linear transform and h∗ the set of selected coefficients for a
perturbed image L, it may be proved that the image minimizing the error cost for a

denoising task will be given by W
T

(W
T

W)−1L where W is the matrix corresponding
to the linear transformation but limited on the selected coefficients h∗. The pseudo-
inverse may be approximated by the Landweber algorithm. This was implemented
with the log-gabor architecture and exhibits promising results (see Fig. 23).

3.3.4 Learning transform-invariant representations: Sparselet Analysis

As stated in the introduction of this section (see Sec. 3.1.1), a major feature of
biological vision is its robustness to frequently occurring changes in the visual scene
such as those produced by our self-motion: translations, zooms, rotations. We will
here describe a general method to achieve a transform invariant representation
by setting that for a transform in the image space, there exist a transform in
the representation space. To implement this feature on a computer model for
translation of the image, we will as a first approximation impose the weight
patterns to be exactly the same at different locations and scale in a Laplacian
Pyramid [Simoncelli and Freeman, 1995]42 as was done by Sallee and Olshausen
[2007]. This approximation was verified on the small patches of images where we
obtained filters that were similar up to a translation (see Fig. 17). The Sparse Spike
Coding algorithm may be easily extended to the translation constraint [Perrinet
et al., 2002] and was applied to the image pyramid. The activity of the neurons

42In particular, we used the same representation algorithm as in [Burt and Adelson, 1983]. The
invariance is therefore exact over discrete translations and dyadic scales. This procedure is based on the
hypothesis that stimuli appear similarly according to these transformations and is a major constraint of
the limited amount of memory (see Sec. 1.1.2).
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was computed at every scale of the pyramid using the correlation operator (that
is the convolution with the central symmetric transformation of the filters) which
produced the initial activities. We then used the same operator to compute the
correlation between filters and to define lateral interactions. By this way, we
implemented the Sparse Spike Coding algorithm in this architecture by virtually
replicating a "column" of filters at every position and scale of the pyramid.
We used the same parameters as in the previous section, but on larger images
of 100 × 100 pixels and with an increasing number of filters (this number thus
corresponds to the over-completeness of the dictionary). As in the previous section,
we see the emergence of edge selective filters. However, since these are replicated
at all positions, similar filters but with different positions would compete and only
the strongest —generally a centered filter— is selected (see Fig. 24). This allow for
a greater competition of the selection of features in the images, and the center of
winning filters will be implicitly more probable to be chosen first on irregular parts
of the image (which corresponds to higher activities)43. This was enhanced by the
spatial kurtosis of natural images since they typically show large "uninteresting"
regions and more localized regions where the algorithm will by construction be
more likely to fire spikes (see Fig. 20). As we increase the over-completeness,
the number of orientations increases as well as the length of the edges. It is of
special interest to see that under this efficiency criteria, the different qualitative
features of edges, orientation, relative scale, aspect ratio, phase will appear in
different orders, the information on orientation being for instance prioritary on
the phase information. We also see filters with a similar shape but scaled with a
factor inferior to 2, as was used in Sec. 3.1.3 and [Perrinet et al., 2004]. In fact, a
lower over-completeness forces the filters to be more general and therefore to be
selective to a wider range of orientations. As is observed in progressively higher
level of the hierarchy in the visual pathways, there is a progressive sharpening of
the selectivity of neurons (typically, edge filters get "longer"). Finally, we obtain
a set of mother wavelets, replicated at the different positions and scales of the
pyramid and which allow for a translation and scale invariant representation of
images, hence the name Sparselet Analysis.

We studied the coding efficiency of this architecture for different over-
completeness values and compared it to the linear laplacian and steerable
pyramids. At the end of the learning scheme, we coded a set of 1000 images
in every over-completeness condition. As stated above, the MSE provided an
efficient measure of the information carried by the code and we measured it during
the algorithm for different number of coefficients. As in Fig. 25, we rated the MSE
in function of the number of selected coefficients (see Fig. 24-Left). However,
as the over-completeness increases, so would be the number of bits necessary to
code every address. We therefore plotted the same results but as a function of
the bytes necessary to code the address (see Fig. 24-Right)44. The results show
that the Sparselet analysis is better adapted to code natural images. In fact, the
information transfer gets better as the over-completeness increases. However, the
information transfer rate is already optimal for 16 filters per pixel and having more
filters per pixels may give an over-fitted representation of visual features. A limit
of this approach is that we don’t know a priori the number of neurons necessary to

43This is desirable since in natural images, large portions, such as the sky or smooth surfaces, have
relatively low edge content

44It is a similar in the method to Fig. 21.
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Figure 24: Filters obtained using the Sparselet Analysis. We show the resulting
mother wavelets from the Sparselet Analysis scheme at different levels of over-
completeness, respectively (Left) 4, (Middle) 16 and (Right) 64 filters per pixel. As
in Fig. 17, we see the emergence of filters selective to different orientation but also to
different sub-scales. These are centered since similar filters in the pyramid (translation
and 2-fold scaling) compete in the algorithm. The results exhibit a sharpening of the
selectivity of the filters as the over-completeness increases. Note that this sets of filters
correspond to the feature vectors defined in Sec. 1.3.3.

represent a special feature, that is the complexity of the edge content that is coded
in V1. However, we may see that for Fig. 24-Right, filters relative to higher order
information (such as corners) appear which are no longer characteristic to V1. This
over-completeness (approx. 16) also roughly corresponds to estimation made on
cells in V1.

3.3.5 Topological Sparselet Analysis

The filters that were learned by this method where randomly permutable45 and
we may use the information of the position of the address of each learned filter in
the feature vector to enhance the representation’s efficiency. In fact, a natural
extension of this model was to introduce lateral connectivity between these
neurons in the Sparselet Analysis learning scheme. This introduces topological
relations between neurons as implementing the association of neighboring spatial
responses to neighboring neurons in the hyper-column. By taking advantage
of the probabilistic framework, this facilitation may take the form of the a priori
knowledge of the selection of a neighboring (similarly as in 3.3.3). We parametrized
it by an exponentially decreasing gain on the chance of selection of the winning
neurons (that is by modulating the threshold) whose amplitude and fall constant
experimentally did not change the qualitative results but only the convergence rate
of the solution. This strategy leaded in general to a better convergence since learned
features in filters —and which therefore appeared more frequently in comparison to
random filters— cooperated to neighboring filters. This scheme led to the emergence
of a "pin-wheel" by associating the learning for neighboring neurons (see Fig. 26)
and could be a the origin of the emergence of pinwheel hyper-columns as a basic

45In fact, their particular order on the grid as presented in Fig. 17 and 24 is totally random.
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Figure 25: Efficiency of the Sparselet Analysis. We compared here the sparselet
analysis scheme at different levels of over-completeness with classical methods. We
plot the residual Mean Squared Error (MSE) over a set of 1000 natural images for
different numbers of spikes. (Left) The MSE is plotted in function of this number : the
sparse spike coding algorithm outperforms the laplacian (Lap.) and steerable pyramid
(Steer.) linear representations and gets better as the over-completeness increases.
(Right) When plotting the MSE as a function of an approximate of the information
needed to code the spike list, the increase of efficiency is less marked: these strategies
have similar efficiency.

module in V1 for detecting the orientation of edges46.

3.4 Causal Sparse Spike Coding: an event-based computa-
tional approach

A particular challenge in this class of model is to extend the input to a continuous
flow of information. In fact, we so far used flashed images to study the transient
processing of the information which is of particular importance in the CNS, but
a realistic model should be able to handle natural scenes, that is varying images
stimuli. Moreover, this is necessary when considering a higher level area after the
retina, for which the visual input is dynamically transformed into a spatio-temporal
signal thanks to the dynamics of visual pathways.

46The particular projection of this feature map on the 2D surface of the cortex is not addressed here
but we refer to [Petitot, 2003].
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Figure 26: Emergence of a topological set of orientation selective filters. As presented
above, we simulated the emergence of filters in the primary visual area but introduced
lateral connections between filters so that neighboring spiking filters (and thus learning
filters) was enhanced. This lead to the emergence of topological relations between
neighboring filters similar to the neuro-physiologically observed pinwheels: all different
orientations are present while preserving a smooth transition between neighboring
filters. Note that the center gets less selective (since the constraint is higher than in the
periphery), an observation which is contested in physiology.

72



3.4.1 Causal Sparse Spike Coding

If extending the Matching Pursuit to the time domain is straight-forward,
accounting for the direction of time flow (that is to causality) impose to build
a modified algorithm. In fact, Matching Pursuit was first used in the time
domain [Mallat and Zhang, 1993] and is used for instance in processing time-
varying signals or video flows [Blinowska and Durka, 1994; Neff and Zakhor, 1997].
However, these methods don’t provide an adequate model of what we know from
the nature of time: we should restrain the available information to the past (for
the future is not known) and constraint the possible decision times (events) to the
present. In all generality, we may write a dictionary of filters as sliding windows
of spatiotemporal signals A j which we want to detect in the input signal. As in
Sec. 2.1.4, we may use the same hypotheses (conditional independence of noise in
time) and state that for any given spatiotemporal signal L at the present time t the
information is only known from the initial time t = 0 to the present. Therefore,
thanks to Eq. 11, we may compute at t for each element j the log-likelihood of the
match of L with A j as a new spatiotemporal signal :

C j(t) = 1/‖A j‖.

∫
u≤t

< L(u),A j(u − t) > du (71)

where ‖A j‖ is the norm of filters, that is ‖A j‖ = (
∫

u≤0 < A(u),A j(u) > du)1/2. Most
often, this is computed in signal processing from the note that C j(0) = 0 for all j
and using a recursive formulation based on the shape of A j.
Using an event-based approach and since C j(t) represents a log-likelihood, we may
state that if it crosses a threshold θ, then we detected a feature and —similarly as in
matching pursuit— we will account for that decision on the activity. It means that
at this moment47 t∗, for a certain j∗, C j∗(t∗) = θ and that we may subtract θ.A jk(t− t∗)
from L. This is fed back on C j as

C j(t)← C j(t) − θ.R{ j∗, j}(t − t∗) (72)

where R{ j∗, j}(t) = 1/‖A j‖.
∫

u≤t < A jn(t − t∗),A j(u − t) > du. It should be noted first
that as in matching pursuit C j∗(t∗) = 0 but also that this feed back is not limited to
the moment of the decision but also to the (near) future, since in the general case
where R j∗, j(t) is not null for t ≥ 0. This will be also true if we define predictive
fields as in Sec. 3.3.3. This formalization should be put in parallel with the range
of methods using Partial Derivative Equations (PDEs) in signal processing. By
combining a linear diffusion implemented by the linear kernel corresponding to
the RF of the column with the spiking activity, it implements a generic approach for
the anisotropic diffusion of the information. In particular, fruitful collaborations
should be foreseen by the interaction of this approach (based on a Bayesian and
neural formalism) and the mathematical knowledge on PDEs. These links already
exist in the literature [Degond and Mas-Gallic, 1989; Aubert et al., 2000; Grimbert
and Faugeras, 2005; Viéville and Kornprobst, 2006].

3.4.2 Application: generalized LIF

This general formalism may be first applied to dynamically detect static features.
In fact, this formalization generalizes the algorithm presented in Sec. 3.1.4 if we

47This subtends a certain continuity of C j.
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restrict the input to a constant image L after t ≥ 0 and define filters as separable
sliding windows with a constant image profile A j and a first-order linear temporal
filtering. It may be then easily proved that filters with an exponential decay in
time will implement the linear integration of LIF neurons, the time constant τ
corresponding to a trade-off between present activity and the short-term trace of
activity :

C j(t) =
< L,A j >

‖A j‖
.

∫
−t≤0

e−t/τdu =
< L,A j >

‖A j‖
.(1 − e−t/τ) (73)

with C j(0) = for all j. The choice of filters and times is then exactly similar
to Sec. 3.1.4 and leads to the same observations thanks to this “backward
compatibility”.
In practice, we observed that the threshold was a parameter to control the trading
off between speed vs. accuracy. In fact, a lower threshold would give more rapid
results but at the same, the information needed to reach that threshold may not be
enough to discriminate between different features. A higher threshold will on the
other side mean a higher accuracy by a longer latency. These observations were
applied by changing the overall threshold but may also change the sensitivity
of every single neuron. This is a desirable feature when adjusting the relative
importance of neurons in a population and in particular for learning.

3.4.3 Application: Multi-layer architecture

The previous example shows that our formalism may be generalized to a multi-
layer dynamical architecture. In fact, we only considered until now the case where
all information was flashed at an initial time and how cortical layers would react
of this input. In particular it was not possible to handle a multi-layered network
since the output of a children layer to a flashed image would be transformed
in a spatiotemporal pattern of spikes (which themselves would correspond in
a theoretical “read-out” reconstruction to a continuous flow). Thanks to the
extension of Sparse Spike Coding to the causal model, we may give a simple
expression for its extension to multi-layer architectures, as was sketched in [Perrinet
et al., 2002]. In fact, similarly as in Eq. 33, the image can be virtually reconstructed
in a layer (here denoted by index (2)) from the spike list generated at the previous
layer (1):

L(2)(t) =
∑

k

a(1)
k .A

(1)

j(1)
k

(t − t(1)
k ) (74)

and therefore the activity at this layer may be directly computed as

C(2)
j (t) =

∑
k

ak.

∫
u≤t

< A(1)

j(1)
k

(t − tk)(u),A(2)
j (u − t) > du (75)

the kernel < A(1)
j (v)(u),A(2)

k (u) > corresponding to the construction of a higher
level receptive field with lower level RFs (to simplify notations, all filters are
normalized). This would therefore reduce, according to the model of [Hubel and
Wiesel, 1974] to recursively updating C(2)

j with a linear factor of known functions (as
one edge was modeled as an alignment of LGN filters). This is a desirable feature
since —as in the hierarchy of visual pathways— it reduces the computational
complexity by minimizing the crosstalk to the minimum required. However it
increases the structural complexity of the network.
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Conclusion: distributed, event-based and
adaptive nature of neural computation
We proposed in the previous section how we could build an adaptive, multi-
layered, fully parallel and dynamic model of cortical areas using discrete events.
We saw that to better understand the dynamics of neural computations occurring
in low-level vision, we may use a functionalist and integrative approach. This
conducted the elaboration of a model using:

1. a distributed probabilistic representations using an explicit model of the
function of the area and of the representation that is used. In particular,
we saw that cortical areas may explicitly represent maps of features and that
the neural activity may correspond to the detection of these features.

2. computations are driven by binary events, spikes which are generated so as to
build efficient representations on the cortical area. This efficiency is regulated
by homeostatic rules which tune the competition between neurons so that it
maximizes its fairness, finally generating a sparse code.

3. learning algorithms may be set so as to learn in an unsupervised manner the
features that may at best represent the image while capturing regularities.

Originality of this approach Though limited to the transient response of the
visual system, this approach introduced several originalities:

1. The computation of a match was linked to statistical inference, enumerating
thus all the hypothesis underlying the chosen formulation (see Sec. 2.1.4).
This leaded to a better understanding of spatio-temporal integration in the
visual perception of motion (see Sec. 2.3).

2. We have linked this linear representation with an efficient algorithm, Sparse
Spike Coding (see Sec. 3.1) based on a neural implementation with lateral
interactions (see Sec. 3.1.4). Thanks to the regularity of the coefficients of this
non-linear representation on natural images (see Fig. 20), this could lead to
efficient applications in image processing (Sparse Edge Coding, see Sec. 3.3).

3. We have shown a method of learning in this Sparse Spike Coding scheme
which gave an efficient neural implementation of Independent Components
Analysis (see Sec. 3.2). This was extended to wavelet representation (Sparselet
Analysis, see Sec. 3.3.4).

4. We extended the formalization of Sparse Spike Coding to the time domain,
allowing the extension of these formalisms to more complex stimuli but also
to feed-backs (see Sec. 3.4)

Cortical columns as computational bricks These different features are
inherited by a fundamental hypothesis on neural computations, that is the
uniformity of computational principles in cortical micro-circuits. In fact, the
previous principles are the direct consequence of the construction of the cortex
as a tiling of similar micro-circuits. From the limited length of the genomic
information, this strategy provides a robust solution which may adapt to the
development on the CNS. This hypothesis thus provides a conceptual framework
which may enable us to further understand the principles behind our neural
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computations. It should however not be taken strictly, and —as in all biological
systems— exceptions abound. In particular, the present definition of the cortical
column as an independent system seems more due to the history of neuroscientific
discoveries [Horton and Adams, 2005].

Future challenges for modeling neural computations However, it provides
a fruitful tool to confront models of neural computations and to validate them
with biological experiments. It also allows to segregate different aspects of neural
computations between different scales, the study at the scale of cortical areas
gaining from knowledge on detailed models of the neuron but also at a higher
scale (integration at the level of the CNS, social nets).
On an epistemological level, we see that this method opens a number of future
challenges to understand the nature of neural computations. A main goal of
integrative neuroscience is the dialectal methodology between abstract models
and observations and sees at present a great development thanks to the number
of inter-disciplinary cross-talk between corresponding fields (computational neu-
roscience with neuro-physiologists but also cellular neuroscience with integrative
neuroscience).
This challenges the metaphor of the brain that we defined in the beginning of this
paper. Neural computations are definitely not of the same nature as the electronic
changes occurring in present day sequential computers but relate more to scale-
free interactions of interconnected agents each adapting to the rest of the system
in a dialectical recurrence, in analogy to the social nets building now the culture of
the world.

Reproducible research

Scripts reproducing all figures may be obtained from the author upon request. In
particular, scripts reproducing the learning experiments (see Sec. 3.2) are available
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