
HAL Id: hal-00116116
https://hal.science/hal-00116116

Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Genetic Programming and Domain Knowledge: Beyond
the limitations of grammar-guided Machine Discovery

Alain Ratle, Michèle Sebag

To cite this version:
Alain Ratle, Michèle Sebag. Genetic Programming and Domain Knowledge: Beyond the limitations
of grammar-guided Machine Discovery. International Conference on Parallel Problem Solving from
Nature, 2000, Paris, France. pp.211-220, �10.1007/3-540-45356-3_21�. �hal-00116116�

https://hal.science/hal-00116116
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Genetic Programming and Domain Knowledge:

Beyond the Limitations of Grammar-Guided

Machine Discovery

Alain Ratle and Michele Sebag

LMS - CNRS UMR 7649, Ecole Polytechnique, 91128 Palaiseau Cedex

Abstract. Application of Genetic Programming to the discovery of em­
pirical laws is often impaired by the huge size of the domains involved. In
physical applications, dimensional analysis is a powerful way to trim out
the size of these spaces This paper presents a way of enforcing dimen­
sional constraints through formal grammars in the GP framework. As
one major limitation for grammar-guided GP comes from the initializa­
tion procedure (how to find admissible and sufficiently diverse trees with
a limited depth), an initialization procedure based on dynamic gram­
mar pruning is proposed. The approach is validated on the problem of
identification of a materials response to a mechanical test.

1 Introduction

This paper investigates the use of Genetic Programming [Koz92] for Machine
Discovery (MD), the automatic discovery of empirical laws. In the classical Ma­
chine Learning framework introduced in the seminal work of Langley [LSB83],
MD systems are based on inductive heuristics combined with systematic explo­
ration of the search space. This approach suffers from severe limitations with
real-world problems, due to ill-conditioned data and huge search spaces.

Such limitations are avoided in Genetic Programming (GP) due to its stochas­
tic search principle. The price to pay is that GP offers no direct way to incor­
porate expert knowledge, although the knowledge-based issues of Evolutionary
Computation are now recognized [Jan93]. In this paper, the emphasis is put on
a particular, albeit rather general, expertise: in all application domains, vari­
ables most often have physical dimensions that cannot be ignored, for exam­
ple, mass and length can not be added together. The restriction of the search
space to dimensionally admissible laws has been tackled by [WM97] in a Machine
Learning framework and by [KB99], using dedicated GP operators. On the other
hand, an elegant and promising way to encode domain-knowledge is by formal
grammars [RC098,H6r96]. One major difficulty with Grammar-Guided Genetic
Programming (G3P) lies in the initialization step, the importance of which can­
not be overestimated [Dai99]. Finding admissible trees within a maximum depth
might be challenging enough to result in poorly diversified populations.

This paper investigates the use of grammars to restrict the GP search space
to dimensionally admissible laws. The next section briefly presents context-free

1

grammars and Sect. 3 discusses some related works. Sect. 4 describes a class of
grammars for dimensionally admissible expressions, Sect. 5 presents its use for
generating the population, and finally, Sect. 6 reports on numerical experiments
with G3P for the identification of phenomenological laws in materials science.

2 Context-Free Grammars

A Backus-Naur form (BNF) grammar describes the admissible constructs of a
language through a 4-tuple {S, N, T, P } , where S denotes the start symbol, N
the set of non-terminal symbols, T the set of terminal symbols, and P the pro­
duction rules. Any expression is built up from the start symbol. Production rules
specifie how should the non-terminal symbols, e.g. < expr >, be rewritten into
one of their derivations (e.g. (< oper >< expr >< expr >)or< var>) until
the expression contains terminal symbols only.

Example:

N = { < ex pr >, < oper >, < var > }
T={ x,R, + , * , (,)}
P = { S :=< expr >

< expr > ·- (< oper >< expr >< expr >)I <var>
< oper > ·- + I *
<var> := x IR }

The above grammar describes all polynomials of the variable x (R is inter­
preted as any real-valued constant); hence it is equivalent to the GP search space
with the node set .N = { +, *} and terminal set 1 T = { x, R}. One advantage
of grammars is to allow fine-grained constraints to be imposed on the search
space. Assume for instance that for one particular application, the parent node
of an additive node must be a multiplicative node only, and vice versa. This is
enforced via grammars by describing two non-terminals, < add - expr > and
< mult -expr >, with the following production rules:

<add-expr >
< mult -expr >

(+ <mult-expr><mult-expr>)I <var>;
(* < add -expr > < add -expr >) I < var >;

In canonical GP, satisfying this constraint would require either to design a spe­
cific initialization procedure and evolution operators, or to filter out any non­
complying individual.

3 GP and Grammars: Previous Works

Canonical GP relies on the hypothesis of closure of the search space [Koz92],
which assumes that the return value of any subtree is a valid argument for any

1 It should be clear that non-terminals and terminals have different meanings in canon-
ical GP and in BNF grammars. In the former, terminals are the leaves (variables
and constants), and non-terminals are the nodes (operators), while in the latter,
terminals comprise both variables and operators, and non-terminals are expressions
that must be resolved into terminals.

2

function. This ensures that simple crossover and mutation (respectively swap­
ping sub-trees and replacing an arbitrary subtree by a random one) shall produce
admissible offsprings. What is gained in procedural overhead is lost in expres­
siveness: neither syntactic nor semantic restrictions are accounted for, and prior
knowledge can dictate nothing but the node set. This implies several limitations:

- The size of the search space is huge, even for problems of moderate difficulty
[Whi95]: it is typically exponential with respect to the number of terminals
and nodes and to the maximum depth.

- The general shape of the trees is arbitrary.
- No consideration is given to the types (integers, reals, complexes, ...).
- Variables are assumed to be dimensionless.

Consequently, the use of canonical GP with typed or dimensioned variables
implies the useless generation of a vast majority of irrelevant trees [CY97]. Sev­
eral authors have addressed this problem using various kinds of bias. A first
kind is provided by the expert through domain knowledge. The importance of
taking this knowledge into account is now generally admitted [Jan93]. In an MD
context, prior knowledge might concern the shape of the solution2. A significant
improvement in the success rate of a GP application can be obtained by biasing
the shape of the parse trees toward some shapes that are a priori judged inter­
esting. This can be enforced by syntactic constraints; their beneficial effect have
been illustrated by Whigham [Whi95] for the 6-multiplexer problem.

The use of syntactic constraints with genetic programming have been sug­
gested as a potential form of bias by Koza [Koz92] in 1992. More formally,
Gruau [Gru96] has shown that syntactic constraints can be used for reducing
the size of the search space by allowing only type-consistent parse trees. How­
ever, a major limitation of Gruau's approach is that no limitation is put on the
depth of the trees. This usually results in a severe growth in tree size.

A second kind of bias consists of constraining the types of the variables
manipulated by the tree expression. These constraints might be related to the
adequacy of the variables and operators (e.g. don't take the square root of a neg­
ative value), or to the physical dimensionality of the variables. A first step toward
dimensionally aware GP was proposed by Keijzer and Babovic [KB99]. The di­
mensionality of each expression is encoded by a label which consists of a vector
of the exponents of the basic units. For example, a variable expressed in Newtons
(kg x m/ s2) is labeled [1, 1, -2]. The requirements on the label of a subtree is
defined from its parent and sibling nodes. This implies that the initialization
procedure may have to construct a subtree with any label (compound unit). A
DimTransform function is defined and produces a terminal of the required units.
Since no terminal exists for each possible unit, DimTransform might introduce
non-physically meaningful constructs, precluding the physical relevance of the
final tree. Therefore, an auxiliary fitness measure is introduced in order to favor
trees with few calls to DimTransform.

2 For instance, in the example presented below, the force recorded during an experi­
ment with the parameters x has the form :F(x, t) = fi (x) x eh(x)t

3

Type constraints are closely related to the strongly typed GP (STGP) pro­
posed by Montana (Mon95] and extended by Haynes et al. (HSW96]. In STGP,
a type label is associated to every terminal, argument, and return value. The
initial population is created by restricting the random choices to terminals or
functions having the appropriate type label. Crossover operates by swapping a
subtree with another subtree of the same type, and mutation replaces a subtree
with a random subtree of the same type. STGP does not address, however, the
problem of the dimensional consistency of the expressions.

Formal grammars have been implemented in a GP system by Horner [Hor96],
with crossover and mutation using procedures that are similar to those of the
STGP. However, Homer's system suffered limitations from the difficulty of ini­
tializing valid parse trees, as was pointed out by Ryan [RC098].

4 Dimensionalization through formal grammars

The new concepts presented in this paper are twofold. The first part consists
of using grammar rules for incorporating dimensionality constraints into a GP
framework. Second, the limitations of Grammar-Guided GP are broken down by
a new initialization procedure based on a dynamic pruning of the grammar, in
order to generate only feasible trees of prescribed derivation depth.

This approach is illustrated by a problem of mechanical behavior law identi­
fication. The elementary units involved are mass, length and time. The charac­
terization of any compound unit as an n-tuple giving its exponent with respect
to the elementary units is borrowed from [KB99]. The allowed compound units
are specified by the user. The present study is restricted to integer powers of
the basic units in the range { -2 . . . 2}. This excludes operators that returns
fractional units (e.g., the square root). The domain of allowed units therefore
contains 53 = 125 possible combinations. A non-terminal symbol is defined for
each allowed compound units, together with the corresponding derivation rules
to express all the admissible ways of resolving this symbol. Such a large number
of combinations makes necessary the use of an automatic grammar generator. It
might be objected that the size of this grammar makes it unpractical for real­
world applications. Indeed, its memory complexity is exponential with respect to
the number of elementary units, but no extra housekeeping is devoted to the GP
kernel for units management. Therefore, the computational cost of this approach
is no larger than other grammar-guided GP systems, and the use of a standard
GP engine is allowed with no internal modifications. For instance, the results
presented in this paper use Homer's GP kernel as a basic engine [Hor96].

The grammar generator builds up each production rule with all the dimen­
sionally coherent derivations. For example, a non-terminal with units [i, j, k] can
be replaced by the multiplication of two non-terminals with units [a, b, c] and
[d, e, f] if and only if (a, b, c] + [d, e, f] = [i,j, k]. A similar rule applies to di­
vision, and addition/subtraction require both arguments to be of units (i, j, k].
Experts have to provide the derivation rule associated to the start symbol S,
thereby encoding its expected units, and possibly the shape of the sought solu-

4

tion. The set of available variables and their units should also be provided. The
procedure is described as follows:

Begin Grammar Generation
For each combination of units [i, j, k] do

Create the production rule <NTijk> : = exprijk
with exprijk = + <NTijk><NTijk> I - <NTijk><NTijk>
exprijk = exprijk I <NTijk> x exp <NTOOO>

For each variable/constant terminal Tc with units [i, j, kl
exprijk = exprijk I Tc

For each pair of combinations of units [a, b, cl , [d, e, fl do
If [a, b, cl + [d, e, fl = [i, j, kl

exprijk = exprijk I x <NTabc><NTdef>

If [a, b, cl - [d, e, fl= [i,j, k]
exprijk = expr;jk I -;- <NTabc><NTdef>

End for each pair [a, b, cl , [d, e, fl
End for each [i, j, kl

End procedure

5 Initialization of Bounded Depth Trees

The initialization procedure has to build up trees based on the provided gram­
mar. A major difficulty arises with the dimensioned grammar since most deriva­
tion rules can not be resolved directly into a terminal. The fraction of terminal
derivations can be so small that there is almost no chance for a random process
to select a terminal symbol. This implies, as noted by Ryan [RC098], that the
trees tend to be very deep. On the other hand, if the user specifies a maximum
tree depth, the initialization proceeds by massively rejecting oversized trees.
The problem is similar to what occurs in constrained optimization whenever the
feasible region is very small.

Some mechanisms for controlling the derivation depth must therefore be in­
corporated in the initialization procedure. The proposed approach is intended to
bound the initialization operator to the domain of dimensionally-feasible trees of
depth equal or inferior to a prescribed value Dmax. During grammar generation,
to each non-terminal symbol <NT> is associated an integer d(<NT>), giving the
depth of the smallest tree needed to rewrite <NT> into terminal symbols. The
depth associated to each terminal symbol (operators, variables and constants) is
set to 1. The depth of each <NT>, initially set to infinity, is recursively computed
according to the following relations:

d(<OP><NTa><NTb>) = 1 + max (d(<NTa>), d(<NTb>))

d(<NTi>) =min {d(deriv1)} for <NTi> = deriv1lderiv2I · . . jderivn;
J

(1)

5

During the tree-generation phase, depth labels are employed in order to en­
force the bound on tree size. Given a non-terminal node at a depth D in a tree,
and assuming a maximum tree depth of Dmax, the remaining allowed depth
Dmax - D is computed. The chosen derivation is randomly drawn among the
subset of the derivations for which d(<NT>) � Dmax - D. This way, it is impos­
sible for the algorithm to engage into a path that has no fully terminal solution
in less than Dmax- D steps, and by the way, all the generated trees are feasible.

6 Numerical Experiments

The test-case presented herein is a simplified real-world application where an al­
gebraic law is expected to be found for modeling experimental data correspond­
ing to the constitutive law of a material during an indentation test. Figure 1
presents a schematic view of the experimental setup. A hard indenter of a pre­
scribed shape (usually conical or tetrahedral) is pressed against the surface of
the material to be tested out. The experimenter records the reaction force F
along time t and displacement u.

For simple constitutive laws, the analytical relations between force, displace­
ment, and materials properties are well known [Joh87]. For complex constitutive
laws, finite elements models allow one to simulate the material reaction force.
However, this simulation is rather expensive (3 hours on an HP350 workstation) .
For ill-known materials, only experimental data are available. This pinpoints the
need for a simple analytical model in the two latter cases.

Material sample

Fig. 1. Experimental setup of the
indentation tests

1400
1200
1000

� BOO .
_§ 600

400
200

6 time(s)

ExarJl>le1 �;) Exa!TJlle 2 ·--....... :1-
,/'i

10

Fig. 2. Typical force vs time rela­
tions of numerical simulation

Examples have been generated according to random values of the material
properties, and the material behavior has been computed with the finite element
model. The examples are, by the way, noisy, due to the limitations of the numer­
ical method: roundoff errors and modeling approximations. Typical results of
simulated force-time relation are presented on Figure 2. From prior knowledge,
this relation is expected, during the loading phase, to be of the form:

(2)

6

where A and Pare unknown functions of the materials properties. The avail­
able physical quantities and their associated units are presented on Table 1. Due
to the noisy nature of the examples, it is not expected that GP, nor any other
machine discovery algorithm, will find out a solution that exactly fits the data.

Table 1. Physical units Table 2. GP parameters

Quantity mass length time Parameter name Value
E (Young's modulus) +1 -1 -2 Population size 4000
K (viscous modulus) +1 -1 -1 Max. number of generations 1000
n (plasticity factor) 0 0 0 Probability of Crossover 0.8
Sy (yield strength) +1 -1 -2 Probability of Tree Mutation 0.2
u (displacement) 0 +1 0 Probability of Point Mutation 0.8
t (time) 0 0 +1 Number of training examples 20
F (Indentation Force) +1 +1 -2 Number of independent runs 20

Machine Discovery experiments have been conducted with the GP parame­
ters given on Table 2. The crossover consists of swapping two arbitrary subtrees
from two parents, with a choice restricted to subtrees having a root node of the
same type. Tree mutation consists of crossing over one individual with a ran­
dom admissible tree. The point mutation replaces one terminal node by another
terminal of the same type. This operator is analogous to a local improvement
operator, and has been observed, for the present problem, to be less destructive
than the tree mutation. Six grammars were devised and are described as follows:

1. universal-non-dim: The most general case, with no a priori knowledge or
dimensional constraints. This grammar is equivalent to canonical GP:

S :=<NT>;
<NT> : = <DP> <TER> <TER> I <OP> <NT> <NT>

<OP> <TER> <NT> I <OP> <NT> <TER>
<DP> : = + I - I * I ..;-. I exp ;

<TER> : = E I K I N I Sy I u I t I 1 I 2 I
<=N)

3 I 4; <=T)

2. [AePt]-non-dim: A partial constraint on the shape of the tree is introduced
by this second grammar:

S : =exp <NT> <NT1>
<NT1> := * <NT> t ;

<NT> : = <DP> <TER> <TER> I <OP> <NT> <NT>
<OP> <TER> <NT> I <OP> <NT> <TER>

<DP> : = + I - I * I ..;-. ;
<TER> : = EI K I N I Sy I u I t I 1.0 I 2.0 I 3.0 I 4.0 ;

This grammar enforces two constraints on the search space: the highest­
level (root) operator is necessarily an exp operator, and this exp operator is
multiplied by an arbitrary expression (first argument) but exponentiates an
expression multiplied by the time t.

7

3. [Au2ePt]-non-dim: The complete shape constraint [Au2 exp(Pt)] is now
enforced in a way similar to the previous case.

4. universal-dim: Dimensional constraints but no shape constraint. The so­
lution is expressed in Newtons, so the start symbol is defined a priori as:

S : = <NT+l+l-2>;

5. [AePt]-dim: Dimensional constraints plus the partial shape constraint of
the second grammar.

6. [Au2ePt]-dim: Dimensional constraints plus the complete shape constraint
as in the third grammar.

Figure 3 presents the size of the search space computed as a function of
the allowed derivation depth, with the universal grammar (case 1), and the
dimensionally-constrained grammar (case 4). These curves show that in both
cases, the number of solutions grows exponentially, but the search space can be
reduced by several order of magnitude with the use of dimensional constraints.

1.0e+25

"'
1.oe+20 c: 0

5 0 "' 1.0e+15 15
;;; .c 1.0e+10 E " z

1.0e+OS

_,.--
1.0e+OO

10

Universal grammar -
Dimensionnal grammar .. --·JC-----

,.,.,------·

x,,.··
_,. -

/
,.----·

20 30
Maximum allowed depth

•'°

40

Fig. 3. Number of solutions in the search space with respect to the derivation depth,
for non-dimensional (universal) and dimensional grammars.

Average best fitness value over 20 independent runs, and standard deviation
are presented on Table 3, while the evolution of the average best fitness with
respect to the number of evaluations is plotted on Fig. 4 for the non-dimensional
grammars and on Fig. 5 for the dimensional grammars. Comparisons based on
the number of evaluations are fair benchmarks since no significant variation in
total computation time have been noticed between the grammars.

Figures 4 and 5 ask for two comments. First of all, giving the expected shape
of the equation does not necessarily improve the results3. It partially does so in
the case of non-dimensional grammars. But this might be due to the fact that
the shape constraint prevents the search from being trapped in the same local

3 Note that the problem at hand is based on real data where the solution is actually
unknown.

8

optimum the universal grammar always falls in, which causes the null standard
deviation observed for this case. This local optimum corresponds to the function
F = t2e2eu. For the dimensional grammars, shape constraints are detrimental
to the quality of the results in both cases. Second, the dimensional constraints
appear to be clearly beneficial since the results obtained with dimensional gram­
mars always supersede those obtained with untyped grammars, by an average
of 6 standard deviations.

Table 3. Results

Grammar Average fitness Std. deviation
universal-untyped
[Aexp(Pt)]-untyped
[Au2 exp(Pt)]-untyped
universal-dim
[A exp(Pt)-dim
[Au2 exp(Pt)-dim

100000 �----------­
univ -

90000

80000

70000

60000

50000
0

Ae"PI •
Au"2e"Pt •

j<,"-.... ,.,,.,. " ,.,. " .. -)()(>1-...... ..
1 e+06 2e+06 3e+06 4e+06

function evaluations

Fig. 4. Average best fitness for the three
non-dimensional grammars

7 Conclusion

6.2236E+4
6.5762E+4
5.1194E+4
3.1009E+4
4.0089E+4
3.6357E+4

70000

65000

60000

" 55000
" <ii 50000 >
� 45000

§ 40000

35000

30000

25000
0

O.OE+O
2.2E+3
l.9E+3
5.8E+3
2.7E+3
3.4E+3

univ­
Ae"Pl

+

Au'2e"PI •

+._. �·

"·
............. ,. "',.. ,.,. ,. ,.. ..

1 e+06 2e+06 3e+06
function evaluations

4e+06

Fig. 5. Average best fitness for the three
dimensional grammars

The innovations presented in this paper are twofold. First, a novel approach for
the management of dimensionality constraints by the means of an automatic
grammar has been presented. Second, the point of designing an admissible and
still sufficiently diversified initial population has been addressed through dy­
namic pruning of the grammar, depending on the maximum tree depth allowed,
and the current position in the tree. So far, the initialization step was a major
limitation to the use of formal grammar for constraining a GP search space.

9

The main limitation of the presented approach is its dependence over a lim­
ited range of allowed units. Using fractional units can be made possible by the
use of rational instead of integer numbers. This would allow the use of a broader
range of operators (square root, powers, ...), but would be equivalent to having
twice as many basic units. Further research will be devoted to the simultaneous
evolution of the grammar and the GP trees, in order to evolve grammars that
facilitate the discovery of fitter individuals.

Acknowledgments

The authors acknowledge Helmut Horner who developed an efficient basis for
G3P research. Finite elements simulations data were provided by Nicolas Tardieu.

References

[CY97] C. Clack and T. Yu. Performance enhanced genetic programming. In Evolu­

tionary Programming VI, pages 87-100. Springer-Verlag, 1997.
[Dai99] J.M. Daida. Challenges with verification, repeatability, and meaningful com­

parison in genetic programming: Gibson's magic. In GECC099, pages 1069-
1076. Morgan-Kaufmann, 1999.

[Gru96] F. Gruau. On using syntactic constraints with genetic programming. In
Advances in Genetic Programming II, pages 377-394. MIT Press, 1996.

[Hi:ir96] H. Horner. A C++ class library for genetic programming. Technical report,
The Vienna University of Economics, 1996.

[HSW96] T.D. Haynes, D.A. Schoenefeld, and R.L. Wainwright. Type inheritance in
strongly typed genetic programming. In Advances in Genetic Programming

II, pages 359-375. MIT Press, 1996.
[Jan93] C. Z. Janikow. A knowledge-intensive genetic algorithm for supervised learn­

ing. Machine Learning, 13:189-228, 1993.
[Joh87] K.L. Johnson. Contact Mechanics. Cambridge University Press, 1987.
[KB99] M. Keijzer and V. Babovic. Dimensionally aware genetic programming. In

GECC099, pages 1069-1076. Morgan-Kaufmann, 1999.
[Koz92] J.R. Koza. Genetic Programming: On the Programming of Computers by

Means of natural Selection. MIT Press, Cambridge MA, 1992.
[LSB83] P. Langley, H.A. Simon, and G.L. Bradshaw. Rediscovering chemistry with

the Bacon system. In M achine Learning: an artificial intelligence approach,

volume l. Morgan Kaufmann, 1983.
[Mon95] David J. Montana. Strongly typed genetic programming. Evolutionary Com­

putation, 3(2):199-230, 1995.
[RC098] C. Ryan, J.J. Collins, and M. O'Neill. Grammatical evolution: Evolving

programs for an arbitrary language. In EuroGP98, volume 1391 of LNCS,

pages 83-96, 1998.
(Whi95] P.A. Whigham. Inductive bias and genetic programming. In IEE Conf.

publications, n. 414, pages 461-466, 1995.
[WM97] T. Washio and H. Motoda. Discovering admissible models of complex systems

based on scale-types and identity constraints. In Intl. Joint Conf. on Artificial

Intelligence 97, pages 810-817, 1997.

10

