
HAL Id: hal-00116178
https://hal.science/hal-00116178

Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

θ-Subsumption in a Constraint Satisfaction Perspective
Jérôme Maloberti, Michèle Sebag

To cite this version:
Jérôme Maloberti, Michèle Sebag. θ-Subsumption in a Constraint Satisfaction Perspective. 11th
International Conference on Inductive Logic Programming, 2001, Strasbourg, France. pp.164-178,
�10.1007/3-540-44797-0_14�. �hal-00116178�

https://hal.science/hal-00116178
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

θ-Subsumption

in a Constraint Satisfaction Perspective

Jérôme Maloberti1 and Michèle Sebag2,1

(1) LRI, Bat 490, Université Paris-Sud, F-91405 Orsay
(2) LMS, Ecole Polytechnique, F-91128 Palaiseau

Jerome.Maloberti@lri.fr, Michele.Sebag@polytechnique.fr

Abstract. The covering test intensively used in Inductive Logic Pro-
gramming, i.e. θ-subsumption, is formally equivalent to a Constraint
Satisfaction problem (CSP). This paper presents a general reformulation
of θ-subsumption into a binary CSP, and a new θ-subsumption algo-
rithm, termed Django, which combines some main trend CSP heuristics
and other heuristics specifically designed for θ-subsumption.
Django is evaluated after the CSP standards, shifting from a worst-case
complexity perspective to a statistical framework, centered on the notion
of Phase Transition (PT). In the PT region lie the hardest on average
CSP instances; and this region has been shown of utmost relevance to
ILP [4]. Experiments on artificial θ-subsumption problems designed to
illustrate the phase transition phenomenon, show that Django is faster
by several orders of magnitude than previous θ-subsumption algorithms,
within and outside the PT region.

1 Introduction

Supervised learning intensively relies on the generality operator, or covering
test, calculating whether a given hypothesis covers a given example. As the
evaluation of a candidate hypothesis depends on its coverage, the covering test
must imperatively be efficient.
The complexity of the covering test is one main concern facing Inductive

Logic Programming (ILP) [10,12]. The covering test commonly used in ILP,
i.e. θ-subsumption [13], is exponentially complex in the size of the candidate
hypothesis. How to manage this complexity has motivated numerous studies on
learning biases, restricting the size and/or the number of hypotheses explored
through syntactic or search biases [11]. In parallel, new algorithms for achieving
efficient θ-subsumption [8,18] and ILP learners based on a correct approximation
of θ-subsumption [19], have been proposed.
In this paper, is presented a new correct and complete θ-subsumption algo-

rithm termed Django, based on a Constraint Satisfaction Problem (CSP) ap-
proach.
Although it is long known that θ-subsumption is equivalent to a Constraint

Satisfaction problem (CSP), ILP problems have only recently been put in a

1

CSP perspective [3,4]. The focus is thereby shifted from a worst-case complexity
analysis, to a statistical approach [7].
The covering test complexity is handled as a random variable, measuring

the computational cost of θ-subsumption for some order parameters (e.g. the
number of variables & predicates in the hypothesis, the number of literals &
constants in the example). Surprisingly, the computational cost is almost zero
for most problems, referred to as trivial. For instance, assuming that all pred-
icates in the hypotheses also appear in the examples, a short hypothesis will
cover almost surely all examples; inversely, a long hypothesis will almost surely
cover no example at all. In both cases, the θ-subsumption cost remains low as
the θ-subsumption problem corresponds to an under or over-constrained satis-
faction problem. But in a narrow region, termed phase transition (PT), where
the probability for a hypothesis to cover an example is close to 50%, the covering
test reaches its maximum complexity on average [3].
The PT phenomenon is of utmost importance for ILP, for two reasons. First,

there is ample evidence of phase transition in artificial problems statistically
modeled from ILP real-world problems [3]. Second, intensive experimentations
on artificial problems have shown that this region behaves as an attractor on
existing ILP learners1 [4].
This paper is concerned with designing a θ-subsumption algorithm with

good average performances on the most relevant and critical instances of θ-
subsumption problems, i.e. lying within the PT. To this aim, is first presented a
general transformation of a θ-subsumption problem referred to as primal prob-

lem, into another constraint satisfaction problem, termed dual problem. Along
the transformation, each literal (involved in the hypothesis, primal CSP) be-
comes a constrained variable in the dual CSP; conversely, a variable in the primal
CSP derives a set of dual constraints; furthermore, specific constraints encoding
the θ-subsumption structure are automatically generated. On the dual CSP is ap-
plied a combination of well-known CSP algorithms, forming the Django system.
The approach is validated on artificial θ-subsumption problems designed after [4]
to sample the Phase Transition region. Intensive experiments show that Django

improves by several orders of magnitude on average on all problems within and
outside the PT in the considered range, compared to previous θ-subsumption
algorithms [8,18].
The paper is organized as follows. Next section briefly introduces θ-subsump-

tion and reviews existing θ-subsumption algorithms [8,18]. Section 3 presents
the Constraint Satisfaction framework and the main heuristics used to solve
CSPs. Section 4 describes the transformation of a θ-subsumption problem into
a dual binary CSP, and presents the combinations of CSP heuristics involved in
the Django system. Experimental setting and results are reported and discussed
in section 5, and the paper ends with some perspectives for further research.

1 E.g. for almost all target concepts, FOIL [15] selects its final hypotheses in the PT
region.

2

2 θ-Subsumption, Definition and Algorithms

Let hypothesis C denote a conjunction of literals with no function symbols, and
arg(C) denote the set of variables in C. Example Ex likewise is a conjunction
of literals with no function symbols, arg(Ex) being the set of variables and
constants in Ex.
By definition, C θ-subsumes Ex according to θ, iff θ is a mapping from arg(C)

onto arg(Ex), mapping variables in C onto variables and constants in Ex such
that Cθ be included in Ex. Instead of mapping variables in C onto variables and
constants in Ex, it is often more computationally efficient to map literals in C
onto those literals in Ex built on the same predicate symbol. Through a literal
mapping, each variable in C is associated to a set of variables and constants in
Ex; the literal mapping is termed consistent if it maps each variable in C onto a
single variable or constant in Ex.
The main stream algorithm for θ-subsumption is based on Prolog SLD reso-

lution [16]. It performs a depth first exploration of literal mappings (associating
to the first literal in C the first literal built on the same symbol in Ex, and so
on), and it backtracks if an inconsistency occurs (e.g. one variable in C is asso-
ciated to two constants in Ex). Literals in C and E are explored in their order
of apparition, which has a significant impact on the SLD efficiency, as known by
all Prolog programmers.
A first improvement has been proposed by [8], based on the notion of de-

terminate matching. It consists of reordering the literals in C = p1..pK in
such a way that, if possible, there is a single candidate literal p′ = θ(pi) in
Ex for pi in C, which is consistent with the previous assignments (such that
{p1/θ(p1), ..pi/θ(pi)} is consistent). After all determinate literals in C have been
mapped onto literals in Ex, and if necessary, the search resumes using SLD
resolution.
The scope of determinate matching is extended by [18], using a graph context

to prune the candidate literals. To each literal p in C (resp. in Ex) is associated
its neighborhood; the 1-neighbors of p are all literals sharing at least one variable
(resp. one variable or one constant) with p ; the i-th neighbors are recursively
constructed, as 1-neighbors of i − 1-neighbors. It is shown, that, unless all pred-
icate symbols occurring in p i-th neighbors also occur among p′ i-neighbors, p
cannot be mapped onto p′, and the latter can be removed from the candidate
literals for p. [18] further define a substitution graph, connecting two pairs of
literals (p, p′) and (q, q′) iff mapping (p/p′, q/q′) is consistent. The SLD search is
replaced by a maximal clique search in the substitution graph. The worst-case
complexity remains exponential, but the advantage is to perform the consistency
check only once.
Another heuristics used by [8] proceeds by decomposing the substitution

graph into mutually independent components (k-locality). Such a decomposition
significantly reduces the complexity of the problem..

3

3 Constraint Satisfaction Problem

This section briefly introduces CSPs together with the main stream heuristics;
the reader is referred to [21] for a comprehensive presentation.
A CSP involves i) a set of variables X1, .., Xn, with dom(Xi) being the value

domain for Xi, and ii) a set of constraints, specifying the simultaneously ad-
missible values of the variables. A constraint can conveniently be thought of
as a predicate r(Xi1 , ..XiM

), while the admissible values are described as a set
of literals r(a1,i1 , ..a1,iM

), . . . , r(al,i1 , ..al,iM
), aj,ik

∈ dom(Xik
). The constraint

scope, noted arg(r) is the set of variables Xi1 , ..Xik
. The constraint domain,

noted dom(r), is the set of literals built on2 r.
A CSP solution assigns to each variable Xi a value ai in dom(Xi) such that

all constraints are satisfied; it can be viewed as a mapping θ = {Xi/ai} such
that for each constraint r(Xi1 , ..Xik

), rθ = r(ai1 , ..aik
) belongs to dom(r). In

other words, the CSP defined by constraints r1, ..rK is satisfiable iff r1, ..rK

θ-subsumes the conjunction dom(r1), ..dom(rK). Likewise, the CSP complexity
is exponential in the number n of variables, and linear in the number m of
constraints: if |a| is the number of possible values for a variable, the complexity
is O(|a|n × m). (A first way of decreasing the complexity is by decomposing the
CSP into fewly related subproblems – hierarchizing the set of variables [6] or the
set of constraints [2] – in the same spirit as k-locality [8]).
Two CSPs are equivalent iff they are defined on same variables and admit

same solutions. As any CSP can be embedded into a binary CSP, i.e. with
binary constraints only, most CSP algorithms only consider binary and unary
constraints. Further, with no loss of generality, one assumes that there exists at
most one constraint on each variable pair.
CSP algorithms are made up of two kinds of heuristics. Reduction heuristics

are meant to transform a CSP into an equivalent CSP of lesser complexity,
through reducing the variable domains. Search heuristics are concerned with the
search strategy.

3.1 Reduction

Reduction proceeds by pruning the candidate values for each variable X. Value
a in dom(X) is locally consistent if, for all variables Y such that there exists
a constraint r(X, Y), there exists some candidate value b in dom(Y) such that
r(a, b) holds (belongs to dom(r)). Clearly, if a is not locally consistent, X cannot
be mapped onto a, which can thus soundly be removed from dom(X).
Local consistency is extended as follows; a is k-consistent with X if for each

set of constraints r1(X, Y1), r2(Y1, Y2), ..rk(Yk−1, Yk), there exists a k − 1-tuple
(b1, .., bk) such that r1(a, b1), r2(b1, b2), ..rk(bk−1, bk), holds.

2 In all generality, the constraint domain can be infinite (e.g. a numerical constraint
on real-valued variables). Only finite domains are considered in the rest of the paper.

4

A CSP is k-consistent iff each value domain dom(Xi) includes k-consistent
values only – and is not empty3. Checking k-consistency is exponentially complex
with respect to k; therefore, only 2-consistency, or arc consistency is used in
practice. The best complexity of reduction algorithms is O(m|a|2), with m being
the number of constraints and |a| the value domain size.

3.2 Search

CSP algorithms incrementally construct a solution {Xi/ai} through a depth
first exploration of the substitution tree; a node corresponds to a variable Xi, to
which is assigned some candidate value ai. On each assignation, consistency is
checked; on failure, another candidate value for the current node is considered;
if no other value is available, the search backtracks.
Several approaches have been proposed in order to improve: (i) the back-

tracking procedure (look-back heuristics); (ii) the choice of the next variable and
candidate value to consider (look-ahead heuristics).
Look-back heuristics aim at preventing the repeated exploration of a same

substitution subtree on backtracking (thrashing). For instance, Conflict Based
Jumping (CBJ) [14] registers all variable conflicts occurred during the explo-
ration, which allows for backtracking directly to the appropriate tree level. On
the other hand, it may happen that the overhead due to maintaining the conflict
registers offsets the look-back advantages for some particular CSP instances.
Look-ahead heuristics aim at minimizing the number of assignments consid-

ered. The best known look-ahead heuristics is constraint propagation; in each
step, the candidate values which are inconsistent with the current assignment,
are pruned. This way, inconsistencies are detected earlier and less nodes are
visited; in counterpart, the assignment operation becomes more expensive as it
involves the constraint propagation step.
Forward checking (FC) employs a limited propagation, only pruning the candi-
date values for the next variable (partial arc-consistency). Maintaining arc con-
sistency (MAC) checks the arc-consistency on each variable assignment. Again,
the overhead due to constraint propagation might offset its advantages on medium-
size weakly constrained CSPs. Currently, the most generally efficient algorithms
combine FC and CBJ.
In addition, the variable order can be optimized, either statically (once for all),
or dynamically (the yet unassigned variables are reordered on each assignment).
Dynamic variable ordering is generally more efficient than static variable order-
ing. One criterion for reordering the variables is based on the First Fail Principle
[1], preferring the variable with the smallest domain. This way, failures will occur
sooner rather than later.
Last, the candidate values can be ordered too; the value with less conflicts with
the other variable domains is commonly preferred.

3 The use of graph contexts to prune the candidate literals [18] can be viewed as a
k-consistency check (more on this in section 4.2).

5

4 CSP Heuristics for θ-Subsumption

This section formalizes θ-subsumption as a binary CSP problem, and presents a
new combination of CSP heuristics for θ-subsumption, Django.

4.1 Representation

It has been shown (section 2) that a CSP problem is equivalent to a θ-subsumption
problem. However, θ-subsumption generally considers n-ary predicates. An ad
hoc representation is thus necessary to enable the use of standard CS heuristics.

C : tc(X0), p(X0, X1), p(X1, X2), p(X2, X3), q(X0, X2, X3)
Ex : tc(a0), p(a0, a1), p(a1, a2), p(a2, a3), p(a3, a4), p(a0, a3), q(a0, a2, a3), q(a0, a1, a3)

We choose to consider the dual constraint satisfaction problem defined as
follows. Each dual variable Yp.i corresponds to a literal in C, namely the i-th
literal built on predicate symbol p (subscript .i will be omitted for readabil-
ity when there is a single literal built on the predicate symbol); its domain
dom(Yp.i) is the set of all literals in Ex built on the same predicate symbol p,
e.g. dom(Yp.1) = {p(a0, a1), p(a1, a2), p(a2, a3), p(a3, a4), p(a0, a3)}.
A dual constraint r(Yp.i, Yq.j) is set on a variable pair (Yp.i, Yq.j) iff the cor-
responding literals in C share a (primal) variable; for instance, as tc(X0) and
p(X0, X1) share variable X0, there is a dual constraint linking Ytc and Yp.1. This
constraint specifies that, for each literal p′ in dom(Yp.i), there must be a literal
q′ in dom(Yq.j) such that the literal mapping {p.i/p′, q.j/q′} is consistent with
respect to θ-subsumption. In our toy example, dual constraint r(Ytc, Yp.1) is only
satisfied for the dual value pair (tc(a0), p(a0, a1)).
The difference between such dual constraints and the substitution graph in [18]
is that the substitution graph specifies whether a given literal assignment {p/p′}
is consistent with another one {q/q′}. In contrast, dual constraints require that,
for each pair of literals p, q in C sharing one variable, there exists a pair p′, q′ of
literals in Ex, such that {p/p′, q/q′} is consistent.
The dual CSP is enriched by associating to each dual variable (literal in

C) and candidate value (literal in Ex) a signature, encoding the literal links
(shared variables) with all others literals. For instance, the signature associated
to p(X0, X1) states that the first variable appear in a literal built on symbol tc,
position 1, and a literal built on p, position 1; and the second variable appear in
a literal built on symbol p, positions 1 and 2. Signatures allow one to prune the
candidate literals through arc-consistency, in a similar way to graph contexts
[18]; the signature of the literal in C must be included in the signature of the
candidate literal in Ex. The difference is that signatures are deliberately limited
to depth 1 (only 1-neighborhoods are considered), which allows for an optimized
implementation.
Last, the case of literals sharing several variables is considered; signatures

associated to pairs of such literals, termed 2-signatures, are designed and used
to prune candidate literals too.

6

4.2 Resolution

As mentioned earlier, there is no such thing as a universally efficient CSP heuris-
tics; it is thus desirable to evaluate carefully how relevant a given CSP heuristics
is wrt θ-subsumption problems. Several combinations of heuristics have been
experimented in Django (summarized in Table 1).
The baseline version V1 combines arc-consistency checking [9] and forward

checking (the propagation of the current assignment is restricted to the next
variable domain).

Table 1. Django, Versions V1 to V8.

Base line

V1 Arc consistency + simple Forward Checking
(propagation of the current assignment wrt the next variable)

Dynamic Variable Ordering

V2 V1 + DVO based on minimal domain
(random choice in case of tie)

V3 V1 + DVO based on maximal connectivity
(random choice in case of tie)

V4 V1 + DVO based on min. domain + max. connectivity
(minimal domain, then maximal connectivity)

V5 V1 + DVO based on max. connectivity + min. domain
(maximal connectivity then minimal domain)

Forward Checking

V6 V4 + improved Forward Checking
propagation of forced assignments (singleton candidate value)

Arc Consistency

V7 V6 + AC based on signatures
V8 V7 + AC based on signatures and 2-signatures

We first investigate the influence of variable ordering on the search efficiency.
Versions V2 to V5 implement several dynamic variable orderings, all based on
the First Fail Principle. In V2, variables with minimal domain are ranked first4.
In V3, variables subject to a maximal number of dual constraints are ranked
first (prefer the literals in C which are most connected to others literals). Both
criteria are combined in versions V4 and V5, with different priorities.
Secondly, we investigate the influence of Forward Checking. In Version V6,

besides the 1-step propagation of the current assignment, forced assignments
(singleton candidate value for any variable) are propagated.
Last, we investigate the influence of arc consistency, using signatures and

2-signatures. Version V7 differs from Version V6 as it considers the literal
signatures; version V8 considers both signatures and 2-signatures.

4 Note that the determinate matching heuristics in the primal θ-subsumption problem
[8] corresponds to a particular case of the minimal domain heuristics with regard to
the dual CSP.

7

5 Experimental Validation

5.1 Experimental Setting

As mentioned earlier, CSP algorithms are mainly tested in the PT region, which
concentrates the hardest on average problems.
Following [3], artificial data were constructed to examine the algorithm be-

havior within and outside the PT region. Artificial θ-subsumption problems
(pairs (hypothesis C, example Ex)), are constructed from four order parame-
ters: the number n of variables in C; the number m of literals in C, all built
on distinct predicate symbols; the number N of literals built on each predicate
symbol in Ex; the number L of constants in Ex.
In order to keep the total computational cost beyond reasonable limits, n is

set to 10, N is set to 100, m varies in [10, 50] and L varies in [10, 50]. For each
pair (m, L), 1,000 pairs (hypothesis C, example Ex) are constructed with random
uniform distribution [3], and cost(m, L) is reported as the average θ-subsumption
cost over all 1,000 trials, measured in seconds (Django is implemented in C++

and runs on a PC Pentium2). All Django versions are experimented and com-
pared with three θ-subsumption reference algorithms, respectively SLD Prolog,
determinate matching [8] and graph contexts [18]; in the latter cases, we used
the algorithm implementation kindly given by T. Scheffer.

5.2 Results and Discussion

As might have been expected, Prolog SLD does not keep up when hypothesis
C involves more than a few literals, and it had to be stopped for m > 5 (being
reminded that example Ex involves 100× m literals). Determinate matching [8]
does significantly better than SLD for small size hypotheses; however, it runs
out of resources for m > 10; in retrospect, this heuristics is poorly suited to the
random structure of the examples.

Fig. 1. θ-subsumption cost(m, L) for Django.V1, averaged on 1,000 pairs (C, Ex) with
m : nb predicates in C in[10,50], L nb constants in Ex in[10,50]

8

Graph contexts also turned out to be hardly applicable, mostly for efficiency
reasons (see below); finally only the maximal clique search (MCS) [18] was ex-
perimented in the same range as Django.
The behavior of each algorithm is conveniently pictured as the surface

cost(m, L). Fig. 1 displays the cost landscape obtained for the baseline version
of Django.
In a CPS perspective [7], three complexity regions are distinguished. The PT

region appears as a mountain chain of hyperbolic shape in the (m, L) plane; it
concentrates the hardest on average θ-subsumption problems.
The YES region, besides the PT (for low values of m or L), contains trivial
(hypothesis,example) pairs, where the hypothesis almost surely subsumes the
example; in this region typically lie overly general, complete and incorrect hy-
potheses wrt the dataset.
The NO region, beyond the PT, contains trivial (hypothesis,example) pairs,
where the hypothesis almost never subsumes the example; in this region lie the
hypotheses covering no training examples, which are thus found to be correct.
The cost landscape obtained for MCS [18] is depicted in Fig. 2 (higher costs

by factor 6 compared to Fig. 1). Interestingly, the phase transition region is
larger than for Django.V1. Note that the complexity is not negligible in the
NO region. This suggests that MCS does not early detect the inconsistencies,
achieving unnecessary exploration of the substitution graph in the NO region.
On the other hand, MCS [18] first step concerns the construction of the

whole substitution graph, which is exploited in the second step along a maximal
clique search. This first step is computationally heavy; it represents a significant
amount of the total cost, unless the problem size is large. For large-size prob-

Fig. 2. θ-subsumption cost(m, L) for MCS, averaged on 1,000 pairs (C, Ex) m : nb
predicates in C in[10,38], L nb constants in Ex in[10,50] (scale factor × 6 compared to
Fig. 1)

9

lems, the graph construction effort is negligible compared to the maximal clique
search, and worthwhile as it significantly speeds up the maximal clique search.
Unfortunately, the memory resources needed to store the substitution graph for
large problems, are hardly tractable; no 2-graph contexts could be used with
MCS for m > 10.
In contrast, Django interleaves the search and the constraint propagation;

this way, the construction of the whole graph is avoided whenever a solution
might be found along the search.
The θ-subsumption costs (with multiplicative factor 100) are summarized in

Table 2, averaged over all three regions.

Table 2. Average θ-subsumption cost (×100) in the YES, NO and PT regions.

YES region Phase Transition NO region
cost ± cost ± cost ±

MCS 344.69 589.93 841.53 1325.83 800.74 908.22

Django.V1 20.25 32.80 116.83 142.01 6.67 17.25

V2 4.18 5.97 4.99 6.92 2.19 2.71
V3 4.80 6.70 8.79 11.84 2.44 3.33
V4 4.25 6.09 4.56 6.45 2.22 2.75
V5 4.51 6.44 6.70 9.77 2.33 3.09

V6 4.24 5.86 4.79 6.32 1.98 2.45
V7 2.20 3.15 3.53 4.55 1.58 1.93

V8 2.48 3.78 3.15 4.40 0.95 1.41

Cost (m, L) is counted in the YES, PT or NO region, depending on the
fraction f of clauses C subsuming examples Ex, over all pairs (C, Ex) generated
to estimate cost(m, L) (with YES region =d [f > 90%]; PT region =d [f ∈
[10%, 90%]]; NO region =d [f < 10%]).
Some care must be exercised when interpreting the results, due to the high

variability of the measures; this variability was hardly reduced by increasing the
number of experiments for a given pair (m, L) from 100 to 1,000 trials.
This variability is explained as only “simple” Forward Checking and Arc-

Consistency heuristics were considered. Though these heuristics are very efficient
on average, they do not manage well with “pathological” cases, which consider-
ably increases the average resolution cost. Further experiments will consider the
use of Maintained Arc Consistency heuristics, and see whether the gain achieved
on hard θ-subsumption problems (as MAC is optimal with regard to worst-case
complexity) compensates for the loss on easier problem instances.
The phase transition phenomenon is most marked for Django.V1 (Fig. 1),

the cost in the PT region being 10 times the cost in the YES region and 20 times
the cost in the NO region. Note that the performance gain of Django.V1 over
MCS is not uniform; the gain factor is about 30 in the YES region, 7 in the PT,
and 200 in the NO region.

10

The addition of dynamic variable ordering heuristics visibly improves the
performances, especially in the PT region, smoothening the complexity peak.
Other heuristics, especially signature-based heuristics, also seem to contribute
to the global efficiency5. The best gain factor compared to MCS is about 100 in
the YES region, 200 in the PT region, and 700 in the NO region (Fig. 3).

Fig. 3. θ-subsumption cost(m, L) for Django.V8, averaged on 1,000 pairs (C, Ex) (scale
factor ÷ 25 compared to Fig. 1)

Similar gain factors have been obtained for experiments (not shown for space
limitations) on the N -queen problem, for N = 10..30.
Last, artificial problems derived from the real-world Mutagenesis problem

[20] have been used to compare Django and MCS. Each hypothesis C considered
involves m literals and n variables, where m and n respectively range in 1..10
and 2..10; C is tested against all 229 examples in the training set. For a given
m and n, C is randomly generated from m bond literals bond(Xi, Xj), where Xi

and Xj are each selected among n variables in such a way that Xi 	= Xj and C
is connected.
Results obtained with Django show the presence of phase transition when the

number of literals and variables in the hypothesis are around 4 and 5 respectively,
though this change in the covering probability is not coupled with a complexity
peak. The worst effective complexity is observed for hypotheses with n literals
and n+ 1 variables (chains of atoms).
MCS obtains good results on the “artificial mutagenesis” θ-subsumption

problems. Since a single predicate symbol is actually considered, the substi-

5 This contrasts with the inefficiency observed for graph contexts [18], though formally
equivalent to signatures. However, this seems to be mostly due to implementation
matters: for the sake of generality, 1-neighborhoods are implemented as lists of lists,
whereas signatures are coded as boolean vectors.

11

tution graph is not relevant, and the maximal clique search efficiently solves the
search. On this problem, Django outperforms MCS by a gain factor between 50
and 700.

5.3 Scope and Relevance of the Experimental Study

Artificial problems considered in the paper differ from real-world θ-subsumption
problems encountered in ILP in three respects.
In the general case, a major issue is to decompose the problem at hand into

fewly or not related subproblems [6,2] (e.g. decomposing the hypothesis into k-
local components [5,8]), as successful decomposition entails exponential savings
in the resolution cost.
In this study, artificial problems are designed in such a way that they are not de-
composable into two or more disjoint CSPs [3]. The θ-subsumption average cost
reported for a given m-literal clause and L-constant example thus corresponds
to a pessimistic (non-decomposable case) estimate.

A second issue regards the uniform distribution of the θ-subsumption prob-
lems considered. Each predicate symbol occurs once in the hypothesis, and
N = 100 times in the example.
In real-world problems, some predicate symbols occur more frequently than oth-
ers in the examples. Wrt the dual CSP, this means that constrained variables
have domains with diverse sizes. Such a diversity makes CSP heuristics, e.g. con-
straint propagation or dynamic variable ordering, more effective. In this respect,
considering predicate symbols with same number of literals built on them leads
to a pessimistic estimate of the average θ-subsumption cost.

The third issue concerns the arity of the predicate symbols, which is restricted
to 2 in our artificial setting. With respect to worst-case complexity, the predi-
cate arity does not affect the dual CSP; the dual CSP size is O(Nm), the size
of dual domains exponentiated by the number of dual constraints, which does
not depend on the arity. But the predicate arity dictates the number of dual
constraints. Assume that a (primal) variable in hypothesis C occurs in o distinct

literals in C; this is accounted for in the dual CSP by o×(o−1)
2 dual constraints6.

Assuming that all predicates are k-ary, their m × k arguments are selected
among n primal variables. Assuming this selection is uniform (which is not as
one has to ensure the clause connectivity), each variable intervenes on average

in m×k
n
literals in C, and thus the total number of dual constraints is O (m2

×k2

n
).

According to this preliminary analysis, increasing the predicate arity by a factor√
t can be likened to decreasing the number of variables by factor t. Experimen-

tally, decreasing the number of variables causes the phase transition to move
toward shorter hypotheses everything else being equal (left region in Fig. 1),
with exponential decrease of the complexity peak [3].

6 Note that if a primal variable occurs twice in a single literal p in C, this amounts to
a dual unary constraint on the dual constrained variable Yp, directly accounted for
by reducing the associated dual domain.

12

In summary, the artificial θ-subsumption problems considered were meant to
study the worst average case with respect to decomposability and distributional
diversity.

6 Conclusion and Perspectives

This paper presents a new θ-subsumption algorithm, Django, operating on a con-
straint satisfaction-like representation of θ-subsumption. Django combines well-
known CS heuristics (arc consistency, forward checking and dynamic variable
ordering) with θ-subsumption-specific heuristics (signatures). Intensive experi-
mental validation on artificial worst average instances show that Django outper-
forms previous θ-subsumption algoritms [8,18] by several orders of magnitude in
computational cost.
This computational gain might be a good news as ILP systems routinely

perform thousands of subsumption tests.
Even more interesting is the fact that the θ-subsumption complexity gives

indications regarding the current situation of the ILP search, as located in the
YES, PT or NO regions after the CSP framework [7].
This might open several perspectives to ILP.

On one hand, the relevance of the YES, NO and PT regions might be questioned
in regard to real-world examples, whose distribution model could be arbitrar-
ily different from the uniform model used in the artificial problems. How to
characterize and exploit a generative model in order to refine and simplify the
representation of an ILP problem, is investigated in the field of reformulation
and abstraction (see [17] among others).
On the other hand, it appears reasonable that, unless the target concept

belongs to the YES region, relevant hypotheses lie in the PT region. This is due
to the fact that most ILP learners prefer most general hypotheses provided that
they are sufficiently correct (Occam’s Razor); therefore, no learner will engage in
the NO region. In this perspective, new refinement operators directly searching
the PT region would be most appreciated.
Further research is first concerned with improving Django, checking whether

other CS heuristics such as path-consistency are appropriate to θ-subsumption.
In the same spirit, the CSP translation proposed for θ-subsumption will be
extended to θ-reduction. The idea is that matching a clause with itself might
give some information about the redundant literals.
Another perspective is to use Django to compare alternative representations

for an ILP problem, and select the representation with minimal θ-subsumption
cost for randomly generated hypotheses.
Last, an interesting question is whether and how the partial results of Django

(values or variable links leading to most failures) can be used to navigate in the
PT region, by repairing a clause into a clause with same complexity.

13

Acknowledgments

We gratefully acknowledge Lorenza Saitta, Attilio Giordana and Marco Botta,
for many lively discussions about Phase transitions and its consequences on ILP.
Thanks also to Tobias Scheffer, who kindly gave us his implementation of graph
contexts and determinate matching.

References

1. C. Bessière and J.-C. R/’egin. Mac and combined heuristics: Two reasons to forsake
FC (and CBJ ?) on hard problems. In 2nd Int. Conf. on Principles and Practice
of Constraint Programming, pages 61–75, 1996.

2. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-
ligence, 38:353–366, 1989.

3. A. Giordana and L. Saitta. Phase transitions in relational learning. Machine
Learning, 2:217–251, 2000.

4. A. Giordana, L. Saitta, M. Sebag, and M. Botta. Analyzing relational learning in
the phase transition framework. In P. Langley, editor, 17th Int. Conf. on Machine
Learning, pages 311–318. Morgan Kaufmann, 2000.

5. G. Gottlob and A. Leitsch. On the efficiency of subsumption algorithms. Journal
of the Association for Computing Machinery, 32(2):280–295, 1985.

6. M. Gyssens, P. G. Jeavons, and D. A. Cohen. Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence, 66:57–89, 1994.

7. T. Hogg, B. Huberman, and C. Williams. Phase transitions and the search problem.
Artificial Intelligence, 81:1–15, 1996.

8. J.-U. Kietz and M. Lübbe. An efficient subsumption algorithm for inductive logic
programming. In W. Cohen and H. Hirsh, editors, 11th Int. Conf. on Machine
Leaning. Morgan Kaufmann, 1994.

9. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

10. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19:629–679, 1994.

11. C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declarative
bias in ILP. In L. de Raedt, editor, Advances in ILP, pages 82–103. IOS Press,
1996.

12. S. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming.
Springer Verlag, 1997.

13. G. D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 5, pages 153–163, 1970.

14. P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9:268–299, 1993.

15. J.R. Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239–266, 1990.

16. J. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

17. L. Saitta and J.-D. Zucker. Semantic abstraction for concept representation and
learning. In AAAI, editor, Symposium on Abstraction, Reformulation and Approx-
imation (SARA98), 1998.

14

18. T. Scheffer, R. Herbrich, and F. Wysotzki. Efficient θ-subsumption based on graph
algorithms. In S. Muggleton, editor, Proceedings Int. Workshop on Inductive Logic
Programming. Springer-Verlag, 1997.

19. M. Sebag and C. Rouveirol. Resource-bounded relational reasoning: Induction and
deduction through stochastic matching. Machine Learning, 38:41–62, 2000.

20. A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mu-
tagenicity: a study in first order and feature-based induction. Artificial Intelligence,
85:277–299, 1996.

21. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

15

	1 Introduction
	2 theta-Subsumption, Definition and Algorithms
	3 Constraint Satisfaction Problem
	3.1 Reduction
	3.2 Search

	4 CSP Heuristics for theta-Subsumption
	4.1 Representation
	4.2 Resolution

	5 Experimental Validation
	5.1 Experimental Setting
	5.2 Results and Discussion
	5.3 Scope and Relevance of the Experimental Study

	6 Conclusion and Perspectives
	References

