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Abstract. This paper focuses on a major step of machine learning, namely checking
whether an example matches a candidate hypothesis. In relational learning, matching
can be viewed as a Constraint Satisfaction Problem (CSP). The complexity of the
task is analyzed in the Phase Transition framework, investigating the impact on the
effectiveness of two relational learners: FOIL and G-NET.
The critical factors of complexity, and their critical values, are experimentally
investigated on artificial problems. This leads to distinguish several kinds of learning
domains, depending on whether the target concept lies in the “mushy” region or not.
Interestingly, experiments done with FOIL and G-NET show that both learners tend
to induce hypotheses generating matching problems located inside the phase
transition region, even if the constructed target concept lies far outside. Moreover,
target concepts constructed too close to the phase transition are hard and both
learners fail. The paper offers an explanation for this fact, and proposes a
classification of learning domains and their hardness.

1 Introduction

In several classes of computationally difficult problems, such as K-Satisfiability,

Constraint Satisfaction problems (CSP), graph K-coloring, and the decision version of

the Traveling Salesman problem, a phenomenon termed phase transition occurs (see

[12] for a comprehensive presentation). A phase transition consists in an abrupt

change in the probability of a problem being solvable, and it is coupled with a peak in

the computational complexity [3,4,5,6,11,13,16,17,18,19].

The CSP class exhibits a typical phase transition with respect to the number of

constraints [9,13]. Proving a conjunctive formula true or false in a given universe

(referred to as matching problem, in the following) is a CSP, and has been proven to

have exponential complexity in the worst case. On the other hand Giordana et al. [9]

have shown that this task is characterized by typical phase transitions with respect to
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the number of predicates in a formula and the number of constants in the universe in

which the proof occurs.

This paper investigates the influence on relational learning of phase transition in

the matching problem. For any relational learner, the induction process can be

modeled as a cycle, where inductive hypotheses (logical formulas) are continuously

generated and verified on a set of instances of the target relation, checking for

consistency. In the verification step, every pair <inductive hypothesis, learning

example> defines a matching problem. When a matching problem lies in the mushy

region the complexity may be prohibitive, and the learner might not be able to

terminate within the limits imposed by the available resources.

This point has been experimentally investigated using a suite of artificial

problems. As described later on, every learning problem has been constructed by

choosing a specific target formula and then by generating a set of positive and

negative instances for it, which defined matching problems in different positions with

respect to the phase transition. Two learners (FOIL and G-NET) have been challenged

to discover the original formula, or at least a semantically equivalent one.

The two results we obtained are both quite surprising: first, both learners tend to

select hypotheses defining matching problems inside the mushy region. This occurs

independently of the location of the original target concept. Second, when the target

concept defines matching problems located too close to the mushy region, the learners

get confused and produce definitions consisting of many small disjuncts, very little

predictive on a test set. These findings are analyzed and some explanations are

provided.

The paper is organized as follows: Section 2 summarizes the findings described

by Giordana et al. [9] showing that the matching problem presents a phase transition

with respect to the number of predicates and the constants in the universe, used as

order parameters. Section 3 describes the context and the goal of the experimentation,

whose results are reported in Section 4. Section 5 presents a discussion of the results,

whereas some concluding remarks are contained in Section 6.

2 Phase Transition in the Matching Problem

We first propose some order parameters to analyze the relational matching problem.

These are used to design artificial random matching problems.

2.1 Order parameters

An instance of the matching problem is a pair <ϕ,U>, being ϕ a conjunctive formula

in First Order Logic (FOL), and U a universe. The instance is solvable if there exists

at least one model of ϕ in U. The problem can be reformulated as a Constraint

Satisfaction Problem (CSP): the goal of a CSP is to assign a value a
i
 to each variable

x
i
 (1 ≤ i ≤ n ), such that every constraint R

j
(x

1
, x

2
, ..., x

n
) (1 ≤ j ≤ m ) in a set R is

satisfied. A constraint R
j
 is described as the set of all tuples v

1
, ..., v

n
, such that R

j
(v

1
,

v
2
, ..., v

n
) holds.

A formula ϕ to match can clearly be reformulated as a set of constraints
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(corresponding to the literals in ϕ), and the universe U contains all tuples satisfying

the constraints (closed world assumption). In the following, we restrict ourselves to

only consider binary relations. The corresponding CSP is then termed binary [18].

Phase transitions in binary CSP have been both experimentally and theoretically

investigated [13,17,18]. Two parameters account for the constrainedness degree of

CSP: the constraint density p
1
, defined, for binary constraints, as the fraction of

constrained variable pairs among all possible pairs, and the constraint tightness p
2
,

defined as the average number of value pairs ruled out by any one of the constraints

[13]. Unlike the literature of the main stream, we will use other two parameters,

which are related to p
1
 and p

2
, but are more useful in order to analyze the matching

problem in relational learning.

For the sake of simplicity, we assume that all variables have the same domain of

size L, and that the extensions of all relations have the same size N (number of atoms

built on any given predicate symbol). The constrainedness degree of a matching

problem is then studied with respect to two order parameters: the number m of

constraints and the number L of constants in the universe (the size of any variable

domain); a third parameter, namely the number N of atoms built on any predicate

symbol, is kept constant in the present investigation.

2.2 Artificial Problem Generation

The experimental analysis reported in the following is based on artificial matching

problems <ϕ,U> generated as follows. Let x
1
, x

2
, ..., x

n
 denote a set of variables, and

α
1
, α

 2
, ..., α

r
 denote the predicate symbols. Formula ϕ is generated in two steps. In

order to guarantee the connectivity of ϕ, we first construct a connected formula ϕ
s
 as:

ϕ
s
(x

1
, x

2
, ..., x

n
) = ασ ( 1 )

(x
1
, x

2
) ∧ ... ∧ α σ ( n - 1 )

(x
n - 1

, x
n
), (1)

where ασ ( i )
 is uniformly selected in the predicate symbols. Formula ϕ is constructed

from ϕ
s
 by adding random literals ακ (x

i
, x

j
) until a total number of m literals is

reached (assuming of course that m ≥ n-1), such that all literals in ϕ are distinct.

Formula ϕ, constructed in this way, contains exactly n variables and m literals, and

the same pair of variables may appear in literals built on different predicate symbols.

Universe U is constructed by selecting, for each predicate αι , exactly N pairs of

values (a
k
, a

h
), where a

j
 ranges over the set of all L possible values. The selection is

uniform without replacement (all N pairs being distinct). In summary, the matching

problems we consider are defined by a 4-tuple (n, m, L, N).

3 Observing Phase Transitions

The probability for a matching problem to be satisfiable is experimentally

investigated. The phase transition region, where the probability of satisfiability

abruptly drops from 1 to 0, is delineated. We then discuss the difficulty of a learning

domain, depending on its position with respect to the phase transition.

3.1 Evidence of Phase Transitions

An extensive experimentation [8] considered the following settings: the cardinality of
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the relations N is set to 100; the number of variables n ranges in  {4, 6, 10, 12, 14};

moreover, each pair (L, m) with L in [10, 50] and m in [5, 50], has been considered.

For each problem, we compute if ϕ is satisfiable (i.e., it admits at least one model in

U). We associate to each 4-tuple (n,m,L,N) the fraction P
sol

(n,m,L,N) of matching

problems that are solvable, out of 100 problems generated along these parameters.

Figure 1 plots P
sol

(10,m,L,100) as a function of m and L, with n and N respectively

fixed to 10 and 100. When m and L are both low, all problems are solved (P
sol

 is 1).

Then, P
sol

 dramatically drops to almost zero along a very regular hyperbolic curve.

The dashed region in the (L, m) plane shows all problems for which P
sol

 belongs to the

interval [.15, .85]: this region is quite narrow, witnessing how steep the transition is

from solvable to non-solvable problems. This is the phase transition, or mushy,

region.

m

L

100 P

(a)

N = 100
n = 10

Fig. 1. 3-Dimensional plot of the probability of solution P
sol

 for n = 10, when N = 100. In the

(L, m) plane some contour level curves, corresponding to P
sol

 values in the interval [0.15, 0.85]

have been drawn.

We also analyze the complexity of solving a problem (ϕ,U), measured as the

number of explored nodes using a depth-first search. The region of highest

complexity corresponds to the mushy region (Figure 2(a)), but it is more irregular and

much broader, like a mountain chain. And the variance is high (Figure 2(b)): not all

problems in the mushy region are equally difficult to solve.

3.2 Concept Learning in the (L, m) Plane

In the following we adopt the learning framework defined by Giordana et al., [7],

where an example e of a relational concept corresponds to a universe U
e
. With respect

to a target relation ϕ, the positive and negative examples of the concept thus

correspond to different universes: a learner solves many matching problems <ϕ, U
e
>,

for e ranging over the positive and negative examples. Assuming that all variable

domains still have same size L, all examples belong to a line parallel to axis L in the
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(L,m) plane. This remark allows us to distinguish several cases.

(a) The easiest case is when positive examples, satisfying ϕ, fall to the left of the

phase transition region, whereas negative examples fall to the right. Here, static

estimates based on the value of m and L, would suffice to separate positive from

negative examples (the transition phase itself being the separating surface, as in

Figure 1).

m

L

(a)

0

5000

10000

15000 C

N = 100

n = 10

m

L

N = 100
n = 10

(a)

0

5000

10000

15000

(b)

Standard
Deviation

Fig. 2. (a) Plot of the complexity C (for n = 10), measured as the number of expanded nodes by

a depth-first searcher, averaged over 100 problem instances in each point. (b) Plot of the

standard deviation of the complexity.

 (b) A second case is when positive and negative examples fall within the phase

transition region: the matching complexity is high in any case. This implies that

positive examples would contain very few models of the target concept, and that

negative examples almost match the target concept (near-misses).
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(c) A third case is when all positive and negative instances fall to the right of the

phase transition. This entails that positive examples are very far from being random:

by construction, random universes would hardly have any chance to match ϕ. But

indeed, examples illustrating an interesting target concept should contain regularities:

one should expect these regularities to be naturally or artificially emerging from the

random noise.

(d) The last case, complementary to the previous one, is when all positive and

negative instances fall to the left of the phase transition. This symmetrically implies

that negative examples are very far from being random. However, though it is always

possible to construct formulas and artificial examples satisfying these formulas

whatever their size (see next section), it might be impossible to construct a negative

instance to the left of the phase transition when the value of L is too small.

4 Hardness of the Learning Problems

The conjectures made in the previous section are confronted to the actual performance

of FOIL using artificial problems.

m

L

C

Fig. 3. Complexity peak at the phase transition for a formula of four variables.

4.1 Experimental Setting

The analysis considers problems falling under the categories (c) and (d) shown above.

In order to keep the problems to a reasonable complexity, we restricted ourselves to

consider concepts with four variables (n=4). In this comparatively simple case, the

phase transition still occurs (see Figure 3), but the complexity peak is small enough to
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guarantee that the matching problem can always be solved in a reasonable time.

Artificial learning problems are constructed as follows, with relation size N=100

in all cases. In case (b), a formula ϕ lying in the phase transition region, and 500

examples (universes) are randomly generated as detailed in Section 2.2. The class of

each example is positive if it contains at least one model of ϕ, negative otherwise.

Examples are divided into a 200-training and a 300-test set. By construction, since ϕ
lies in the phase transition region, positive and negative examples of ϕ are quasi

balanced (Table 1).

In case (c), a formula ϕ lying to the right of the phase transition has been

randomly generated by suitably choosing L and m, together with 500 examples

(universes). But none of these examples will satisfy ϕ. We then select one half of

these examples (100 in the training set and 150 in the test set), and transform each one

of them into a positive example by adding to it a model of ϕ.

Five problems in the region (b) and six problems in the region (c) are generated,

as summarized in Table 1.

Table 1. Artificial problems used for the experimental analysis. The symbol (*) denotes the

problems located at the phase transition where the probability of solution is about 1/2.

Problem M L LS TS

LP
1
* 9 19 118

+
,   72

-
168

+
,   132

-

LP
2
* 8 22 95

+
,  105

-
147

+
,   153

-

LP
3
* 7 25 116

+
,   84

-
189

+
,   111

-

LP
4
* 6 30 135

+
,   65

-
215

+
,    85

-

LP
5
* 6 35 71

+
,   129

-
101

+
,   199

-

LP
6

12 25 100
+
,   100

-
150

+
,   150

-

LP
7

12 30 100
+
,   100

-
150

+
,   150

-

LP
8

18 20 100
+
,   100

-
150

+
,   150

-

LP
9

18 23 100
+
,   100

-
150

+
,   150

-

LP
10

18 30 100
+
,   100

-
150

+
,   150

-

LP
11

18 50 100
+
,   100

-
150

+
,   150

-

4.2 Results

The hardness of the artificial learning problems generated as above is estimated from

the results obtained by two relational learners that use different strategies: FOIL [14],

and G-Net [1,2]. Both learners explore candidate hypotheses ψ lying on a line L = L
U
,

being L
U
 the number of constants in the example universes. FOIL performs a general

to specific search, and moves from left to right on the line L = L
U
. The number m of

literals in the candidate hypothesis increases along the search. The hypothesis to be

considered and specialized is selected on the basis of its information gain.

G-Net is based on an evolutionary search: it considers a population of hypotheses

lying also on the line L = L
U
, and moves back and forth as evolution determines

whether these hypotheses should be specialized or generalized. Furthermore, the

selection of the hypotheses to be considered and refined is guided by the MDL

principle.
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m

L

Figure 4 – Contour plots of the probability of solution. The symbol "+" denotes problems

where FOIL succeeded, whereas symbol "*" denotes problems where FOIL failed.

Being FOIL faster than G-Net, the experiments have been primarily done using

FOIL. G-Net has been run for comparison only on the learning problems that seemed

most significant to us. In all cases, the two systems have been surprisingly in

agreement, reporting minimal differences in the classification rate. The results are

summarized in Table 2, and in Figure 4 a graphical representation of the generated

learning problems is reported, together with an indication of success/failure.

Table 2. Summary of the experimental results obtained by FOIL for the set of learning

problems described in Table 1.

Problem # of

Clauses

Complexity Class. Rate

(LS) [%]

Class. Rate

(TS) [%]

CPU Time

[sec]

Avg. # of

Models

LP
1
* 10 <7-13>  8.9 88 50 398.2 1.7

LP
2
* 11 <6-11>  8.6 92 53 624.7 2.0

LP
3
* 15 <7-11>  8.9 98.5 52 513.9 4.9

LP
4
* 1 6 100 100   43.3 2.1

LP
5
* 1 6 99.9 100 132.6 1.25

LP
6

12 <1-12>  6 81 58 825.4 10.7

LP
7

1 6 100 96   73.4 34.6

LP
8

6 <1-11>  5 98.5    75.3 723.8 1.4

LP
9

1 9 100    99.6 620.1 1.0

LP
10

1 6 100    99.6   36.9 4.2

LP
11

1 6 100    99.6    72.2 9.1
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For problems lying in the mushy region, both systems fail when the value of L is

low (L ≤ 25, problems LP
1
 to LP

3
). They overfit the training set (ϕ is approximated as

a dozen of concept ψ) and the accuracy on the test set is close to the default accuracy.

When the value of L is high (L > 25, LP
4
 and LP

5
) both systems find a quasi-perfect

solution.

For problems lying to the right of the mushy region (LP
6
 to LP

11
), both systems

similarly fail when the value of L is low (LP
6
 and LP

8
), though failures are observed

for values of L lower than in case (b) (L = 22 for m = 18). For higher values of L both

systems succeed from the point of view of predictive accuracy. Interestingly, they do

not find the exact solution ϕ; rather they find a single concept ψ lying in the mushy

region (the number of literals is 6 or 7).

This can be explained as follows. FOIL is bound to stop the search as soon as it

finds a concept complete and correct with respect to the training set. But all ψ
generalizing the target concept ϕ are complete: they cover the positive examples by

construction. One thus only searches for generalizations ψ that are sufficiently

specific to rule out random examples. Such ψ would then be consistent with respect to

the negative training examples since those were generated using random universes.

Considering generalizations of ϕ on the right side of the mushy region, these will

rule out most negative instances: and given the relatively small datasets we used, they

will likely be consistent with respect to the training and test sets.

FOIL will end up exploring the generalizations of ϕ lying in the mushy region;

provided there exists a sufficient number of such generalizations, it will succeed in

finding a complete and correct solution ψ. Though G-Net might explore more specific

concepts than FOIL, it is also biased toward generality (using MDL principle instead

of information gain): it will thus end up discovering more or less the same complete

and correct generalization of ϕ as FOIL.

5 Discussion

As shown in the previous section, both FOIL and G-Net find hard, and actually fail to

solve, learning problems including few constants (low values of L). Why is it so?

Let us first consider the case where the target concept ϕ lies in the mushy region

(case (b)). In this case, negative examples fail to match ϕ by only a few traits, i.e. they

are "near-misses" of ϕ. In the left side of the mushy region, all concepts ψ, including

the generalizations of ϕ, match on average any example. Let M(m, L) denote the

average number of models of a m-literals formula in universes including L constants.

From [8,13], the number M(m, L) increases as L decreases (the extension N of any

predicate and the number m of literals being constant).

Further, the variance of M(m, L) is high: this can be inferred from the high

variance of the matching complexity (Figure 2(b)). Indeed, the complexity depends

on the probability of finding a model, and hence, on the total number of models of the

current formula in the current universe: the complexity thus exponentially decreases

with the number of models in the universe.

Figure 2(b) shows that the variance reaches its maximum on the edge of the

mushy region. FOIL starts the search in the left side of the mushy region, where any
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example matches on average any formula. The information gain criterion then fails to

guide the search; further, FOIL tends to be misled by the fluctuations of the number

of models of the candidate hypotheses. When L decreases, the left side of the mushy

region is larger, and the complexity landscape is more rugged: both facts explain the

increasing difficulties met by FOIL search strategy.

Practically, experiments give an order of idea of M(m, L): for problem LP
1
 (m=4,

L=35), M is 66; for problem LP
2
 (m=4, L=19), M is 667. But, when increasing the

number of literals, M rapidly decreases. In 10 other experiments done with (m=6,

L=19), M is 62 on average.

When FOIL explores too general concepts, it fails to find consistent hypotheses; it

then specializes the candidate hypotheses, until it ends up exploring the concepts with

the right level of generality, in the mushy region. But then, the high number of models

hinders the search. The system then specializes again the candidate hypotheses, until

the number of models falls down to tractable values.

But these hypotheses are then too specific compared to the target concept: many

of them must then be retained in order to cover all positive examples. Ultimately,

these concepts show a low predictive accuracy on the test set. Incidentally, such a

behavior closely accounts for the small disjunct phenomenon [10].

G-Net meets the same difficulties, which is more surprising given the fact that it

goes back and forth, specializing and generalizing the candidate hypotheses.

However, it soon dismisses all hypotheses lying on the right side of the mushy region,

since these hardly cover any positive example. G-Net is then bound to explore the

same regions, and meet the same difficulties as FOIL.

Let us now consider the case where the target concept ϕ lies on the right side of

the mushy region (case (c)). These problems were expected to be very hard, since the

target concept is hardly satisfiable. But surprisingly, both FOIL and G-Net succeed on

such learning domains, provided again that L is low enough.

The explanation proposed for this fact is the following. The distribution of the

positive examples was altered from the random generation, to ensure that they include

at least one model of ϕ. If we consider the generalizations of ϕ, their number of

models is thus artificially increased, compared to the random (negative) examples: the

information gain criterion hence favors the selection of these generalizations.

(Experimentally, 4-literals generalizations of ϕ in LP
9
 admit 244 models on average

for positive examples, and 225 models on average for negative examples). On one

hand, the search is biased toward exploring generalizations of ϕ, and it stops when it

meets a generalization of ϕ in the mushy region.

On the other hand, the number of k-literals generalizations of ϕ varies with ( 
m

k
 ),

(being m the number of literals in ϕ): the more specific the target concept, the more

likely its generalizations are explored. The complexity analysis of G-net offers

evidence supporting this fact. The system explores 28,000 hypotheses in LP
7
 (m=12)

against 15,000 in LP
10

 (m=18).
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6 Conclusions

This paper focuses on the average case analysis of the matching problem, considered

as a constraint satisfaction problem. Problems in the mushy region are expected to be

hard for two reasons. On one hand positive and negative instances are very similar

and so intrinsically difficult to discriminate. On the other hand, verifying hypotheses

in the mushy region may be very complex.

Unexpectedly, experiments on artificial problems suggest that learning an almost

unsatisfiable target concept is not always a hard learning problem: many

generalizations of the target concept appear to be consistent with respect to the

training set provided that they are sufficiently specific. Generality-biased learners

would then end up with a complete and correct solution belonging to the mushy

region. Some care must however be exercised in interpreting these results, as we

actually considered random negative examples.

Further research will examine what happens when negative examples are no

longer random, e.g. when the learning problem is to separate examples of two

different target concepts. Other complexity parameters should then be defined to

account for the degree of difference of these concepts.

Another perspective of research is concerned with learning a target concept in the

mushy region. In this case, there is no other possibility than learning exactly the target

concept: any generalization (resp. specialization) would unlikely to be consistent

(resp. complete). One possibility is to take advantage of the fact that negative

examples fail to match the target concept by only a few traits, i.e. they are near-

misses.

Ultimately, the major obstacle to relational learning remains the complexity of

dealing with hypotheses in the mushy region: as was shown, exploring this region is

unavoidable in truly relational learning domains. When target concepts include a low

number of variables (4 or 5), the search complexity remains affordable. Otherwise,

the learning search fully faces with the exponential complexity of matching.

This difficulty could be alleviated by relaxing the matching task, e.g. by replacing

the exhaustive exploration of the universe with a stochastic exploration: as discussed

in [8,15], stochastic matching gives correct and probabilistically complete answers

within bounded resources (any-time matching). A perspective for further research is

to study how the phase transition would be affected by using a stochastic resolution

process.
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