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Abstract This paper deals with a direct approach for the evaluation of singu­
lar element integrals arising from the discretization of hypersingular 
boundary integral equations (BIEs) in symmetric Galerkin form, for 
two-dimensional problems. 

1. INTRODUCTION

The direct evaluation of element integrals arising from the discretiza­
tion of strongly singular or hypersingular boundary integral equations 
(BIEs) in collocation form, summarized in [4], is well-established and
widely used. 

In this paper, the direct approach is developed for hypersingular BIEs 
in weighted-residual form, i.e. for Galerkin boundary element methods 
(GBEMs). In line with previous works, the limiting form of the integral 
identity as a small parameter E vanishes must be derived, and this is 
again done after discretization. References [1, 6] implement, in a differ­
ent way, the same general principles. 

The present investigation differs from previous ones in that GBEMs 
involve double element integrals. Hence, two cases of potentially sin­
gular integrations arise: coincident (double integral on twice the same 
element) and adjacent (double integral on a pair of touching elements). 
The algorithm presented in this communication deals with both the co­
incident and adjacent cases, for 2D problems. Indeed, it appears that 
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they must be considered together: each one generates a potentially in­
finite term, which cancel each other. Double integrals are treated as a 
whole (i.e. not as inner singular integrals followed by outer nonsingular 
ones), through the introduction of suitable coordinate transformations 
in the two-dimensional space of intrinsic coordinates. 

The usual direct approach to collocation BEM does not resort to prior 
regularization [4]. Similarly, the method presented here is not based on
any prior analytical manipulation, like the double integration by parts 
on the hypersingular kernel which is used in other contributions, see e. g. 
[2]. 

The proposed algorithm is in particular applicable to symmetric GBEMs, 
which are under intense investigation (see the survey paper [3]), and is 
devised so as to define in that case a perfectly symmetric integration 
procedure, even when the numerical quadrature is not exact. However, 
its definition is valid whether the GBEM formulation considered is sym­
metric or not, the key features being the hypersingularity of the kernels 
involved and the double integration. 

2. INTEGRAL STATEMENTS

Let n be a 2D bounded domain with boundary r = 80 (possibly with
a finite number of corners). With n(y) and t(y) we indicate, respectively, 
the normal and tangent unit vectors at y E r (Figure 1). 

The starting point is the 3rd Green identity for <p and q = or.pf an on
the punctured domain ne:, with boundary r - ee: +Se: (Figure 1). In this
case we deal with the hypersingular BIE 

{ [V(x, y)rp(y) - W(x, y)q(y)] dsy = 0.lr-e,+s, 

/ . ... ....... ...... ... .. .... . .

f n !y; 
/ee: 

.. ····+ .. ····)(' 
Ye: 

Figure 1 Exclusion of the singular point x by a vanishing neighbourhood v,. 

(1) 
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We assume for simplicity that the free-plane fundamental solution for 
the Laplace equation is being used, i.e. G(x, y) = -1/(27r) ln rand hence

1 rini(x) W(x, y) = -G,i(x, y)ni(x) = -2 2 , 
7r r (2) 

V(x, y) = W,jnj(Y) = -G,ij (x, y)ni(x)n1(Y) = O(r-
2),

where r = y - x, r = lrl and ri is the i-th Cartesian component of r. 
Let 'lj;(x) be any sufficiently regular function defined on r. Before

taking the limit for E --+ 0, we can use 'lj;(x) to weigh the integral identity
(1): 

{ 'lj;(x) { { [V(x, y)c.p(y) - W(x, y)q(y)J dsy} dsx = 0. (3)Jr lr-e,+s, 
As usual the density function c.p is assumed to be C(l,a) at x. For

the selected fundamental solution the integrals on s0 can be evaluated
analytically. This step is not influenced by the presence of the weight 
function 'ljJ and has to be performed for the collocation BEM as well.

In principle any shape may be used for v0, since the overall result will 
be independent of this shape. Therefore, it is just more convenient to 
select a circular shape or, more precisely, IYi-xl = IY; -xi = E, thereby

+ 

avoiding a lnE contribution from [G,i(x,y)]��- The direct SGBEM
formulation is thus sought as the limiting form as E --+ 0 of the identity

0 =  { 'lj;(x) { �q(x)+c.p(x)ti(x)[G,i(x,y)]y�((x))lr 2 y, x 

+ h-e, [ V(x, y)c.p(y) - W(x, y)q(y) J dsy} dsx + o(l), (4)

where o(l) accounts for all vanishing contributions. It should be noted
that within curly braces we have precisely the hypersingular boundary 
integral equation as obtained for the collocation BEM by Guiggiani et 
al [5]. 

3. PRELIMINARY DEFINITIONS

Let the boundary r be_ modeled �y (curvilinear) boundary elements 
and let y E E and x E E, E and E being two such elements. In the
Galerkin BEM (regardless of its symmetry) we have to deal with double 
integrals on E x E.

If the two elements are disjoint, that is, do not share a common end­
point, the double integration is performed using ordinary means since 
the integrand is continuous. 
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On the other hand, singularities in the integrand function arise either 
when the two elements share one common endpoint (i.e., they are ad­
jacent), or when they are coincident (i.e., E = E). In these cases the
appropriate setting is 

( r {- . . } dsydsx,le lE-ee:(x) 
where, although not strictly necessary, we can use the following restricted 
definition for e0(x) 

e0(x) = {y EE: IY - xi SE, with x EE}, (5) 

Each boundary element is analytically defined by means of suitable 
parametric equations. Typically the Cartesian coordinates of a point 
y of E are given by y = y(e) = '2::�1 Np(e)zP, where -1 S e S 1 is
the parameter (or intrinsic coordinate) , NP ( e) are cardinal shape func­
tions and zP are the geometric nodes. We will denote by a(e) and t(e), 
respectively, the natural and normalized tangent vector to an element: 

so that 

and by m(e) and n(e) the natural and normalized normal vectors:

(e) = m(e) 
= m(e) n 

lm(OI a(e) .

Moreover we have n(y)dsy = n(e)J(e)de = m(e)de. Also define

4. COINCIDENT ELEMENTS 

(7) 

(8) 

Let y and x belong to the same boundary element E = E. We will
consider the hypersingular integral 

where Vij(Y - x) = -G,ij(Y - x) and

e0(x) = {y EE: IY - xi Sc, with x EE}. (10) 
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The distance vector r now becomes
Ne 

r = y(e) - x(77) = L [Np(e) - Np(TJ)] zP, (11) 
p=l 

and (r = 0) {:} (y = x) {:} (e = 77). Therefore, in the parameter space
we have to integrate over the square (77, e) E [-1,1] x [-1,1] minus a
(narrow, non uniform) strip across the e = 77 diagonal. The strip is the
image of E x  e0(x). 

The double integration (9) will be treated by subdividing the square 
(77, e) E [-1, 1] x [-1, l] into two triangular regions, labeled (1) and (2).
In each region a new pair of coordinates ( u, v) is introduced according
to the following scheme 

region (1): 

region (2): 

{T/ = u(l - v) - v
e = u(l - v) + v{T/ = u(l + v) - v
e = u(l + v) + v 

withu E [-1,1], v E [0, 1 ] ,
(12) 

withu E [-1,1], v E [-1,0].

It should be noted that in both cases if v = 0 we have e = T/ = u.
Another feature of these coordinate transformations is that u and v vary
between fixed values, that is the range of variation of each coordinate 
does not depend on the other one. Also useful are the relations de dry = 

2(1 + v)dudv. 
In terms of the new coordinates, the distance vector r is

Ne 
r = r(u,v) = l:[Np(e(u,v)) - Np(ry(u, v))]zP. (13) 

p=l 
We are also interested in the Taylor expansion of the function r( u, v) as
a function of v and near v = 0 

1r(u,v) = 2a(u) v + 24ub(u) v2 +o(v2) (14) 
= 2v[a(u) +uvb(u) +o(v)] = 2vr(u,v), 

where, since u = e = T/ when v = 0, a and b are precisely the functions
defined in equations (6) and (8). 

Similarly, the distance r = lrl has the following Taylor expansion

r = 2va(u) [±1 - uvc(u) + o(v)] = ±2vf(u, v), (15) 

where a(u) = la(u)I and

a· b a' 
c(u) = -(u) = -(u). a·a a 

(16) 
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The integrand function in equation (9) as a function of u and v be­
comes 

1 
Vi1(r)ni(x)n1(y)'lj;(x)cp(y)dsydsx = 2F(u, v)dudv (17)v 

where F(u, v) is, in each triangular region, a regular function. We will
use p(l) ( u, v) and F(2) ( u, v) to refer to the restrictions of F ( u, v) on
subregion (1) and (2), respectively. 

The direct algorithm (Guiggiani et al. [5]) relies on a two-term Taylor
expansion of F(u, v) around v = 0

oF F(u,v) = F(u,O) +av (u,O)v  + O(v2). (18) 

In the present case (Laplace equation) the two terms are found to be:

1 F(u,O) = 47r'lf;(u)cp(u),
�� (u, 0) = 4� { ['l/Jcp' - 'lj;'cp] (u) =f [u'l/Jcp]' (u) }· (19) 

It is worth noting that F(l, 0) = 0 if 'lj;(l)cp(l) = 0, and F( -1, 0) = 0 if
'lj;(-l)cp(-1) = o. 

The boundary of the exclusion neighbourhood es(x) is defined by
condition (10), which together with expansion (15), leads to

E = ±2vf(u, v) = 2va(u) [ ±1 -uvc(u) + o(v)], (20) 

which, upon reversion, gives 

where 
1 

/3( u) = 2a( u) and 
uc(u) 

l'(u) = ( 2a(u))2 · 

(21) 

(22) 

According to equations (17) and (21), the hypersingular double inte­
gral (9) becomes in terms of the coordinates u and v

le= { { Vi1(Y - x)ni(x)nj(y)'lf;(x)cp(y)dsydsx }E JE-e<(x) _ /1 {!-a(s,u) p(2)(u, v) 11 p(I)(u, v) } - 2 dv + 2 dv du.-1 -1 V a(s,u) V (23) 
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Following the direct algorithm, the first two terms of expansion (18) 
are added and subtracted in (23), where F(1l(u,O) = F(2l(u,0). As
typical in the direct method, all the potentially singular integrals are 
now trivial functions of v and can be integrated analytically. 

Summing up, the following form of the double integral (23) is obtained

/1 lo 1 { [ f)F(2) ] } le= _1 _1v2 F(2l(u,v)- F(2l(u,0)+----a;-(u,O)v  dvdu
/1 (1 1 { [ 8F(1) ] } + _1}0 v2 F(l)(u,v)- F(1l(u,O) +----a;-(u,O) v  dvdu

/1 [ 1 'Y(u) ] 
+ 2 _1F(u,0) c:(3(u) - (3(u)2 - 1 du

/1 [f)F(2) f)F(1) ] + _1 ----a;-(u, 0) - ----a;-(u, 0) [ln lc:f3(u)I] du+ O(c:). (24) 

The distinctive feature of this expression is that all divergent terms are 
of c:-type. Of course they will eventually disappear. 

5. ADJACENT ELEMENTS

Le� E and E be two adjacent boundary elements, with y E E and
x E E. By adjacent elements we mean two elements having a common
endpoint. The singularity occurs when y = x which may happen either
when (ry, �) = (-1, 1) or when (ry, �) = (1, -1), depending on which 
element comes first on the boundary r. 

As above, we will consider the integral 

where Vi1(Y - x) = -G,ij(Y - x). The definition of ec:(x) was given in
(5). 

The distance vector r is such that (r = 0) {::} (y = x) {::} (e77 =
-1). To make the distinction clearer, quantities defined on E are also
marked by a tilde. Therefore, in the parameter space we have to integrate 
over the square ( 77, e) E [-1, l] x [-1, l] minus a small region around
either vertex (ry, e) = (1, -1) or vertex (-1, 1). This region is the image 
of Ex ec:(x).

The double integration (25) will be treated by subdividing again the
square (ry, e) E [-1, 1] x [-1, 1] into two triangular regions, labeled (1)
and (2). Moreover, the mappings (ry, 0 {::} (u, v) defined in (12) could
be used in this case as well. 

7



Singularity at ('T/,�) = (1, -1). In this case the integral over region
( 1) is not singular and we will consider in detail only the integral J�)
over region (2). 

If the mappings defined in (12) are employed, the singularity would 
occur at v = -1. Therefore, it is merely a matter of convenience to shift
the v coordinate in (12) so that the singular point is defined by v = 0 
and thus obtaining d�d'T/ = 2vdudv. 

As before, we are interested in the Taylor expansion of the function 
r(u, v) = y(�(u, v)) - x('TJ(u, v)) as a function of v near v = 0 

r(u, v) = [(u + l)a(-1) - (u - l)a( +1)] v + o(v) 
= 2vs(u) + o(v) = 2vf(u, v),

(26) 

where a(-1) = a and a(l) = a are the natural tangent vectors (6) to
the elements E and E at their common endpoint. Equation (26) defines
the vector s(u). The distance r = Ir! has the expansion

r = 2vs(u) + o(v) = 2vr(u, v), (27) 

with s(u) = !s(u)I and r(u, v) = lr(u, v)I.
The integrand function in (25) as a function of u and v becomes 

- 1 
Vi1(r)iii(x)n1(Y)�(x)<p(y)dsydsx = -Q(u,v) dudv, (28) 

v 

where Q(u, v) is a regular function. 
Here a first-order Taylor expansion of Q(u, v) around v = 0 is suffi­

cient: Q(u, v) = Q(u, 0) + o(l) , where the term Q(u, 0) is easily found
to be 

1 -
Q(u, 0) = 2 l!;j(f(u, O))mi(l)mj(-l)�(l)cp(-1). (29) 

It is worth noting that Q(u,O) = 0 whenever �(l)cp(-1) = 0. This
observation has a strong relevance in the selection of suitable boundary 
elements in the Galerkin BEM with hypersingular kernels. 

The boundary of the exclusion neighbourhood ee (x) is defined by 
condition (5), which together with expansion (27), leads to 

- E ve = E(3(u) + o(c) = 
2s(u) + o(E) , 

where f3(u) = 1/(2s(u)). 

(30) 
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According to equations (28) and (30), the singular integral (25) over
adjacent elements when E follows E becomes 

IA= ( { Vij(Y - x)ni(x)nj(y),,/J(x)cp(y)dsydsx = I�l) + I�)} E }E-e0(x) 
= I�l) + f 1 11 Q(u, v) dudv + O(c). (31)-1 t:/(2s(u)) V 

Following the direct method, the first term of expansion of Q is added 
and subtracted in (31). Moreover, expansion (30) is considered and all
singular integrals are performed analytically. The final result is 

I�) = fo1 {/_11 
Q(u, v): Q(u, O) dv + Q(u, 0) ln j2 s(u)i }du 

- ln lei /_11 Q(u, O)d u + O(c). (32)
As in equation (24), the divergent term is of c-type. 

Singularity at (ry, e) = (-1, 1). This time, the singularity in the
integral (25) (with ef still defined in (5)) occurs when (ry, e) = (- 1, 1 )  (i.e.,
E following E on 1). The integral over region (2) is then nonsingular,
and essentially the same treatment as above is applied to the integral 
over region ( 1).
6. EVALUATION OF THE SINGULAR FREE

TERM

Let us go back to the starting identity (4) for the direct SGBEM. It
can be shown that the following result holds 

l �(x)cp(x)ti (x)G,i (x, Yt (x) )d sx - l �(x)cp(x)ti (x)G,i (x, y-; (x) )dsx
= - J_ f1 �(u)cp(u)a(u)d u  + -2

1 [�(l)cp(l) + �(-l)cp(-1)] 
7ff -1 7f 

- �(l)cp(l) [1 + e+

_
cose+ ] - �(-l)cp(-1) [i + e-

.
cos!- ] + o(l)47f sm e+ 47f sm e 

(33) 
7. A NUMERICAL TEST

A MATLAB program has been written to test the present direct inte­
gration method. To demonstrate its accuracy, we present a comparison 
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between numerical and exact (analytical) values of double singular inte­
grals of the form: 

r - r - W(x, y)'ljJ(x)rp(y)dsydSxj E+E j E+E-e, 
(34) 

where E, E are straight boundary elements meeting at their common 
endpoint with an angle () (figure 2) and 'ljJ and rp are taken as the same 
piecewise linear 'hat function': 

(on E) and 
1-e 

('l/J, rp) (e) = -2- (on E) 

Integral (34) is scale-independent (this stems from the fact that the
kernel W(x, y) is homogeneous of degree -2 with respect to the position 
vector y- x), and hence depends only on () and the element length ratio 
T} = jEj/jEj). The exact value (in the limiting case as E -t 0) of (34) is
found to be: 

- [2 + (TJ + ry-1) cos OJ ln(2 cos e + TJ + ry-1) + ('T/ - ry-1) cos Bln TJ. [ _1 sin() _1 _1 sin() J- 2 sm () TJ tan 
( () ) 

+ TJ tan
( () _ 1) cos + eta cos + TJ 

The relative error, for various corner angles ()k = k7T /12, 0 � k � 6 (i.e.
0 � ()k7T/2), are obtained as follows:

Figure 2 Adjacent straight boundary elements E, E and the 'hat function'. 

10



e (o) no= 4 no= 6 no= 8 no = 10 

17 = 1 0 3.5610-06 4.9810-09 5.9610-12 2.8610-14 
15 3.1410-06 3.3810-09 2.6410-12 2.30 10-14
30 2.5210-06 6.4910-10 -6.48 10-13 2.7410-14
45 - 5.8310-06 -1.3010-08 -2.2810-11 -1.30 10-14
60 -1.6510-04 -1.2010-05 - 8.0310-09 - 5.0910-11
75 -1.50 10-03 -2.8810-05 - 5.0110-07 -8.2210-09
90 - 9.2810-03 - 3.96 10-04 -1.5310-05 -5.5810-07

17 = vs  0 -1.8210-04 -1.1210-06 -5.9610-09 -2.7810-11
15 4.5510-05 1.5910-06 9.9710-09 7.7810-12
30 4.5510-04 -1.46 10-06 - 3.6010-08 2.1810-10
45 1.6510-04 -1.33 10-05 2.5210-07 - 2.6710-09
60 - 2.43 10-03 5.5610-05 -1.0710-06 1.7410-08
75 - 9.6710-03 4.3110-04 -1.6310-05 5.4010-07
90 - 2.3710-02 8.6010-04 2.9010-05 -7.6010-05
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