
HAL Id: hal-00116188
https://hal.science/hal-00116188v1

Submitted on 1 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Back analysis of loading parameters in shallow tunnels
Desheng Deng, Duc Nguyen Minh, Andrei Constantinescu

To cite this version:
Desheng Deng, Duc Nguyen Minh, Andrei Constantinescu. Back analysis of loading parameters
in shallow tunnels. Third International Workshop on Applications of Computational Mechanics in
Geotechnical Engineering, 2001, Londres, United Kingdom. pp.177-183, �10.1201/9781003078562-21�.
�hal-00116188�

https://hal.science/hal-00116188v1
https://hal.archives-ouvertes.fr


Back analysis of loading parameters in shallow tunnels 

Desheng Deng, Due Nguyen Minh & Andrei Constantinescu 
Laboratoire de Mecanique des So/ides, Ecole Polytechnique, 91128 Palaiseau, France 

A BSTRA CT 
Convergence Confinement (CV-CF) Method is  currently used in  geo-engineering practice as  a plane strain ap
proximate tunnel calculation, for example, in the scope of a NATM construction procedure. However, although 
improvements have been recently achieved for some simple cases, this method is impeded by undetermination 
of the deconfining ratio value Ao at the moment when support is laid. A back analysis method has been proposed 
on the basis of the Virtual Work Principle, in which the original CV-CF model is compared through an iterative 
process to a modified model in which the field measurements are prescribed. The parameter Ao and the lateral 
stress ratio k0 of soil mass are back analysed. This method is very robust and works also for non linear rock 
mass behavior. For illustration of this back analysis method, 2D shallow tunnel calculation data are used as 
experimental data. 

INTRODUCTION 

Convergence Confinement Method (CV-CF Method) 
is currently used in engineering practice as a very con
venient method for tunnel calculation. It is a plane 
strain approximation of the three dimensional tunnel 
problem, in which the tunnel face advance is pro
duced by a fictitious stress vector distribution T ap
plied over the wall of the tunnel, and varying propor
tionally to the initial stress as : 

T = (1 - A)u0n (1) 

Where n is the normal vector to the tunnel wall, u0
the initial geostatic stress tensor in the rock mass. 
A is called the deconfining ratio, it appears as a 
kinematic parameter which increases monotonically 
from 0 to 1 since the initial to the final stage of tunnel 
construction. This is a basic problem for a full face 
driven tunnel, with support placed on part of the wall 
of the tunnel at a given instant t = t0, for which we 
have A= A0. 

In this problem, parameter Ao, has a determinant 
influence on the tunnel-support equilibrium, but it 
is an unknown in the framework of a plane strain 
approach. Although recent works, based on com
parison with three dimensional calculations, have 
proposed semi-empirical methods to determine this 
parameter in some specific cases ((CORBETTA 
1990), (BERNAUD & ROUSSET 1992), (NGUYEN 
& GUO 1993), . .. ), the problem remains in most 

cases met in practice, and appears as one major 
drawback of the CV-CF Method (PANET 1995). 

Another unknown is the initial geostatic stress 
state. For shallow horizontal tunnels, driven in sed
imentary soils and rocks, under horizontal surfaces, 
the stress state determination comes down to the 
sole determination of lateral stress ratio k0 , of the 
horizontal principal stress CJ� to the vertical one 
CT� = koCT�. 

For such tunnels, the parameters ,\0 and k0 can be 
considered as undetermined loading parameters; the 
purpose of this study is to propose an inverse method 
to identify these loading parameters, from in situ ob
servations during the construction phases of the tun
nel. Existing back analyses methods used in geome
chanics are generally direct methods (CIVIDINI et al. 
1981), (SAKURAI 1993), (SOUSA et al. 1997)with 
a minimization of the discrepancy between measured 
and calculated displacements, and are generally con
cerned with elastic behavior. For non linear prob
lems inverse methods are generally hard to handle. A 
method of minimization in constitutive law error has 
been proposed (CONSTANTINESCU 1994), but it is 
not possible for our problem to obtain explicit deriva
tions of the objective function. The new method pro
posed herein to solve this problem, is based on use of 
the virtual work theorem applied to the CV-CF prob
lem. 
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2 BACK ANALYSIS 
2. 1 Description of the pr(lblem 

Let us call the CV-CF problem the original problem, 
defined as follows : the rockrnass with tunnel without 
support is called domain !l, with border f (Fig. I). At 
time t = 0, the initial state in the rock mass is:

EB 
1'.=0 

T=<1,·D 

r 

{ u(x, 0) = 0 
<T(x, 0) = <To(x) x E 0 (2) 

!-;. 

eround 
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O< A< I 1'.=I to 
"I;=(H)q,·n T, =0 

1, 

Figure I: Tunnel advance - The Convergence Confine
ment Method 

According to CV-CF method, tunnel excavation 
results in a monotonic prescribed loading on the 
tunnel wall according to the kinematic parameter A 
(equation I). With support placement, at time t = t0 
or A = Ao, the previous structure is modified with
new support elements added, but the variation of 
fictitious forces as written here above still holds 
on the same border as excavation of the front face 
proceeds. In this problem, parameters Ao and k0 can 
be considere,d as loading parameters for the final 
tunnel structure, and the identification will concern 
either one of them (the other one is supposed to be 
known), or simultaneously both of them. 

The fictitious stress at the wall of the tunnel f tu is
given for three particular states (or instants) as fol
lows: 

{ <Ton 
T(x)= �1-Ao)<Ton

t=O 
t =to 
t = t1 

(3) 

t1 is the final state (A= 1,  t1 = oo). Let us consider 
the time period [O, t0]. The displacement field has to 
be kinematically admissible with limit condition on 
displacements on the border f u c f: { f. = HVti+ vru) x En, t E [O, to]

ti(x, t) = ud(x, t) x E f Ul t E [O, to] (4) 

and the stress field, accounting for initial geostatic 
stresses (BOURGEOIS 1998) 

CT= <To+ C: Ee (5) 

has to be statically admissible with the limit stress 
conditions on the border fr: { div & = 0 x E 0 t E [0, to] 

&n(x, t) = T x E fr t E [O, t0] (6) 

Moreover, stress field and plastic deformations rates 
field are related as usual through elastoplastic consti
tutive laws, with plastic deformation rates as part of 
the total deformation rate : 

f. = s : & + f.P x E n, t E [O, to] (7) 

Where Ee and EP are elastic and plastic deformations 
respectively. C is the tensor of elastic moduli, and 
s = c-1 is the tensor of compliances.

If the unit weight of the rock mass is neglected, 
the virtual work principle gives the following fomula 
(SALENc;:ON 1994): 

f <T(x) : €(x)d0 - f u · <T(x) · n(x)ds = 0 ln lan (8) 

Where € and u are virtual deformation and virtual dis
placement respectively. Let u*, E* and CT* be respec
tively the displacement, deformation and stress fields 
solution to the problem at instant t0• Using u* as the 
virtual displacement u, these fields satisfy to the vir
tual work principle, and for the initial state as well. 
Then the following relation is obtained: 

f (<T* - <To)E* dx + f Ao(<Ton)u* dx = 0 Jn Jr," (9) 

This relation involves explicitly the loading parame
ters of the problem. 

2.2 Back analysis of one loading parameter (Ao or 
ko) 

Suppose, that one of the loading parameter is known, 
so only the other parameter has to be determined. 
Moreover, suppose that absolute displacement mea
surements um are obtained on the actual structure, 
generally on part of border f� c fr at time to when 
support is laid 

u(x, to) =um x E f� ( 10) 

Let then consider the modified problem, in which dis
placements on border f� are prescribed, { div&= 0 x E 0 

u(x, to)= um x E f� (I I) 

Solving the modified problem for any given value of 
the unknown loading parameter Ao (resp k0) will give 
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for instant t0, the fields u, e, u. 

This solution will agree with the experimental 
data, but not necessarily with the limit conditions of 
the original problem. In order to tend towards the 
solution of the original problem, the unknown loading 
parameter in the modified problem should be s�ch
that the stress and displacement fields would satisfy 
at best the original limit conditions. This means that 
equation (9) is used, with the fields, u, e, u instead 
of the actual solution. A relationship between the 
loading parameter and the previous estimated one is 
thus obtained, which appears as a kind of fixed point 
problem, requiring iterations supposed to converge. 

For example, if parameter Ao has to be back anal
ysed (ko is known), we have according to equation (9) 

Ao= fn(u -u0)edx
fr,. ( u0n)u dx 

(12) 

If parameter k0 has to be back analysed (Ao is 
known) : Let us decompose the fictitious stress varia
tion at the wall of the tunnel into horizontal and verti
cal components from time 0 to time t0 (Fig 2), 

(13) 

O"y = 1h, I is the unit weight of the material, and h 
is the depth of the center of the circular tunnel. The 

T, 

Tx 

,' 
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Figure 2: Decomposition of the fictitious stress at the 
tunnel wall 

corresponding displacement components are Ux et Uy. 
So, the equation (9) writes as 

then 

k _ fn(u-u0)edx-Aofr,.O"ysin()uydx
0 - Ac fr,u O"yCOS () Ux dx (15) 

2.3 Back analysis of Ao and ko 
If we have to back analyse simultaneously both load
ing parameters, we need two series of measurements 
at two specific instants. Suppose the displacement 
data um on border r� c fr at time to. and the relative 
displacement data 6um on border r; C f T during 
time interval [t0, t1] are given. Note here that the two 

borders r� and r; are not necessarily the same, for 
example, final convergence measurements may be 
deduced from sensors placed after laying support or 
near the front face. In this case we have to solve two 
sucessive problems: 

Problem 1, t E [O, t0], with prescribed displace
ments in (eq. 10), it is the same modified problem 
described here above. Let the solution fields for this 
problem be u1, e1, u1, equation (15) gives then 

k _fn(u1-uo)e1dx-Aofr,"O"�sin()u�dx
0 -

Ao fr," O"�cos()u�dx (16) 

Problem 2, t E [to, t1], the support is placed, with 
initial state as { u(x, to)= u1 

u(x, to)= u1 xED (17) 

At final time t 1, the fictitious stress on tunnel wall is
T(x) = O (A= 1). And the prescribed displacements 
can be choosen as 

u(x,t1)= u1+6um xEr; (18) 

The modified problem is then changed into { div& = 0 x E D 
u(x, t1) = u1 + 6um x Er; (19) 

Solving problem 2 with the initial state (17), gives 
the solution fields u2, e2, u2. Then, using the vir
tual work principle, the following formula is obtained, 
similar to equation (9): 

fn(u2 - u1)(e2 - e1) dx +

fr (l-Ao)uon(u2-u1)dx=O (20) 
r,. 

and finally 

J, (u2-u1)(e2-e1)dx A = 1 + �n�-- ..,--:----:--;--:--o 
fr,uu0n(u2-u1)dx 

(21) 

Starting with initial arbitrary loading parameters, the 
back analysis algorithm involves iterations in which 
problems I and 2 are successively solved. 
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2.4 Back analysis in general cases

Absolute displacements measurements are not gener
ally available in practice. Generally, we can have rel
ative displacement t;,.lm between two points in their 
direction, as by extensometers, or perpendicular to 
their direction, as by inclinometers. Moreover, the 
measurement points may be situated inside the rock
mass. Forces measurements may eventually be con
sidered as well. These in situ observations appear as 
restraints in the modified problem which is solved in 
the same manner as with absolute displacements pre
scribed here above. For example, extensometer mea
surements will give: 

D.lm = u2 cos a+ v2 sin a

- u1 cos a - v1 sin a (22) 

where D.zm is the extensometer data relative to the 
distance variation between two points (Fig. 3). 

y 

J-., L/ I u, 

������� x 
Figure 3: Displacements on two points of an exten
someter 

More generally, restraints result in set of equations 
between certain node displacements, e.g : { �'1: auui + ... + a1nUn � � 

Um - am1U1 + · · · + amnUn - Um (23) 

or in a condensed way : 

[A]{U} = {V} (24) 
where m is the number of conditions. The modified 
problem requires then minimizing the functional 

-rr = �{Uf[K]{U}- {U}T{F} (25) 

under the conditions 24. The Lagrange multipliers 
method (DHATT & TOUZOT 1984) allows us to 
build up another functional -rr• (equation 26), the sta
tionarity of which corresponds to the solution of the 
problem. 

-rr• = �{U}T[K]{U} - {U}T {F}

- ([A]{U}- {V}f{A} (26) 

Where {A} = ( >.1 . . . >.m JT are the Lagrange multipli
ers. 

The stationarity conditions for -rr• lead to 

--+ [A]{U} = {V} 

i.e. 

[K]{U} = {F} + [A]T{>.} (27) 

with the penalty method: 

{>.} = G({U} - [A]{U}) (28) 

There are n + m unknowns ( {U} et {>.} ) and n + m 

relations (equations 27 et 28). These unknowns are 
obtained by the following procedure: 

- Evaluate the n components {U} by introducing 
{>.} (equation 28) in 27: 

[K']{U} = ([K) + G[Air[A]){U} 

= {F} + G[Air {V} 

- Evaluate {>.} by 28. 

3 EXAMPLE 

(29) 

For a preliminary test of this method, we will use data 
from a direct non-linear tunnel calculation. The model 
was a shallow circular 10 m diameter tunnel (Fig. 4), 
15 m deep, calculated by software CASTEM 2000 
in plane strain approximation, using the convergence 

surface 

tunnel 

Nim 

m;issif 

�lm 

Figure 4: Calculation of a shallow tunnel 
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confinement method. The deconfinement ratio is sup
posed to be Ao = 0.45. The ground mass is elastic
perfect plastic (Drucker Prager). The parameters of 
the ground mass are: E = lOOM Pa, v = 0.35, C = 
200KPa, </> = 5°, r = 2 x 104N/m3, ko = 0.8. The 
40 cm thick concrete support is elastic linear, with pa
rameters E = l.5GPa, v = 0.25.

3. l Back analysis of one parameter (Ao or ko) 
In the back analysis, one half of the tunnel surface 
displacements (t : 0 -+ t0) are taken into account 
as measurements. Figure 5 and figure 6 illustrate the 

Figure 5: Convergence of Ao with different initial val
ues 

·-·--··-·---··--·- -- --1 

Figure 6: Convergence of k0 with different initial val
ues 

convergence of Ao and k0 for different initial values. It
can be noticed that iteration convergence is very fast. 
Indeed, only 3 - 4 iterations are necessary on Ao (or 
ko) to obtain less than 53 discrepancy, with i�itial Ao 
values taken in interval 0.25 to 0.65, and ko m mterval 
0.1 to 1.4. 

3.2 Back analysis of Ao and ko 
Here Ao and k0 are simultaneously back analysed. Di
rect calculation data for two instants, e.g. on two tun
nel sections (t = t0 and t = t f) are used in this anal
ysis, with one half of the tunnel wall displacements 
taken into account for input data. Figure 7 shows the 
convergence of Ao and k0, when these two parame
ters are back analysed simultaneously, with the fol
lowing initial values: Ao = 0.5, k0 = 0.1. We can no
tice in this case that iteration convergence is slower 
than when a sole parameter is back analysed. 15 - 20 
iterations are needed to obtain less than 53 accuracy 
for loading parameters. 

� 
!�_ 
1...... ·' � -. 

Figure 7: Convergence of Ao and ko 

3.3 Back analysis Ao using the relative measure-
ments between measuring points 

To be nearer from practical applications, let us now 
consider relative measurements between points. Us
ing the direct calculation data, the relative measure
ments between point A and B, 6lAa = -0.012365, 
B and C, 6l8c = -0.0106653, A and C, 6lcA = 
-0.01979 (Fig. 8) are given for t = to -+ t f, 
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Figure 8: Distribution of measuring points 

Figure 9: Convergence of Ao for different initial values 
using relative measurements 

standing for convergencemeters data. Inclinations of 
the different convergences are i'.kAB = 45°, a Be = 

135°, et aeA = 270°. 
The restraint conditions for the modified problem 

write as follows: 

{ UBCOSOAB + VBsinaAB - VAsinaAB ={'>,[AB 
Ve sin CT Be - UB cos a Be - VB sin a Be = 61Be 
Ve - VA= 6leA (30) 

The Lagrange multiplier method with penalty, al
lows us to back analyse Ao with 5% accuracy within 
15 iterations (figure 9). 

3.4 Influence of measuring point location, and noise 
analysis 

In the tunnelling problem, the excavation of the 
tunnel results in maximum displacements on the wall 
of the tunnel, which also corresponds to the border 
where loading forces are applied. This is the reason 
why these displacements are easier to back analyse 
by our method, due to a better sensitivity. A minimum 
of three measurement points, including one on the 
floor of the tunnel section is needed for back analysis 
of Ao, which will require 20 - 25 iterations for some 
5% accuracy. 

To appreciate the noise effects, a back analysis of 
Ao has also been performed, with convergence given 

on half the wall with uniform 10% noise, while ver
tical surface displacements was given without noise, 
which led to 9% error on Ao determination. On the 
contrary, if the convergence is given without noise in 
the preceding case, and only surface displacements 
are subject to 10% uniform noise, the determination 
of Ao would only suffer 0.8% error. When discrete 
wall displacements are given, for example on eight 
points, including two lateral ones, with 20% uniform 
noise, the resulting relative error on Ao would be 
around 4%. These results show that the back analy
sis method presented herein is efficient and stable. 

4 CONCLUSIONS 

In this paper, we have proposed a new back analy
sis method for geotechnical engineering, based on the 
Virtual Work Principle, by comparing the original cal
culation model to a modified model in which the field 
measurements are prescribed. The deconfining ratio 
Ao in the convergence confinement method for tun
nel calculation, and the lateral stress coefficient of soil 
k0 have then been back analysed. Application of that 
method to data obtained from a plane strain numer
ical model, has shown its efficiency and robustness, 
even for nonlinear ground behavior. Provided conver
gence measurements be available on the tunnel wall, 
iteration of the back analysis has shown to converge 
rapidly, whether the ground be modelized by linear 
elasticity or elastoplasticity. Realistic cases have been 
envisaged as well, e.g. when relative measurements 
and point measurements inside the rockmass are in
volved. In this latter case, the iteration convergence is 
slower, more specially as the measurement points are 
farther from the wall of the gallery. The iteration con
vergence also allows to appreciate the pertinence of 
the locations and the number of measurement points. 
Further validation of that method needs its application 
to 3D numerical models, and finally, to real case his
tories. It is also expected an extension of that method 
to identify mechanical properties of the rockmass. 
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