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Abstract. Our goal is to understand the dynamics of neural computations in low-level vision. We study
how the substrate of this system, that is local biochemical neural processes, could combine to give rise to
an efficient and global perception. We will study these neural computations at different scales from the
single-cell to the whole visual system to infer generic aspects of the underlying neural code which may help
to understand this cognitive ability. In fact, the architecture of cortical areas, such as the Primary Visual
Cortex (V1), is massively parallel and we will focus on cortical columns as generic adaptive micro-circuits.
To stress on the dynamical aspect of the processing, we will also focus on the transient response, that is
during the first milliseconds after the presentation of a stimulus.
In a generic model of a visual area, we propose to study the neural code as implementing visual pattern
matching, that is as efficiently inverting a known model of image synthesis. A possible solution offered
by the architecture of the visual pathways could be to represent at first on the surface of the cortical area
how well the prototypical visual features are matched by a combination of inferential mechanisms as ideal
observers. We studied the efficiency of this representation by rating the statistics of the output using natural
scenes, that is scenes occurring frequently. We show that this may be finally used to provide a behavioral
output such as an eye movement.
However, constraints specific to the visual system imply that the set of prototypical features is not
independent and that the cortical columns should communicate to produce an efficient, sparse solution.
We will present efficient algorithms and representations based on the event-based nature of neural
computations. By explicitely defining this efficiency, we propose then a simple implementation of Sparse
Spike Coding using greedy inference mechanisms but also how the system may adapt in a unsupervised
fashion. These computations may be implemented in simple models of neural networks by explicitly setting
the lateral connectivity between populations of columns. Using natural scenes, this algorithm provides
a model of V1 which exhibit prototypical properties of neural activities in that area. We show simple
applications in the field of image processing as a quantitative method to evaluate these different cortical
models.
Keywords: Neuronal representation, over-complete dictionaries, inverse linear model, distributed probabilistic
representation, spike-event computation, efficient coding, Matching Pursuit, Sparse Spike Coding, Sparse Spike
Learning.

PACS. 87.19.Dd Information processing in vision – 07.05.Mh Neural networks – 42.30.Sy Pattern recognition
– 07.05.Pj Image processing – 02.50.-r Probability theory, stochastic processes, and statistics – 02.50.Tt
Inference methods – 42.66.Si Psychophysics of vision, visual perception

What is the substrate of our cognitive abilities? How
much do we differ from other forms of intelligence, such
as animals or computers? How do we adapt in harmony
with the outside world and other individuals? And how
can we interact with the brain to cure pathologies from
neuro-degeneration to autism? These broad questions still
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have no clear answer today and scientists agree that we
still stand at the Middle Age of our knowledge of the
brain.
A major challenge in neuroscience is to understand the
content of the activity that is observed in biological
neurons. This neural activity constitutes the link between
the structure of the nervous system and the function of
our cognitive abilities. However, these complex activity
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patterns that are the basis of our cognitive abilities remain
a mystery and there is yet no known unifying model
explaining the "language", or neural code, that could be
eventually used by neurons at the various scales of the
central nervous system.
Herein, we will approach this challenging question by
focusing on the particular efficiency of low-level vision.
In fact, vision is an apparently simple cognitive ability,
which has always been a very active research area at
the convergence of neurophysiology, psychology and
computational neuroscience.

1 Neural computations in low-level vision

Along the history of cognitive and mind sciences, metaphors
were used to help us understanding the mechanisms
generating our thoughts. In the 18th century for instance,
painting dominated the cultural world and the mind
was imagined as a painter depicting ideas, thus using
the thoughts as brush strokes. Similarly, the brain was
depicted in the century of industrialism alternatively
a steam engine, a precise clock or an automaton. The
major metaphor is nowadays the computer and many
neuroscientists take this analogy as a source of inspiration
to understand neural computations. As we will show, this
metaphor has shown limits and new candidates emerge
with the raise of distributed communication systems —
such as the omnipresent IN and more generally
to multi-scale networks, e.g. communication, political
or social nets [Barabasi and Bonabeau, 2003]. We may
therefore think of the emerging rules of these networks
—such as a crowd in an urban area— as a novel metaphor
of the dynamics of the brain.
We are interested in this paper in understanding the
processes that give raise to our cognitive abilities and we
will focus on low-level vision in humans. In particular, we
will review some of the dynamics of the electrochemical
signals occurring in the brain —especially the brief peak
of activity known as action potentials or spikes— and
their link to the efficiency of neural computations in
populations of neurons (see also the paper of Bruno
Cessac in the same issue for a more detailed account on
spike dynamics). Following the particular example of a
visual neural implant as a full-featured model of low-level
vision, we will put at stake the metaphor of the computer
to describe the algorithms that may take place in the
brain. We will review some facts on neural computations
and on vision and some new insights into the dynamical
processing of neural information will help us to propose
some alternatives to the computer architecture that are
more adapted to mimic and understand the brain.

1.1 What’s special about the brain?

1.1.1 Efficiency of low-level vision

Vision is our ability to extract information from the
luminous energy reflected by our environment by using

Fig. 1. Ambiguity of visual information. To illustrate the
ambiguity of visual stimuli, we show how a simple visual
stimuli could generate different interpretations. When looking
at the central cube, the most probable interpretations oscillate
between two configurations of a plain and solid cube, as seen on
the left and right of the figure. One of these configurations may
be favored (e. g. by masking with the hand the other one), thus
changing the context. Theoretically, an infinite set of different
polyhedrons, of solids or networks of lines could have given
raise to the stimulation (such as this flat figure printed on paper
or elongated "cubes"). We argue that the visual system assigns
probabilities to all these possible and ambiguous configurations
knowing the context to finally choose the most appropriate
solution.

the image1 focused by the eye on the retina2. In fact,
pushed by evolution’s pressure, a majority of animals
have developed the ability of seeing. This is particularly
proeminent in primates which devote a large proportion
of their brain resources to visual processing (in proportion
of cortical tissue, approx. 52% in monkeys and 27% in
humans [Orban et al., 2004]) and allow for that quick and
reliable perception of the visual world. The information
is processed in the Central Nervous System (CNS), that
is the system constituted by the brain and the spinal
chord, until it may reach a behavioral decision. But
this task of statistical pattern recognition (or "feature
detection") proves to be very difficult because a striking
aspect of the visual information is the inherent ambiguity
of low-level images. This is well illustrated in the rich
collection of visual illusions, such as the Necker cube
(see Fig. 1), proving that a given retinal stimulation may
correspond to a multitude of different configurations.
These ambiguities are omnipresent in natural images
(i.e. images that are behaviorally relevant) and arise for
instance from occlusions, transparencies and conflicting
3D features. However, our daily experience shows us
that our visual system resolves these ambiguities —and
in most of the time in an effortless and unconscious
fashion— quickly and reliably.
However complex these mechanisms may appear, they
are particularly robust in biological vision. In fact, this
system remains efficient during development from a
newborn child to adulthood despite the changes in our
environment such as the growth of our body, which

1 We will use the term image in his generic meaning of a
topological map of —possibly vectorial— values. A PNG or
even compressed JPEG image being particular architectures of
images.

2 Note that the retinal image is inverted optically by the eye’s
lens, both upside-down and left-right.
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implies drastic changes of configuration. In fact, the
genetical material is not sufficient to code for all the
architecture of the visual system, and adaptive strategies
should exist to tune the system according to the visual
function. This plasticity is illustrated by artificial changes
of configuration, such as when using continuously during
several weeks transforming glasses such as prisms.
After some time, the world is perceived such as it
was before this change : the system adapted so as
to come back to a perception which is coherent with
the outside world3 [O’Regan and Noë, 2001]. However,
this system is relatively fragile to particular pathologies
such as age-related macular degeneration (ARMD) and
a clearer understanding of the mechanisms underlying
the robustness of neural mechanisms could provide
solutions, such as efficient alternatives for these different
cases of blindness.

1.1.2 Shortcomings of the sequential computer
metaphor for vision

The situation is different with present models of cognitive
abilities which usually follow the computer metaphor.
In fact, for cognitive tasks such as vision which does
not require an expert’s knowledge (in opposition to
playing chess, inverting a matrix, searching in a database),
computer solutions to vision so far are ineffective either by
their lack of functionality or by their energy consumption.
For instance, autonomous retinal implants at present may
only process a few pixels or else they will produce too
much heat (by their own power consumption) for their
practical use on the retina. Applications of automated
visual systems based on sequential computers (such as
desktop computers) are today still seldom and limited
to simple tasks (such as segmentation or intrusion
detection). More importantly, they apply only to a very
limited range of situations which exclude their use
in natural conditions (for instance when changing the
context). More complex applications of feature detection,
for instance the automated processing of satellite images,
are very demanding in computer power and mobilize the
most powerful computers in the world such as the most
efficient solution available in 2006, IBM’s BlueGene/L4.
This system consumes 2 MW while the visual system, as
a part of the central nervous system, uses only a fraction
of the estimated 20 W used by the brain5. Let’s explore
what may be the key difference that makes computers
still so ineffective compared to brains.

3 More surprisingly, when removing this perturbation, the
system as to adapt (though on a shorter time scale) to go back
to the original configuration. It has also been reported that in
case of the reversing glasses, text and characters still appeared
reversed after adaptation. This is arguing for a modularity of
the visual systems capability, since positioning the body in the
visual world is somewhat separated from reading.

4 Such as found on http://www.top500.org/.
5 In humans, we may therefore estimate that the first levels of

the visual system consume of the order of 5 W.

First, computers have historically privileged sequential
algorithms for the resolution of experts’ problems. Today,
most computer solutions use the architecture inherited
from the Van Neuman computer which may be linked
to the early computers engineered by Blaise Pascal
or Charles Babbage and formalized by the one-tap
universal Turing machine. However, sequential process-
ing is different from parallel processing since some
computations are done without knowing the state of some
variables and with many different simultaneous threads6.
As a metaphor, on one side verbal communication
is sequential: it is difficult for us to hear different
conversations at the same time. This type of processing
therefore relies on a sequence of processes. On the other
side, the visual system implements a huge memory by
its structure and by the interaction of a multitude of
parallel events allowing to process different qualities
(shape, motion, identity) of the image in parallel and
finally to give a result at any time.
Secondly, unlike computers, we saw that the central
nervous system is adaptive and may learn new config-
urations according to given functions. In particular, most
classical algorithms use knowledge that is clearly defined
from the programmer (that is for instance the collection
of all famous chess moves in a chess simulator) and
rarely adapt to interpret and include new knowledge. For
instance, most feature detection systems assume that the
features may be found at any position, and therefore that
detection is translation invariant. In the brain, though, this
knowledge is learnt by the stability of a corresponding
physical law in time (namely of the translation of objects)
and is not implemented a priori on the visual areas.
However, there is no unified theory for unsupervised
learning (that is without any "teacher"). As the Baron
Münchhausen, who was able to lift himself out of the
sea by pulling himself up by his own boot straps7, the
system may autonomously emerge from the interaction
of the visual system with the outside world.

1.1.3 Computational neuroscience & new computing
paradigms

We saw the superiority of neural computations in han-
dling cognitive tasks such as vision: the response is
quick and reliable and at a longer time scale it is also
robust and adaptive. However, in order to understand
neural computations and their efficiency, we are bound
to explore the properties of the brain as a "black box": we
don’t know a priori its mechanisms. As stated by Marr
[1982], this may be understood by studying the different
levels of the problems a neural function has to face : a
definition of the function (computational level), a notion
of the form it takes (algorithmic level) and eventually
the generic rule that implement it (implementation level).

6 It should be noted that parallel architectures are thus
necessarily dynamical systems.

7 This tale seems to be at the origin for the terminology of the
bootstrap theory.

http://www.top500.org/
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This method may be approached by using an integrated
methodology: by interacting with neuroscience (as neuro-
physiology or psychology), we may propose models
which can then be validated by using simulations to a
wider range of neuroscientific data. This methodology
for finding an eventual "neural code" defines the goal of
computational neuroscience8.
At present, many computational neuroscientists claim
here that the set of neural computations that give raise
to cognitive abilities such as vision may be understood
as generic rules and are expressed in the behavior of
populations of neurons. In the following, we will describe
generic principles of neural computations and then in
particular in the visual system. In this view, the brain is
constituted by a multi-scale network of different modules
(or micro-circuits) which have a common generic struc-
ture but that each adapt their interactions according to
the function to perform. The success in modeling this
"neural code" is then validated by studying how well the
implementation in the neural activity (the structure of the
code) corresponds to the particular cognitive ability that
is being modeled (its function).
Going further in the direction of David Marr, we may also
state that to understand this "black box", we have to un-
derstand the function it provides. We may then propose
respectively an algorithm and an implementation of this
function. One should however note that this methodology
is by no way finalist: more efficient functions emerged
blindly against other functions from natural selection
since they are more fit for survival and therefore of being
present in the future. This observation applies also for
the learning mechanisms: a learning algorithm that will
adapt at best to the environment and that may replicate
itself at best will therefore have a better chance of survival
in its progeny. In fact, models at the different levels of
the network may use a high number of free parameters
and constraining the function and task in a sub-system of
the model allows to constrain some of these parameters.
Neural computations may therefore be understood at
different spatial time scales in terms of an optimization
problem.

1.2 The different scales of neural computations

To define this hypothetical neural code, we will review
some generic properties of the CNS, from its basic
elements to the whole system. These results have been
revealed using a multitude of techniques which permits
the observation of neural anatomy and activity at different
spatial and temporal resolutions.

8 There is however some confusion in the community, leading
to an understanding of computational neuroscience as using
computers as a tool of analysis in neuroscience rather than a
theory of computations in neural systems. The term "theoretical
neuroscience" [Dayan and Abbott, 2001] stands then in this
perspective as an alternative but is certainly inadequate from
its etymology.

1.2.1 Are neurons and spikes the elementary bricks of
neural computations?

In fact, since the seminal work of Cajal [1911] which
closely followed the technical advances in staining neural
tissue from Golgi, we know that the brain is not a
continuous medium, but that is rather a dense network
of specialized cells, the neurons. Neurons9 are specialized
cells in the CNS which are supposed to form the substrate
of neural computations. These may be distinguished in
three classes : sensory neurons (such as the photorecep-
tors neurons), then motor neurons which are connected to
muscles and the vast majority of remaining neurons, the
associative neurons which are neither sensory nor motor.
In fact, the brain is constituted by approx. 1012 neurons
which are supported by approx. 10 fold more supporting
cells, the glial cells, the role of which is still not completely
determined. Neurons vary in size from 4µm to 100µm
in diameter and from a fraction of a cm to a meter in
length. Neurons are very diverse but are prototypically
constituted of a cell body, the soma, and of an arborization
of their membrane which take different shapes, thanks
to an inner architecture (cytoskeleton) modulated by
the synthesis of spiraling polymers, the micro-tubules.
Anatomically, dendrites are arborized and closer to the
soma, integrating signals from all its surface and the
axon is on the other hand most frequently elongated and
terminates far from the soma.
The membrane of the neuron is covered with a va-
riety of ionic gates whose goal is to modulate the
ionic concentrations inside the cell and therefore the
electrical potential through the membrane. In addition
to the passive propagation along the membrane, these
ionic gates may actively modulate the propagation of
this potential along the membrane. These variations of
electrochemical potential may be propagated to other
cells (neurons or muscles fibers) and the morphology
and direction of this propagation separates functionally
the arborization between a receiving dendritic tree and
an emitting termination, the axon. This propagation is
denoted respectively feed-forward, in the direction from
sensory neurons to motor neurons, feed-back in the
opposite direction or lateral if no preferred direction may
be determined. With their supporting cells, neurons may
be considered as elementary bricks of the CNS where the
information is processed in its arborizations by variations
of its membrane potential.
The neuronal connections occur at special contact points
called synapses. They are very dense, approximately 104

per neuron (and thus there is an estimated total of 1016

synapses in humans) and transmit the signal from neuron
to neuron through direct electrical junctions (the so-
called gap junctions) or more frequently through chemical
synapses. These chemical contacts are mediated through
the release of vesicles of neurotransmitters (in the milli-
second temporal scale) the type of which determines
specifically the quality of the connection both pre- and

9 For a more precise account on neurons and spikes see the
paper of B. Cessac in this issue.
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post-synaptically. Finally, they are highly plastic and may
change in morphology and strength in short time scales,
changing locally the response characteristics of the neu-
ronal circuitry, as will be discussed in Sec. 3.2. Synapses
thus constitute the locus of information transmission
between neurons and their plasticity plays a major role in
the adaptation of the neural computations.
In certain conditions, the raise of the membrane potential
may drive the neuron to an all-or-nothing state: the
Action Potential (AP, or spike). Depending on the local
morphology of the membrane and of ion channels, the
propagation mechanism may enter a positive feed-back,
thus an "exploding" state, which elicits a rush of ions
and produces a brief (approximately 1 ms) change of
membrane polarity. This ’spike’ propagates then along
the membrane, until it reaches synapses where it is
often necessary for the release of neuro-mediator, hence
the name action potential. Even if spikes may also
occur in dendrites, this signal is particularly adapted
to the propagation of all or none signals along the
axon. This is particularly true for myelinated axons for
which a sheath of specialized glial cells permits the fast
and robust propagation of spikes (90 m/s in sheathed
axons vs. less than 0.1 m/s in unsheathed axons). In
general, the raise of potential occurs when excitatory
post synaptic potentials converge from the branches of
the dendrite and cross a certain threshold. In general,
one may observe that the spike will be released faster
if the driving input is faster. Moreover, the spiking
signal is a robust, timely precise [Bair and Koch, 1996]
and reproducible [Mainen and Sejnowski, 1996] signal.
In the framework of single-neuron computing [Koch
and Segev, 2000], knowing the exact mechanisms of
neuronal integration and transmission and given the
current state of all neurons, one may predict that a
sensory input will propagate along axons, be integrated
analogically through the synapses and then integrated
by the dendrites of further associative neurons [Koch,
1998]. This chain will generate a dynamical flow of
spikes until it reaches motor neurons, thus closing the
loop from perception to action. Spikes —associated with
corresponding neurons— appear to be thus the unit
of neuronal information and one could understand a
neuron with a label corresponding to a set of preferred
stimulations it is selective to.

1.2.2 Cortical columns

However, the situation is not so simple and in contrast
with what was often assumed in theoretical models of
neural networks there is a great influence from the context
in the network. This is implemented by the feedback
and lateral links that occur in the network at different
scales and which thus form recurrence loops of signal
propagation, thus defining indivisible populations of
neurons, or cell assemblies [Hebb, 1949] . Actually, if
we consider that the low-level system has evolved to
form an efficient canal of information, one could see
the population of cells as a democratic network where

every cell tries to maximize its metabolism by adapting
his configuration. Neurons are therefore in a constant
competition to produce the highest activity (and the
highest metabolism). But at the same time, as in a
theoretically democratic society, a neuron that would mo-
nopolistically transmit all information would lower the
overall efficiency of the whole assembly. Thus, neurons
have to cooperate to maximize the global metabolism of
the assembly in the long term. In this view, the smallest
scale for describing the coding of the information is not
on individual neurons but seems rather to lie on the scale
of cell assemblies and that these constitute local circuits
based on generic rules by implementing efficiently tuned
cooperation (i.e. homeostatic) and competition rules.
Economical laws are thus more appropriate than logical
ones to describe neural computations.
A prototypical example of cell assemblies is given by
the columnar structure of the cortex which will be of
particular interest in this paper. In fact, the cortex reveals
paradoxically a wide diversity of functionalities but a
similar repetitive structure. It is anatomically constituted
by a laminated surface (approx. 2 mm deep in total)
with a vertical organization of bundles of approx. 110
neurons10 —a cortical column— receiving and emitting
spikes to the rest of the CNS or from other columns.
These columns (of a diameter of approx. 20 − 60µm)
have vertically a similar 6-layer organization across the
cortex [Mountcastle, 1998] : the middle layer (granular
or layer IV) receives input from the thalamus, relays
it to the upper layer (supra-granular). Cortico-cortical
connections run then horizontally or through the white-
matter for far-ranging interactions. This layer is connected
to the deep layers (infra-granular) which connect back to
the thalamus (layer VI) or directly to the basal ganglia
and the spinal cord (layer V). As we saw, the propagation
of information takes more time with distance and by
economy we may predict that inside an area the columns
in cortical areas will be arranged so as to minimize the
time of local cooperation by arranging similar features on
neighboring cortical locations (as will be implemented in
Sec. 3.3.4). This principles is generally observed in biology
and is at the base of Self-Organizing Maps [Kohonen,
1982]. The approx. 600 million cortical columns of the
human cortex therefore constitute a network of micro-
circuits with an apparently generic architecture.
However, it is not clear if neural computations may be
reduced to the scale of the cortical column (for a review,
see [Horton and Adams, 2005]). In fact, depending on the
function of the cortical area, the code produced by this
population of neurons may have different characteristics.
In the cortical motor areas, for instance, the infra-
granular layers are thicker and the average output firing
rate of a population of columns correlates well with
the action actually being done [Georgopoulos et al.,
1986]. In low-level perceptual areas on the other side,
the activity of neighboring columns may have drastic
and highly non-linear effects and a column activated

10 This number is stable in mammals except a count of around
260 in the primary visual cortex of primates.
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by a preferred stimulus may be excited or inhibibited
depending on its surround (see [Ringach, 2002] and
section 3.3.3). In fact, cortical columns may often be
horizontally organized in assemblies or hyper-columns (of
a diameter of approx. 0.4−1.0 mm) and seem to interact by
cooperation and competition rules therein. Populations of
neurons or of mini-columns interact therefore recursively
and non-linearly, and this behavior may be understood
functionally as an enhancement of the efficiency in terms
of information processing.

1.2.3 The CNS as a dynamical architecture

We may extend this analysis to the scale of the CNS
to reveal a complex modular architecture. Anatomically,
the CNS may be subdivided in different parts which
correlate with their apparition during evolution and also
with the development of the embryo. Respectively, the
oldest parts are the spinal cord (over 450 million years
old, controls movements of limbs and trunk), the brain
stem and the midbrain (approx. 200 million years old,
which receive sensory information and control most vital
functions), and the diecephalon which contains the tha-
lamus (where most sensory information converges) and
the hypothalamus (which seems to modulate emotions
and the homeostasis of brain activity). More recently
in evolution, appeared the cerebral hemispheres with
in their center the hippocampus (or archeo-cortex) and
in the deep layers the basal ganglia (which regulates
motor performance). On its surface, lies a thin layer
wrapped in the skull on top of the midbrain : the cerebral
cortex (or neocortex, aprox. 0.4 million years) which is
supposed to play a major role in our cognitive abilities
(from perceiving to reasoning). The CNS also includes
the cerebellum on the dorsal part of the midbrain and
the function of which is to coordinate planning, timing
and patterning of motor responses at the interface with
the cerebral hemispheres [Kandel et al., 2000, p. 292]. This
introduces a hierarchy in the CNS from the most primitive
to earlier modules which are built successively on the top
of the oldest.
As was stated before, information flows in parallel in the
architecture along feed-forward, lateral but also in feed-
back pathways. First, the propagation on the membrane
of neurons takes time and this parallel architecture
implies the existence of a dynamical hierarchy in the
CNS depending on the latency of an area compared to
an other [Bullier, 2001]. In fact, a sound evolutionary
strategy is to propagate the most relevant information first
and this dynamical architecture must therefore minimize
in the architecture of the CNS the delay between the
sensation and a behaviorally relevant response. This
constraint on the shortest path will be naturally driven
by the hierarchy of the feed-forward links between
the modules of the CNS. Secondly, the lateral and
feed-back loops may explain mechanisms of memory
or of a progressive maximization of the efficiency of
the activity. This interpretation may therefore explain
the different rhythms that may be observed during

different cognitive tasks [Freeman and Barrie, 1994;
Rodriguez et al., 1999] but also more generally the
relative synchronization of large groups of neurons [Fries
et al., 2002]. It is therefore necessary to consider the
role of lateral and feed-back connections to understand
dynamical properties of perception such as temporal
masking or multi-stability [Logothetis et al., 2001]. In
particular these studies show that the dynamics of this
network may correlate with cognitive abilities and thus
seem to give hints on the neural code at the scale of the
CNS [Jirsa, 2004].
Anatomical and functional observations reveal that the
cortical surface is itself divided in modules —or cortical
areas— corresponding to different functions which are
themselves organized in association maps. In the human
cortex, it may be subdivided anatomically in 52 areas (cat-
egorization from Brodmann [1909]), which are themselves
assembled in 32 functional areas. These areas are inter-
connected by 232 reciprocal cortico-cortical connections11.
The cortex is a highly convoluted surface in humans
and when flattened, it may be considered as a surface
(approx. 1.4 m2 in humans) which consists of sensory
areas, associative areas, the somato-sensory areas and
the prefrontal cortex. The function of these areas may
be described by exploring the general condition they
are specifically selective to (for instance, to all auditory
signals or speech)12. The cortex is therefore a complex
network of maps interacting to transform sensations into
a dynamical flow of spikes which may generate actions.
Dynamics of neural computations should therefore be
studied at all these rather different scales : the neuron,
the cortical area, the CNS (see Tab. 1 for a synthesis).

1.3 Properties of the low-level visual system

The prevalence of the study of vision correlates with its
importance and relative size in the brain. It constitutes a
major theme in neuroscience and the amount of literature
makes it the best known cognitive function. The general
properties of the CNS that we reviewed above showed
some general principles that apply to the visual system
and we will now focus on the particularities of the low-
level visual system (by definition the part of the CNS
which is specially devoted to vision) at the different scales
of description.

11 For these connections, an important and rather unexplained
feature is that the time of upstream in the hierarchy is equal to
the time of downstream.

12 One should note that this popular view and caricatured in
phrenology, is in mathematical terms intractable, since one may
only guess from the neural response the selectivity to a limited
range of the presented stimuli (which are themselves often
chosen according to this guess). However, an actual response
may take different forms and be selective to a wider range
of stimuli and interactions of stimuli in a non trivial way,
leading to a biased description of the function of neuronal
structures [Olshausen, 2004]
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spatial scale unit temporal scale relevant technique
0.001 mm-0.01 mm synapses 2 − 5 ms electrode

0.1 mm-0.1 mm neurons 10 ms electrode
1 mm columns 10 − 50 ms electrodes - LFP
10 mm hyper-columns 20-50 ms optical imaging

10 mm 100 mm cortical areas ms optical imaging
1000 mm CNS 110 ms EEG /MEG / fMRI

Table 1. Scales of neural computations This table summarizes the scale order in temporal and spatial domains for neural
computations in human for the different bricks that we extracted in Sec. 1.2. It lists some particularly relevant techniques used in
neuroscience to study that particular scale.

1.3.1 Hierarchical and dynamical architecture of the
low-level visual system

As seen above for the whole CNS, we may describe a
hierarchy in the visual system going from sensation to
action. We may review it by studying the propagation of
visual information elicited by the presentation of an initial
image between two saccades or blinks of the eyes13 or
more precisely by a "flashed" image to reveal the transient
dynamic of the network [Bullier, 2001]. First, the retina
captures the luminous information that hits the back of
the eye. The retina consists of approx. 108 neurons, among
them 4 million photo-receptors, and one million output
neurons, the ganglion cells, whose axons form the optic
nerve. These are of several types, in majority M and P
cells : the 105 magno-cellular (in short M) cells which
are quick (responding after approx. 10 ms) but at a lower
spatial resolution (coarse coding of up to 100 rods) and
the 8.105 parvo-cellular (or in short P) cells (after a latency
of over 30 ms) which have a better spatial resolution (up
to a one to one connection with photoreceptors). These
cells convey information about the local contrast in the
image and is relayed by the optic nerve to the Lateral
Geniculate Nucleus (LGN), an olive shaped nucleus of
the thalamus which keeps the M and P cells segregated
into its different layers and adds a delay which is the sum
of the propagation time (from 2.5 ms to 10 ms, depending
on the fiber) and an integration time depending on
the stimulus (see Fig. 2). This nucleus concentrates the
luminous sensory input and separates rough information
(such as the information used to regulate the circadian
rythm) while the visual information heads toward the
cortex.
This information is then conveyed by the optic radiations
through the white matter and enters the thick granular
layer of the Primary Visual Area (labelled V1 in humans;
the granular layer is easily observable anatomically,
hence the name striate cortex). The information from the
magno and parvo cells still keeps segragated and enters
after resp. approx. 40 ms and 60 ms (Fig. 2-Middle) in
separate sub-layers of the granular layer. V1 is situated
in the occipital lobe and is the convergent area for up-
stream and down-stream visual information in the visual

13 To keep the description simple we will abstract binocular
and color cues and the eye will be considered as fixed but also
micro-saccadic movements [Martinez-Conde et al., 2000].

system’s hierarchy, thus forming a "black-board" for all
visual information. As suggested by Marr [1982], the
function of this cortical area could be to form a synthetic
representation of the visual information gathered from
the converging visual input, as an elaborate sketch of
the visual world, relatively independant of some crude
lighting conditions such as the global luminance or
contrast. This area could also serve to segregate the figure
from the ground [Bullier, 2001].
After V1, the visual information branches in two path-
ways which originate from the M and P pathways
and gradually represent more "abstract" visual features.
First, the dorsal pathway is particularly sensitive to
the position and motion of objects, hence the name of
"Where" pathway: the heavily myelinated path from
V1 to mediotemporal area (MT) leads to fast activation
of this area selective to local velocities (the earliest
latencies lying at 45 ms). The major part of this pathway
naturally originates from the fast cells of the magno-
cellular pathway. On the other hand, the ventral pathway
(areas V4 to the infero-temporal areas) shows a selectivity
to the identity of features or objects and is progressively
independent to object position or motion, hence the name
of "What" pathway. Moreover, there exist also cross-links
in the low-level visual system between cortical areas
which enable the sharing of inter-modal features and,
as time goes, the anatomical separation between the M
and M+P pathways progressively vanishes (for a review,
see [Salin and Bullier, 1995]). This distinction remains
functionally and we may consider the visual pathways
as a "fast brain" driven by M cells and then a finer
pathway which allows for a progressively more reliable
output [Bullier, 2001]. The visual system thus consists in
a dynamically functional hierarchy which progressively
transforms the retinal information in more abstract maps
progressively losing the retinotopical information.

1.3.2 Receptive fields

A major breakthrough in our knowledge of the visual
system was the discovery of the specific response of
neurons in these cortical areas [Hubel and Wiesel, 1959;
Henry et al., 1974]. In fact, by exploring the firing rate
response of neurons of the primary visual cortex (V1),
they observed that most neurons responded preferently
to local oriented edges, thus bridging for the first time the
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Fig. 2. Simplified dynamical view of the visual "Where"
pathway. When presenting a full contrast image, the
corresponding information flows from the retina to higher
visual areas to finally reach an eye movement. The time of
propagation of information builds a parallel and hierarchical
order of activation of the different visual areas until a —
possibly progressive— decision is taken. Indicative latencies
are given in milli-seconds for the macaque brain (numbers in
italics). At the activation of an area, the information may be
fed-back to a lower-level area with a similar propagation time.
The dashed line correspond to the early "Magno pathway"
—that is to the earliest possible latencies reached by the
information transmitted through the M cells— while the dotted
line corresponds to the later "Parvo pathway". It should be noted
that until an eye movement decision is made, the oculo-motor
system is still in an open-loop phase.

presentation of visual features with a selective cortical
activity. By moving the measurement electrode in V1, the
preferred orientation evolved as they moved tangentially
to the cortical surface, forming a series of interdigidated
stripes on the surface of V1. However, the corresponding
preference did not change when moving perpendicularly
to the surface [Mountcastle, 1957; Hubel and Wiesel,
1962] (as we mentioned in Sec. 1.2.2). For any neuron,
the corresponding field of visual space that helped to
change significantly the response of the neuron is called
its Receptive Field (RF)14 and Hubel and Wiesel [1968]
proposed a model to explain these results, for which
neurons integrate information on their RF and that the
final response, mediated by the mean firing rate, is
non-linearly transformed to match neurophysiological
observations [Carandini et al., 1997]. This popularized
the view of neurons as simply matching templates
field [Barlow, 1972] and that, by extending this theory to
higher levels, one neuron could be preferentially activated
by the image of one own’s grand-mother image, hence the
nick-name of a "grand-mother cell".
However, this theory is not sufficient to describe all obser-
vations and tends to be incomplete or to reflect a distorted
description of natural conditions. First, the experimental

14 Functional definition of the RF were first defined by
Sherrington [1906] for the tactile sense as "the whole set of points
of skin surface from which the scratch-reflex can be elicited", and
then in other areas, for instance by [Hartline, 1940].

conditions tend to remove arbitrarilly "outliers" and to
use non-natural stimuli [Olshausen, 2004], leading to an
over-estimation of the overall mean firing rate and of a
biased sampling of neurons’ properties in V1. Secondly, as
was suggested in Sec. 1.2.2, dynamics of the signal on the
RF of a column may be influenced by the context and this
dynamic may be a necessary condition for the emergence
of a percept [Jancke et al., 2004]. In particular, there is an
intracortical propagation of information tangential to the
area (at approx. 0.2 − 1 m.s−1 corresponding to approx.
1.5 ms between two neighboring cortical columns) but
also a back-propagating flow from higher level areas (see
Sec. 1.2.3) which greatly influences the response of cortical
columns. These results in selectivity differences which
may influence the shape of the RF [Gilbert and Wiesel,
1979; Monier et al., 2003].
This non-linear weighting may be related to a generic
interaction taking functionally the form of a divisive nor-
malization [Schwartz and Simoncelli, 2001; Wainwright
et al., 2001] which basically optimizes the independance
of the output of the local circuit. This may be related
to the extraction of the maximum likelihood of the fea-
ture [Denève et al., 1999] and there is a trend in explaining
these behaviors as the emergence of a generic local mi-
crocircuit that would implement an efficient coding of the
neural information. Other models such as those proposed
by Grossberg [2003] implement in recurrent circuits of
cortical columns a similar optimization argument and
give raise to functional algorithms which are applied to
image processing [Grossberg and Yazdanbakhsh, 2005].
This introduces an indirect dynamical influence, the
response of columns in the area being influenced by
the direct feed-forward visual input but also by the
converging dynamical context of lateral interactions.
We may therefore rather describe the function of the
RFs of columns by dynamically separating the function
of the fast statistical pattern matching from the latter
slower interactions within the population using lateral
connections. First, columns quickly integrate afferent
information to match the feed-forward visual input with
some range of features which are specific to the column
(this will developed in Sec. 2). Secondly, the neighboring
columns —which were also excited by some correlated
activity if their RFs overlap— interact at the same time
to form a robust and efficient representation of the
visual map according to the range of selective features
which are specific to the area. We will develop this
hypothese in section 3 and propose a model of the
behavior of the population of columns. In parallel, we will
study how slowly varying rules may adapt the weights
of the cortical micro-circuitry to achieve an efficient
processing of natural images (see Sec. 3.2). In this view,
the overall system will achieve at best to alleviate visual
ambiguities by locally detecting features on their RF while
dynamically optimizing the representation.
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1.3.3 Feature maps: distributed visual representations

A key concept in this dynamical model of the visual
system is the topological organization of the visual infor-
mation on the surface of the cortex, forming dynamical
feature maps [Miikkulainen et al., 2005]. We saw that
cortical areas are in general organized in maps of features
and that these are organized by arranging neighboring
features in close cortical positions (see Sec. 1.3.1). We
will in our models isolate a function for every visual
area and thus consider that the different visual images
will correspond to a special filtering of the retinal image
to extract a set of features relevant to that function and
independently to another set of features. These particular
sets of features are most often defined by their intuitive
level of complexity and are tested experimentally on the
different cortical areas. The retina seems to represent the
possible levels of contrast at different scales in the image
rather independently to smooth illumination variations.
In V1, the representation on the cortical map is more
complex and maps are selective to several variables
(for instance, edge orientation and phase in V1) on
the flat surface of the cortex [Basole et al., 2003]. It
seems to be rather independent of the global complexity
of local contrast values, a visual scene eliciting the
same map if it was presented as a drawn sketch. It
is argued that this is in general achieved by bundling
in macro-columns sets of micro-columns centered on
the same spatial position but consisting of the set of
different variables to code (see Fig. 3). In a higher visual
level area, such as the cortical area MT, macro-columns
regroup mini-columns sensitive to different possible local
speeds relatively independent of other features of the
visual image (such as the local texture) [Albright, 1984],
mapping therefore an image of the motion flow of the
visual scene. The dynamical propagation of information
therefore creates an architecture of feature images which
represent different aspects of visual features in parallel
and which correspond to progressively more abstract
functions in the hierarchy of the visual architecture.
Thus, these feature images are vectorial images of features
organized by the spatial topology. This organization
reflects at a first order the regularity due to the translation
of objects in the visual space and therefore that features
in the similar portion of visual space should be located
on neighboring sites in the cortex. It is in particular
retinotopic in low-level visual areas (that is that they
represent the space as it is on the image formed on the
retina). In particular, the arrangement of cells shows a
structure centered on the axis of the eye, at the fovea,
with a sampling which is approx. uniform on the macula
(the region around the fovea) and than logarithmically
proportional to eccentricity. This structure may be inter-
preted as a way for the visual system to focus information
located around the axis of the eye. This structure must
therefore be related to the mechanisms of attention and
the dynamics of eye movements. On cortical areas, the
density of neurons is uniform (2.105 neurons/mm2 in V1
[Hubel and Wiesel, 1974]) but the log-polar topological
representation is preserved. However, it is progressively

Fig. 3. Feature images. (Left) Anatomical studies show that
neurons on cortical surfaces share the same selectivity to
visual features (in this example an elongated edge as in
V1) perpendicularly to the surface but gradually change
tangentially to the cortical area according to the retinotopy
(visual space). These populations of neurons may be grouped
by cortical columns in an "hyper-column" sharing a whole set
of features at approx. the same visual space position. (Right) A
useful view is to understand this topological arrangement as
a feature image, that is as the representation of the selectivity
to the different features (a vector) as a function of space.
We may understand the previous arrangement as an optimal
projection of this feature space on the two-dimensional map of
the cortex [Petitot, 2003].

less precise in higher visual areas ( In humans, at visual
eccentricities of resp. 5 and 20 degrees, the diameter of
V1 neurons’ RFs is resp. 1 and 5 deg. while it is 5 and 20
degrees in MT) and in particular in the ventral pathways
where the cortical areas are progressively independent
on the position of the objects. It is also known to be
less anchored on the retinal space (which in particular
moves with every eye movement) and may get instead
anchored on an ego-centered spatial reference. Low-level
visual areas may thus be more generally described as
these feature maps, the "closer" in feature space, the closer
on the cortex.
From the columnar architecture of the cortical surface,
features are projected on this two-dimensional sur-
face and activities may be interpreted as a distributed
representation of the quality of the match with the
features. In fact, the structure of V1 revealed for instance
by optical imaging [Grinvald et al., 2001] shows that
the information of orientation is distributed in macro-
column, forming "pin-wheels" of orientation selectivity15.
This representation may be viewed as an optimal pro-
jection of the multidimensional feature image on the
cortical surface [Petitot, 2003] (see Fig. 3), thus forming
a distributed representation of the different features16.
However, it is not clear what and how information
of the feature image is encoded in the neural activity,
should it be explicitely (for instance in the neuronal firing
frequency [Adrian, 1928]) or non-explicitely (through a
non-linear transform of the feature image). Cortical maps

15 This is not true for all species, such as the cat, and may reveal
a hierarchy of organizations during evolution

16 This principle may be true also at the scale of the CNS,
and for instance neighboring areas (e.g. V1 and V2) represent
relatively reflection symmetric visual maps along their common
border.
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therefore represent in a distributed manner the feature
images at different positions and we will study this
hypothesis in the following section.

2 Matching of low-level visual features

As we saw in the previous section, the goal of low-level
vision is first to detect different known visual patterns
rapidly and at best by using the actual visual input. We
will in this section propose a generic inferential model
thanks to an explicit representation of the quality of a
match. In this framework, columns in a representation
map will be regarded as ideal observers representing
locally the probability of having matched the features
they are selective to. We will illustrate this method on
models of progressively higher visual areas: from the
photoreceptors layer, to the output of the retina and finally
to a model of the perception of motion for the control of
the motion of the eyes.

2.1 Neural computations and the ideal observer
approach

We will first present the problem of feature detection in
the classical statistical pattern matching framework. It will
be based on a generative model of the signal that will
allow to represent explicitly the probability of feature
detection.

2.1.1 Distributed probabilistic representation: example of
photoreceptors

As an illustration, let us first understand the map
of photoreceptors in the retina as transforming the
image of luminosities (that is of the energy of absorbed
light, the actual physical image measured in Trolands
which corresponds to a physical energy of the incoming
photonic flow) to a relevant variable, the luminance
which, as we will see, is directly related to a probability.
In fact, the light emitted or reflected by the various
objects in our environment is concentrated by the eye
on an image of photoreceptors of which the electrical
activity is modified proportionally to the energy of the
light influx. It was observed that this transform may
be well described by a generic point-wise operation.
It is implemented by the roughly logarithmic response
of the aligned photoreceptors which transforms the
probability distribution function of luminosities into a
flatter distribution of luminances. This is similar to the
histogram equalization operation which maximizes the
entropy (for a bounded output O(x) at location x) and
therefore the coding efficiency of the representation in
terms of compression [van Hateren, 1993] or dually of
the minimization of intrinsic noise [Srinivasan et al.,
1982]. This process has been observed in a variety
of species and for instance perfectly illustrated in the

salamander [Laughlin, 1981]17. It may evolve dynamically
to slowly adapt to varying changes in luminances, such as
when the light diminishes at dawn but also to some more
elaborated scheme within a map [Hosoya et al., 2005].
The photoreceptor array thus non-linearly processes the
image of luminous energies into a more tractable and
robust image.
Let’s understand this transformation mathematically
thanks to the simple hypothesis that the output of the
array should remain bounded. Let’s note P(I(x)) the
probability of the luminosity I(x) at position x. This
probability is highly skewed toward low energies in
natural images (and generally independent on x if the
lighting conditions are uniform). Let’s now note

fx =

∫ I(x)

∞
dP(I(x)) (1)

the cumulative probability distribution18 computed over
a certain time period. Under the hypothesis that the
output is bounded, the output maximizes entropy if it
has uniform probability distribution over this range and
a characteristic time period19 and the solution may be
written

L(x) = f−1
x (I(x)) (2)

We therefore have an uniform distribution of the out-
put probability distribution and in particular L(x) =
∫

dP(L(x)) models well the normalized luminance at po-
sition x (assuming that the output is in the range between
0 and 1). This process therefore allows a transformation
of the image into a more efficient representation which
directly derives from a probability.
Let’s draw from this example general principles for
understanding and modeling neural computations in
low-level vision. The new variable, the luminance, is
transformed into a variable independent of a global choice
of a measurement unit: it is therefore more adapted
to statistical pattern matching where the choice of a
match should be for instance independent of the lighting
conditions. This important transformation, also called
histogram equalization, transforms arbitray values in an
efficient representation and we will see how it may be
used in practice below for the construction of look-up-
tables (see for instance Sec. 2.2.2, Eqs. 1 or 58). It may be
linked to the rank of the ordered values [Perrinet, 1999]20

and therefore may be a pre-processing stage which may
have a role in transforming generic analogical values in
a value which may be of relevance for detecting features.
In fact, this variable is optimally sampled on its dynamic

17 This non-linear operation is by coincidence similar to the
response of the cathode tubes used in traditional monitors and
incidentally to the gamma correction applied to images.

18 the symbol dP(X) will here denote in general the probability
distribution measure over variable X.

19 This assumes the stationarity of the signal over this time
period or over the image under the assumption of ergodicity.

20 This was further applied to the retina, see [van Rullen and
Thorpe, 2001] and Sec. 2.2
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range as it is adaptive to slightly varying change of lumi-
nosity’s statistics. Secondly, this statistical measurement
is particularly adapted to inference mechanisms but also
to the convergence of features from possibly different
modalities as seems to be omnipresent in the CNS. This
representation, from the direct relation to a probability
measure, seems therefore to provide creative insights into
the mechanisms underlying neural computations.

2.1.2 The ideal observer as a generic function

Let’s define here a functional methodology to understand
the mechanisms of neural computations. In fact, a recur-
rent problem in computational neuroscience is the under-
constrainted number of free parameters which prompts a
fastidious exploration of parameters. Testing the validity
of fits between models and biological data may then
reveal ambiguous results since they may not reveal
general principle of computing but only a mere ad hoc
description. As in the example above, a solution is rather
to understand the functionality of the process (there from
luminosity into luminance) in terms of its efficiency and
thereby lowering the number of the parameters. Similarly,
to resolve this problem in higher visual maps, we will
thus assume that visual computations are tuned so as
to match at best known visual features (knowing neural
physiological constraints) and that they will do so in
an optimal way, that is as an ideal observer [Geisler and
Albrecht, 1997; Mamassian, 2002]. This view will allow us
to explicit an interpretation for neural activity as directly
linked to a probability measure and then model neural
mechanisms as elementary inferences.
As coined by von Helmholtz [1925] under the term of
unconscious inference, the goal of the visual perceptual
system is to optimally solve an estimation problem of
matching visual features for which we will see that prob-
abilistic representation may give a generic computational
scheme. This ecological view has multiple ramifications in
the fields studying vision and there is growing evidence
that neuro-physiological signals [Zemel and Sejnowski,
1998] and psychological responses [Kersten et al., 2003;
Rao et al., 2002] may be interpreted as the response of
an ideal observer according to an hypothesized model
of the function of the system under consideration. This
evolution is not in rupture with previous work based
on linear models but rather extends these models to
larger set of hypotheses. Moreover, these models and their
emergent properties may now be explicitly be confronted
with the hypotheses and physical causes they explicitly
represent and thus allow a "dialectical" validation process.
They may also explain the need of complex non-linear
responses as the response of a network of inferences as
an ideal observer is related to a particular information
(should it be "the pixel x is at luminance 0.9", "there is a
vertical edge at x" or "the most likely motion is leftward").
The notion of ideal observer may thus provide a common
language to understand some cognitive abilities.
In that view, the system should have a knowledge of
the statistics of the patterns forming natural images. In

fact, the underlying concept of an ideal observer is inter-
dependent with the concept of patterns, or more generally
of causes, and if we need to estimate a probability of a
match we should first establish a model of the synthesis
of the physical signal. According to the mathematician
and economist Antoine-Augustin Cournot (1801-1877),
the collection of physical signals, and therefore of images,
may be understood as the fortuitous interference of
independent causes, that is as the interplay of indepen-
dent unknown sources. However, these patterns interfere
according to known physical laws (such as transparency
or occlusion in optics) which allow to build a model for
image synthesis21. This generative model for the features
that constitute the image is therefore necessary to describe
inference mechanisms [MacKay, 2003, p.55]. In that sense,
we may understand a goal of the feature images (see
Sec. 1.3.3) as representing the probability of a match
knowing a model of the synthesis and of the mixing of
the causes they correspond to.

2.1.3 The Linear Generative Model (LGM) and natural
scenes

Let’s first try to find a general model of physical image
formation which should encompass diverse levels of
complexity. In fact, let’s try to model the combination of
simple luminous static features which interact according
to the laws of transparency. It will be used in our model
of the retina (see Sec. 2.2) for static images and is only
valid on a local visual distance where occlusions are not
predominant. If we consider that thanks to the adaptation
of the photoreceptors, the incident light energy is roughly
uniform, the luminosity from a position x in the visual
space X is by the multiplicative law of light absorption
the product of the reflectance of the different primitive
causes (in a dictionary S) that transformed the luminous
influx:

I(x) ∝
∏

j∈S
R

s j

jx
(3)

In this equation, the R j correspond to spatial shapes (such
as edges) which correspond to stable physical topological
objects while s j is its relative strength or contrast. This
regularities may then be transformed in hypotheses
which would be transcribed in ideal answers thanks to
the bayesian formulation [Purves and Lotto, 2003] . This
“laws” also correpond also to psychological experiments
on the perception of transparency [Metelli, 1974] when
manipulating the overlap of different simple transparent
shapes. By the log-transform of photoreceptors (see
Sec. 2.1.1), we thus have

L(x) ∼ log(I(x)) ∝
∑

j∈S
s j.(log R j)(x) (4)

21 In that sense, the different visual areas may correspond to
relatively independent models or concepts of the visual features
in an image: motion, detection of a pattern, ...
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A simple physical description of the image as the
superposition of transparent patterns may therefore be
given in terms of this Linear Generative Model (or LGM).
The LGM may be also understood in a statistical frame-
work similarly as we understood the transformation
of luminosities into luminances [Atick, 1992]. In fact,
the luminance as a probability measure may be seen
as the factorial combination of independent features
(or sources). These maps for the luminance of source
probabilities (that we note respectively L(x) and s j) thus
by the causal link between the hypothetical sources A j ∝
log R j and the input image (see Fig. 12):

L =
∑

j∈S
s j.A j (5)

where S is the set of sources. This defines the receptive
field of a neuron as mapping explicitly the causal link
between sources and luminance. This model is thus
more general (and corresponds more to statistical pattern
matching) since it is not strictly corresponding to physical
assumptions as before. This will allow us to derive simple
inference mechanisms using bayesian inference since we
explicitly use probabilities [MacKay, 2003, p. 27].

2.1.4 Computing the probability of a match

Having set the forward model we are now interested in
computing the match of a particular instance of the signal
(here an image) with the model.

Theorem (Best Match of a Single Source) In the low-
noise limit, for a given signal L ∈ I, the log-probability
corresponding to a single source s.A j ∈ I knowing it is a
realization of the LGM as it is defined in Eq. 5 (and for which
we assume no prior knowledge) is maximal for

s =< L,
A j

‖A j‖2
>=

∑

x∈XL(x).A j(x)
∑

x∈XA j(x)2
(6)

and is then up to a constant proportional to

< L,
A j

‖A j‖
>=

∑

x∈XL(x).A j(x)
√

∑

x∈XA j(x)2

(7)

Proof We will note in general a single source by its index
and strength by { j, s} so that the corresponding vector in
S corresponds to a vector of zero values except for the
value s at index j. First, given the signal L ∈ I, we are
searching for the probability corresponding to a single
source s.A j ∈ I knowing it is a realization of the LGM. It
is defined thanks to the conditional probability (Laplace,
1774) as the a posteriori probability noted P({ j, s}|L). To
evaluate this probability, we derive from this definition
the theorem of Bayes [Bayes, 1764]:

P({ j, s}|L) = 1/Z.P(L|{ j, s}).P({ j, s})] (8)

where Z is a normalization constant independent of the
source22, P(L|{ j, s}) is the likelihood probability of a signal

22 We will keep this notation even if the constant may be
different in the following.

knowing the single source and P({ j, s}) is the a priori
probability of the sources. The prior thus corresponds
to the available information when nothing is known from
the input signal.
Following the interpretation of Cournot, we will first
assume that we are in a low-noise limit environment (the
global contrast is optimal and the eye/camera is adapted
to the scene) so that we have no or little measurement
noise. Knowing one component { j, s}, the only "noise"
from the viewpoint of our ideal observer, that is the
column j, is the combination of the unknown sources
{αk}1≤ j≤N:

L = s.A j + ν with ν =
∑

k
αk.Ak (9)

The residual of the signal (an image) is thus considered
as an undetermined perturbation23. Assuming that the αk

are independent random variables (since we know only
{ j, s}), from the central limit theorem it comes that for a
sufficiently high number of sources, the distribution of
the random variable ν converges to a normal distribution
with known mean and covariance matrix. From the work
of Field [1987], we know that for natural images this
normal distribution is fairly homogeneous so that we
may assume some prior knowledge on these second order
statistics. In fact, over natural images, the correlation
between the luminance of neighboring pixels is known
to decrease inversely proportional to the distance, so that
the covariance matrix has a regular shape [Atick, 1992].
We may therefore either use another metric (based on
the Mahalanobis distance, as exposed in [Perrinet et al.,
2004]) or use a decorrelating kernel such as is defined
in [Olshausen and Field, 1998] to transform this “noise”
into a spherical probability distribution centered around
the origin (E(ν) = 0 with a covariance matrix equal to the
identity times a variance σ2, corresponding to the mean
energy of images in I). Note that this re-normalization
according to the scale (or temporal frequency when
using moving images [Dong and Atick, 1995]) leads to
a different distribution of the Fourier components in the
spatial frequency space: the image’s power spectrum
distribution is "spherized"24. This decorrelation process
corresponds simply to a pre-process of filtering by
the decorrelating kernel. It roughly corresponds to the
physiological response of the layer of horizontal and
bipolar cells in the retina between the photo-receptors and
the ganglion cells. It results in modifications in the spatial
frequency tuning of cells [Enroth-Cugell and Robson,
1966] which may be observed by the contrast sensitivity
of retinal columns as a function of spatial contrast (see
Fig. 4) and matches with the response measured in

23 It should be stressed that the image model is still
deterministic.

24 This is similar with the maximum entropy principle studied
in Sec. 2.1.1. It extends to a fair competition between all
different contrasts shapes. It should be noted that this is similar
to diagonalizing the covariance matrix, such as in Principal
Component Analysis and that this normalization could be easily
learned by a linear hebbian rule [Oja, 1982].
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Fig. 4. Spatial decorrelation (Left) Profile of pairwise spatial
correlation in a set of natural images. It shows the typical
decrease in 1

f 2 of the power spectrum. (Middle) decorrelation

filter computed from the methods of [Olshausen and Field,
1998] (see text). This profile is similar to the interaction profile
of bipolar and horizontal cells in the retina. (Right) Profile of
pairwise spatial correlations of the filtered images . As observed
in the LGN [Dan et al., 1996], the power spectrum is relatively
whitened.

visual neurons [Dan et al., 1996]. This step will provide
a preprocessing stage which spherize the non-gaussian
statistics of natural images on the receptive fields of
neurons.
The residual signal is thus considered as a decorrelated

noise and from P(L|{ j, s}) = P(L − s.A j) = P(ν), it follows

P({ j, s}|L) =
1

Z
.P(L|{ j, s}).P({ j, s})

=
1

Z
. exp(−

‖L − s.A j‖2

2.σ2
).P({ j, s}) (10)

We will further consider that the dictionaryAwas learned
so that over a long period the different sources have
similar statistics: the prior is uniform across sources and
values (we thus have no prior knowledge or preference
for any source and was proposed in Sec. 1.3.3 and will be
implemented in Eq. 55).

log P({ j, s}|L) = − log Z + ‖L − s.A j‖2/σ2/2

= − log Z + [s2.‖A j‖2 − 2.s. < L,A j >]/σ2/2

It should be noted that to minimize this bi-variate
function in s and j, we may first minimize for every
element j the coefficient s j to get the corresponding
s∗

j
= ArgMaxsP({ j, s}|L). From the above equations, this

is equivalent to minimizing in the last equation the
quadratic function of s which is minimal for the scalar
coefficient

s∗j =
< L,A j >

‖A j‖2
(11)

that is for the scalar projection of the input on A j. Then,
since for every element j, s∗

j
.A j is the projection of L on

A j, so that s∗
j
.A j and L − s∗

j
.A j are orthogonal, it follows

from Pythagoras’s theorem:

− log P({ j, s}|L) = log Z +
< L,A j >

2

2.σ2.‖A j‖2
(12)

and that the filter with maximum a posteriori probability
is given by:

j∗ = ArgMin j[‖L − s∗j.A j‖2]

= ArgMax j| < L,
A j

‖A j‖
> | (13)

Finally, as defined in Eq. 13, we found that the source
component that maximizes the probability is the projection
of the signal on the normalized elements of the dictionary,
that is up to ‖L‖, to the cosinus of the angle between the
data and the feature vectors. ⊓⊔

This justifies the computation of the correlation in the
perceptron model [Rosenblatt, 1960] as it provides a
measure of the log-probability under the assumptions
that we used. Moreover, it is popular to introduce a
prior favorizing small coefficients as it is similar to a
regularization strategy. One should note that we could
easily constrain for the scalar values to be positive by
setting an appropriate prior or simply by only looking for
positive correlations in Eq. 13. Finally, using a generative
model for the image, we could easily compute —under
defined hypotheses — the argument of the maximum
of this probability , that is the Maximum A Posteriori
((or MAP)) of the different sources. This log-probability
correlates with the linear component of a good proportion
of visual neurons in the low-level visual system and may
be used to model the first level in the visual hierarchy, the
retina.

2.2 Application to modeling the retina: transforming
light into a wave of spikes

Based on the previous results, we will design a simple
model of the transform of luminances into a contrast
map. We will in particular explore how this map can be
translated into a spiking pattern and build an efficient
code for the transmission of information to the LGN and
the visual cortex.

2.2.1 Architecture: detecting multi-scale contrasts

The retina is a thin layer at the back of the eye (see
Sec. 1.3.1) which transforms the signal of the photore-
ceptors into an image of multi-scale contrasts. This feature
map (see Sec. 1.3.3) is itself converted into a spiking signal
along the optic nerve. We will further assume that the
transform should be invariant to some translations and
scaling and thus that the features to detect are generated
by one similar mother function which will be replicated at
different positions and scalings. This assumption is the
natural counterpart of the changing position of objects
in tridimensional space. A continuous sampling would
constitute a continuous wavelet transform. However, the
limited number of neurons constrains the transform to
be discrete. The geometric sampling of the scale of the
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Fig. 5. Mother function for the filters in the retina. (Left) The
DOG filter is a center-OFF (in black) surround-ON (in white)
contrast detector. (Right) Central profile of the DOG filter. As a
unit measure, the vertical striped lines represent the variance of
the narrower Gaussian used to generate the DOG filter and thus
corresponds to the center of neighboring filters.

discrete wavelet optimizes a compromise of precision
versus localization in the case of a uniform repartition
of the spectral information. A popular solution (chosen
for instance in van Rullen and Thorpe [2001]) is to
choose a dyadic progression, that is where filter radius
and grid spacing both grow as powers of two25. From
these assumptions, we can define a single mother function
ψ from which every filter can be derived using translation
and scaling.
As the architecture is defined, an important task is to
choose an appropriate mother wavelet to detect contrasts
in the image. As in [van Rullen and Thorpe, 2001] and
from [Field, 1994], neurons j are defined here according
to their position x∗ and scale σ as dilated, translated and
sampled Mexican Hat (or Difference Of Gaussian — DOG)
filters (see [Mallat, 1998, pp. 77], and Fig. 5) as

A j =
1

σ
DOG(

x − x∗

σ
) with DOG = G1 − 1/K2.GK (14)

and Gσ(x) =
1

2π.σ2
. exp(−‖x‖

2

2.σ2
) (15)

where we denote Gσ as the 2D Gaussian function of
variance σwhich equals .5 for the mother function. These
filters fit to the receptive fields that can be observed
in the biological retina for a constant K approx. equal
to 5 [Enroth-Cugell and Robson, 1966]. It also fits the
Laplacian-of-Gaussian function defined by [Marr, 1982]
with K ∼ 1.6. The choice of the mother function defines
the prototypical contrast to detect. In accordance with the
previous results using the LGM model (see Sec. 2.1.4), we
will set the linear representation at the output of the retina
to be the a posteriori log-probability of a match with a set
of features. This is in accordance with neurophysiological
data on the linear response of retinal neurons [Rodieck,
1965], and will drive the activity of the retinal “columns”

25 The total number of columns is thus proportional to the
number of pixels by a factor of approx. 4/3.

according to :

C j :=< L, p j.A j >= p j.
∑

x∈R j

L(x).A jx (16)

where L(x) is the luminance at pixel x and R j is here the
receptive field of the column j. Instead of differentiating
ON or OFF cells (so that the number of neurons is
doubled), we will consider for simplicity and because
it is exactly equivalent that each neuron x is assigned a
polarity px which is either+1 or−1, so that the coefficients
are rectified (i.e. |Cx| = px.Cx). To compare this algorithm
with standard computerized images, the photo-receptors
and neurons are here placed uniformly over rectangular
grids26. The bayesian inference is here synthesized by
a linear filtering with filters corresponding to luminous
contrasts.

2.2.2 Method: transmission of the spiking image

We will consider the optic channel as an information
channel and rate the quality of a reconstruction using the
coefficients computed above. In fact, there may certainly
not be an explicit reconstruction of the image in the
visual system, but as proved by Sec. 2.1.4, the squared
error between the original and reconstructed image gives
an explicit measurement of how well the parameters
extracted conform to the model of natural images that we
use. Here, this transform forms an approximate orthogonal
wavelet transform [Mallat, 1998] of the image, i.e. the
responses of different fibers are approx. uncorrelated (that
is < A j,A j′ >∼ 0 for j , j′) and may be inverted simply
by the Calderón formula :

Lrec := 1/Z.
∑

j∈D
C j.A j = L ∗ PSF (17)

where PSF =
∑

1≤s≤smax

1

σ2
s

DOG(
x

σs
) ∗ DOG( x

σs
) (18)

where ∗ represents the correlation. The PSF function
is the "point spread function"27 of the coding system
and acts as a blur on the image. This linear layer
therefore exhibits two problems : first, the reconstruction
is approximate and second, its implementation may be
computationally slow because the size of the filters can
become very large. A common alternative is to use a
Laplacian pyramid as defined by [Burt and Adelson, 1983]
which is computationally more tractable and since it is
perfectly orthogonal, the reconstruction of the image is
then perfect.
When presenting an image at an initial time, the output

26 A more biological mapping would be a log-polar such as
described in Sec. 1.3.3

27 Similarly as in optics, this is the response of the whole system
(coding and decoding) to an impulse, here to the image of a
single pixel of luminance 1. From the linearity of the transform,
it proves the assertion.
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ganglion cell neuron of each column of the model
integrates the analog contrast information C j at its soma
until the activity eventually reaches a threshold: it then
emits an action potential or spike (see Sec. 1.2.1). As
in most models of neuronal integration, we will simply
assume that the stronger the activation, the earlier the cell
will reach the threshold. Such behavior happens in most
biological neurons and can be be implemented [Perrinet,
2005] by both detailed and more simple models such as
the Integrate-and-Fire neuron [Lapicque, 1907]. Finally,
the spike then propagates along the axon and the neuron’s
activity is reset. Classically, this generates a pattern of
spikes whose firing frequency may constitute the image’s
code. But the code may also be equivalently carried by
the exact spiking time (or latency) of the first spike. We
may thus consider that the code consists of this latency
for each of the different fibers j and which is inversely
proportional to the neuron’s excitation current, that is
to the corrected activity. This algorithm defines a coding
scheme that transforms an analog matrix pyramid into a
spike ’wave front’ that travels along the optic nerve.
Using this framework, the coefficients are emitted and
transmitted in order, starting with the highest rectified
contrast. If we know exactly the corresponding contrast
values when trying to decode the spike wave, we may
reconstruct progressively the image as

Lrec(t) =
∑

r=1...t
Co(r).Ao(r) (19)

where t is the corresponding discrete time corresponding
to the count of fired spikes (i.e. their rank) that we use for
the reconstruction and o(r) is the address of the neuron of
rank r. In fact, if we assume that the filters are orthonormal
and from Pythagoras’ theorem, since o is a permutation of
the addresses of neurons, the squared error SE(t) at time
t is simply:

‖Lrec(t) − L‖2 = ‖
∑

r=1...t
Co(r).Ao(r) −

∑

j
C j.A j‖2

= ‖
∑

r=t+1...rmax

Co(r).Ao(r)‖2

SE(t) =
∑

r=t+1...rmax

|Co(r)|2 (20)

where rmax is the final time (and therefore corresponds to
the total number of rectified coefficients). From Eq. 20,
this strategy of coefficient propagation corresponds thus
to a "greedy" minimization of the MSE at each step
of the algorithm. This also leads to the convergence of
Lrec(t) toward Lrec (and therefore to L for the Laplacian
Pyramid), leading to a progressive compact coding of the
image (see Fig. 6).
But, how can this information be encoded and decoded
using only one spike per axon? In fact, these contrast
values observe regularities across natural images as they
were ordered from the largest to the lowest. A solution is
therefore to use the mean analog value to form a Look-Up
Table (LUT) to decode the analog values back from their
rank. Let’s thus define

LUT(r) = E[|Co(r)|] (21)

where E denotes the average over a set of randomly
chosen images from the database28. In practice, the
average was computed using a stochastic algorithm. For
instance in that case, after the nth image using LUT(n) as a
modulation function,

LUT
(n+1)(r) = (1 − µ(n)).LUT(n)(r) + µ(n).|Co(r)| (22)

where t is as before the discrete time corresponding to
the decomposition and µ(n) the stochastic learning gain
(typically, µ(n) = 1/τ where τ is the characteristic time
scale of the learning). Then, we can reconstruct the image
from the spike list using

L̃rec(t) =
∑

r=1...t
LUT(r).po(r).Ao(r) (23)

where L̃rec(t) is the image reconstructed using the spikes
rank at step t and po(r) the polarity of neuron correspond-

ing to the rth spike. Using the orthogonality of the filters,
the error SELut(t) is therefore using a same method as
above (see Eq. 20)

SELut(t) := ‖L̃rec(t) − L‖2 (24)

= ‖(L̃rec(t) − Lrec(t)) + (Lrec(t) − L)‖2

=
∑

r=1...t

(LUT(r) − |Co(r)|)2 + SE(t) (25)

The reconstruction error is therefore the sum the quan-
tization error added to the energy that has not yet been
transmitted. Eq. 25 also justifies the choice of the LUT
as the mean (see Eq. 21) since it is the optimal estimator
for the rectified coefficient as a function of its rank in
the MSE metric. Neuro-physiological mechanisms for
producing this decrease of the coefficients may involve
a set of separate neurons (namely fast spiking inter-
neurons) using shunting inhibition [Delorme and Thorpe,
2003] or directly the collaterals of afferent fibers to a
pool of inhibitory neurons. We propose in Eq. 58 that
these "rank counter interneurons" could be tuned used
an incremental adaptive rule with an on-line hebbian
learning scheme. In a more general framework, instead of
using explicitly a rank, which mathematical definition is
hard to relate with a sound biological interpretation29, this
modulation may be based on a divisive normalization by
using the contextual information (see Sec. 3.1.4) instead
of the rank the probability of the match.

2.2.3 Results: Spike Coding of natural images

This algorithm was experimentally validated using a
database of natural images. These images were chosen
in the publicly available database of linearly calibrated
natural images from van Hateren and van der Schaaf

28 Further averaging or learning schemes used here 200
randomly chosen images.

29 How for instance is it possible to define an initialization time
in the brain? How to handle ex-aequos or analog precision?
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Fig. 6. Progressive reconstruction of the spiking image in the
retina. We compared for a natural image the model retinian code
as defined in Sec. 2.2. We show the reconstructed images from
the spike code after resp. 100, 750, 3000 and 9000 spikes from up
to down. We recognize the original image in both cases after a
few hundreds spikes as the coefficients rapidly decrease to zero.

[1998]. These images were corrected using a γ correc-
tion [Poynton, 1999] to assure the balance of luminance
and mimic the analogical response of photo-receptors to
luminosity, i.e. to light intensity (see Sec. 2.1.1).
The coding efficiency of this analog-to-spike scheme is
dependent on the regularity of the contrast coefficients.
In fact, when analyzing this regularity separately for
the different scales, the coefficients of particular scales
are not well tuned to the overall LUT (see Fig. 7-Left).
The coefficients corresponding to the lowest frequencies
have a priori a higher probability to be transmitted first
whatever the image to be coded [Perrinet et al., 2002].
From the "donut" shaped Fourier transform of the DOG
filters, it is easy to see that there is a direct correspondence
between the activities of the neurons at a given scale
and the Fourier components of the image at a certain
frequency. From what we saw in Sec. 2.1.4, there is also
a direct relation between the probability distribution of
contrast coefficients and the power spectrum which was
observed on natural images. The mistuning of neurons
at different scales thus corresponds in Fourier space

Rank (%) Rank (%)

Fig. 7. Optimization of the regularity of the wavelet
coefficients with harmonized scales. (Left) The LUT (Eq. 21)
is shown in the background in plain color as a function of
the relative rank (in %) using a logarithmic scale on the
abscissa. When separating the LUT for the different scales (from
lowest to highest : s1 to s7 in the legend), one may observe
that they correspond to similar regularities —linked to the
regular distribution of singularities at different scales— but are
mistuned (lower frequencies, as the 7th scale ’s7’ are stronger
and thus decrease more rapidly as a function of the overall
rank). These regularities are therefore lost and mixed when
ranking all scales together. (Right) By normalizing the different
scales according to the statistics of natural images, the "vote"
by the ranking process becomes "fair" and the LUTs for the
different scales better match. The resulting LUT for harmonized
scales preserves the underlying regularity and information
transmission is therefore more robust (see Eq. 25): it represents
a more effective way to encode the analog value by the rank of
a spike.

to the shape of the mean power spectrum function in
natural images. From Eq. 25, and since this leads to less
variance, we are thus assured that this regularity results
in a more effective information transmission, a result that
was verified experimentally (see Fig. 8 and [Perrinet et al.,
2004]). The regularity of contrast coefficients is therefore
better when considering the second order statistics of
natural images.
When the scales are tuned, rectified coefficients follow a
very regular linear decrease (see Fig. 7-Right) in the log-
linear plot, starting at rank 1 to a value proportional to the
mean energy in the image and ending at the final rank at
zero. It suggests the existence of a relation of the rectified
contrast value as a function of the logarithm of the
relative rank, that is a power-law probability distribution
of contrast coefficients and one may wonder of the origin
of this regularity. In our framework, since this multi-
scale contrast representation gives a local measurement
of the Lipschitz exponents in the image [Mallat and
Hwang, 1991]. In fact, this regularity may be linked to
the distribution of these exponents in natural images
since they correspond to a measure of the order of
the singularities which are present in the image, and
that can be qualitatively ranked from the highest to
the lowest Lipschitz exponents as : isolated dots, lines,
edges, slopes, gradients until uniform surfaces [Mallat,
1998, p.513]. We may interpret the relative regularity
of the distribution of Lipschitz exponents physically
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Fig. 8. Progressive reconstruction of the image from the spike
list using rank-order coding. We plotted (Left) the Mean-
Squared Error (MSE, logarithmic scale on the abscissa) and
(Right) the Mutual Information (MI) using the different temporal
spike codes described in the text. We compared the results of
the propagation when knowing the coefficients (exact) with the
method described in Eq. 21 (LUT) which uses an optimized
Look-Up-Table to "guess" the value of the coefficients from their
rank. Finally we compared these strategies to the optimized
method that uses the regularity found in natural images through
the statistics of natural images (wLUT). The reconstruction from
this latter method is close to the method with exact values
and proves that the analog values may be transmitted using
rank order coding. It therefore constitutes a compact spike code
which provides a simple implementation of rank-order coding
for static images.

as (1) the whitening process removes the correlations
between spatial frequencies due to size and depth of
objects [Alvarez et al., 1999], (2) then, the distribution of
complexity of shapes and textures of objects in nature is
regular. This last point is linked to the inherent properties
of auto-similarity in images [Turiel et al., 1998]. This
generative model approach justifies the use of the LUT
along with the decorrelation in the algorithm since it
corresponds to a more robust physical interpretation of
the visual input.
We estimated the efficiency of this coding scheme on the
set of natural images. The Mean-Squared Error (MSE)
and Mutual Information (MI) are popular criteria to
rate the efficiency of the coding and we measured these
values for different numbers of propagated coefficients
and compared this result to the case where we used or not
the LUT. In our framework, we defined the MSE based on
the new metric, which leads to a new distance between
images directly proportional to the log-likelihood defined
in Sec. 2.1.4. The MSE appears then to be more correlated
to a subjective measure of distances between images,
and since there is a non-uniform prior in the energy
of coefficients as a function of spatiall frequency, it
corresponds in fact to the Mahalanobis distance [Ma-
halanobis, 1936] applied to our set of natural images.
It removes some of the disadvantages of the standard
MSE measurement, such as its dependence to a constant
component and provides thus a more robust criteria for
image reconstruction (see Fig. 8). As a conclusion for this
model, we have provided a general scheme for spike
coding in the retina using the relative rank and using the
statistics of natural images. It also provides an efficient

code for the preservation of edges [Sen and Furber, 2006].
This proves that this strategy can build a complete and
efficient code from the retina (analog to spike coding)
which can be decoded (spike to analog coding) using
solely a temporal cooperation and provides a compact
temporal spike code in the retina.
However, this dynamical algorithm transforming an
analogic image in a train of spikes may be adapted to
different goals such as is inspired by the architecture
of the visual system (see Sec. 1.3.1). In fact, it may be
behaviorally more relevant to still propagate the lowest
frequencies, that is potentially closer contrast features
first. As is implemented in the retina by the differentiation
between the Magno- and Parvo- cellular pathways, low
and high spatial frequency bands show different initiation
latencies, the neurons from the Magno-cellular pathway
being significantly faster (by approx. 20 ms). At the same
time, we can still evaluate the weighted coefficients
to produce a highly regular LUT (as in Fig. 7-Right),
hence a better transmission of the coefficients but now
rank the propagation of the coefficients according to
their energy so as to choose the order in which the
spikes are emitted (therefore using a similar algorithm
as the first scheme)30. In a statistical inferential model,
this will correspond to the inclusion of a gain for low
frequencies. Practically, the scheme uses two parallel
sorting mechanisms, one based on the regularity of the
distribution of Lipschitz exponents and the other based
on the progressive transmission of the parts of the image
starting with the most informative. Together, they provide
an algorithm that can efficiently decode the analog values
corresponding to each spike using only the relative rank
information and we will show now how it may be applied
to a model of short latency ocular following.

2.3 Application to modeling short-latency ocular
following

To further validate the previous hypotheses, we will
describe an application of this method to describe a
particular behavioral output through psycho-physical
results on the visual perception of motion. In particular,
ocular following is a reflexive and continuous pursuit by
the eyes of an object which unexpectedly moves in the
field of view and we will show here how the quantitative
theory of matching visual features that we derived above
may contribute to the understanding of the psychological
results. This dynamical probabilistic model will be built
in interaction with psycho-physical results and will be
validated in comparison with other models.

2.3.1 Experimental psycho-physical setup

Motion processing is an essential piece of the complex
visual machinery involved in controlling our actions.

30 These constraints of course don’t occur in biology where
all the processing is parallel and LUTs may be computed
individually at every point.
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Fig. 9. Stimuli for ocular following experiments. The presented
stimuli were chosen as prototypical examples of the composition
of 1D and 2D features in natural images, resp. from left to
right Grating, Plaid and Barberpole. All three have the same
main horizontally drifting vertical frequency with a velocity of 1
pixel/frame (grating), but merged with a static slanted frequency
(plaid) or through an occluding aperture (barberpole). For the
latter two, non-Fourier components (see text) are almost the
only to contribute to vertical speed.

For instance, a brief and unexpected translation of a
large visual scene elicits machine-like ocular following
responses at ultra-short latencies in both humans (∼
85 ms) and monkeys (∼ 55 ms, see [Masson, 2004] for a
review). The initial, open-loop part of these reflexive eye
movements exhibit many of the properties attributed to
low level motion processing. These results suggest that
the very earliest phase of reflexive tracking initiation
relies on a linear motion detection followed by a rapid
linear integration over a large part of the visual field. A
key to understand the information flow is to study how
this system reacts to different levels of information quality
by measuring its output, the eye movements.
The experiment consisted in presenting different moving
stimuli under strictly controlled conditions (see Fig. 9) to
the subjects while measuring their eye movements with a
very precise temporal and spatial precision thanks to the
search coil technique [Masson et al., 2000]. The stimuli
are standard in the sense that (1) they all elicit a very
early horizontal motion with a latency ∼ 85 ms in the
direction of the grating for humans (or 1D) motion; (2)
ocular following responses to the motion stimuli such as
in the diagonal of the barber-pole stimulus [Masson et al.,
2000] or of the uni-kinetic plaid [Masson and Castet, 2002]
exhibit a later component with a latency ∼ 105 ms which
rotates the tracking direction towards the global motion
direction of the surface. This late component seems to
depend on 2D local motion cues such as line-endings
in barber-poles and blobs in uni-kinetic plaids: affecting
one or the other specifically changes the late component
but leaves the early component intact [Masson et al.,
2000; Masson and Castet, 2002] (see Fig. 11). Several
recent studies have found similar dynamics directly at
the level of MT neurons suggesting a direct link at short

latencies between neural activity and the ocular response.
With barber-pole motions, the direction selectivity of MT
neurons evolves over time from grating (1D) to global
(2D) motion-driven responses [Pack et al., 2004]. The
latency between these two components is fairly constant
across conditions at ∼ 20 ms (with an added delay
inversely proportional to the contrast) and suggest that
the 1D and 2D components are driven by two different
independent visual pathways.
To quantify the characteristics of the two components in
the different stimuli we measured their contrast response
functions (CRFs). To achieve these experiments, the
different stimuli were presented at different contrasts
and we measured the dynamics of the gaze in both the
1D (horizontal) and 2D (vertical) directions (see Fig. 11).
These curves show that from the onset of the response, the
acceleration gain is fairly constant on the early part and
we therefore measured this slope as the increase of speed
in a 20 ms time window. Results show that the CRFs are
very similar across stimuli for the 1D component but that,
as perceived intuitively, the response to the unikinetic
plaid is rather sluggish as the contrast increases, while
the response to the barber-pole saturates quicker, in a
more "binary" fashion (see Fig. 11).

2.3.2 A 2-pathway Bayesian model

We will create a probabilistic map (as described in
Sec. 1.3.3 which quantitatively represents the probability
of different possible translation speed v according to an
internal model of the translation [Weiss et al., 2002]. This
area will roughly correspond to area MT in primates (see
Sec. 2) which is known to be organized retinotopically
and representing specifically velocities [Albright, 1984].
As described before (see 2.1.3), we make the assumption
of a generative model for translation in the input flow :

L(x, t) = L(x − v.dt, t − dt) + ν (26)

This means that knowing the translation speed vector
v, the image intensity is approximately conserved along
this direction. This approximation is noted as ν which is
a noise image flow that is in general a colored Gaussian
noise (with an emphasis on low frequencies in natural
scenes [Dong and Atick, 1995]). If we observe an image
flow L defined in space and time, and we wish to
determine the probability a posteriori P(v|L) of the speed of
translation v knowingL , we have similarly as in Sec. 2.1.4:

log P(v|L) = Z+
−‖L(x, t) − L(x − v.dt, t − dt)‖2

K

2.σ2
+ log P(v)

(27)
Since the background noise is constant across experi-
ments, we will assume that the Michelson contrast C (the
ratio of the extremal amplitudes of luminance over the
extremal possible amplitude of luminance) of L controls
the overall amount of noise to signal ratio31. Moreover,

31 We may thus compute theoretically the probability for all
contrasts. The visual system of course computes it on every
instance of the signal.
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we will assume that the prior is normal with variance σp

so as to favor slow speeds [Weiss et al., 2002]. Finally,

log P(v|L) = Z − [
C2

σ2
∆L100(v) − 1

σ2
p

.‖v‖2]/2 (28)

where L100 = 1/C.L is the normalized 100% contrasted
image and ∆LC = C−2.∆L100 is the contrast-normalized
gradient constraint for the normalized image32. It is
therefore only necessary to know the constraint for the full
contrast image flow to deduce analytically the probability
in any case.
To overcome the static structure of the model from Weiss
et al. [2002] and render the dynamical properties of
short-latency ocular following suggested by the psycho-
physical results, we designed explicitly a duplexing in
the input flow. This description is separated in the
information conveyed quickly about raw 1D features and
then by a more precise 2D information.

1. a first early component which computes linearly the
transient temporal aspect of the image flow. It has a
low spatial resolution, hence the name of 1D input (or
Fourier since it is obtained by a simple convolution).
It may yield ambiguous cues (such as for the grating),
and static features are removed (for instance, the
unikinetic plaid’s 1D component becomes equivalent
to the grating).

2. a later response which is selective to the outline of
objects, hence the name of 2D input (or non-Fourier
since it is obtained by non-linear operations). It is
computed by selecting the most salient features in the
moving flow.

Since these images carry the relevant information for
each channel they each become an input flow for the
probabilistic representation (Eq. 28).
Finally, the probabilistic information is then pooled to
provide an optimal decision by minimizing the risk of
error. If we consider the motor response as a simple
first-order linear system acting as an ideal observer (see
Sec. 2.1.2), we may predict that the eye’s velocity gain is
proportional to the mean velocity γ = E(v)/τ and that
its latency is inversely proportional to the gain added
to a fixed latency. To model the short-latency gain, we
thus simply need to compute the mean translation speed
command v knowing the visual input. As in [Weiss
et al., 2002], if the constraint map is quadratic, then
the a posteriori probability is Gaussian (and its mean is
equivalent to its maximum). This allows us therefore to
bridge an input image flow with a behavioral response
and thus to validate the model by comparing it to the
biological data.

2.3.3 Results : predicting CRFs using the model

A common procedure in psycho-physics that was also
applied here is to study the results of the experiment

32 This formulation is very similar to the luminance
conservation equation[Aubert et al., 2000] but gives a more
rational explanation for this choice.

Grating Barber-pole Unikinetic plaid

Fig. 10. Probabilistic motion constraints maps. According to
the model of short-latency ocular following, (Left) grating,
(Middle) unikinetic plaid and (Right) barberpole. The (Top row)
shows the result from the 1D early response and the (Bottom row)
the late 2D response. The maps from the 1D information and for
both the grating and plaid are quadratic and the CRFs are slope
2 Naka-Rushton curves. The map for the barberpole is however
multi-modal and non-quadratic and generates a different CRF.

with varying levels of noise [Albrecht and Hamilton,
1982]. However, it is in general analytically intractable
from Eqs. 28 and γ = E(v)/τ. As in Weiss et al. [2002],
we may assume that the log-likelihood is quadratic. This
assumption is very accurate for the grating and still a
very good approximation for the plaid, in both 1D and 2D
pathways. From Eq. 28, we deduce that the log-posterior
is also quadratic and that the mean coincides with the
MAP. Moreover, if we write that ∆L100 = K.‖v − v0‖2
(where K and v0 are constants), then the solution vm

satisfies :

d

dv
log P(vm|L) =

K2.C2

σ2
(vm − v0) +

vm

σ2
p

= 0

that is

vm =
C2

C2 + C2
50

.v0 with C50 ∝
σp

σ

We recognize here the prototypical Naka-Rushton curve
of slope 2 [Naka and Rushton, 1966], which is character-
istic of the CRF at multiple levels of the visual system.
Contrast dynamics of 1D and 2D motion for ocular
tracking with the quadratic approximation involves thus
necessarily that the Contrast Response Functions all
follow a Naka-Rushton function with a slope of 2.
However, before making any such assumptions, we will
at first keep all generality and try then to validate
them. The algorithm will compute ∆L100(v) for each
stimulus as a measure of the ambiguity of the motion

and then compute the mean velocity E(v) =
∫

vP(v|L) to
compute the contrast response functions of the 1D and
2D motion processing for short-latency ocular following.
As expected, the constraint maps for the grating and the
1D component of the unikinetic plaid are quadratic along
the line of constraint (a result that may be analytically
proved). However, this distribution keeps quadratic for
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Fig. 11. Eye velocity in the ocular following task. We show
here the averaged velocity response of the eye on (Up) the
horizontal axis and (Down) on the vertical axis in response to
the barberpole stimulus (see Fig. 9). In the open-loop condition,
responses follow a ramp pattern. The latency of the horizontal
response is earlier of 20 ms. As the contrast decreases, both the
gain decreases and the latency increases. The observation (stars)
are well fitted by the Naka-Rushton (continuous line) and the
bayesian model (dotted line).

the 2d component of the unikinetic plaid but with a lower
standard deviation, while it is multi-modal for the 2D
component of the barberpole33 (see Fig. 10). We used the
Nelder-Mead simplex method [Lagarias et al., 1998] to fit
the models with the data. Knowing the variability of the
data, we minimized the χ2 value to evaluate how close
the model described the data [Cavanaugh et al., 2002] :

Naka-Rushton Bayesian model
Horizontal gain (1D) 0.1943 0.1324

Vertical gain (2D) 0.1567 0.0929

We have thus shown that the fit of the data obtained
with our full model and the quadratic approximation
(i.e. the model presented by Weiss et al. [2002] on
the 2-pathway architecture) were comparable [Perrinet
et al., 2005]. Moreover, when integrating in a time
window of increasing size ∆t and assuming that noise
is independent over time, we found that the C50 was
inversely proportional to ∆t.
This approach provides a general framework for de-
scribing our model of translation in natural scenes. The
explicit detail of the derivatives used to extract 1D and

33 the second peak corresponds to the probability of a motion
parallel to the narrow width of the aperture and grows as the
ratio of the aperture gets closer to 1.

2D features allows to draw analytically the similarity
with techniques used in image processing and which use
the luminance conservation constraint while providing
a Bayesian explanation. We have also shown that the
time course of this mechanism is separated in 2 distinct
pathways with distinct CRFs. In particular, constraint
map may not be quadratic and correspond to a different
distribution of the visual information across different
possible visual features. Moreover, this model does not
use an hypothese concerning the quadratic shape of the
constraint function. In our model, the resulting contrast
response function is in general analytically intractable,
resulting in a richer family of possible functions. In
particular, a higher kurtosis as in the 2D component of
the barber-pole resulted in a CRF which fitted a Naka-
Rushton with a slope higher than 2. The quantitative
results suggests that the full model is already justified
in this simple example, but this should be even more
salient in more complex (and natural) experiments. This
framework allows us thus to study how different features
may be compared to be finally pooled together to give a
single sensory-motor decision. In particular this should
be extended to a model of a functional receptive field
for ocular following which accounts for the spatial
integration of local motion features as is for instance done
by Bayerl and Neumann [2004]. A further extension
is to study the rules of spatio-temporal integration of
local features [Perrinet et al., 2006] and the adaptation of
the visual system to repeated stimulations [Montagnini
et al., 2006]. However, we will see in the next section that
to efficiently represent multi-modular features, we need
to extend our model to take into account "neighboring"
information.

3 Sparse Spike Coding: building efficient
representations

In the previous section, we were confronted to a main
limit of classical feed-forward representations which is
crucial for low-level visual processing. In fact, whether
filters have to be orthogonal or the representation will
necessarily be redundant (see Sec. 2.2.2). However, we
will see that this constraint is incompatible with efficient
visual algorithms and we will show here how to build
a dynamical and adaptive algorithm resulting in an
efficient representation that we will apply to a model
of V1. We will then propose an implementation using
Integrate-and-Fire neurons and test the efficiency of this
artificial neural code and finally try to define a generic
event-based computational approach.

3.1 Sparse Spike Coding for low-level visual
processing

3.1.1 Low-level vision as a (hard) inverse problem

We saw that we may describe the goal of vision as
representing matches according to an internal model (see
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Fig. 12. Inverse-mapping as a a goal for sensory neural coding.
The visible world is modeled as the interaction of a large
set of hypothetical physical sources (world model) according
to a known model of their interactions ("synthesis"). We will
consider that for sensory cortical areas, the goal of the neural
representation (and its implementation by the neural code) is to
analyze the signal so as to recover at best and as quickly as
possible the sources that generated the signal ("analysis") . The
analysis may thus be considered as an inverse mapping of the
synthesis. A proposed solution for this problem is to infer at best
the most probable hidden state.

Sec. 2). To further go in this direction, we will describe
the goal of each low-level visual map as implementing
an inverse problem. This goal is that for any of these
images, this map must efficiently and rapidly (in the order
of a fraction of a second) represent a set of relevant
features characteristic of this map (see Sec. 1.3.3). This
representation, including for instance in V1 the location
and orientation of the edges that outline the shape of an
object, is then relayed to higher level areas to allow, for
instance, a recognition of more complex patterns (shape
or motion of an object). The hypothesized function over
the long term (in the order of hours to years) will thus
be to adapt to natural scenes (that is images that occur
most frequently) so as to progressively build this model.
Actually, this is similar to numerous tasks in engineering
and applied mathematics, where a reverse-engineering
process allows to find a representation of the data (such
as an estimation of the internal state of a system in control
theory) by identifying the so-called hidden parameters of
the system (see Fig. 12). The success of this algorithm
over the long term (in the order of days to generations)
allows then to validate through the pressure of evolution
the model that was learned. In this framework, we will
thus describe neuronal activity as the result of the efficient
inversion (or analysis) of an internal model of the world.
To simplify the problem of the inverse problem, a first
solution is to constrain the LGM to use orthogonal filters
that form a complete basis as in Sec. 2.2.2. However, in
this case, slight continuous transforms of the input may
yield non-continuous transforms of the representation
although it is highly desirable for the representations of

natural images to be robust to these natural transforms
(see Sec. 1.3.3). This view is similar to the ’rules’ that
were described by psychologists of the Gestalt school
as Metzger [1936] since the system will exploit the
regularities of the world to efficiently extract relevant
information. As is the case for natural images in low-
level vision, we will consider that the observed signals
are generated by sources that share certain features
which differ by continuous transformations such as edges
at different time, position, orientation or scale. Since
these regularly occurring changes in the physical world
(translations, rotations and scaling) are very common,
if there exists a corresponding transformation in the
source space (that is if this transformation of all sources
are in the dictionary), the resulting representation of
the transformed image should simply be derived by
a transformation (in the source space) of the original
representation. This idea is supported as well by neuro-
physiological data (see Sec. 1.3.3) as by psychological
experiments [Shepard and Metzler, 1970] and may also
be a feature of some mid-level visual area, for instance
with dynamic remapping [Pouget, 2002]. Typically, this
robustness constraint implies in a wavelet architecture
that the tiling of the filters is smoother than an orthogonal
representation [Perrinet et al., 2004]34. As a consequence,
the dictionary will be over-complete, i.e. the number of
dictionary elements will be of several orders of magnitude
larger than the dimension of the image space. We deduce
that the efficiency of the inverse mapping in low-level
visual areas, conditioned by the relevance of the LGM ,
requires for the dictionary to be over-complete.
Given this constraint on the forward model, the rep-
resentation should also optimize its information ca-
pacity [Atick, 1992; van Hateren and van der Schaaf,
1998], a task which may therefore relate to remove
redundancies, but more generally to separate features
into independent features. Using the linear forward
model, for any signal L, there exist at least one set
of parameters s which recovers the observed signal if
the dictionary A is complete. However, in this case
where the dictionary is over-complete, the inversion of
the LGM will not yield an unique solution in S to
any given signal in I: the problem is ill-posed. To any
observation may correspond a wide range of causal
configurations: the overlap between atoms generates a
potential ambiguity as was illustrated in Fig. 1. The
coding strategies corresponding to possible ’analysis’
algorithms (see Fig. 12) have different efficiencies and, in
particular, the solution given by the wavelet coefficients
(as in [van Rullen and Thorpe, 2001]) with an over-
complete dictionary yields an highly redundant —hence
inefficient— representation. More importantly, they do
not correspond to the actual physical causes and thus
do not invert the forward problem (which is as we will
see especially inappropriate for the learning). According
to Barlow [2001], the goal of sensory processing would

34 Another argument says that this could solve the binding
problem by distributing the information of multiple copies of
the neurons.
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be rather to choose the most efficient representation: for
instance the representation should reduce its redundancy.
In a more general view and following the same argument
as the Occam razor, whenever there is the choice between
two equivalent representations, the most probable is the
one that is the most sparse [Perrinet, 2006], a property
supported by physiological experiments [Hahnloser et al.,
2002; Deweese and Zador, 2003]. A possible goal would
thus be to achieve the coding strategy that describes at
best the images with the least coefficients [Olshausen
and Field, 1998]. This sparseness constraint thus allows
to restrict the different solutions of the inversion of the
forward model so as to find an appropriate candidate for
the neural code.
However, the combinatorial complexity of the inverse
problem for the LGM grows very quickly as the di-
mension of the dictionary increases (it’s NP-complete,
see [Mallat, 1998]). There exists therefore no simple al-
gorithm that optimizes exactly the problem in reasonable
time as we handle more complex signals such as natural
images, but acceptable sub-optimal strategies to approach
this problem do exist (see a review in [Pece, 2002]). Most
popular solutions optimize the reconstruction error and
the sparsity by using a Lagrangian multiplier to tune the
compromise between both constraints [Olshausen and
Field, 1998]. Their solution is based on a gradient-based
optimization approach (for a review, see [Simoncelli
and Olshausen, 2001]) which are heuristics particularly
well adapted to computations on sequential computers.
Focusing on the nature of neural computations, we
will rather present an alternate parallel and event-driven
heuristic.

3.1.2 One solution: Greedy inference pursuit

Let’s first define a sparse spiking algorithm in mathe-
matical terms. It is a dynamical algorithm which should
provide from an input (should it be continuous or spiking)
an output consisting of a list of spikes that we may for
instance define at time t as a listΛ(t) = {λk : ( jk, tk, sk)}t0≤tk≤t

of events to which different values may be attached
(here respectively address, latency and amplitude). We
will restrict first the input to this model to flashed
static images35. Assuming that the LGM is known, we
will define the goal of our sparse spiking algorithm as
recovering the correct sources (corresponding to some
hidden state variables, see Fig. 12) from an observed static
image as quickly as possible. Spikes are fairly similar
across time and over the CNS (they have metabolically the
same cost and their precision make them carry a priori the
same information). In an over-complete parallel scheme
all information should therefore be in the address and
timing of the spiking neurons neuron (rather than than
in the activity it represents), so that it is proportional to

35 In particular, we will study the transient response of the
network and neglect the information fed back by higher areas.
This latter information will be necessary in more complex
algorithms which take into account the context of a local feature.

Ispike = log2(N), where N is the number of filters In the
dictionary. We may define the cost for any algorithm to
be a cost over the transmitted information as a function of
the number n of emitted spikes. The information knowing
Λ(t) may be evaluated for the list of generated spikes as
I(t) = − log(P(L|Λ(t)) so that the dynamical cost (in bits)
may be evaluated for instance as

T(t) = − log(P(L|Λ(t)) − log2(N) ∗ ‖Λ(t)‖0 (29)

where ‖Λ(t)‖0 is the number of spikes in the list (its
l0-norm)36. This formalization could be used in a cost
function to reflect how much we do care about the
transmission of information as a function to the number
of spikes and thus give an explicit definition of the
Occam’s razor for our system. This expression allows thus
one to compare different dynamical spiking algorithms
knowing solely the LGM (which is necessary to derive
the probability) and the expression of the cost.
We will here propose a solution for inverting the forward
model that we defined for natural images based on a
Bayesian inference framework using feature-matching
neurons and spikes as events representing primitive "de-
cisions". In fact, as in numerous optimization problems,
a solution is to begin the algorithm with a subset of
the problem which is easy to solve, take it into account
and then to resume the algorithm in a recursive manner
on the transformed observation signal : it’s the greedy
approach [Perrinet, 2004b]. Following this process and
focusing on every single spike, a greedy solution could
use recursively two steps: Matching (M) and Pursuit (P).

(M) To each neuron is assigned a vector (or weight pattern)
corresponding to its preferred stimulus. Neurons
compete in parallel to find the most probable single
source component by integrating evidence according
to their weight patterns (see Sec. 2.1.4). The first source
to be detected should be the one corresponding to the
highest activity, that is to the most information about
the image knowing that source.

(P) A decision is assigned to this best match which, once it
has been taken, is taken into account before performing
any further computations (and in particular finding a
new match). It thus yields a new observation signal
(and therefore a modified internal representation)
where we ’removed’ the detected source.

We will see that this method is similar to the approach
developed in the method of Matching Pursuit [Mallat
and Zhang, 1993] but also to other techniques such as
Projection Pursuit in statistics [Friedman and Stuetzle,
1980]. However, instead of a heuristic scheme, and thanks
to the description of the successive steps that may
lead to the greedy pursuit, it may be considered as an
optimization strategy of the goal that we defined above
(namely maximizing the transfer of information).

Greedy inference pursuit

36 This definition is similar to measure of model complexity
such as AIC [Akaike, 1974].
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Theorem (Gredy Inference Pursuit) Under the same hy-
potheses as Eq. 10, the greedy algorithm optimizing the goal
set in Eq.29 for the succession of spikes is set for a known
architecture A by transforming any image L in a event list Λ
by

– initializing activities as

C(0)
j
=< L,

A j

‖A j‖
> (30)

– and recursively generating a new event {( j(n), t(n), s(n))}n by:

j(n) = ArgMax j|C
(n−1)
j
| (Matching) (31)

C(n)
j
= C(n−1)

j
− s(n).R{ j, j(n)} (Pursuit) (32)

where R{ j, j(n)} =<
A j

‖A j‖ ,
A

j(n)

‖A
j(n) ‖ > and s(n) = C(n−1)

j(n) .

– the input signal may be reconstructed from the spike list as

L =
∑

k=1...n
s(k).A j(k) + L(n) (33)

where L(n) is the residual image at rank n.

One can note that in this formalization, the timing is
carried by the relative succession of the spikes and
not in the absolute timing. This is coherent with the
homeostatic processes occurring in the system which
make the average firing frequency stationary. Moreover,
we keep for the moment in the spike list the amplitude of
the coefficients, but we will see that in natural images they
obey to regularities and therefore carry little information
knowing their rank in the list.

Proof Since the property has to be sound for all spike lists
until a certain time, it has to be right for the first spike.
From section Sec. 2, we computed the probability of any
possible source as :

P({ j, s}|L) ∝ exp(−
‖L − s.A j‖2

2.σ2
) (34)

The cost defined in Eq. 29 is equivalent to minimizing

C =
‖L − s.A j‖2

2.σ2
+ log2(N) ∗ ‖s‖0 (35)

which is a hard problem [Chen, 1995]. Initializing the ac-

tivity as C(0)
j
=< L,

A j

‖A j‖ > and selecting j(1) = ArgMax j|C
(0)
j

will give the best first single source match of the greedy
algorithm.
As we found the MAP source knowing the signal L, we
may pursue the algorithm by accounting for this inference
on the signal knowing the element that we found before
detecting another single source component. Sources are
supposed to have conditionally independent activities37

37 For any realization of the images, individual sources have
independent activities since in our framework they would
correspond to different independent causes. Thus, by removing
one source, one gets a new image (conform with the LGM
model) and one does not change the probability distribution
of the other sources.

and the pursuit algorithm assumes that —knowing the
previous detection— we may resume the detection on
this residual signal:

P({ j, s}|L, { j∗, s∗}) = P({ j, s}|L − s∗.A j∗ ) (36)

with s∗ given by Eq. 11: s∗ = C j∗/‖A j∗‖. We will thus use
this new residual signal in which we will then find a new
component corresponding to the most probable single
source.
In this recursive approach, we will note as n the rank
of the step in the pursuit (which begins at n = 0 for
the initialization). Let’s therefore set initially L(n) the
successive residuals and L(0) = L. Let’s also note the
address of the successive winning neuron from the first

step n = 1 as j(n) = ArgMax j|C
(n−1)
j
|. Knowing j(n), in

order to resume the pursuit at the next step, we saw
that we need to compute the projection of the signal on
the elements of the dictionary. In this greedy approach,
we may thus update the residual and the corresponding

activities C(n−1)
j

=< L(n−1),
A j

‖A j‖ > by subtracting to L(n−1)

its projection on the winning element of index j(n) (see
Eq. 11):

L
(n) = L(n−1) − C(n−1)

j(n) .
A j(n)

‖A j(n)‖ (37)

Furthermore, we don’t need to feed this information
back to the signal (which would be very inefficient in
a neural implementation) and we may directly compute
the activity again for all vectors thanks to the linearity of
the scalar product operator:

C(n)
j
= < L(n),

A j

‖A j‖
>

= < L(n−1) − C(n−1)

j(n) .
A j(n)

‖A j(n)‖ ,
A j

‖A j‖
>

and finally

C(n)
j
= C(n−1)

j
− C(n−1)

j(n) . <
A j

‖A j‖
,
A j(n)

‖A j(n)‖ > (38)

This activities’ update (Eq. 38) corresponds in neuro-
physiological terminology to a lateral interaction. It will

be proportional to R j, j(n) where R j, j(n) =<
A j

‖A j‖ ,
A

j(n)

‖A
j(n) ‖ >

is the normalized correlation of any element j with
the winning element j(n). This is in accordance with
neuro-physiological data suggesting that most lateral
interactions are symmetric and often proportional to the
similarity of neurons receptive fields [].
The greedy pursuit therefore transforms an incoming
signal L in a spike list with decreasing coefficient values
{ j(n), s(n)} From Eq. 37), the signal may be reconstructed as
in Eq. 33 which should converge to L if the norm of the
residual signal L(n) converges to zero. ⊓⊔
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Properties of the greedy pursuit In this algorithm, the
choice of the best match and the update rule are indepen-
dent of the choice of the norm ‖A j‖ of the filters (see Eq. 30
and 31), so that we may indifferently use in the following
normalized filters (that is ‖A j‖ = 1 for all neurons) so
as to simplify the equations. This algorithm is exactly
equivalent to Matching Pursuit [Mallat and Zhang, 1993].
This algorithm is familiar in signal processing and is
increasingly used for image and video processing [Neff
and Zakhor, 1997; Durka et al., 2001; Capobianco, 2003;
Fischer et al., 2006a] and signal processing [Blinowska
and Durka, 1994].
Moreover, we have shown that the use of the statistics
of natural images statistically optimizes the coding
efficiency by modifying the image space metric [Perrinet
et al., 2004] compared to an heuristic optimization
of Matching Pursuit [Pati et al., 1993]. The Bayesian
inference framework allows to precisely tune the heuristic
approach of the Matching Pursuit and is somewhat
similar in the approach developed by Denève et al.
[1999] for “reading” neural population codes by matching
activity responses with the envelope of the correlation
of neighboring neurons. It allows for instance to set a
different prior or to include knowledge of the measure-
ment noise that is adapted to the goal of the system
(and hence a different matching criteria that may depend
on the norm ‖A j‖). This algorithm presents similar
computational complexity and properties [Mallat, 1998,
pp.412–9] which is suboptimal but more rapid compared
to Basis Pursuit [Chen, 1995]. In particular

C(n)

j(n) = C(n−1)

j(n) − C(n−1)

j(n) = 0 (39)

and as a consequence the activity of a winning neuron is
totally canceled.

Theorem (Convergence of Greedy Inference Pursuit) The
residual squared error is strictly decreasing and may be
computed recursively as

SE(n) = ‖L(n)‖2
= SE(n−1) − |s(n)|2.‖A j(n)‖2 (40)

In addition, the algorithm converges (that is limn→∞ ‖L(n)‖ =
0) exponentially in the space generated by the dictionary (that
is in the image space if it is complete).

In practice, it implies that the stopping criteria may be
computed using this computation without computing
‖L(n)‖.
This theorem gives a practical way of controlling the
convergence of the algorithm and gives the proof that the
algorithm will stop, that is that the residual error energy
will be in finite time below the threshold ε.

Proof Although filters in the dictionary are here generally
not orthogonal, the residual image is orthogonal to the
winning filter and from Pythagora’s theorem

‖L(n−1)‖2 = ‖L(n)‖2 + |s(n)|2.‖A j(n)‖2 (41)

so that we may easily compute the Squared Error (SE) of
the residual signal at every step of the coding :

SE(n) = − log P(Λ|L(n))

= ‖L −
∑

k=1...n s(k).A j(k)‖2 = ‖L(n)‖2

= SE(n−1) − |s(n)|2.‖A j(n)‖2 (42)

SE(n) = ‖L‖2 −
∑

k=1...n |s(k)|2.‖A j(k)‖2

= ‖L‖2 −
∑

k=1...n |C
(k−1)

j(k) |2 (43)

The exponential convergence is e.g. provided in [Gribon-
val and Vandergheynst, 2006]. ⊓⊔
The residual squared error is a highly significant criteria
here since it is proportional to the probability of the image
knowing the spike list and therefore of how well the image
is described by the coefficients already propagated (see
Eq. 34). We see also from Eq. 40 that the SE is strictly
decreasing and since it is bounded, it therefore converges.
A further consequence of the monotonous decrease of
the SE from Eq. 40 is that under the condition that the
dictionary is at least complete, it convergences to the exact
reconstruction [Mallat, 1998, p.414]. Moreover, Frossard
and Vandergheynst [2001] has shown that it is still true
up to an upper bound in a case where the coefficients are
quantized.

Theorem (Transformation invariance of the representa-
tion) If the architecture A is invariant to a transform T (and
therefore, there exist a dual transform F between the elements of
the dictionary), then the spike list obtained for the transformed
image T(L) is the transformed spike list of the original image.

MP(T(L) = F(MP(L)) (44)

This feature complies with our constraint that we set at
the beginning of this section. In practice, this will be
applied in low-level areas for usual spatial transform
such as translations and scalings but also to shifts in time.
However, since both the images and the dictionaries are
finite, the invariance will always be approximate for these
transforms.
Though simple, the greedy pursuit is a complex non-
linear algorithm. In fact, the study of its behavior is
non trivial and may involve chaotic dynamics [Davis,
1994]. In particular, it is obvious that the choice that is
made at a giving step may influence all future steps.
This implies that a failed match may propagate wrong
information to following steps and therefore that the
probability of a failure grows higher as the rank increases.
These properties are discussed in [Perrinet et al., 2004] and
in particular we illustrated that the speed of convergence
increases as the dictionary becomes more over-complete
so that it provides an efficient representation for natural
scenes in image processing tasks.

3.1.3 Results for a multi-resolution model of the retina

This algorithm was first tested by extending the model
of the retina presented in Sec. 2.2 with an over-complete
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set of DOG filters corresponding to more accurate neuro-
physiological data. Considering the same spike coding
scheme, we may ask whether an increase in the number
of filters used to describe the image can enhance the
representation, i.e. if there would be an advantage in
using an over-complete representation in the retina. The
filters are thus defined as the standard dyadic scale, but
the image pyramid now includes respectively {1, 2, 4, 8}
scales per octave, i.e. the scale level characteristic variances
now grow as σ(s) = σ(1).ρs where s is the scale index and

ρ = {2,
√

2,
4
√

2,
8
√

2}.
These experiments proved that as the number of neurons
increased, the coefficients decreased more rapidly as a
function of the relative rank and also the MSE. This
behavior is understandable, because choosing a higher
number of filters allows the construction of a more
fine grained multi-scale representation of the image. In
fact, the number of neurons is multiplied by a factor
of approximately χ = (1 − ρ−2)−1. This results in our
different cases to an over-completeness of respectively

{4/3, 2, 2+
√

2 ∼ 3.41, 1/(1−1/
4
√

2) ∼ 6.28}. The information
(in bits) needed to code the address of each spike (position
and scale) is thus log2(npixel)+log2(1−(1/ρ)2)+1 (npixel being
the number of pixels and one bit being allocated for the
polarity). We may therefore compute the performance of
the coding scheme in terms of the mean decrease in MSE
as a function of the number of bits necessary to code
the spike list (see Fig. 13-Left). However, the situation is
different if we compare the trade-off between efficiency
(MSE decrease) and the architecture’s complexity (we
assumed here that it is proportional to the number of
neurons). We obtained different results as a function of the
degree of over-completeness (see Fig. 13-Right) and thus
conclude that under this constraint, the greedy dyadic
algorithm seems to be optimal in the retina [Perrinet et al.,
2004].
This appears to be mainly due to the nature of DOG filters
(and to circularly symmetric wavelet filters in general)
which to a certain extent overlap too much and do
not capture any new information since their complexity
is low. In fact, the evolution of the retina is certainly
constrained by its function, so that the argument may
be reversed. First, the retina plays a key role in the
visual pathways since it is the first processing layer : it
is therefore very demanding in terms of robustness and
the neurons are highly active. Moreover, the eyes are in
a wide range of living species are mobile elements which
permit the active exploration of the visual environment.
Thus, the number of neurons in the retina is presumably
limited not only by the total energy it can devote but
also by physical restrictions such as the size of the optic
nerve. Since this number is limited (its over-completeness
is limited), the representation may only use more general
filters.

We further compared the method we describe here
with similar techniques used to yield sparse and efficient
codes such as the conjugate gradient method used
by Olshausen and Field [1998]. We used a similar
context and architecture as these experiments and used
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Fig. 13. Is the spike representation over-complete in the
retina? (Left) We compared the progressive transmission of
information for different degrees of over-completeness in the
retina by plotting the average MSE of the residual as a function
of the information to code the spike list (in logarithmic scale,
propagation up to 12.5% of the relative rank for clarity). The
set of neurons used rotation symmetric Mexican hat filters,

with scales from layer to layer growing as ρ = {2,
√

2,
4√

2,
8√

2}
(and denoted on the legend respectively as 1, 2, 4 and 8).
As a comparison we plotted the method used in [van Rullen
and Thorpe, 2001] (line ’Wav’). As a function of rank, the
MSE decreases more rapidly for increasing degrees of over-
completeness. (Right) But if we plot the trade-off of MSE with
CPU usage as a function of the over-completeness, we find that
for the same amount of information the adaptive dyadic strategy
is optimal. One should note that the results of the method
described in the text is better than the wavelet method of [van
Rullen and Thorpe, 2001] since it is adaptative.

Fig. 14. Efficiency of the matching pursuit compared to
conjugate gradient. We compared here the matching pursuit
(’mp’) method with the classical conjugate gradient function
(’cgf’) method as is used in [Olshausen and Field, 1998]. We
present the results for the coding of a set of image patches drawn
from a database of natural images. These results were obtained
with the same fixed dictionary of edges for both methods.
We plot the mean final residual error for two definitions of
sparseness: (Left) the mean absolute sum of the coefficients
and (Right) the number of active (or non-zero) coefficients (the
coding step for MP). For this architecture, the sparse spike
coding scheme appears to be more efficient to code natural
image patches.
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in particular the database from the S algorithm.
Namely, we used a set of 105 10 × 10 patches (so that
M = 100) from whitened images drawn from a database of
natural images. From the relation between the likelihood
of having recovered the signal and the squared error in the
new metric, the mean squared reconstruction error (L2-
norm) is an appropriate measure of the coding efficiency
for these whitened images. This measure represents the
mean accuracy (in terms of the logarithm of a probability)
between the data and the representation. We compared
here this measure for different definitions and values for
the "sparseness". First, by changing an internal parameter
tuning the compromise between reconstruction error and
sparsity (namely the estimated variance of the noise for
the conjugate gradient method and the stopping criteria
in the pursuit), one could yield different mean residual
error with different mean absolute value of the coefficients
(see Fig. 14, left) or L1-norm. In a second experiment,
we compared the efficiency of the greedy pursuit while
varying the number of active coefficients (the L0-norm),
that is the rank of the pursuit (as defined in Eq. 29). To
compare this method with the conjugate gradient, a first
pass of the latter method was assigning for a fixed number
of active coefficients the best neurons while a second pass
optimized the coefficients for this set of "active" vectors
(see Fig. 14, right). Computationally, the complexity of
the algorithms and the time required by both methods
was similar, though an advantage came for MP on larger
dimensions (for M > 200). However, the pursuit is by
construction more adapted to provide a progressive and
dynamical result while the conjugate gradient method
had to be recomputed for every set of parameter. Best
results are those giving a lower error for a given sparsity
or a lower sparseness (better compression) for the same
error. In both cases, the Sparse Spike Coding provides
a coding paradigm which is of better efficiency as the
conjugate gradient.

3.1.4 Neural implementation of Sparse Spike Coding

We will derive now an implementation of this algorithm
using a network of spiking neurons [Perrinet, 2005]. It
is based on the same feed-forward architecture as the
perceptron (see Fig. 15) since this architecture provides
a simple ArgMax operator (see Sec. 1.1.3) and we will
implement the greedy pursuit using lateral interactions.
To implement the computation of the match of an input
with stored patterns, we first define a dictionary which
will be implemented by normalized weight vectors A j

and —assuming that the raw input was pre-processed as
described in Sec. 2.1.4— the input activity L is decor-
related. The linear feed-forward perceptron integrates
synaptically the input into an initial activity C j such that

C j = p j. < L,A j > (45)

The neurons are duplicated with opposite polarity p j = ±1
so that C j = p j.|C j| to model the ON / OFF symmetry of
simple cells [Ringach, 2002]. The scalar projection will

Fig. 15. Model of a neuronal layer as a communication channel.
To understand the content of neural activity, we consider here
that the neuronal layer implements the inverse of a forward
model (that is the analysis in Fig. 12). The architecture is
similar to the perceptron: the input (noted xi) is matched
with normalized weight patterns A ji (which are fixed in this
section) so as to provide an integrative activation value (the
membrane potential) which in turn is non-linearly transformed
to achieve a membrane potential which grows proportionally to
the probability of matching a feature. Spikes represent decisions
that are fed back on the correlated neighboring neurons using
lateral interactions (that we represented for the first spiking
neuron) but also on the axonal output which yield a spiking
output s j.

therefore drive the potential of the neuron.
The activity is represented by a driving current C j(t)
that drives the potential V j of leaky Integrate-and-Fire
neurons [Lapicque, 1907] from the initialization time.
This model gives a good fit of the dynamical behavior of
neurons [Carandini et al., 1997]. For illustration purposes,
the dynamics of the neurons will here be modeled by
a simple linear integration of the driving current C j

(other monotonic integration schemes lead to similar
formulations):

τ.
d

dt
V j = −V j +

1

g j
.C j if V j ≤ θ (46)

where τ is the time constant of membrane integration
and g j an inverse gain (in Siemens if C j is considered
as a current) corresponding to the conductance of the
membrane (this may act as a modulator in time, which is
important in integrating the influence of context).
Neurons generate a spike when their potential reach an
arbitrary thresholdθ that we set here to 1. We may predict
from the monotonous integration that the first neuron to
generate a spike will be the one that corresponds to the
maximal rectified scalar projection of the input signal with
the weight vectors of the network, that is

j∗ = ArgMax j

C j

g j
(47)

at the latency

t∗ = −τ. log(1 −
θ.g∗

j

C j∗
) (48)
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This is therefore a simple and biologically plausible im-
plementation of a MAP estimate (Matching step of Eq. 31)
using the parallel architecture of the network which is in
contrast with the complexity of this implementation on a
single-processor computer.
To further implement the greedy algorithm (the Pursuit
step given in Eq. 31), we then need to implement a lateral
interaction on the neighboring neuron. In our scheme the
interaction should yield the same configuration in the
network (activity and potential) as if the source that was
detected was originally absent from the signal. In this
model, if j∗ is the winning neuron, the activity should have
been subtracted by |C j∗ |.R{ j, j∗} (see Eq. 31) and the potential
by this value integrated over t∗. The lateral interaction is
thus achieved by updating after each spike the activity
of the neighboring neurons proportionally to their cross-
correlation R{ j, j∗} with the corresponding winning neuron:

C j ← C j − |C j∗ |.R{ j, j∗} (49)

and therefore of the potential of every neuron by the
potential C j∗/R{ j, j∗}.(1 − e−t∗/τ), that is simply by:

V j ← V j − R{ j, j∗} (50)

and then resume the algorithm. This lateral interaction
is here immediate and behaves as a refractory period
on the winning neuron (in fact C j∗ ← 0 and V j∗ ← 0)
but also on correlated neurons. It involves a subtractive
hyper-polarizing term on the potential and on the activity.
Biologically, it is improbable that the lateral interaction
could be instantaneous, but this lateral interaction could
be implemented in a fast manner using a lateral inter-
action mediated by fast-spike inter-neurons38. Finally,
this simple implementation therefore implements the
Matching Pursuit algorithm that we defined in Eq. 31
and we will apply it to simple visual tasks.
Moreover, we may as in Sec. 2.2.2 use the regularity
of the decrease of the coefficients as a function of
their rank to be able to reconstruct the signal39. A
similar equation as Eq. 25 may be written so that the
energy of the quantization error adds to the error of
the coefficients given by the matching Pursuit [Frossard
and Vandergheynst, 2001]. This could be implemented in
cortical areas by shunting inhibition [Borg-Graham, 1999]
or synaptic depression. The best estimator for the squared
error is therefore the one minimizing the variance, that is
the mean of the absolute coefficient:

LUT(r) = E[|Cr
j|] (51)

This representation proposes an alternative to classical
paradigms of neural coding such as the spike-rate coding
approach of the perceptron (see Fig. 15). Instead of coding

38 It should be stressed that we don’t explicitly integrate a
refractory period in these equations.

39 It should be again noted that this is not actually used in the
visual system (there is no reconstruction of the image) but that
this scheme provides a tool to quantify the information transfer
contained in the spike list thanks to Eqs. 33 and 40.
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Fig. 16. Implementation of the greedy pursuit using Integrate-
and-Fire Neurons. We simulated here the activity of a network
of Integrate-and-Fire neurons tuned to form a simple model
of an hyper-column in the primary visual area (V1) to the
presentation of a horizontal edge at t = 0. We show in this image
the output spiking activity of 16 neurons tuned for different
orientations for the feed-forward (black bars) and the sparse
spike coding (white bars) models during the first 150 ms. In this
latter model, the correlation linked to the information already
detected is propagated as a hyper-polarizing and shunting
lateral interaction to the neighboring neurons: the response
in both latency and spiking frequency to the oriented edge is
clearly more selective. (Right Inset) Output spike firing rate to
the presentation of a horizontal edge at time t = 0. For the linear
feed-forward model (plain line), the sparse spike coding scheme
(filled curve) for different orientations of the input stimulus. The
narrower tuning curve for the latter method represents a more
selective response to the features learned in synaptic weights
and mimics the behavior of the neural response in the primary
visual area [Ringach, 2002].

information in the mean firing frequency of neurons,
it proposes an original approach solving the problem
that we defined above. It uses a distributed probabilistic
representation constituted by two signals. On one side,
we assumed here that the continuous activity of neurons
(such as the membrane potential) in the layer represented
the evidence of a correct match such as defined in Sec. 2.
On the other side, the discrete spiking signal signifies a
set of elementary decisions made by the neurons.
To illustrate the properties of the algorithm, we may
model a network of linear Integrate-and-Fire neurons
forming a simple model of an hyper-column in the
granular layer of the primary visual area (V1). This model
consist of an isolated network of 16 neurons selective to
different orientations of contours and which are modeled
as Gabor filters (which are here symmetric with circular
envelopes, see Sec. 3.3 for a more detailed account on V1).
We compared a pure feed-forward model to a network
implementing the lateral interactions that we described
above (see Eq. 49 and 50). We show here the resulting
spiking activity when one of the preferred stimuli (the
horizontal edge) was continuously presented from time
t = 0 (see Fig. 16).

We observe that the neuron corresponding to that
preferred stimulus fires with the shortest latency but also
produces the highest spike rate. Moreover, the activity of
the neurons corresponding to non-preferred directions
shows a lower spiking activity when implementing
the greedy pursuit. This dynamic reflects the lateral
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interaction (here an inhibition to the positively correlated
neurons) generated at every spike which is observed in
V1 [Celebrini et al., 1993]. In fact, compared to the linear
model, the latency and the frequency of the neighboring
neurons show a sharper response for neighboring edge
orientations (see Fig. 16) which corresponds to the high
selectivity observed in simple cells from V1 [Ringach
et al., 2002]. The selectivity of this model was compared
with the model of divisive normalization [Schwartz and
Simoncelli, 2001], suggesting that this simple implemen-
tation of Integrate-and-Fire neurons —linked by lateral
interactions and removing dynamically the redundancy
in the signal— could provide a functional model for the
complex processing occurring in cortical areas.

3.2 Building adaptive low-level vision systems

As was emphasized in the first section, the connectionist
view of cognitive functions emphasizes on the construc-
tion of a network of similar micro-circuits (see Sec. 1.1.3).
To allow an efficient processing of the input, these should
therefore adapt according to variable internal parameters
(such as the weights of the neural connections) thanks
to a generic “learning program” . However we miss a
general theory for learning in the CNS and in particular
for low-level visual system. We will here try to define and
study a learning rule based on an efficiency criteria at the
level of a neural assembly and then apply it to a model of
adaptation in the primary visual cortex.

3.2.1 Sparse Spike Learning: adapting towards efficient
representations

Let’s first formalize the long-term goal of a neural
assembly —such as cortical mini-columns defined in
Sec. 1.2.2— as the optimization of the efficiency defined
in the previous section. A major keystone in modeling
learning in neural assemblies was established by Hebb
[1949]. It simply stated that :

"When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased."

It should be noted that this "Hebb rule" was only a
small fraction of Hebb’s theory which insisted on the
notion of cell assemblies and of associative memories as
was defined above in Sec. 1.3.3. In this aspect, the rule
takes another formulation than what is usually applied
to the single neuron and rather focuses on populations
of neurons. In fact, applying simply the "Hebb rule" on
a linear representation using the correlation generates
preferred directions as the axis of a Principal Components
Analysis [Oja, 1982], which is in particular known to
badly represent natural visual scenes (but which may
serve as a processing as explained in Sec. 2.1.4). In our
framework, we would rather interpret this statement as

adjusting the relation between different points in the
inferential network, for instance : "if a set of events A
is more probable than expected in successfully causing an
event B, then increase their link to adjust the prediction
of B knowing the set A".
The dictionary should adapt in an unsupervised manner
as a function of the input ’s statistics so that the coding is
the most efficient, that is that the data is at best explained
by the LGM model. Inspired by the measure of the log-
likelihood of the data knowing the model as an upper-
bound for the description length [Shannon and Weaver,
1964], we may thus try to maximize it over a subset I of
images corresponding to natural behavioral conditions:

L = E[− log(P(L|A)]L∈I (52)

where E[.] represents the mean. However, maximizing
this cost requires the evaluation over a huge set of images
and conditions, a task which is not compatible with
biological constraints.
Based on the work of Olshausen and Field [1998], we will
derive a learning as an algorithm gradually optimizing
this efficiency criteria. A solution is to use the Sparse
Spike Coding representation that we defined in the
previous section since we have an evaluation of the log-
likelihood by the distance of the residual image to the
selected filter (see Eq. 34), the rest being regarded as a
perturbation which should cancel out by integrating it in
time. Translating the Hebb rule to our model of sensory
coding (see Fig. 12) at every single coding step n, it could
be translated in "if an image L is causing the efficient
response of j, then A j should be adjusted toward L". At
this step of the pursuit and using the gradient descent
approach as in [Olshausen and Field, 1998], we infer that
we may slowly modify the weight vector corresponding
to the winning filterA j(n) . This learning consists in taking

the winning weight vector closer to L
(n)

s(n) by applying:

A j(n) ← A j(n) + η.s(n).(L(n−1) − s(n).A j(n) ) (53)

or equivalently

A j(n) ← A j(n) + η.s(n).L(n) (54)

where η is the learning rate (this is exactly Eq. 17
in [Olshausen and Field, 1998]). By slowly adjusting A,
this will therefore in the long term enhance the coding
efficiency of the coding algorithm. Moreover, this method
provides when it converges a set of optimal filters in the
sense that their activity is optimally independent [Lewicki
and Sejnowski, 2000]. It is thus a hebbian-like learning,
but instead of being applied to the linear representation
it is based on the sparse representation implemented by
the Sparse Spike Coding.
Moreover, to keep the assumption of an uniform prior (see
Sec. 2.1.4), it is important to include a regulatory mech-
anism in the learning algorithm. This will correspond
to an implementation of the homeostatic aspect of the
"fair competition" among neurons as stated in Sec. 1.2.2.
In fact, the first neurons to learn will be more prone
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to be selected again and the following representations
will have a non-uniform prior on the probability of
being activated. Inspired by the SN algorithm, we
introduced a gain control mechanism which influenced
the choice of the winning neurons. By taking advantage
of the probabilistic representation by explicitly changing
the probability of being selected, we may for instance
modify Eq. 31 as

j(n) = ArgMax j[P(L(n)|A j)/P
(n)( j)] (55)

where P(n)( j) is the probability of choosing a neuron j at
rank n computed over the previous coding steps 40. This
provides an homeostatic parameter which ensures that
the competition in the neural assembly keeps fair in a
certain time window.
This sparse hebbian rule is therefore a simple approach
that has many similarities with other algorithms. It may
be proved that in a stationary environment, this rule
would yield progressively sparser representations [Per-
rinet, 2004a] and would converge to the optimal solution
defined by Independent Component Analysis [Bell and
Sejnowski, 1995, 1997]. In fact, the learning rate gives a
temporal scale and the learning focuses on slowly varying
features as is used in Slow Feature Analysis [Wiskott and
Sejnowski, 2002]. We may also compare the algorithm
as Vector Quantization (VQ) which would be applied
on a multidimensional unit sphere corresponding to the
different features. Our approach is therefore relatively
conservative, and we will see its implications on modeling
learning in a population of neurons.

3.2.2 Neural implementation of Sparse Spike Learning

Similarly as the Sparse Spike Coding algorithm and
since they are based on similar mechanisms, this set of
linear event-based computations are easily implemented
in a network of spiking neurons. We may extend the
neuronal implementation of the Sparse Spike Coding
by integrating the Hebbian rule at every event. Using
similar assumptions and notations as in Sec. 3.1.4, only
the winning neuron will be modified and as in 54 :

A j∗ ← A j∗ +
1

τ
.s∗.L∗ (56)

where τ = 1/η is the learning time constant (in number of
spikes) as in Eq. 22 and L∗ the residual image. We may at
the same time modify the correlations (that is the lateral
connections) with

∆R{ j, j∗} =
1

τ
(<
L
∗

C j∗
,A j > −R{ j, j∗}) =

1

τ
(

C j

C j∗
− R{ j, j∗}) (57)

40 We will see that it is easy to compute P(L(n)|A j) using a
similar LUT as in Sec. 2.1.1. This homeostatic constraint could
be included in the generic cost defined above since a variability
in the behavior of the neurons would result in a quantization
cost as in Eq. 25.

and implement a rule to learn the LUT :

LUT(r)← (1 − 1/τLUT).LUT(r) + 1/τLUT.C j∗ (58)

where τLUT is the learning time constant of this rule. For
a given value C j this function gives a way to compute

P(L(n)|A j). Finally, we may implement the homeostatic
rule in this distributed approach by changing the gain
of the activity. More simply, using Eq. 48, we may vary
the threshold by setting a different threshold θ j for every
neuron and at step n:

θ j = −θ.P(n) with (59)

P(n)( j)← (1 − 1/τhomeo).P(n)( j) + 1/τhomeo.δ( j(n) = j∗)(60)

where τhomeo is the homeostatic time constant and δ is the
Kronecker function.
As a causal temporal learning rule, the sparse hebbian rule
is related to Spike-Time Dependent Plasticity (STDP) [De-
banne et al., 1995; Bell et al., 1997; Bi and Poo, 1998;
Abbott and Nelson, 2000]. In fact, this algorithm enhances
temporally causal relationships, and is by construction
similar to STDP, but the exact learning modification will
depend in this functionalist view to the activity of the
whole population of neurons. The net weight change
between neurons may thus be alternatively hebbian
and non-hebbian, and the learning time window in
particular may have varying shapes during the learning.
In particular this shows that the hebbian learning on
the linear representation defined in the method of van
Rullen and Thorpe [2001], that is the learning proposed
in [Guyonneau et al., 2005] could not yield independent
components when applied to multiple inputs. Our ap-
proach may therefore explain the variety of learning time
windows that may be observed [Abbott and Nelson, 2000]
and that may be a consequence of this more general rule.
The importance of the learning lies instead in constantly
maximizing the efficiency of the network which should
—in a stationary environment— increase monotonously.

3.2.3 Performance of the Sparse Spike Learning and
Coding

We compared this "sparse-hebbian" learning scheme
with the SN algorithm. In fact, our algorithm
(equations 30, 31 with 55 and 54) mainly differs by the
method used to obtain the sparse representation. The
latter uses the conjugate gradient method [Olshausen and
Field, 1998] to optimize a trade-off between sparseness
and reconstruction quality. We used a similar context and
architecture as these experiments and used in particular
the database of inputs of the SN algorithm. Here,
we show the results for 12 × 12 patches (so that M =

144) from the whitened images and we chose to learn
169 filters. We optimized some parameters for instance
by evaluating the variance of noise in the database.
However, varying every learning parameter showed to
rarely change the results qualitatively and illustrated
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Fig. 17. Results using the sparse-hebbian learning scheme
with 196 filters. Starting with random filters, we compared
here the results of the learning schemes using (Left) the
classical conjugate gradient function (’cgf’) method as is
used in [Olshausen and Field, 1998] with (Right) the Sparse
Spike Coding method. Results replicate the original results
of [Olshausen and Field, 1998] and are similar for both methods:
both dictionary consist at convergence of Gabor-like filters
which are similar to the receptive fields of simple cells in the
primary visual cortex [Ringach, 2002]. Edges appear in these
conditions to be the independent components of natural images.
However, it should be noted that the Sparse Spike Coding
method introduces less localized filters and a higher proportion
of high-frequency Gabors when no efficient homeostatic rule
was defined [Perrinet, 2004a, 2006]. All scripts generating
figures and control experiments are available, see Sec. 3.4.3)

the stability of both algorithms41. The convergence was
mostly quick (after ∼ 500 learning steps for η = 1/20) and
the homeostatic rule was efficient to keep the prior flat.
As in SN, we observe the emergence of similar
structure as the receptive fields of simple cells in the
primary visual cortex [Ringach, 2002] (see Fig. 17). It thus
experimentally provides a simple neural implementation
for Independent Component Analysis [Lewicki and Se-
jnowski, 2000].
We also compared the efficiency of both coding algo-

rithms on the learned representation basis (see Fig. 18)
with a similar method as in Fig. 14. Computationally, the
complexity of the algorithms and the time required by
both methods was similar on the different simulations
on a computer. However, the Sparse Spike Coding is by
construction more adapted to a parallel architecture. It
also provides a progressive result while the conjugate
gradient method had to be recomputed for different
number of coefficients. Best results are those giving a
lower error (or higher SNR) for a given sparsity or a
lower sparseness (better compression) for the same error.
In both cases, the Sparse Spike Coding provides a coding
paradigm which is of better efficiency as the conjugate
gradient and of lower complexity.

41 In particular, we studied modifications —such as the use of
natural gradient [Lewicki and Sejnowski, 2000] or using rectified
coefficients— with little qualitative differences.
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Fig. 18. Efficiency of the matching pursuit compared to
conjugate gradient. We compared here the matching pursuit
(’ssc’) method with the classical conjugate gradient function
(’cgf’) method as is used in [Olshausen and Field, 1998] for the
coding of a set of 10000 image patches drawn from a database
of natural images. We plot the mean final residual error and
the signal to noise ratio (in dB) as a function of two definitions
of sparseness : (Left) the mean absolute sum of the coefficients
(the sparseness defined in [Olshausen and Field, 1998]) and
(Right) the number of active (or non-zero) coefficients (the
coding step for MP) which provides an estimate of the coding
efficiency (in bits) for the image patch. The conjugate gradient
function approach was applied twice ( ’cg X2’, see text). For
this architecture, the sparse spike coding scheme proves to be
more efficient to learn and code natural image patches. The
approximate solution for the hard constraint (Eq. 29) is therefore
more efficient on both constraints costs.

3.3 A model of computations in the Primary Visual
Cortex (V1)

To illustrate the efficiency of the Sparse Spike Coding on a
larger and more realistic scale model of a low-level visual
area, we applied the algorithm to a model of the primary
visual cortex (V1). As was stated in Sec. 1.3.1, we will
assume that the function of V1 is to represent a "sketch"
of the visual scene. We will restrict here the model to
the response to a flashed static grayscale image (as in
Sec. 2.1.3) and in particular study the dynamics of the
response to the oriented edges that delimit visual objects.
We will present some particular extensions permitted
by this algorithm such as adding long range prediction
interactions which may enhance the overall efficiency
of the algorithm and that we will put in a neuro-
physiological perspective.
In fact, a model of the edge content of natural images is
of great importance for understanding the visual scene.
It is widely used in image processing for multiple tasks
the human visual system is supposed to perform such
as segmenting objects by their shape or denoising using
prior knowledge on the statistics of edges. This has led
to numerous formalizations [Marr, 1980; Canny, 1986;
Deriche, 1987; Castan et al., 1990] which we will try to
understand in the framework of our formalization. This
extension of the previous framework will serve to forge a
general framework of an efficient dynamical distributed
event-based computing scheme.
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Fig. 19. Multiresolution scheme with 6 orientations and 5
scales. (Left) Schematic contours of the filters in the Fourier
domain. The Fourier domain origin (DC component) is located
at the center of the inset and the highest frequencies lie on
the border. (Right) Real (symmetric) part of the filters in the
space domain. Scales are arranged in rows and orientations in
columns. The two first scales are drawn at the bottom magnified
by a factor of 4 for a better visualization. The low-pass filter is
drawn in the upper-right part.

3.3.1 Multi-scale edge representation: Sparse Edge
Coding

In natural scenes, edges exist at multiple scales and we
may extend the previous algorithm (see Sec. 3.1.4) to a
more appropriate architecture such as multi-scale edge
detection [Mallat, 1998, p. 452]. As in section 2.2, we
will generate all filters by replicating mother functions
according to translations and scalings so as to transform
the image in a map as in Sec. 1.3.3. As pointed by Jones
and Palmer [1987], simple cells in V1 approximately fit
Gabor filters which in turn are well approximated by
partial derivatives of 2D-Gaussians. In particular, from
the sensibility of vision to the relative frequency (an effect
known as Weber’s rule), the mother wavelet may be
defined in the polar coordinate (r, θ) of the Fourier domain
as log-Gabor filters [Field, 1987] :

Gk(r, θ) = exp(−
log2(r/rk)

2.σr
2

). exp(− (θ − θk)2

2.σθ2
) (61)

where (rk, θk) is the center of the filter and (σr, σθ) are
respectively the frequency and angular bandwidth of the
filter (see Fig. 19). Optimizing this representation, we
may set up the tiling of the discrete wavelet architecture
using 5 scales and 6 to 8 different orientations [Fischer
et al., 2005; Redondo et al., 2005; Fischer et al., 2006b].
In particular, the activity images are complex numbers
and the argument (the angle of the complex number) of a
particular neuron will in fact correspond to the phase of
the Gabor filter (see Fig. 19). This analytical formalization
permits thus to capture the diversity of receptive fields
types in a simple abstract fashion.
As a linear over-complete transform, it fits particularly

well to the Matching Pursuit algorithm. As in Sec. 2.2, the
modulus operator will be used to detect the best match
and we then extract at every step the particular location,
phase, orientation and scale of the winning neuron. It
thus implements in a simple manner a population of
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Fig. 20. Regularity of edge coefficients distribution in natural
images. We plotted for 200 natural images the mean and
variance (depicted by the dotted lines representing the mean
± one standard deviation) of the decrease of coefficients values
in the probabilistic Matching Pursuit scheme described above
as a function of the rank. Assuming that these values represent
the edge content of the images, it shows that the probability
distribution of edge coefficients is regular in natural images and
may be used in an efficient compression scheme. It permits to
evaluate the coefficients quickly as a function of the rank, and
since the transmission error being proportional to the variance
to transform efficiently an analog image in a wave of spikes. It
should be noted that this decrease is much more rapid than the
one observed in the model retina the coefficients are below .15
after 1% of relative rank (to compare with Fig. 7).

simple cells with different phase preferences and gives
a phase-independent evaluation of the edge content
on the receptive field as may be observed in complex
cells of V1 [Liu et al., 1992]. In this particular case,
the correlation between filters could be analytically
computed in the Fourier domain and the algorithm is
therefore of relatively low-complexity (see [Fischer et al.,
2005] for details). Moreover, this transformation was
designed to be self-invertible [Fischer et al., 2006b] to
ease the reconstruction of the image from the coefficients
and applications to image processing (as a consequence
the point spread function from Eq. 18 is a discrete dirac
function). As in Sec. 2.2.2, we observed that over a
database of natural images, the decrease of coefficients
as a function of their rank was smooth (see Fig. 20).
This observation extends the experiments of Ruderman
and Bialek [1994] which suggest that the local contrasts
of different orders follow regular statistics to this non-
linear transformation. The Sparse Spike Coding approach
would thus yield here a small quantization error.
To evaluate the efficiency of this algorithm, we compared
it with existing solutions on a set of natural images. We
first computed on a first set of natural images the LUT (see
Fig. 20). The LUT was then used to code the amplitude
of coefficients according to their rank and was used to
code a second set of 200 natural images. We therefore
could compare the efficiency of this algorithm in terms
of data compression with the standard JPEG method and
the SEC algorithm described in [Fischer et al., 2005]. We
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Fig. 21. Compression efficiency of MP compared to SEC and
JPEG. We compared the coding efficiency measured as the
normalized root mean squared error (RMSE) as a function of
the coding entropy (in bytes per pixel). A RMSE of 0 means a
perfect reconstruction, while a RMSE of 1 means that the error
is maximum (null image). Three phases corresponding to the
three method appear in the graph. The MP method is capable
of coding with very low entropy starting at relatively low
efficiency, but getting progressively better. The JPEG method
is not adapted to low-entropy coding but gets very good results
after a medium quality parameter (around 60 and 1 bpp). The
SEC method gives intermediate results of good efficiency in
rather low entropy ranges.

varied the entropy of the output signal by varying the
quality parameter in JPEG and the number of chosen
coefficients (that is the rank) in both other methods.
Assuming that the goal of low-level sensory system is
to transform the representation while loosing the least
information, we measured the RMSE (see Fig. 21 ) as a
measure of the efficiency of the methods. The RMSE was
computed after decorrelation which accounted for the
spatial frequency sensibility of the human visual system
(as seen in Sec. 2.1.4). As a conclusion, the MP method
appears to be particularly efficient for a crude and quick
"sketch" of the image. Adaptive methods as the SEC
algorithm appears therefore to be a promising method for
an efficient coding scheme on a wider range of behavioral
situations in particular in noisy environments.

3.3.2 Handling uncertain input and filters

In Eq. 31, we made at every step the "greedy" assumption
that the detection of an edge and its amplitude was correct
and we explore here if we may enhance the algorithm by
accounting that our knowledge is non-uniform on the
image and receptive field. In fact, it is often argued that
the Matching Pursuit scheme provides an approximate
solution since the decisions made at every step influence
the rest of the algorithm. An error at a given step may
therefore be propagated and amplified in the following
steps. Though the squared error is bound to decrease, the
activity may at certain steps increase. A first solution is to
introduce a prior in Eq. 13 that favors small amplitudes
and which implies that only a fraction of the correlation is

Fig. 22. Edge extraction using the multi-scale representation.
(Left) 128×128 pixel image "Boats". (Middle) Edges extracted by
sparse Gabor wavelets. 1st scale and 2nd scale edges appear in
black. The 3rd scale edges appear in gray, they are plotted larger
since the 3rd scale is downsampled and offers coarser spatial
localization. (Right) Edges extracted by Canny method [Canny,
1986; Deriche, 1987]. The SEC method extracts edges which are
subjectivelly more accurate. Reconstruction of the image using
these edges revealed qualitatively better results (see [Fischer
et al., 2006b]).

removed to neighboring neurons is removed at every step
(this "smoothness" regularization factor is determined by
the variance of the prior). This comes however on a price
for the sparsity of the signal (correlated neurons are more
likely to be selected when this factor increases). Another
solution is to take into account our knowledge of the
evidence of the inferential decision: the "greediness" of
the algorithm being now regulated by our actual evidence
of the action potential.
However, a problem with Matching Pursuit [Mallat
and Zhang, 1993] is that any decision in this recursive
scheme is propagated to the following steps and that the
algorithm is progressively more prone to detection errors.
Thanks to the interpretation of MP in a probabilistic
framework [Perrinet, 2004b], we may lower the risk of
false detection by explicitly taking into account the vari-
ability of image formation in space but also specifically to
the knowledge of one source:

L − s.A j = n j (62)

with n j being a gaussian centered noise image totally

characterized by the image of variances Â j.
As in Sec. 2.1.4 and [Perrinet et al., 2005], we may derive
the optimal choice as the maximum a posteriori now as:

j∗ = ArgMax j|C j|with C j =

∑

i α ji.A ji.Li
√

∑

i α ji.A
2
ji

(63)

with i spanning the indexes of image pixels and α ji =

1/Â ji acts as a "transparency" channel on the image or
the receptive field j: all pixels will not have the same
weight on the decision, typically, the surround accounting
for less information than the center. This new metric
measure is equivalent to a dot product and similar to the
χ2 measure, accounting for the non-uniform variability
of measures in the receptive field of the neuron. It is
also somewhat similar to the Mahalanobis [1936] distance
if we measure statistically the variances Â ji. We may
also implement in this framework a image based alpha-
channel corresponding to outside the image (and for
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which αi = 0) or for retinotopic areas, as the scotoma,
where the information is permanently uncertain. This is
for instance present in the blind spot, an area of the retina
where the convergence of the axons from ganglion cells
doesn’t allow for the reception of luminous information.
We may then resume the algorithm as in MP by removing
the pattern corresponding to the winning neuron as:

L← L − s∗.A j∗ with s∗ =

∑

i α j∗iA j∗i.Li
∑

i α j∗i.A
2
j∗i

(64)

It corresponds to the mean estimated best source, and it is
in this framework minimizing the risk of a false detection.
This may be implemented directly by a lateral interaction
using for all j

C j ← C j − s∗.R{ j, j∗} (65)

where

R{ j, j∗} =

∑

i α ji.A ji.A j∗i
√

∑

i α ji.A
2
ji

(66)

is the correlation of the neurons with the winning neuron.
Note that the activity of the winning neuron is canceled.
We applied this framework to a simple reconstruction
task where

1. the alpha-channel of each receptive fields was circular
2. the scotoma was defined as the border of the image

and a known image of alpha values (by modeling the
extent of the blind spot)

The results show that an original image could be re-
constructed despite the incomplete input information.
This method provides therefore an explicit method for
handling uncertainties by taking advantage of the proba-
bilistic representation. It also provides a generic method
for handling edges which outperforms heuristic methods
which are typically used (e.g. mirroring) and which could
be of use in image processing when having an a priori
knowledge of the non-uniformity of uncertainties.

3.3.3 Predicting cocircular edges using the local context

It is a priori more probable in natural images that edges
are aligned according to smooth contours and we may
introduce this knowledge in our algorithm. This has been
exploited in numerous studies and models and has been
formalized using neuro-physiological evidence [Kovacs
et al., 1999; Geisler et al., 2001; Sigman et al., 2001]
by defining an associative field [Field et al., 1993; Seriès
et al., 2002]. It also correlates with the observed lateral
propagation of information in V1 [Grinvald et al., 1994;
Georges et al., 2002; Bair et al., 2003; Jancke et al., 2004]
and could serve to understand the functionality of the
flow of information at the different scales of V1. This field
modifies the excitability of neighboring neurons knowing
one edge and is implemented by long-range lateral
interactions modifying the threshold or equivalently the
global conductance. It may be understood physically by

the larger co-occurrence of oriented edges in natural
scenes and is related to the Gestalt law of good continuity.
It may be formally modeled as a prior on co-circular
edges with a prior for low curvatures (that is for straight
lines). Introducing this information will enhance the fair
competition between neurons of V1 and thus increase
efficiency.
This information is particularly adapted to the dynamical
approach of our distributed probabilistic method. In fact,
the probabilistic representation enables to combine infor-
mation from different modalities, as here the information
from the input image (that is the residual image at rank
n) and the information from the edges already extracted
at this time. This knowledge modifies the assumption
of independence of the activity of neighboring cells at
a larger scale than a cell’s RF and we may assume that
the a posteriori probability from Eq.13 is modified by the
knowledge on the edge that we already extracted (noted
J = { j(k)}1≤k<n) by:

P({ j(n), s(n)}|L,J) = P({ j(n), s(n)}|L).P({ j(n), s(n)}|J) (67)

The prior from the known edges combines (by conditional
independence) as

log P( j(n)|{ j(k)}1≤k<n) =
∑

1≤k<n
log P( j(n)| j(k)) (68)

The probability of occurrence of an edge k knowing an
edge l is here parametrized by

− log P(k|l) = log Z +
d( j, k)2

2.σ2
d

+
c( j, k)2

2.σ2
c

+
δ( j, k)2

2.σ2
δ

(69)

where d( j, k), c( j, k) and δ( j, k), are respectively the dis-
tance, the curvature and the angle between the two edges
(see Fig. 22-Left) and σd, σc and σδ the respective standard
deviations for the measures. This parameters are tuned
to match the effective probability in natural images, but
from the circular definition of the edges obtained by the
method, special care has to be put on the stability of this
tuning. In fact, even if it is intractable on a sequential
machine, the strategy used in cortical columns is certainly
simpler and based on a slowly varying rule which
statistically "computes" the a priori co-occurrence between
neurons. From the extension presented in Sec. 3.3.3, we
may implement a simple rule to learn associative fields.
This rule is again based on an evaluation of the probability
of the activation of one neuron k knowing that another
neuron l was activated before. This may be written :

P(k|l)← (1 − 1/τpred).P(k|l) + 1/τpred.δ(l) (70)

where τpred is the time constant of this learning rule.
Finally, this approach similar to advanced algorithms in
image processing such as contourlets [Le Pennec and
Mallat, 2005] but it introduces a more general adaptive
framework which reflects aspects of the processing
occuring in V1. These extensions suggest that local
information is integrated (up to the cost in metabolic
"wet-ware") using a generic predictive mechanism which
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Fig. 23. Denoising results. (Left) This 120×120 detail of the image
"Boats" is corrupted by Gaussian noise for a Peak-Signal to
Noise Ratio (PSNR) of 20.22 dB and contains an important level
of noise. (Middle) After denoising by bi-orthogonal wavelets
’db4’ and soft-thresholding a high level of artifacts appears,
PSNR=24.65 dB. In "Boats" many details, i.e. the wires, appear
smoothed and almost disappear while some noise points
still remain. (Right) The image denoised by sparse log-Gabor
wavelets shows a dramatic decrease of the level of artifacts,
moreover some important details now appear preserved and
the blur is lower. The PSNR shows an important improvement
up to 25.30 dB.

could be described in terms of the local micro-circuitry of
cortical columns.
Let’s draw an application from these formalizations. In
particular, if we note in a matrix form W the linear
transform and h∗ the set of selected coefficients for a
perturbed image L, it may be proved that the image min-
imizing the error cost for a denoising task will be given

by W
T
(W

T
W)−1

L where W is the matrix corresponding
to the linear transformation but limited on the selected
coefficients h∗. The pseudo-inverse may be approximated
by the Landweber algorithm. This was implemented with
the log-gabor architecture and exhibits promising results
(see Fig. 23).

3.3.4 Learning transform-invariant representations:
Sparselet Analysis

As stated in the introduction of this section (see Sec. 3.1.1),
a major feature of biological vision is its robustness to
frequently occurring changes in the visual scene such as
those produced by our self-motion: translations, zooms,
rotations. We will here describe a general method to
achieve a transform invariant representation by setting
that for a transform in the image space, there exist
a transform in the representation space. To implement
this feature on a computer model for translation of the
image, we will as a first approximation impose the weight
patterns to be exactly the same at different locations and
scale in a Laplacian Pyramid [Simoncelli and Freeman,
1995]42 as was done by Sallee and Olshausen [2003].
This approximation was verified on the small patches

42 In particular, we used the same representation algorithm as
in [Burt and Adelson, 1983]. The invariance is therefore exact
over discrete translations and dyadic scales. This procedure is
based on the hypothesis that stimuli appear similarly according
to these transformations and is a major constraint of the limited
amount of memory (see Sec. 1.1.2).

of images where we obtained filters that were similar up
to a translation (see Fig. 17). The Sparse Spike Coding
algorithm may be easily extended to the translation
constraint [Perrinet et al., 2002] and was applied to
the image pyramid. The activity of the neurons was
computed at every scale of the pyramid using the
correlation operator (that is the convolution with the
central symmetric transformation of the filters) which
produced the initial activities. We then used the same
operator to compute the correlation between filters and to
define lateral interactions. By this way, we implemented
the Sparse Spike Coding algorithm in this architecture by
virtually replicating a "column" of filters at every position
and scale of the pyramid.
We used the same parameters as in the previous section,
but on larger images of 100 × 100 pixels and with an in-
creasing number of filters (this number thus corresponds
to the over-completeness of the dictionary). As in the
previous section, we see the emergence of edge selective
filters. However, since these are replicated at all positions,
similar filters but with different positions would compete
and only the strongest —generally a centered filter— is
selected (see Fig. 24). This allow for a greater competition
of the selection of features in the images, and the center
of winning filters will be implicitly more probable to
be chosen first on irregular parts of the image (which
corresponds to higher activities)43. This was enhanced by
the spatial kurtosis of natural images since they typically
show large "uninteresting" regions and more localized
regions where the algorithm will by construction be more
likely to fire spikes (see Fig. 20). As we increase the over-
completeness, the number of orientations increases as
well as the length of the edges. It is of special interest
to see that under this efficiency criteria, the different
qualitative features of edges, orientation, relative scale,
aspect ratio, phase will appear in different orders, the
information on orientation being for instance prioritary
on the phase information. We also see filters with a
similar shape but scaled with a factor inferior to 2, as
was used in Sec. 3.1.3 and [Perrinet et al., 2004]. In
fact, a lower over-completeness forces the filters to be
more general and therefore to be selective to a wider
range of orientations. As is observed in progressively
higher level of the hierarchy in the visual pathways,
there is a progressive sharpening of the selectivity of
neurons (typically, edge filters get "longer"). Finally, we
obtain a set of mother wavelets, replicated at the different
positions and scales of the pyramid and which allow for a
translation and scale invariant representation of images,
hence the name Sparselet Analysis.
We studied the coding efficiency of this architecture for

different over-completeness values and compared it to the
linear laplacian and steerable pyramids. At the end of the
learning scheme, we coded a set of 1000 images in every
over-completeness condition. As stated above, the MSE
provided an efficient measure of the information carried
by the code and we measured it during the algorithm for

43 This is desirable since in natural images, large portions, such
as the sky or smooth surfaces, have relatively low edge content
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Fig. 24. Filters obtained using the Sparselet Analysis. We
show the resulting mother wavelets from the Sparselet Analysis
scheme at different levels of over-completeness, respectively
(Left) 4, (Middle) 16 and (Right) 64 filters per pixel. As in Fig. 17,
we see the emergence of filters selective to different orientation
but also to different sub-scales. These are centered since similar
filters in the pyramid (translation and 2-fold scaling) compete in
the algorithm. The results exhibit a sharpening of the selectivity
of the filters as the over-completeness increases. Note that
this sets of filters correspond to the feature vectors defined in
Sec. 1.3.3.
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Fig. 25. Efficiency of the Sparselet Analysis. We compared
here the sparselet analysis scheme at different levels of over-
completeness with classical methods. We plot the residual
Mean Squared Error (MSE) over a set of 1000 natural images
for different numbers of spikes. (Left) The MSE is plotted in
function of this number : the sparse spike coding algorithm
outperforms the laplacian (Lap.) and steerable pyramid (Steer.)
linear representations and gets better as the over-completeness
increases. (Right) When plotting the MSE as a function of an
approximate of the information needed to code the spike list,
the increase of efficiency is less marked: these strategies have
similar efficiency.

different number of coefficients. As in Fig. 25, we rated
the MSE in function of the number of selected coefficients
(see Fig. 24-Left). However, as the over-completeness
increases, so would be the number of bits necessary
to code every address. We therefore plotted the same
results but as a function of the bytes necessary to code
the address (see Fig. 24-Right)44. The results show that
the Sparselet analysis is better adapted to code natural
images. In fact, the information transfer gets better as the
over-completeness increases. However, the information
transfer rate is already optimal for 16 filters per pixel
and having more filters per pixels may give an over-
fitted representation of visual features. A limit of this

44 It is a similar in the method to Fig. 21.

approach is that we don’t know a priori the number of
neurons necessary to represent a special feature, that
is the complexity of the edge content that is coded in
V1. However, we may see that for Fig. 24-Right, filters
relative to higher order information (such as corners)
appear which are no longer characteristic to V1. This over-
completeness (approx. 16) also roughly corresponds to
estimation made on cells in V1.

3.3.5 Topological Sparselet Analysis

The filters that were learned by this method where
randomly permutable45 and we may use the information
of the position of the address of each learned filter
in the feature vector to enhance the representation’s
efficiency. In fact, a natural extension of this model
was to introduce lateral connectivity between these
neurons in the Sparselet Analysis learning scheme. This
introduces topological relations between neurons as
implementing the association of neighboring spatial
responses to neighboring neurons in the hyper-column.
By taking advantage of the probabilistic framework, this
facilitation may take the form of the a priori knowledge
of the selection of a neighboring (similarly as in 3.3.3).
We parametrized it by an exponentially decreasing gain
on the chance of selection of the winning neurons (that is
by modulating the threshold) whose amplitude and fall
constant experimentally did not change the qualitative
results but only the convergence rate of the solution.
This strategy leaded in general to a better convergence
since learned features in filters —and which therefore
appeared more frequently in comparison to random
filters— cooperated to neighboring filters. This scheme
led to the emergence of a "pin-wheel" by associating
the learning for neighboring neurons (see Fig. 26) and
could be a the origin of the emergence of pinwheel
hyper-columns as a basic module in V1 for detecting the
orientation of edges46.

3.4 Causal Sparse Spike Coding: an event-based
computational approach

A particular challenge in this class of model is to extend
the input to a continuous flow of information. In fact,
we so far used flashed images to study the transient
processing of the information which is of particular
importance in the CNS, but a realistic model should be
able to handle natural scenes, that is varying images
stimuli. Moreover, this is necessary when considering a
higher level area after the retina, for which the visual
input is dynamically transformed into a spatio-temporal
signal thanks to the dynamics of visual pathways.

45 In fact, their particular order on the grid as presented in
Fig. 17 and 24 is totally random.

46 The particular projection of this feature map on the 2D
surface of the cortex is not addressed here but we refer to [Petitot,
2003].
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Fig. 26. Emergence of a topological set of orientation selective
filters. As presented above, we simulated the emergence
of filters in the primary visual area but introduced lateral
connections between filters so that neighboring spiking filters
(and thus learning filters) was enhanced. This lead to the
emergence of topological relations between neighboring filters
similar to the neuro-physiologically observed pinwheels: all
different orientations are present while preserving a smooth
transition between neighboring filters. Note that the center
gets less selective (since the constraint is higher than in the
periphery), an observation which is contested in physiology.

3.4.1 Causal Sparse Spike Coding

If extending the Matching Pursuit to the time domain
is straight-forward, accounting for the direction of time
flow (that is to causality) impose to build a modified
algorithm. In fact, Matching Pursuit was first used
in the time domain [Mallat and Zhang, 1993] and is
used for instance in processing time-varying signals
or video flows [Blinowska and Durka, 1994; Neff and
Zakhor, 1997]. However, these methods don’t provide an
adequate model of what we know from the nature of time:
we should restrain the available information to the past
(for the future is not known) and constraint the possible
decision times (events) to the present. In all generality,
we may write a dictionary of filters as sliding windows
of spatiotemporal signals A j which we want to detect in
the input signal. As in Sec. 2.1.4, we may use the same
hypotheses (conditional independence of noise in time)
and state that for any given spatiotemporal signal L at
the present time t the information is only known from the
initial time t = 0 to the present. Therefore, thanks to Eq. 11,
we may compute at t for each element j the log-likelihood
of the match of LwithA j as a new spatiotemporal signal
:

C j(t) = 1/‖A j‖.
∫

u≤t

< L(u),A j(u − t) > du (71)

where ‖A j‖ is the norm of filters, that is ‖A j‖ = (
∫

u≤0
<

A(u),A j(u) > du)1/2. Most often, this is computed in
signal processing from the note that C j(0) = 0 for all j
and using a recursive formulation based on the shape of
A j.
Using an event-based approach and since C j(t) represents
a log-likelihood, we may state that if it crosses a threshold
θ, then we detected a feature and —similarly as in
matching pursuit— we will account for that decision on

the activity. It means that at this moment47 t∗, for a certain
j∗, C j∗ (t

∗) = θ and that we may subtract θ.A jk (t − t∗) from
L. This is fed back on C j as

C j(t)← C j(t) − θ.R{ j∗, j}(t − t∗) (72)

where R{ j∗, j}(t) = 1/‖A j‖.
∫

u≤t
< A jn (t− t∗),A j(u− t) > du. It

should be noted first that as in matching pursuit C j∗ (t
∗) = 0

but also that this feed back is not limited to the moment
of the decision but also to the (near) future, since in the
general case where R j∗, j(t) is not null for t ≥ 0. This will be
also true if we define predictive fields as in Sec. 3.3.3. This
formalization should be put in parallel with the range
of methods using Partial Derivative Equations (PDEs)
in signal processing. By combining a linear diffusion
implemented by the linear kernel corresponding to the
RF of the column with the spiking activity, it implements
a generic approach for the anisotropic diffusion of
the information. In particular, fruitful collaborations
should be foreseen by the interaction of this approach
(based on a Bayesian and neural formalism) and the
mathematical knowledge on PDEs. These links already
exist in the literature [Degond and Mas-Gallic, 1989;
Aubert et al., 2000; Grimbert and Faugeras, 2005; Viéville
and Kornprobst, 2006].

3.4.2 Application: generalized LIF

This general formalism may be first applied to dynam-
ically detect static features. In fact, this formalization
generalizes the algorithm presented in Sec. 3.1.4 if we
restrict the input to a constant image L after t ≥ 0
and define filters as separable sliding windows with
a constant image profile A j and a first-order linear
temporal filtering. It may be then easily proved that filters
with an exponential decay in time will implement the
linear integration of LIF neurons, the time constant τ
corresponding to a trade-off between present activity and
the short-term trace of activity :

C j(t) =
< L,A j >

‖A j‖
.

∫

−t≤0

e−t/τdu =
< L,A j >

‖A j‖
.(1 − e−t/τ)

(73)
with C j(0) = for all j. The choice of filters and times is
then exactly similar to Sec. 3.1.4 and leads to the same
observations thanks to this “backward compatibility”.
In practice, we observed that the threshold was a
parameter to control the trading off between speed vs.
accuracy. In fact, a lower threshold would give more
rapid results but at the same, the information needed to
reach that threshold may not be enough to discriminate
between different features. A higher threshold will on the
other side mean a higher accuracy by a longer latency.
These observations were applied by changing the overall
threshold but may also change the sensitivity of every
single neuron. This is a desirable feature when adjusting
the relative importance of neurons in a population and in
particular for learning.

47 This subtends a certain continuity of C j.



Laurent Perrinet: Dynamical Neural Networks: modeling low-level vision at short latencies 37

3.4.3 Application: Multi-layer architecture

The previous example shows that our formalism may
be generalized to a multi-layer dynamical architecture.
In fact, we only considered until now the case where
all information was flashed at an initial time and how
cortical layers would react of this input. In particular it
was not possible to handle a multi-layered network since
the output of a children layer to a flashed image would
be transformed in a spatiotemporal pattern of spikes
(which themselves would correspond in a theoretical
“read-out” reconstruction to a continuous flow). Thanks
to the extension of Sparse Spike Coding to the causal
model, we may give a simple expression for its extension
to multi-layer architectures, as was sketched in [Perrinet
et al., 2002]. In fact, similarly as in Eq. 33, the image can be
virtually reconstructed in a layer (here denoted by index
(2)) from the spike list generated at the previous layer (1):

L
(2)(t) =

∑

k

a(1)

k
.A

(1)

j
(1)

k

(t − t(1)

k
) (74)

and therefore the activity at this layer may be directly
computed as

C(2)
j

(t) =
∑

k

ak.

∫

u≤t

< A
(1)

j
(1)

k

(t− tk)(u),A(2)
j

(u− t) > du (75)

the kernel < A(1)
j

(v)(u),A(2)

k
(u) > corresponding to the

construction of a higher level receptive field with lower
level RFs (to simplify notations, all filters are normalized).
This would therefore reduce, according to the model

of [Hubel and Wiesel, 1974] to recursively updating C(2)
j

with a linear factor of known functions (as one edge
was modeled as an alignment of LGN filters). This is
a desirable feature since —as in the hierarchy of visual
pathways— it reduces the computational complexity
by minimizing the crosstalk to the minimum required.
However it increases the structural complexity of the
network.

Conclusion: distributed, event-based and
adaptive nature of neural computation

We proposed in the previous section how we could build
an adaptive, multi-layered, fully parallel and dynamic
model of cortical areas using discrete events. We saw
that to better understand the dynamics of neural com-
putations occurring in low-level vision, we may use a
functionalist and integrative approach. This conducted
the elaboration of a model using:

1. a distributed probabilistic representations using an
explicit model of the function of the area and of the
representation that is used. In particular, we saw that
cortical areas may explicitly represent maps of features
and that the neural activity may correspond to the
detection of these features.

2. computations are driven by binary events, spikes
which are generated so as to build efficient represen-
tations on the cortical area. This efficiency is regulated
by homeostatic rules which tune the competition
between neurons so that it maximizes its fairness,
finally generating a sparse code.

3. learning algorithms may be set so as to learn in an
unsupervised manner the features that may at best
represent the image while capturing regularities.

Originality of this approach Though limited to the
transient response of the visual system, this approach
introduced several originalities:

1. The computation of a match was linked to statistical
inference, enumerating thus all the hypothesis un-
derlying the chosen formulation (see Sec. 2.1.4). This
leaded to a better understanding of spatio-temporal
integration in the visual perception of motion (see
Sec. 2.3).

2. We have linked this linear representation with an
efficient algorithm, Sparse Spike Coding (see Sec. 3.1)
based on a neural implementation with lateral in-
teractions (see Sec. 3.1.4). Thanks to the regularity
of the coefficients of this non-linear representation
on natural images (see Fig. 20), this could lead to
efficient applications in image processing (Sparse
Edge Coding, see Sec. 3.3).

3. We have shown a method of learning in this Sparse
Spike Coding scheme which gave an efficient neural
implementation of Independent Components Anal-
ysis (see Sec. 3.2). This was extended to wavelet
representation (Sparselet Analysis, see Sec. 3.3.4).

4. We extended the formalization of Sparse Spike Coding
to the time domain, allowing the extension of these
formalisms to more complex stimuli but also to feed-
backs (see Sec. 3.4)

Cortical columns as computational bricks These dif-
ferent features are inherited by a fundamental hypoth-
esis on neural computations, that is the uniformity of
computational principles in cortical micro-circuits. In
fact, the previous principles are the direct consequence
of the construction of the cortex as a tiling of similar
micro-circuits. From the limited length of the genomic
information, this strategy provides a robust solution
which may adapt to the development on the CNS.
This hypothesis thus provides a conceptual framework
which may enable us to further understand the principles
behind our neural computations. It should however not
be taken strictly, and —as in all biological systems—
exceptions abound. In particular, the present definition of
the cortical column as an independent system seems more
due to the history of neuroscientific discoveries [Horton
and Adams, 2005].

Future challenges for modeling neural computations
However, it provides a fruitful tool to confront models
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of neural computations and to validate them with bio-
logical experiments. It also allows to segregate different
aspects of neural computations between different scales,
the study at the scale of cortical areas gaining from
knowledge on detailed models of the neuron but also at
a higher scale (integration at the level of the CNS, social
nets).
On an epistemological level, we see that this method
opens a number of future challenges to understand the
nature of neural computations. A main goal of integrative
neuroscience is the dialectal methodology between ab-
stract models and observations and sees at present a great
development thanks to the number of inter-disciplinary
cross-talk between corresponding fields (computational
neuroscience with neuro-physiologists but also cellular
neuroscience with integrative neuroscience).
This challenges the metaphor of the brain that we defined
in the beginning of this paper. Neural computations are
definitely not of the same nature as the electronic changes
occurring in present day sequential computers but relate
more to scale-free interactions of interconnected agents
each adapting to the rest of the system in a dialectical
recurrence, in analogy to the social nets building now the
culture of the world.

Reproducible research

Scripts reproducing all figures may be obtained from the
author upon request. In particular, scripts reproducing
the learning experiments (see Sec. 3.2) are available
on the author’s web-site at http://incm.cnrs-mrs.fr/
LaurentPerrinet.
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