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We discuss the transition from a fully decoherent to a (quasi-)condensate regime in a harmonically
trapped weakly interacting 1D Bose gas. By using analytic approaches and verifying them against
exact numerical solutions, we find a characteristic crossover temperature and crossover atom number
that depend on the interaction strength and the trap frequency. We then identify the conditions
for observing either an interaction-induced crossover scenario or else a finite-size Bose-Einstein
condensation phenomenon characteristic of an ideal trapped 1D gas.

PACS numbers: 03.75.Hh, 05.30.Jp, 05.70.Ce

One-dimensional (1D) Bose gases are remarkably rich
physical systems exhibiting properties not encountered in
2D or 3D [1, 2, 3]. Here we study the 1D model of bosons
interacting via a repulsive delta-function potential, which
plays a fundamentally important role in quantum many-
body physics. The reason is that the model is exactly
solvable [2, 3] and it is now experimentally realizable
with ultracold alkali atoms in highly anisotropic trap-
ping potentials (see Ref. [4] for a review). This means
there are unique opportunities for accurate tests of the-
ory that were previously unavailable, in turn leading to
the development of fundamental knowledge of interacting
many-body systems in low dimensions.

In this paper, we analyze the properties of the 1D Bose
gas in the weakly interacting regime, where the dimen-
sionless interaction parameter γ = mg/(n~

2) is small, n
being the linear density, m the atom mass, and g the
1D coupling constant. This is opposite to Girardeau’s
regime of “fermionization” [1] achieved in the limit of
strong interactions and subject of many recent studies
[5]. Our motivation for the study of the weakly interact-
ing regime is to reveal the nature of the transition to a
Bose-condensed state in a harmonically trapped system.

For a uniform weakly interacting 1D Bose gas, one
has a smooth interaction-induced crossover to a quasi-
condensate which is a Bose-condensed state with a fluc-
tuating phase. This occurs when the temperature T
becomes smaller than Td

√
γ [6, 7, 8, 9], where Td =

~
2n2/2m is the temperature of quantum degeneracy (in

energy units, kB = 1). For a harmonically trapped 1D
gas with weak interactions a similar crossover scenario
is expected [7]. However, due to the presence of the
trapping potential the interaction-induced crossover en-
ters into a competition with Bose-Einstein condensation
(BEC) predicted to occur in the ideal gas limit [10] as a
macroscopic occupation of the ground state. For a given

atom number N , this condensation phenomenon occurs
at temperature TC ≃ N~ω/ln(2N). It is a purely finite-
size effect and disappears in the thermodynamic limit
[11] where N tends to infinity while the peak density n0

is kept constant (this implies that the trap oscillation fre-
quency ω tends to zero in such a way that Nω = const).
The interaction-induced crossover to a quasi-condensate,
on the other hand, persists in the thermodynamic limit.

Thus, for sufficiently weak confinement one expects
to observe an interaction-induced crossover to a quasi-
condensate, rather than a finite-size BEC. The situation
is reversed for strong confinement. Here, we identify the
parameters of the interaction-induced crossover and find
the conditions that enable the realization of either of
these two competing scenarios.

We start by briefly reviewing the physics of a uniform
1D Bose gas in the thermodynamic limit, in the case of
very weak interactions γ ≪ 1. For T ≪ Td

√
γ, the gas is

in the quasi-condensate (Gross-Pitaevskii) regime where
the density fluctuations are suppressed and the gas is
coherent on a distance scale smaller than the phase co-
herence length: Glauber’s local pair correlation function
is reduced below the ideal gas level of 2 and is close to 1
[6, 7, 8, 9]. In this regime the chemical potential is posi-
tive and well approximated by µ ≃ gn. For T ≫ Td

√
γ,

the gas is in the fully decoherent regime: interactions
between the atoms have a small effect on the equation
of state and the local pair correlation is close to that of
an ideal Bose gas [6]. This regime contains the quantum
decoherent domain Td

√
γ ≪ T ≪ Td. In the decoher-

ent regime, the chemical potential µ is negative and the
equation of state is well approximated by that of the ideal
Bose gas:

n =

∫

∞

−∞

dk/(2π)

e(~2k2/2m−µ)/T − 1
=

√

mT

2π~2

∞
∑

j=1

ejµ/T

j1/2
. (1)
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FIG. 1: Equation of state of the uniform weakly-interacting
1D Bose gas for three different values of the temperature pa-
rameter t = 2T~

2/mg2. The exact numerical result (solid
line) is compared with the behavior in the quasi-condensate
regime (dash-dotted lines) and with the ideal Bose gas result
of Eq. (1) (dashed lines). The straight dotted lines correspond
to the classical (Boltzmann) ideal gas.

The crossover between the decoherent and the quasi-
condensate regimes (T ∼ Td

√
γ) corresponds to the den-

sity of the order of nco = (mT 2/~
2g)1/3. Using the

crossover density nco is convenient for analyzing the prop-
erties of the gas at a constant temperature and vary-
ing n. In this sense, the quantum decoherent regime
corresponds to nd ≪ n ≪ t1/6nd ≃ nco, where t =
T/Tdγ

2 = 2~
2T/mg2 is a dimensionless temperature pa-

rameter which is independent of the density and is large,
and nd =

√
mT/~ is the density of quantum degener-

acy at a given T . The width of the quantum decoherent
region in terms of densities increases with t.

In Fig. 1 we illustrate the properties of the weakly in-
teracting uniform gas by plotting the linear density as
a function of the chemical potential for three different
values of the temperature parameter t. The exact nu-
merical results [6] based on the finite-temperature solu-
tion [3] to the Lieb-Liniger model [2] are compared with
both the ideal Bose gas equation of state (1) in the re-
gion of µ < 0 and with the quasi-condensate equation of
state corresponding to µ ≃ gn > 0. For a given temper-
ature, the crossover from the decoherent regime to the
quasi-condensate corresponds to µ going from negative
to positive. We obtain n(µ = 0, T ) ≃ 0.6nco within 20%
accuracy as long as t > 103. Note that the values of t as
high as 103 are required to ensure that the gas is highly
degenerate at the crossover.

We now turn to the analysis of a harmonically trapped
1D gas and find the crossover temperature Tco and
crossover atom number Nco around which the gas enters
the quasi-condensate regime. For small trap frequencies
ω, the density profile of the gas can be described using
the local density approximation (LDA) [7]. In this treat-
ment, the 1D density n(z) as a function of the distance
z from the trap centre is calculated using the uniform
gas equation of state in which the chemical potential µ is
replaced by its local value µ(z) = µ0 − mω2z2/2, where

µ0 is the global chemical potential. Within the LDA, the
uniform results remain relevant and imply, in particular,
that the gas enters the quasi-condensate regime in the
trap centre once µ0 changes sign. In addition, as long as
the peak density n0 = n(0) fulfills the condition n0 ≪ nco

the entire gas is in the decoherent regime and the equa-
tion of state is well approximated by Eq. (1) in which n
and µ are replaced by n(z) and µ(z). Integrating n(z)
over z and taking the sum over j gives a relation between
the total atom number and µ0:

N = −T/(~ω) ln(1 − eµ0/T ), (µ0 < 0). (2)

As mentioned above, for very large values of t the
crossover to the quasi-condensate occurs under condi-
tions where the gas is highly degenerate in the centre,
with n0 ≫ nd =

√
mT/~. Assuming that this is the case

and taking into account that the degeneracy condition is
equivalent to |µ0|/T ≪ 1, Eq. (2) can be rewritten as

N ≃ T/(~ω) ln (T/|µ0|) . (3)

Under these conditions, as Eq. (1) reduces to n ≃
√

mT 2/2~2|µ| for |µ| ≪ T , the density profile develops a
sharp central peak which is well approximated by

n(z) ≃
√

mT 2

2~2

1
√

|µ0| + mω2z2/2
, (4)

and extends up to distances |z| . RT =
√

2T/mω2.
The analysis made above is valid as long as n0 ≪ nco.

Using Eq. (4) and the expression for nco, the condition
n0 ≪ nco can be rewritten as

|µ0| ≫ m1/3(gT/~)2/3. (5)

Using Eq. (3) to relate µ0 to the total atom number,
Eq. (5) leads to the condition that the gas is in the de-
coherent regime as long as N ≪ Nco, where

Nco ≃ T/(~ω) ln
(

~
2T/mg2

)1/3
= (T/3~ω) ln(t/2) (6)

is the characteristic atom number at the crossover. As
we mentioned earlier, one should have t ≫ 103 for ob-
taining a highly degenerate gas at the crossover. Under
this condition, Eq. (6) can be approximately inverted to
yield, for a given N , a crossover temperature

Tco ≃ N~ω/ln
(

N~
3ω/mg2

)1/3
. (7)

We emphasize that our results are obtained within the
LDA which is valid if the characteristic correlation length
lc of density-density fluctuations is much smaller than the
typical length scale L of density variations. The correla-
tion length is lc ≃ ~/

√

m|µ0| in both the quantum deco-
herent and quasi-condensate regimes [6, 7]. Approaching
the crossover from the decoherent regime we replace |µ0|
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FIG. 2: Density profiles of a 1D Bose gas in a harmonic trapping potential for five different values of the ratio µ0/T and a
fixed value of the temperature parameter t = 2~

2T/mg2 = 105. The exact numerical solution (solid line) is compared with
the ideal Bose gas distribution (dashed line), classical Boltzmann distribution (dotted line), and Thomas-Fermi distribution in
the Gross-Pitaevskii regime (dashed-dotted line). The resulting values of the dimensionless ratio N~ω/T , following the exact

solutions, are also shown. The distance from the trap center z is in units of RT = (2T/mω2)1/2. All calculations are done
within the LDA using the equation of state for the homogeneous gas shown in Fig. 1, with µ0 and n(0) in (b)-(e) being the
same as µ and n indicated by the points (b)-(e) in Fig. 1.

by the rhs of Eq. (5), while approaching it from the quasi-
condensate regime we use µ0 ≃ gnco. In both cases, one
obtains lc ≃ ~

4/3/(m2gTco)
1/3. The length scale L can be

estimated as the distance from the trap center where the
density is halved compared to the peak density n0. Ap-
proaching the crossover from the decoherent side, Eq. (4)
gives L ≃

√

|µ0|/mω2 ≃ (gTco/m~ω3)1/3. On the quasi-
condensate side, we use the Thomas-Fermi parabola and
obtain L ≃

√

2ncog/mω2, which gives approximately the
same result. One then easily sees that the condition of
validity of the LDA, lc ≪ L, is reduced to

ω ≪ ωco ≡ (mg2T 2/~
5)1/3. (8)

If this inequality is not satisfied then the LDA breaks
down and one has to take into account the discrete struc-
ture of the trap energy levels. In this case, analytic
approaches incorporating both the finite-size effects and
small but finite interaction strength are absent in the
vicinity of the transition to a quasi-condensate, and we
adopt the ideal gas treatment of Ref. [10]. For a fixed
temperature, this treatment predicts a finite-size BEC at
a critical atom number NC = T/(~ω) ln(2T/~ω). It is
clear that the finite-size BEC phenomenon will prevail
the interaction-induced crossover scenario if NC < Nco.
In fact, the opposite inequality, NC > Nco, is equiva-
lent to that of Eq. (8), which makes our analysis self-
consistent and implies that the condition of validity of
the LDA, ω ≪ ωco, serves as the simultaneous criterion
for observing the interaction-induced crossover, while
the opposite condition corresponds to finite-size conden-
sation. At a constant N , the criterion for observing
the interaction-induced crossover can be obtained from
Eq. (8) by replacing T with N~ω/ ln(2N). The opposite
criterion leading to the finite-size BEC has been previ-
ously found in Ref. [12] from the condition gn0 ≪ ~ω.

In the following, we analyze the properties of the
interaction-induced crossover, subject to inequality (8).
Since t ≫ 103 in the regime of interest, Eq. (6) writ-
ten as Tco = 3N~ω/ ln(tco/2) shows that the crossover

temperature is lower than the characteristic tempera-
ture of quantum degeneracy of a harmonically trapped
gas N~ω. Thus, Tco represents a more accurate and
lower estimate of the crossover temperature to the quasi-
condensate regime compared to the inequality T ≪ N~ω
given in Ref. [12]. For extremely large values of t, the
present treatment identifies an intermediate temperature
interval Tco ≪ T ≪ N~ω which accommodates the deco-
herent quantum regime. Here the gas is degenerate and
is well described within the ideal Bose gas approach.

Fig. 2 shows density profiles for different values of
the chemical potential at a fixed temperature parame-
ter t = 2~

2T/mg2 = 105. The graph (e) corresponds
to the quasi-condensate regime. The graph (c) shows
the density profile at the crossover, and we find that the
corresponding atom number, N ≃ 3.78T/~ω, is in good
agreement with the value Nco ≃ 3.61T/~ω predicted by
Eq. (6). The decoherent regime is clearly seen in graphs
(a) and (b). Although the inequality Tco ≪ N~ω is
barely satisfied, the features of the quantum decoherent
regime are seen in (b): the density profile is described to
better than 10% by the ideal Bose gas approach and dif-
fers strongly from the classical Boltzmann distribution.
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FIG. 3: Peak density n0 (in units of mg/~
2) of a trapped gas

versus N~ω/T for three values of t = 2~
2T/mg2. The three

black dots show the respective crossover values of Nco~ω/T
from Eq. (6). The different lines are as in Fig. 1.
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To provide a better connection with experimentally
measurable quantities we plot in Fig. 3 the peak den-
sity n0 versus N~ω/T for three different values of the
temperature parameter t. In all cases we give the
comparison with the classical Boltzmann gas, the ideal
Bose gas, and the quasi-condensate predictions. The
ideal Bose gas prediction connects the Boltzmann be-
havior n0 = Nω

√

m/2πT to the degenerate behavior

n0 = (
√

mT/~) exp(N~ω/2T ), whereas in the quasi-
condensate regime n0 scales as ∝ N2/3. The scaling of
the peak density n0 as a function of N and the sequence
of changes between power laws and an exponential can
serve as a signature of the transitions between different
regimes. This includes the quantum decoherent regime,
which becomes more pronounced when increasing the pa-
rameter t and is already seen for t = 105.

The sufficient condition for realizing the 1D regime in
a harmonically trapped, weakly interacting gas is T ≪
~ω⊥, where ω⊥ is the transverse oscillation frequency. If
the oscillator length l⊥ =

√

~/mω⊥ is much larger than
the 3D scattering length a, the 1D coupling is given by
g ≃ 2~

2a/ml2
⊥

[13]. The condition for the interaction-
induced crossover, ω ≪ ωco, can then be rewritten as

ω ≪ ω⊥(T/~ω⊥)2/3(a/l⊥)2/3. (9)

Taking ω⊥/2π in the range from 1 to 30 kHz and
T ≃ 0.2~ω⊥ (T is ranging from 10 to 300 nK), one
can see that for most of the alkali atoms with typical
scattering lengths in the range of few nanometers, the
inequality (9) is well satisfied with ω of a few Hertz
commonly used in practice. Thus, the conditions for
realizing the interaction-induced crossover are relatively
easy to satisfy, unless the scattering length is extremely
small (a < 0.1 nm). On the other hand, the condi-
tion to observe the quantum decoherent regime before
the interaction-induced crossover is more demanding as
it requires, in addition to Eq. (9), a very large value of
the parameter t. Rewriting the 1D inequality T ≪ ~ω⊥

as a ≪ l⊥/
√

2t we immediately see that even at t = 105,
where one only starts to see the features of this regime,
one needs to use light atoms (large l⊥) and/or a very
small scattering length in order to satisfy a ≪ 2×10−3l⊥.

A favorable system for fulfilling these conditions is a 1D
gas of 7Li atoms in the F = 1, m = −1 hyperfine state,
where the scattering length can be tuned from very large
to extremely small values using an open-channel domi-
nated Feshbach resonance [14]. By taking, for example,
ω/2π ≃ 4 Hz, ω⊥/2π ≃ 4 kHz, T ≃ 0.2~ω⊥ (40 nK), and
varying a from 20 to 0.2 nm one can increase t from 60 to
6×105 and see how a direct interaction-induced crossover
from a classical gas to a quasi-condensate regime trans-
forms to accommodate the intermediate quantum deco-
herent regime. The same system can also be used to
observe the finite-size BEC scenario, which requires the

inequality opposite to Eq. (9) and hence a reduction of
the scattering length to a ≃ 0.01 nm.

In conclusion, we have identified the conditions
for realizing either a finite-size BEC phenomenon or
an interaction-induced crossover to a coherent, quasi-
condensate state in a harmonically trapped 1D Bose
gas. In the later case, we distinguish between a di-
rect crossover from the classical decoherent regime and a
crossover through the intermediate quantum decoherent
regime. Furthermore, one can expect that the physics of
the interaction-induced crossover remains approximately
valid for T ∼ ~ω⊥, where the gas is no longer in the
1D regime but is near the 3D-1D boundary. This con-
jecture is supported by the results of recent experiments
[15, 16]. In Ref. [15] a gas at T ≃ 2~ω⊥ was produced
with a density profile well described within a degenerate
ideal gas approach. This means that the crossover to a
quasi-condensate was likely to involve the features of the
decoherent quantum regime. Finally, we note that the
interaction-induced crossover through a well pronounced
decoherent quantum regime would be easier to produce
in a quartic or box-like potential [17].
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