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Abstract
This communication addresses a computation strategy, based on the ad-

joint variable approach and BIE/BEM formulations of the direct prob-

lem, for evaluating crack or void shape sensitivities of objective func-

tionals. Boundary-only expressions for such sensitivities are sought, in

the context of linear elastodynamics.

In the case of a void, boundary-only expressions for sensitivities of

integral functionals defined on (part of) the external boundary are easy

to obtain by the standard adjoint variable approach. When the void

degenerates to a crack, the previous result ceases to be applicable, how-

ever, because non-integrable terms arise due to crack-tip singularities.

We show, for two classes of crack perturbations, that boundary-

only sensitivity expressions using an adjoint state can still be obtained:

(1) simple transformations (translation, rotation or expansion of the

crack) of arbitrarily shaped domains, and (2) general two-dimensional

geometries and crack perturbations. In the latter case, the shape sensi-

tivity is expressed using the primal and adjoint stress intensity factors.

Numerical tests of the latter kind of sensitivity expression are pre-

sented for a 2-D body with an internal crack, in plane-strain elasto-

dynamics. The influence of crack shape perturbations on an objective

functional is examined. The sensitivity results obtained using the present

strategy compare well with finite difference evaluations.

1 Introduction

The need to compute the sensitivity of integral functionals with

respect to shape parameters arises in many situations where a ge-

ometrical domain plays a primary role; shape optimization and

inverse problems are the most obvious, as well as possibly the

most important, of such instances. In addition to numerical dif-

ferentiation techniques, shape sensitivity evaluation can be based

on either direct differentiation or the adjoint variable approach,

this paper being focused on the latter. Besides, consideration of

shape changes in otherwise linear problems makes it very attrac-

tive to use boundary integral equation (BIE) formulations, which

constitute the minimal modelling as far as the geometrical sup-

port of field variables is concerned.

In the BIE context, the direct differentiation approach relies

upon the material differentiation of the governing BIEs in either

singular form (Barone and Yang, 1989; Mellings and Aliabadi,

1995) or regularized form (Bonnet, 1995b; Matsumoto et al.,

1993; Nishimura, 1995). The usual material differentiation for-

mula for surface integrals is shown to be applicable to strongly

singular or hypersingular BIEs as well (Bonnet, 1997). Thus, the

direct differentiation approach is in particular applicable in the

presence of cracks. Following this approach, a shape sensitivity

computation relies on solving as many new boundary-value prob-

lems as the numbers of shape parameters present. Since they all

involve the same, original, governing operator, the computational

effort is reduced to setting up new right-hand sides and solving

new linear systems by backsubstitution.

The adjoint variable approach is even more attractive, since

it needs to solve only one new boundary-value problem (the ad-

joint problem) per integral functional present (often only one),

whatever the number of shape parameters. In connexion with

BIE formulations alone, the adjoint variable approach has been

successfully applied to many shape sensitivity problems, cf. e.g.

Aithal and Saigal, 1995; Bonnet, 1995a; Burczyński, 1993; Bur-

czyński et al., 1995; Choi and Kwak, 1988; Meric, 1995. This



relies heavily upon the possibility of formulating the final, ana-

lytical expression of the shape sensitivityof a given integral func-

tional as a boundary integral that involves the boundary traces of

the primary and adjoint solutions. However, when the geometri-

cal domain under consideration contains cracks or other geomet-

rical singularities, divergent integrals associated with e.g. crack

tip singularity of field variables arise, and obtaining a boundary-

only sensitivity expression raises mathematical difficulties.

The present paper deals with the formulation of the adjoint

variable method applied to crack shape sensitivity analysis, in

connexion with the use of BIE formulations for elastodynamics

in the time domain. The corresponding boundary-only formula

for the shape sensitivity of the functional is first established for

the case of an unknown void. It is then shown to become incon-

sistent in the limit when the void becomes a crack because of the

divergence of a certain domain integral. However, resting on the

analysis made for the case of a void, functional shape sensitiv-

ity expressions consistent with the use of BIE formulations and

applicable to crack identification problems are derived for two

cases. Firstly, simple shape transformations (translations, rota-

tions, expansion) can be considered for either 2-D or 3-D prob-

lems. Secondly, a sensitivity formula involving integrals on the

crack and on arbitrary contours around the crack tips are estab-

lished for 2-D situations. They hold regardless of the crack shape

and of the shape transformation.

2 Motivation for shape sensitivity analysis
Consider a bounded domain B with external boundary S which

contains an internal defect in the form of either a void V of

boundary Γ (Fig. 1a) or a crack with crack surface Γ (Fig. 1b).

Let Ω denote the actual body (i.e.containing the defect): Ω =

BnV or Ω = BnΓ. The displacement uuu, strain εεε and stress σσσ are

related by the well-known field equations of linear elastodynam-

ics in the time domain (CCC: fourth-order elasticity tensor):

divσσσ�ρüuu = 0

σσσ =CCC :εεε in Ω

εεε = 1
2
(∇∇∇uuu+∇∇∇Tuuu)

(1)

The shape and position of the boundary Γ characterizing the de-

fect are unknown. Suppose that a given traction f̄ff is imposed on

BΓ

Γ
1

2

S
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Γ
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Figure 1. A body with an internal defect: (a) void, (b) crack

S, while Γ is traction-free. Assuming initial rest, equations (1)

are completed by the following boundary and initial conditions:

fff = f̄ff on S

fff = 0 on Γ

uuu = u̇uu = 0 in Ω, at t = 0

(2)

where fff � σσσ:nnn is the traction vector, defined in terms of the out-

ward unit normal nnn to Ω. In the case of a crack, the displacement

uuu is allowed to jump across Γ; [[uuu]]� uuu+�uuu� 6= 0.

Consider the problem of finding the shape and position of

the defect using elastodynamic experimental data, as in ultra-

sonic measurements. The lack of information about V and Γ
is compensated by some knowledge about uuu on S (redundant

boundary data). Assume that a measurement ûuu(xxx; t) of uuu is avail-

able for xxx 2 Sm � S and t 2 [0;T]. The usual approach for finding

Γ is the minimization of some distance J between uuuΓ (computed)

and ûuu (measured), e.g.:

J (Γ) =
1

2

Z T

0

Z
Sm

jûuu�uuuΓj
2

dSdt (3)

where uuuΓ denotes the solution of problem (1, 2) for a given loca-

tion of Γ. The minimization of J with respect to Γ needs in turn,

for efficiency, the evaluation of the functional J and its gradient

with respect to perturbations of Γ.

Other kinds of sensitivity problems with different motiva-

tions (e.g. optimization) can be considered as well. Let us thus

introduce the following generic objective function:

J (Γ) =
Z T

0

Z
S

ϕ(uuuΓ;xxx; t)dSdt +

Z
Γ

ψ(xxx)dS (4)

Because of the fact that functionals J of the type (4) depend only

on boundary quantities and the problem (1, 2) does not involve

sources distributed over the domain Ω then it is natural to solve

the direct problem by means of the boundary element method.

3 Boundary integral equation for the direct problem
BIE formulations for the direct elastodynamic problem are based

on either a dynamic fundamental solution (BIE formulation in

the time or frequency domain) or a static (time-independent)

fundamental solution together with the dual reciprocity method

(DRM). In the latter, which has been used in our numerical ex-

periments so far, the acceleration within the domain Ω is approx-

imated by a set of A given co-ordinate functions rα
(yyy):

üuu(yyy; t) =
A

∑
α=1

s̈α
(t)rrrα

(yyy) (5)

where sα
(t) is a set of unknown, time dependent, functions. The

boundary integral equation takes the form:

1

2
uuu(xxx; t)+�

Z
∂Ω

TTT (xxx;yyy):uuu(yyy; t)dSy�
Z

∂Ω
UUU(xxx yyy): fff (yyy; t)dSy;



=

A

∑
α=1

�
1

2
ũuuα

(xxx)+�

Z
∂Ω

TTT (xxx;yyy):ũuuα
(yyy)dSy

�
Z

∂Ω
UUU:(xxx;yyy) f̃ff

α
(yyy)dSy

�
s̈α
(t) (6)

where UUU(xxx;yyy) and TTT (xxx;yyy) are the elastostatic fundamental dis-

placement and traction (usually associated with the Kelvin so-

lution), and (ũuuα
(yyy; t); f̃ff

α
(yyy; t) are the displacement and traction

generated by the body force rrrα
(yyy). To solve the direct elasto-

dynamic problem using the DRM the boundary is divided into

boundary elements, and displacements uuu; ũuu and tractions fff ; f̃ff

within each element are approximated using the same interpo-

lation functions. As a result, a system of ordinary differential

equations in time is obtained.

Equation (6) can be applied to the void problem. When used

for the crack problem with collocation points xxx on both crack

faces Γ�, the resulting set of integral equations becomes singu-

lar. In order to overcome this problem without introducing do-

main subdivisions, which are not convenient in geometrical in-

verse problems, equation (6) is replaced on one crack face by a

new, independent, traction integral equation; this is the so-called

dual formulation. The traction equation for the DRM has the

form (Fedelinski et al., 1996):

1

2
fff (xxx; t)+=

Z
Γ
DDD(xxx;yyy):uuu(yyy; t)dSy

+

Z
S

h
DDD(xxx;yyy):uuu(yyy; t)�TTT(yyy;xxx): fff (yyy; t)

i
dSy

=

A

∑
α=1

�
1

2
f̃ff

α
(xxx)+=

Z
Γ
DDD(xxx;yyy)ũuuα

(yyy)dSy

+

Z
S

h
TTT (yyy;xxx)ũuu(yyy)�TTT (yyy;xxx) f̃ff (yyy)

i
dSy

�
s̈α
(t) (7)

where DDD(xxx;yyy) = [CCC : ∇∇∇x(CCC : ∇∇∇yUUU(xxx;yyy))]:nnn is the hypersingular

static kernel asssociated with the traction integral equation, while

the symbols –
R

and =
R

denote singular integrals of the Cauchy prin-

cipal value and Hadamard finite part types, respectively. Equa-

tion (7) can also be used with xxx on both crack surfaces and sub-

tracted, the crack opening displacement [[uuu]] thus becoming the

primary kinematical unknown on the crack.

4 Sensitivity analysis
Consider in the m-dimensional Euclidean space IRm, m = 2 or 3,

a body Ωp whose shape depends on a finite number of shape pa-

rameters ppp = (p1; p2; : : :). Shape parameters are treated as time-

like parameters using a continuum kinematics-type Lagrangian

description and initial configuration Ω0 conventionally associ-

ated with ppp = 0 (Petryk and Mroz, 1986):

xxx 2Ω0 ! xxxp
=ΦΦΦ(xxx;ppp) 2Ωp (8)

with ΦΦΦ(xxx;0) = xxx (8xxx 2 Ω0). The geometrical transformation

ΦΦΦ(�;ppp) must possess a strictly positive Jacobian for any given ppp.

As far as first-order derivatives with respect to ppp are concerned,

attention can be restricted to the consideration of a single shape

parameter p without loss of generality.

The initial transformation velocity field θθθ(xxx), defined by

θθθ(xxx) =
∂ΦΦΦ

∂ppp
(xxx; p = 0) (9)

is the ‘initial’ velocity of the ‘material’ point which coincides

with the geometrical point xxx at ‘time’ p = 0.

The following relations hold between the total (or ‘la-

grangian’, or ‘material’) derivative fp = d f=dp and the partial

(or ‘eulerian’) derivative f p
= ∂ f=∂p of any sufficiently regular

function f (xxx; p):

fp = f p
+∇∇∇ f :θθθ (∇∇∇ f )p = ∇∇∇( fp)�∇∇∇ f :∇∇∇:θθθ (10)

The material derivatives of domain and boundary integrals are

expressed by (see e.g. Petryk and Mroz, 1986):

d

dp

Z
Ω

f dΩ =

Z
Ω
( fp + f divθθθ)dΩ Ω: any domain (11)

d

dp

Z
S

f dS =

Z
S
( fp + f divSθθθ)dS S: any surface (12)

The surface divergence is given by divSθθθ= divθθθ�nnn:∇∇∇θθθ:nnn, where

nnn is the unit normal vector.

One assumes here that the external boundary S and its neigh-

bourhood is unaffected by the shape transformation, so θθθ= 0 and

∇∇∇θθθ = 0 on S. However, this is not true when emerging cracks are

considered: in this case, θθθ and ∇∇∇θθθ do not vanish on some neigh-

bourhood of the emerging point (or edge in 3-D problems).

5 Shape sensitivity: adjoint problem and domain in-
tegral formulation

Introduce the following Lagrangian, in which the weak formula-

tion of the direct problem (1, 2) appears as an equality constraint

term added to the objective function J:

L(uuu;vvv;Γ) = J(uuu;Γ)+
Z T

0

Z
Ω
[σσσ(uuu) :∇∇∇(vvv)+ρüuu:vvv]dΩdt

�

Z T

0

Z
S

f̄ff :vvvdSdt (13)

Taking into account Eqs. (10)–(12), the total material

derivative of the Lagrangian with respect to a variation of the



domain can be expressed as:

d

dp
L(u;v;Γ) =

Z T

0

Z
Ω
[σσσ(uuup) :∇∇∇(vvv)+ρüuup:vvv]dΩdt

+

Z T

0

Z
S

∂ϕ

∂uuu
:uuup dSdt +

Z T

0

Z
Ω
[σσσ(uuu) :∇∇∇(vvv)+ρüuu:vvv]divθθθdΩdt

�

Z T

0

Z
Ω
[σσσ(uuu):∇∇∇vvv+σσσ(vvv):∇∇∇uuu] :∇∇∇θθθ dΩdt (14)

For cracks, the partial derivative (∇∇∇u)p has generally a d�3=2

singularity along the crack edge ∂Γ, while ∇∇∇(uuup) and ∇∇∇uuu have

the same d�1=2 singularity, where d is a distance to ∂Γ. For this

reason, the total derivative uuup has been introduced instead of the

partial derivative uuup. The derivations made in this section are

therefore valid for both void and crack problems.

At this point, it is useful to remark that since the initial con-

ditions uuu(�;0) = u̇uu(�;0) hold for any location of the assumed de-

fect, one should assume uuup(�;0)= u̇uup(�;0) as well. One then has:

Z T

0
üuu:vvvdt = (u̇uu:vvv� v̇vv:uuu) jt=T +

Z T

0
uuu:v̈vvdt (15)

Z T

0
üuup:vvvdt = (u̇uup:vvv� v̇vv:uuup) jt=T +

Z T

0
uuup:v̈vvdt (16)

In equation (14), the test function vvv is now chosen so that the

terms which contain uuup combine to zero for any uuup. Using

Eq. (15), one gets:

Z T

0

Z
Ω
[σσσ(vvv) :∇∇∇(uuup)+ρv̈vv:uuup]dΩdt +

Z T

0

Z
S

∂ϕ

∂uuu
:uuup dSdt

+

Z
Ω
(u̇uup:vvv� v̇vv:uuup) jt=T dΩ = 0 (8uuup) (17)

This last result is the weak formulation, with unknown vvv, of the

adjoint problem. Thus vvv solves the field equations (1) together

with the following boundary and final conditions:

fff (vvv) =�
∂ϕ

∂uuu
on S

fff (vvv) = 0 on Γ

vvv = v̇vv = 0 in Ω, at t = T

(18)

The adjoint problem can be solved in the same way as the di-

rect problem (1, 2), e.g. using the dual reciprocity formulation

(eq.(6)), but with time reversed.

Finally, Eq. (14) allows to express the derivative of J in

terms of the direct and adjoint solutions:

uΓ
d

dp
J (Γ) =

d

dp
L(uΓ;vΓ;Γ)

=

Z T

0

Z
Ω
[σσσ(uuu) :εεε(vvv)+ρüuu:vvv]divθθθdΩdt

�

Z T

0

Z
Ω
[σσσ(uuu):∇∇∇vvv+σσσ(vvv):∇∇∇uuu] :∇∇∇θθθdΩdt (19)

6 Shape sensitivity: boundary integral formulation
(void problem)

The formula (19) for the sensitivity of J is expressed by a do-

main integral. It is therefore not suitable for BEM-based com-

putations. This section aims to show that Eq. (19) applied to

the void problem can be converted into an equivalent, boundary-

only, expression.

Besides, it is easy to prove (for example using component

notation) that the solutions uuuΓ and vvvΓ to the direct and adjoint

problems (and, indeed, any pair (uuu;vvv) solving the field equations

(1) together with homogeneous initial and final conditions, re-

spectively) verify:

Z T

0

n
[σσσ(uuu) :εεε(vvv)+ρüuu:vvv]divθθθ� [σσσ(uuu):∇∇∇vvv+σσσ(vvv):∇∇∇uuu] :∇∇∇θθθ

o
dt

=

Z T

0
div
�
[σσσ(uuu) :εεε(vvv)�ρu̇uu:v̇vv]θθθ� [σσσ(uuu):∇∇∇vvv+σσσ(vvv):∇∇∇uuu]:θθθ

�
dt (20)

(where the subscript Γ in (uΓ;vΓ) has been removed for conve-

nience). This identity is then substituted into Eq. (19), leading to

a boundary-only expression via the divergence formula:

dJ

dp
=

Z T

0

Z
∂Ω

[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv]θn dSdt

�

Z T

0

Z
∂Ω

[ fff (uuu):∇∇∇vvv+ fff (vvv):∇∇∇uuu]:θθθdSdt (21)

provided all integrals involved in the previous steps are conver-

gent (this provision will prove important for crack problems).

Since θθθ = 0 on S and fff (uuu) = fff (vvv) = 0 on Γ, the above equa-

tion reduces to:

dJ

dp
=

Z T

0

Z
Γ
[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv]θn dSdt (22)

The general expression of the bilinear form σσσ(uuu) : ∇∇∇vvv in terms

of ∇∇∇Suuu;∇∇∇Svvv and fff (uuu) = fff (vvv) (assuming isotropic elasticity and

taking fff (uuu) = fff (vvv) = 0 into account) is:

σσσ(uuu) : ∇∇∇vvv = µ

�
2ν

1�ν
divSuuu divSvvv+

1

2
(∇∇∇Suuu+∇∇∇T

S uuu) : ∇∇∇Svvv

+
1

2
(∇∇∇Svvv+∇∇∇T

S vvv) : ∇∇∇Suuu� (nnn:∇∇∇Suuu):(nnn:∇∇∇Svvv)

�
(23)

(ν: Poisson ratio, µ: shear modulus). Its substitution into Eq. (22)

produces an expression of ∂J=∂p in terms of the fields (uuu;vvv) and

their tangential derivatives, i.e. well suited to computation.

7 Shape sensitivity: boundary integral formulation
(crack problem)

Consider the case where the unknown defect is a crack, i.e. the

limiting case of a void bounded by two surfaces Γ+ and Γ� iden-

tical and of opposite orientations (Fig. 2). It is tempting to still



apply Eq. (21) to compute sensitivities with respect to crack lo-

cation perturbations. However, Eq. (21) is not correct for crack

defects. For instance, consider a domain shape transformation

such that θn = 0 on the crack surface Γ. This means that crack

perturbations along the tangent plane at the crack front are al-

lowed. But then Eq. (21) gives dJ=dp = 0, which is certainty

not true in general. In contrast, when Γ is the piecewise smooth

boundary of a void, θn = 0 implies that the void is unperturbed.

This apparent paradox may be explained as follows: to es-

tablish the boundary-only expression (21), one needs an integra-

tion by parts using identity (20). On the other hand, Eq. (20)

involves the quantity div(σσσ(uuu) : ∇∇∇vvv), which behaves like d�2 in

the vicinity of the crack tip (2D) or front (3D) and is therefore

not integrable (d: distance to the crack tip or front).

This section aims at showing that these difficulties can be

overcome in two instances: (i) consider special cases of domain

transformations where the domain integral disappears or is easily

transformed, or (ii) additive decomposition of the transformation

velocity field θθθ in neighbourhoods of the crack tips into a con-

stant and a complementary term.

7.1 Special cases of domain transformations

Isolate a neighbourhood D�Ω of the crack bounded by the sur-

face ∂D = C (Fig. 3) and consider the transformation velocity

fields θθθ associated with special crack shape transformations: (a)

translation of D, (b) expansion of D and (c) rotation of D. These

shape transformations are continuously extended so that θθθ = 0,

∇∇∇θθθ = 0 on S. Then, Eq. (21) is valid for the subdomain Ω nD

while advantage is taken of the special form of θθθ in D:

(a) translation: θθθ = θθθ0 (constant) in D, hence ∇∇∇θθθ = 0, divθθθ =

0 in D and the domain integral over D in Eq. (19) vanishes;

(b) expansion with respect to the origin: θθθ = ηyyy (η: ex-

pansion coefficient) so that ∇∇∇θθθ = ηIII, divθθθ = mη (m: space di-

mensionality) in D. In this case, the domain integral over D in

Γ

Γ

+

−

n = n-__

Figure 2. A crack bounded by two almost identical surfaces Γ+ and Γ�.

D

C-DΩ

Γ
n_

Figure 3. A crack C with a neighbourhood D

Eq. (19) becomes:

η
Z

D

n
(m�2)σσσ(uuu) : ∇∇∇vvv+mρu̇uu:v̇vv

o
dΩ

= η(m�2)

Z
C

fff (uuu):vvvdS�2ρη
Z

D
u̇uu:v̇vvdΩ (24)

(c) rotation: θθθ =ωωωyyy (ωωω: constant tensor such that ωωω+ωωωT
= 0)

so that ∇∇∇θθθ+∇∇∇θθθT
= 0 and divθθθ = 0. Using the identity ∇∇∇www =

2εεε(www)�∇∇∇Twww, the domain integral over D becomes, in compo-

nent notation:

ωa j

Z
D

n
σi j(uuu)[va;i�2εai(vvv)]+σi j(vvv)[ua;i�2εai(uuu)]

o
dΩ (25)

For isotropic elasticity (λ;µ: Lame constants), one has

σi j(uuu)εai(vvv)+σi j(vvv)εai(uuu) = λ[(divuuu)ε ja(vvv)+(divvvv)ε ja(uuu)]

+2µ[εi j(uuu)εia(vvv)+ εi j(vvv)εia(uuu)] (26)

which is symmetric with respect to the indices (a; j), so that the

inner product of this quantity with ωa j vanishes. As a result, the

integral over D, Eq. (25), becomes, after application of the di-

vergence formula, integration in time over [0;T ] and using initial

conditions on uuu and final conditions on vvv:

ωa j

Z T

0

�Z
C
[pi(uuu)va + pi(vvv)ua]dS+

Z
D
[u̇av̇ j + u̇ jv̇a]dΩ

�
dt

But the second integral in the above equation is symmetric with

respect to the indices (a; j); thus its inner product with ωa j van-

ishes and only the first term remains.

Collecting all results, we have for cases (a), (b) and (c) to-

gether (with θθθ = θθθ0 +ηxxx+ωωω:xxx):

∂J

∂p
=

Z T

0

Z
C
[ρu̇uu:v̇vv�σσσ(uuu) : ∇∇∇vvv]θn dSdt

+

Z T

0

Z
C
[ fff (uuu):∇∇∇vvv+ fff (vvv):∇∇∇uuu]:θθθdSdt

+η(m�2)

Z T

0

Z
C

fff (uuu):vvvdSdt�2ρη
Z T

0

Z
D

u̇uu:v̇vvdΩdt

+ωa j

Z T

0

Z
C
[pi(uuu)va + pi(vvv)ua]dSdt (27)

The neighbourhood D of boundary S surrounding the crack

is arbitrary. In case (b), due to the presence of the domain in-

tegral over D, the sensitivity of the functional J, as expressed

by equation (27), is neither a true boundary-only expression, nor

true path-independent integral, even if it does not depend on the

choice of the surface C.

The special domain transformations considered here follow

the idea introduced for elastostatics in Dems and Mróz, 1986 and

for time-harmonic problems in Dems and Mróz, 1995, where it



is proved that conservation rules and path-independent integrals

can be derived for the same special domain transformations. This

idea was numerically implemented using boundary elements for

sensitivity analysis of cracks (Burczyński and Polch, 1994) and

voids (Burczyński and Habarta, 1995) in static problems. This

section is then an extension of these previous works to time-

domain dynamical problems.

7.2 Additive decomposition of transformation veloc-
ity near crack tips

The development to follow is valid for two-dimensional prob-

lems only. Introduce neighbourhoods Di � Ω (i = 1;2) of the

two crack tips xxxi; the boundary of Di is denoted Ci (Fig. 4). Put

Γi = Γ\Di, Γ̄ = Γn (Γ1[Γ2) and Ω̄ = Ωn (D1[D2). Then one

has ∂Di =Ci[Γi and ∂Ω̄ = S[C1[C2[ Γ̄. Let

µµµ = θθθ (in Ω̄) µµµ = θθθ�θθθi (in Di, i = 1;2) (28)

where θθθi
= θθθ(xxxi

) is the transformation velocity at crack tip i.

One has ∇∇∇µµµ = ∇∇∇θθθ and divµµµ = divθθθ everywhere in each sub-

domain Ω̄;D1;D2. Besides, µµµ(xxx) = o(1) at points xxx sufficiently

close to a tip, so that ∇∇∇(∇∇∇uΓ:∇∇∇vΓ):µµµ is integrable at crack tips.

Then the integration by parts on Eq. (19), carried out separately

in each subdomain Ω̄;D1;D2 and with θθθ replaced by µµµ, results in

Eq. (21) with ∂Ω = ∂Ω̄;∂D1;∂D2 respectively.

Adding the contributions for the three subdomains and keep-

ing in mind that µµµ is discontinuous across Ci, one obtains:

d

dp
J (Γ) =

Z T

0

Z
Γ
[[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv]]µn dSdt

�
2

∑
i=1

Z T

0

Z
Ci

[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv](θθθi
:nnn)dSdt

+

2

∑
i=1

Z T

0

Z
Ci

[ fff (vvv):∇∇∇uuu+ fff (uuu):∇∇∇vvv]:θθθi dSdt (29)

where the various normal vectors are as indicated in Fig. 4.

The appearance of θθθi on Ci stems from the fact that, combin-

ing boundary integrals associated with subdomains Ω̄ and Di,

the jump of µµµ across Ci appears and is equal to:

[[µµµ]] = µµµjΩ̄�µµµ jDi= θθθ� (θθθ�θθθi
) = θθθi (30)

x_

x_

1

2
Γ

C1

2C

D

D1

2

Γ

Γ2

1

~

Figure 4. Isolation of crack tips xxxi by neighbourhoods Di (i = 1;2):

notations.

The integral on Γ in Eq. (29) is convergent since µµµ is built so as

to vanish at the crack tips.

The sensitivity expression (29) is general in the sense that it

holds for any transformation velocity θθθ sufficiently smooth; it is

not restricted to simple shape transformations.

The idea of isolating the crack tip and using decomposition

(28) is not easily transposable to three-dimensional situations. To

discuss this point, let ∂Γ, a regular closed curve, denote the crack

front. Introduce a neighbourhood D � Ω of ∂Γ (e.g. of tubular

shape) and let θ̃θθ denote an arbitrarily chosen extension to D of the

restriction of θθθ to the front ∂Γ. The three-dimensional equivalent

of Eq. (28) consists of putting

µµµ = θθθ (in Ω̄) µµµ = θθθ�θθθi (in D) (31)

However, due to the curvature of ∂Γ and the variability of θθθ along

∂Γ, no choice of the extension is expected to make the domain

integral (19) over D vanish. This is at variance with the two-

dimensional case, where the constant extension θ̃θθ=θθθ(xxxi
) is used.

8 Sensitivity formula using stress intensity factors
Boundary element methods are well suited to the evaluation of

stress intensity factors (SIFs), e.g. using quarter-node bound-

ary elements that model the square-root local behavior about the

crack tips. Application of BEM to numerical evaluation of dy-

namic SIFs has been investigated e.g. by Fedelinski et al., 1996.

Assume then that the dynamical SIFs Ku
I (t;xxx

i
);Ku

II(t;xxx
i
),

Kv
I (t;xxx

i
);Kv

II(t;xxx
i
) at tip xxxi, associated with the solutions of the

primary and adjoint problems, respectively, are known. Since

the curves Ci are arbitrary, one may follow the procedure that al-

lows to link J-integral to SIFs, i.e. assume that Ci is the circle

of radius ε centered at crack tip xxxi and investigate the limiting

case when ε! 0. In the vicinity of a (non-moving) crack tip, the

following, well-known, expansions hold:

wr =
1

2µ

r
d

2π

h
Kw

I (t)cos
θ

2
(3�4ν� cosθ)

+Kw
II(t) sin

θ

2
(4ν�1+3cosθ)

i
+O(d) (32)

wθ =
1

2µ

r
d

2π

h
�Kw

I (t) sin
θ

2
(1�4ν�3cosθ)

+Kw
II(t)cos

θ

2
(4ν�5+3cosθ)

i
+O(d) (33)

where www is replaced by either uuu or vvv; (ρ;θ) denote polar coordi-

nates emanating from the crack tip as indicated on Fig. 5.

First, one notes that the strain energy density σσσ(www) : εεε(www)
calculated from expansions (32–33) is d�1-singular but continu-

ous across the crack Γ. This remark implies that:

lim
ε!0

Z
Γi

[[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv]]µn dS =0



lim
ε!0

Z
Γ̄
[[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv]]µn dS =

Z
Γ
[[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv]]µn dS

and also that the resulting line integral over Γ is nonsingular.

Besides, the limiting process ε! 0 in the line integrals over

Ci is carried out.In the limit ε! 0, Eq. (29) becomes:

d

dp
J (Γ) =

Z T

0

Z
Γ
[[σσσ(uuu) : ∇∇∇vvv�ρu̇uu:v̇vv]]θn dSdt

�
1�ν

µ

2

∑
i=1

Z T

0

�
(Ku

I (t;xxx
i
)Kv

I (t;xxx
i
)+Ku

II(t;xxx
i
)Kv

II(t;xxx
i
))(θi

τ)

� (Ku
I (t;xxx

i
)Kv

II(t;xxx
i
)+Ku

II(t;xxx
i
)Kv

I (t;xxx
i
))(θi

n)

�
dt (34)

where θi
τ;θi

n are the tangent and normal components (accord-

ing to notations of Fig. 5), respectively, of the crack-tip velocity.

Equation (34) thus provides a convenient means to evaluate the

sensitivity of J (Γ).

9 Numerical example

A square plate of length 2b= 20mm contains a central crack

of length 2a= 10mm, as shown in Fig. 6. The material properties

are: Young modulus E = 21011 Pa, Poisson ratio ν = 0:3, mass

density ρ = 5000kg/m3. The plate is in a state of plane strain.

One edge of the plate is constrained, while the opposite edge is

loaded by a uniform tensile traction of constant magnitude qp =

2108 N/m applied during the time interval 0� t � T = 80µs. The

boundary is divided into 44 three-noded boundary elements, and

62 additional points are used for the DRM. The time step used

for the time discretization is ∆t = 0:2µs.

In the first example, crack translations along the x1-direction

are considered: the transformation is

ΦΦΦ(xxx; p) = xxx+apeee1

and the objective function J (Γ) is chosen as:

J (Γ) =
Z T

0
u1Γ(M; t)dt (35)

x_
x_

1

2
Γ

ρ

ρ

θ

θ

C1

2C

Figure 5. Local polar coordinates and tangent and normal vectors asso-

ciated with the crack tips.

where the measurement point M is located on the lower side AB

of the square plate. Equation (34) yields the result:

d

dp
J ��7:443

whereas a second-degree polynomial approximation of J com-

puted from numerical values of J with�0:15� p� 0:15 yields

d

dp
Jpolynomial � �6:965

and central finite-difference evaluations of dJ=dp give:

p dJ=dp

0.01 -5.671

0.02 -6.967

0.04 -6.969

0.08 -6.971

0.10 -6.976

In the second example, the straight crack is deformed into a

parabolic shape according to the transformation:

ΦΦΦ(xxx; p) = xxx+ p(a2� x2
2)eee1

and the objective function J (Γ) is chosen as:

�
1

2

Z T

0

Z
Sm

u2
1(yyy; t)dSdt (36)

where the measurement surface Sm is the entire lower side AB of

the square plate. Equation (34) yields the result:

d

dp
J � 0:490

whereas a second-degree polynomial approximation of J com-

puted from numerical values of J with�0:15� p� 0:15 yields

d

dp
Jpolynomial � 0:507

2a

2b
M

d

x

x q

1

2 p

A B

Figure 6. Square plate: geometry and notations.



and central finite-difference evaluations of dJ=dp give:

p dJ=dp

0.002 0.507

0.004 0.507

0.01 0.507

0.04 0.507

One notices that the agreement between the sensitivity for-

mula (34) and finite-difference evaluations is better for the sec-

ond example. This may be attributable to the fact that in the first

example the adjoint problem is defined in terms of a point force

(applied at M), which is not well approximated using the usual

boundary element interpolation of tractions, whereas the adjoint

traction for the second example is distributed over a measure-

ment surface.

The above numerical experiments are the first we attempted

to test this particular strategy for computing crack shape sen-

sitivities. More complete numerical tests are in progress. The

inclusion of this approach in an strategy using a gradient-based

minimization algorithm is the next step of this study.

10 Concluding remarks

In the present work a shape sensitivity analysis for identification

of internal defects such as voids and cracks has been presented.

The main motivation of this paper was to explore the adjoint vari-

able approach, in the presence of cracks and in connexion with

BIE formulations of the direct problem.

A general formulation for the sensitivity of objective func-

tional expressing a distance between given (measured) and com-

puted (for an assumed defect) values of the supplementary

boundary data with respect to shape and position of a void has

been derived using the material derivative-adjoint variable ap-

proach. The sensitivity of the functional has been expressed as a

boundary integral.

In the case of a crack, the previous boundary-only expres-

sion is not applicable. However, revisiting the discussion of the

void problem, the adjoint variable approach has been shown to

be still applicable to sensitivity analysis in the presence of cracks

for two classes of crack perturbations. Firstly, when the do-

main transformations considered consist of crack translations,

rotations or expansions, the functional sensitivity is expressed

as an integral over an arbitrary surface surrounding the crack,

supplemented for the case of crack expansion in dynamics by a

domain integral over the crack front neighbourhood enclosed by

this surface. This applies for arbitrary geometries, either three-

and two-dimensional. Earlier works on path-independent inte-

gral approach to sensitivity analysis are thus revisited and gener-

alized. Secondly, new sensitivity formulas have been established

for general two-dimensional geometries and crack perturbations;

they involve only line integrals on the crack curve and on arbi-

trary closed curves isolating the crack tips.
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