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Abstract

A key step of relational learning is test-
ing whether a candidate hypothesis covers a
given example. The covering test is equiv-
alent to a Constraint Satisfaction Problem
(CSP), which shows a phase transition in cor-
respondence of critical values of some order
parameters.

This paper investigates the effects of the
phase transition in the covering test on the
complexity and feasibility of learning in first
order logic languages. Several hundreds of
artificial learning problems have been gen-
erated. FOIL and other learners have been
applied to these problems. The experiments
show the presence of a failure region, where
all considered learners systematically fail to
identify the target concept. Furthermore, the
phase transition region behaves as an attrac-
tor for the learning search, whatever the tar-
get concept and the search strategy be. In-
terpretations of these findings are proposed
and discussed.

1. Introduction

This paper is concerned with supervised learning from
structured examples, termed relational learning (Quin-
lan, 1990) or Inductive Logic Programming (ILP)
(Muggleton & De Raedt, 1994). In relational learning
the covering test — testing whether a candidate hy-
pothesis covers a given example — can be formulated
as a Constraint Satisfaction problem (CSP), which is
a NP-hard task.

As a learner may generate even thousands of hypothe-
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ses, each one to be tested against every learning exam-
ple, the complexity of the matching step may severely
question the scalability of this type of learning. On
the other hand, problem instances in a NP-hard class
are not equally hard to solve. Recent work on com-
binatorial search shows that the hardest problem in-
stances are concentrated in a very narrow region where
a Phase Transition (PT) occurs (Hogg, Huberman, &
Williams, 1996). The PT separates the problem space
into two regions: the YES-region, where most problem
instances have many solutions (and hence it is easy to
find one), and the NO-region, where most problems
have no solutions (and hence it is easy to prove that
they are unsolvable). In correspondence of the PT the
probability that a solution exists abruptly drops from
almost 1 to almost 0, and the complexity of the search
dramatically increases.

These findings suggested a new paradigm for the anal-
ysis of combinatorial algorithms: the focus is shifted
from their worst-case complexity toward their actual
complexity on the hardest problem instances, that is,
those located in the phase transition region (mushy
region).

In a previous paper, Giordana and Saitta (2000) fo-
cused on the matching step per se. They showed
that a phase transition also occurs in real-world learn-
ing problems, such as the ”Mutagenesis” (King, Srini-
vasan, & Stenberg, 1995), and they identified its lo-
cation with respect to relevant learning parameters.
Moreover, a comparison between the complexity of de-
terministic and stochastic search on problems located
on the phase transition has been reported by Botta,
Giordana, and Saitta (1999). In those papers, only
the computational effects on learning, due to the emer-
gence of a phase transition, have been considered. On
the contrary, the goal of this paper is to experimen-



tally investigate whether the presence of a phase tran-
sition also affects other aspects of learning, such as
quality and/or performance of learned theories. The
experiments have been performed by systematically
sampling the space of learning problems using FOIL
(Quinlan, 1990), a top-down greedy searcher with lim-
ited backtracking, to solve them. Moreover, compli-
mentary experiments on a smaller set of problems have
been done using other two learners: SMART+ (Botta
& Giordana, 1993), which relies on a top-down beam-
search strategy, and G-Net (Anglano, Giordana, Lo-
bello, & Saitta, 1998), an evolutionary learner based
on genetic search. Two are the main results of this
paper. First, the phase transition region acts as an
attractor for the search, i.e., any learner tends to ex-
plore hypotheses that ly inside the mushy region w.r.t.
the training examples. Second, independently of the
learner, a ”failure region” appeared, i.e., a blind spot
located around the phase transition, in which no learn-
ing problem could be solved. Thse results are discussed
in the second part of the paper.

2. Phase Transition and FOL Learning

In this section we briefly recall previous results re-
lated to phase transition occurrence in the simplest
relational learning setting (De Raedt, 1997). Let
aj, Tj, v denote predicate symbols, variables and
constants of the application domain, respectively. We
consider concept definitions restricted to conjunctions
of binary literals of the form:

C =gey o1 (@i, Tj,) N N (T4, , 5, ) (1)

Any learning example E is represented as a conjunc-
tion of ground literals oy, (v;, , v, ). We say that C cov-
ers F iff E contains a model of C. We will indicate
(C <7 E) the process of testing if C covers E. A pair
(C,E) is a generic instance of covering test.

Using the CSP terminology, the set of literals built on
a same predicate symbol «; in E is termed a relation.
The complexity of example E is characterized by the
number L of constants and the average size N of the
relations occurring in E. Symmetrically, the complex-
ity of any concept/hypothesis is characterized by its
number n of variables and its number m of literals.

Being an ensemble phenomenon, the emergence of a
phase transition depends upon the probability distri-
bution of problem instances in the selected class. The
generation of problem instances we used in this paper
follows the stochastic procedure described by Botta
et al. (1999). Given a set A of predicate names, a set
X of variables, and a set A of constants, a concept
description C can be roughly considered as uniformly

extracted from the set of all formulas with the struc-
ture (1), given A, X, the number n of variables, and
the number m of literals. Each binary relation «; in
E, corresponding to the ground instances of predicate
«;, contains N pairs of constants, uniformly extracted
from A x A.

By generating a large set of covering tests (C, E), Botta
et al. (1999) reported the appearence of a phase tran-
sition, described in Figure 1. The order parameters
are the number m of literals in C, and the number L of
constants in E, whereas the number n of variables and
the cardinality N of the relations have been used to
parametrize the problems. Then, a covering test (C, E)
is visualized as a point in the (m, L) plane. As it ap-
pears from Figure 1(a), the probability P.,, that any
covering test, generated in the way mentioned above, is
solvable drops from almost 1 (YES region) to almost 0
(NO region) in a very narrow region (the mushy region
visible in the projection on the (m, L) plane in Figure
1(a)). In other words, any covering test (C,E) such
that the corresponding pair (m, L) falls to the left of
the PT is almost surely bound to be solvable, whereas
the opposite happens for covering tests located to the
right of the PT. Ideally, the ”phase transition” cor-
responds to the contour level P.,, = 0.5. Of course,
unsolvable problems may exist in the YES region, as
well as solvable problems may exist in the NO region,
even if very rare in a world that follows a uniform dis-
tribution.

3. Experimental Setting

The main goal of our experimention is to investigate
the effects (if any) of the presence of a phase tran-
sition on learning, beyond the obvious computational
increase.

The problems. A learning problem 7 = (C,&r,Er)
consists of a target concept C and two sets £ and
Er of training and test examples, respectively. As the
values L and N are the same in all the examples, any
covering test (C,E) defined by the problem 7 corre-
sponds to a same point (my,L,) in the plane (m, L).
During learning, many covering tests are to be exe-
cutes, namely one for each pair (h, E), where h is a
hypothesis generated by the learner and E belongs to
Er.

A set of 451 artificial learning problems have been con-
structed. In order to keep the computational cost ac-
ceptable, n is set to 4 and N is set to 100. The number
m of literals in C ranges over [5+30] and the number L
of constants in any example ranges over [11 +-40]. The
set of learning problems is thus widely spread over the
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Figure 1. Phase transition emerging in the covering test class. (a) Plot of the probability P.,, that a random problem
(C, E) is solvable vs. the number m of literal in C and the number L of constants in E. The graph corresponds to n = 14
and N = 100. (b) Corresponding computational complexity of the search, vs. m and L. The complexity is evaluated by
the number of variable-constant unifications attempted during the search for the first model. (c) Phase transition plots
(Peov = 0.5), parametrized by the number n of variables in C. The value N is set to 100.

YES, the mushy and the NO regions (Figure 1).

A learning problem ©= = (C,&.,Er) is generated as
follows:

e Choose a point (mg, Ly).

e Stochastically generate a target concept C with
m, literals and n = 4 variables.

e Stochastically generate £ and Er, each one with
200 examples: each example contains m, rela-
tions, each one with N pairs of constants.

e Modify part of the examples, in order to obtain
100 positive and 100 negative ones, both in &
and in ET.

The last step of the above procedure is necessary be-
cause the generation process does not garantee a bal-
anced example set; more specifically, when (m, L) is
in the YES region, the 200 examples all come out as
positive (they almost surely satisfy C), whereas they
come out as negative when (mg, L) is in the NO re-
gion.

More details on the generation of the data can be found
in (Botta et al., 1999).

The learners: FOIL, SMART+, G-Net.

FOIL performs a top-down exploration; it iteratively
specializes its current hypothesis C; by conjunction
with the “best” literal «;(z;, 1) according to some
statistical criterion (Information Gain (Quinlan, 1990)
or Minimum Description Length (MDL) (Rissanen,
1978)). SMART+ is also a top-down learner (Botta
& Giordana, 1993); unlike to FOIL it uses a beam
search with the beam width controlled by the user.

G-Net is based on genetic algorithms (Anglano et al.,
1998). It starts from an initial population of candi-
date hypotheses with different numbers of literals. As
the evolutionary search of G-Net is slower than that
of the other two learners, only a few experiments have
therefore been performed with it ®.

Evaluation criteria.

Let C denote the theory (set of hypotheses) discovered
by a learner. A first issue concerns the predictive accu-
racy of C, measured by the percentage of test examples
correctly classified. The predictive accuracy is consid-
ered satisfactory iff it is greater than 80% (the point
of this threshold value will be discussed later on), on
the test set 2. However, one might obtain a good pre-
dictive accuracy with a theory C significantly different
from the true target concept C. The second issue thus
concerns the identification of C, which is considered

! Another ILP learner, PROGOL (Muggleton, 1995),
has also been run on some learning problems. PROGOL
appeared ill-suited for large-sized artificial problems where
any background knowledge was absent. We also considered
using STILL (Sebag & Rouveirol, 1997), which is a bottom
up learner based on the stochastic sampling of the mod-
els search space. However, it appeared that the stochas-
tic heuristics embedded in STILL are geared toward non-
uniform distributions of the examples. Further research
will examine how to reshape and parametrize these heuris-
tics depending on the distribution of the examples.

2The predictive accuracy was not evaluated according
to the usual cross-validation procedure for two reasons.
First of all, the training and test sets are drawn from the
same distribution; it is thus equivalent to doubling the ex-
periments and taking the average result, or performing a
twofold crossvalidation (Dietterich, 1998). We did not dou-
ble the experiments because of the huge total computa-
tional cost. Furthermore, though the result for (m, L) is
based on a single trial, it might be considered significant
as all other trials in the same area give the same result.



satisfactory iff the structure of C is close to that of the
C, i.e., if C is conjunctive.

4. Results

Predictive Accuracy. As mentioned earlier, each
learning problem corresponds to a point in the plane
(m,L). In Figure 2 the map of FOIL’s successes
and failures is reported; a cross (dot) denotes a prob-
lem (C, &L, Er) that FOIL successfully solved (did not
solve), according to the accuracy criterion stated in the
previous section. Detailed results (Table 1) show that
the predictive accuracy is either very high (> 95%) or
comparable to that of random guess (< 58%). Hence,
the shape of FOIL’s failure region does not critically
depend on the threshold value of 80%. SMART+ has
been run on about the 10FOIL’s failure region, and
showed a full agreement with FOIL 2. Complementary
experiments (not reported here) show that G-Net, too,
fails on the same learning problems. In a nutshell, the
failure region seems to be almost independent from the
success criterion and the learning strategy.

These experiments suggest that relational learning
succeeds iff either the target concept is sufficiently
small (m < 6), or the learning problem is sufficiently
far away from the phase transition. The latter condi-
tion was unexpected, as it states that for a given L,
longer concepts (extreme right region) might be easier
to learn than smaller ones (close to the phase tran-
sition). This point will be discussed later in Section
5.

As &1 and Er are fixed, for the sake of simplicity we
will say that a concept C or an hypothesis C; belongs
to the YES (resp, NO or PT) region when the corre-
sponding set of covering tests {(C,E)|E € &, U &7}
falls in that region.

Concept Identification. Let us look more closely at
what is learned by FOIL. Table 1 first reports the char-
acteristics of the learning problems (m and L), then
the number K of disjuncts learned by FOIL, and the
average number of literals in these disjuncts, denoted
by m. Next columns give the predictive accuracy of
the learned theory C on the training and test sets, and
the learning run time (in seconds on a Sparc Enter-
prise 450). A categorization of the learning problems,
explained below, is proposed in the last column.

Table 1 shows three categories of relational learning
problems.
E. Easy problems. FOIL correctly identifies the true

3Unless the beam width of SMART+ is close to the
size of the target concept, which means that an exhaustive
search is performed.

Table 1. Target concept C and learned concept ¢

C C Performances

m L | K m train. test | CPU

8 16| 1 8 100 100 | 106.2 | E
10 13| 1 14 100 99 144.2 E
10 16 | 8 11.75 88 485 | 7835 | H
11 13| 1 11 100 100 92.2 E
11 15| 6 13.5 85 535 | 986.2 | H
12 13| 3 14 98.5 83 5164 | M

C belongs to the YES region (lower left)
15 29| 1 6 100 100 | 1853 | M
15 35| 2 6 97.5 84.5| 8946 | M
18 35| 1 6 100 100 | 201.0 | M
21 18| 8 4.13 81.5 58 13949 | H
25 24| 1 6 100 99 1359 | M
29 17| 1 12 100 995 | 1449 M
C belongs to the NO region (upper right)

6 28|12 808 | 91.5 505 | 8154 | H
7 28|11 7.63 | 91.5 60.5|1034.2 | H
8 27| 1 7 100 100 | 58.8 E
13 26| 1 9 100 99 | 4768 | M
17 14| 8 15 93 46 294.6 H
18 16 | 8  8.87 91 58.5 | 4040 | H
26 12| 3 24.33 80 58 | 3614 | H

C belongs to the phase transition region

target concept C or a clause slightly more general (by
at most one literal); almost all training and test exam-
ples are correctly classified. Easy problems mostly lie
in the YES region; they might also belong to the PT
region for low values of m.

M. Manageable problems. FOIL finds a conjunc-
tive hypothesis C, which correctly classifies (almost)
all training and test examples, but largely over-
generalizes C (e.g., C has 6 literals instead of 18).
Manageable problems are mostly in the NO region,
far away from the phase transition.

H. Hard problems. FOIL learns a disjunctive hypoth-
esis C involving many conjunctive hypotheses C; (be-
tween 6 and 15) of various sizes, and each C; only cov-
ers a few training examples. The predictive accuracy
of C is not much better than a random guess on the
test set. The learning cost reaches its maximum for
hard problems, because of the number of hypotheses
learned, and of their closeness to the phase transition
(see next paragraph). Hard problems fall within or
close to the phase transition, for high values of m.

These results confirm the fact that a high predictive
accuracy does not imply that the true concept C has
been discovered. Obviously, there is no way one can
distinguish between easy and manageable problems in
real-world applications.
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Figure 2. Results obtained by FOIL: (a) Competence Map: Failure cases (.) and Success cases (+).

the location of the retained hypotheses.

Location of the hypotheses.

Figure 2(b) shows where the conjunctive hypotheses
learned by FOIL belong. In the easy problems, FOIL
discovers the true concept, which lies in the YES re-
gion most of the times (this is not much visible, as
there are few easy problems). In the manageable prob-
lems, FOIL grasps an over-generalization of the true
concept, that lies in the PT region. In the hard prob-
lems, FOIL retains seemingly random disjuncts, most
of them lying in the PT. In the two latter cases, the
phase transition behaves as an attractor of the learning
search.

5. Interpretation

The above results raise at least three questions. Why
does the learning search end up in the mushy region ?
When and why is the target concept correctly identi-
fied 7 When and why should a relational learner fail
to approximate the target concept ? Some tentative
answers are proposed in this section.

5.1 The phase transition is an attractor

Given a problem 7, FOIL constructs a series of can-
didate hypotheses. Each hypothesis C¢, coupled with
every E € &1, generates a covering test (C¢, E) located
on the horizontal line L = L, becuase L only depends
on the examples. Then, the learning process describes
a path in the (m, L) plane, which, in this case, is a

(b) Distribution of

horizontal line L = L,. FOIL starts with a single lit-
eral Cq, and specializes C; to obtain C;y1. The series
of hypotheses thus forcedly starts in the YFES region,
then it might come to visit the mushy region, and pos-
sibly thereafter the NO region. Each C; is required to
be representative, covering sufficiently many positive
examples; the last hypothesis Cp is such that it is suffi-
ciently correct, covering no or few negative examples.
We examine the implications of this search strategy,
depending on the location of the target concept C.

Case 1. C belongs to the phase transition region.

By construction, ¢ would cover a random example
with probability around .5; examples need little re-
pairing (Section 3) in order to get evenly distributed
training and test sets. Hence:

e No hypothesis in the YES region can be correct as
it likely covers all training examples. The search must
go on until reaching the mushy region.

e Symmetrically, any hypothesis in the NO region
would hardly cover any training example, hence it is
not, representative. The search thus should stop at
the very beginning of the NO region, and preferably
before, that is, in the mushy region. Therefore, a top-
down learner is bound to produce hypotheses Cr lying
in the mushy region.

Case 2: C belongs to the NO region.

Here, negative examples do not need to be repaired;
hence, any hypothesis in the YES region will cover
them; thus the search must go on at least until reaching
the mushy region. On the other hand, any hypothesis



in the NO region should be correct, and there is no
need to continue the search. Top-down learning is thus
bound to produce hypotheses Cr lying in the mushy
region, or on the verge of the NO region.

Case 3. C belongs to the YES region.

The situation is different here, since there exist correct
hypotheses in the YES region, namely the target con-
cept itself, and possibly many specializations thereof.
Should these hypotheses be discovered (the chances for
such a discovery are discussed in the next subsection),
it would not be necessary to continue the search. In
any case, the search should stop before reaching the
NO region, for the following reason: positive exam-
ples do not need to be repaired; any hypothesis in the
NO region would cover none of them. Then, top-down
learning is bound to produce hypotheses Cp in the YES
or in the mushy region.

The above remarks explain why the phase transition
constitutes an attractor for top-down learning. Anal-
ogous reasons actually hold for any learner without
background knowledge.

5.2 Correct identification of the target concept

The second question regards the correct identification
of the target concept C. Let us first consider the case
where C belongs to the mushy region. Two cases have
been observed and reported in Table 1: either C in-
volves few literals (m < 6) and is correctly identified,
or the learner retains a number of conjunctive clauses
Cr, each covering few positive training examples and
performing poorly on the test set.

The reasons why a top-down learner should fail to
identify a long target concept are illustrated on an ex-
ample. Let C be given as:

ao(z1,T2) A a1(z2,z3) A az(x2,x3) A as(xs, T4)A
a4(m1, 1’4) A\ a5(m1, 1‘4) A a6(1'3,1'4) A\ a7(m3, 1‘4)

The corresponding specialization tree, as visited by
FOIL, is given in Figure 3. Note that the first literal
Cy1 can only be selected at random; the information
gain cannot provide any useful indication, since all ex-
amples have the same number of literals built on every
predicate*. However, this does not penalize the search
here since all predicates are relevant by construction.

Figure 3 develops all possibilities, depending on the
first literal chosen. Conditioned by this choice, say
ap(x1,x2), literals are sorted on the basis of their infor-

“In a real-world application, the first literal is selected
on the basis of pure attribute-value-like information: the
information gain only depends on the number of occur-
rences of a predicate symbol in positive/negative examples.

mation gain. The trouble is that, using this criterion,
the choice of the first literal, say ag(zs,z2), is wrong;
C- is not a generalization of C, and the search can thus
only wander — or backtrack. In other words, the in-
formation gain misleads the search here; even worse,
it misleads the search for 7 out of 8 branches. We thus
“repare” the choice by forcing the selection of the best
correct literal, and proceed again. All oblique arrows
in Figure 3 correspond to steps where the informa-
tion gain misleads the search, and where we thus “re-
pare” the candidate hypothesis Cy, in order to stay in a
correct graph. The information gain criterion appears
unreliable, until later in the search; in fact, assuming
that the first four literals are correct, the information
gain successfully leads to the target concept. All in all,
top-down learning is bound to fail here, as any path
includes several wrong choices in the early steps. The
amount of backtrack needed to find any right path is
thus enormous.

The above finding can be explained as the information
gain relies on the number of models of a candidate hy-
pothesis. But any hypothesis in the YES region admits
many models in any random example. The number of
models associated to any literal is thus hardly mean-
ingful, except when the current hypothesis is close to
the target concept. This occurs either when the tar-
get concept is short, or when the current hypothesis
has been repaired (see the last steps in Figure 3). The
variance in the number of models further blinds the se-
lection of literals. Complementary experiments show
that the variance reaches its maximum as hypotheses
reach the phase transition.
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Figure 3. Visiting a specialization tree, when the information gain misleads the search (\)

The same investigation as in Figure 3 was done for
many problems lying within or close to the Phase Tran-
sition. Figure 4 reports, at coordinates (m, L), the
minimal level ¢, of the specialization tree where the
information gain becomes reliable. Figure 4 could be
thus interpreted as a reliability map of the information
gain.

Note that, for most problems in the mushy region or
on the border between the PT and the NO regions,
t, takes high values, denoting a poor ability to find
any correct path; moving farther away from the phase
transition, t. gradually decreases.

5.3 Good approximation of the target concept

According to the above discussion, relational learning
is doomed to fail when either the size m of the tar-
get concept and/or the number L of constants in the
application domain, are high. Still, when both m and
L are high (upper right region in Figure 2(a)), FOIL
succeedes, and finds highly accurate hypotheses.

This can be explained as follows. Let us assume that
the target concept C belongs to the NO region.

We show that any generalization £ of the target con-
cept C will almost surely correctly classify any training
or test examples, provided that £ belongs to the NO
region: negative examples are randomly constructed;
hence, any hypothesis in the NO region will be correct;
in particular, £ is correct. On the other hand, any ex-
ample covered by C is also covered by &; this implies
that & covers all positive examples. Finally, any gener-

alization of C that belongs to the NO region is complete
and (almost surely) correct.

It follows that, if the learning search happens to exam-
ine a generalization ¢ of C which is close to the NO re-
gion, ¢ will be considered an optimal hypothesis, which
will stop the search. The success of relational learn-
ing, with respect to predictive accuracy, thus depends
on the probability of finding a generalization £ of C on
the edge of the phase transition.

Let m denote the number of literals of C; the number
H(v,m) of generalizations of C, with v literals, has

been analytically computed, and reaches its maximum

at v = . This might explain why relational learning

succeeds to find accurate approximations of C when
the size m of C is greater than twice the critical value
of m (i.e., the value mg, such that (m.., L) falls on
the crossover curve). As the phase transition contains
an exponential number of generalizations of C, there
is a reasonable chance to find one; finding one ensures
a perfect predictive accuracy on the training and test
sets®.

SAnother possible interpretation for the fact that it
might be easier to approximate larger concepts than
shorter ones, is the following. As m increases, more and
more modifications are needed to turn a random example
into a positive one. This is done by forcing a model of C
in any positive example. The distribution of the positive
examples thus becomes increasingly different from the uni-
form one. However, it is unclear how FOIL directly exploits
this information.



6. Conclusion

According to the current trend in Combinatorial
Search the actual behavior of an algorithm on real
hard-on-average problems, i.e. in the phase transi-
tion, conveys more information than its mere worst-
case complexity (Hogg et al., 1996).

Following these lines the present paper reports on a
systematic experiment, confronting three up-to-date
FOL learners to a broad range of artificial learning
problems, lying within and outside the phase transi-
tion. Despite the simplifications done (uniform distri-
bution of the examples, conjunctive target concept),
our experiment might shed some light on the actual
limitations of these learners.

The first empirical lesson is that the learning search
most often ends up exploring the phase transition;
in retrospect, this is hardly surprising, as only con-
cepts/hypotheses in the phase transition can separate
the examples (section 2). Incidentally, this implies
that FOL learning fully faces the complexity of the
covering test, which might raise some doubts as to the
scalability issue. This result is supported by the sys-
tematic experiments reported here and also by comple-
mentary experiments on real-world applications (Gior-
dana & Saitta, 2000).

Second, the widely used information gain criterion ap-
pears to consistently mislead the top-down search of
a long target concept. The signal-to-noise ratio ap-
pears to be quite low in the early learning steps, as
any short hypothesis admits a huge number of models
in any example. Third, a large “blind spot” appears
in the learning landscape; for learning problems (con-
cept/examples) in this region, all three learners con-
sistently fail to provide anything better than random
guessing.

Hopefully, these findings might help to reconsider the
key issues of FOL learning. Indeed, new learning bi-
ases seem to be required to construct scalable FOL
learners, and discover more complex concepts than
those considered so far (7).

Further research is required to determine a new top-
down search criterion, as our experiments suggest that
the number of models might be a very noisy indicator.
Alternatively, it might be worth reconsidering bottom-
up search strategies.

But the primary issue, in our opinion, is to re-design
the search space; typically, if all relevant hypotheses
lie in the phase transition, then first question is how
to explore this particular region.
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