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Genetic Programming and Domain Knowledge: 

Beyond the Limitations of Grammar-Guided 

Machine Discovery 

Alain Ratle and Michele Sebag 

LMS - CNRS UMR 7649, Ecole Polytechnique, 91128 Palaiseau Cedex 

Abstract. Application of Genetic Programming to the discovery of em­
pirical laws is often impaired by the huge size of the domains involved. In 
physical applications, dimensional analysis is a powerful way to trim out 
the size of these spaces This paper presents a way of enforcing dimen­
sional constraints through formal grammars in the GP framework. As 
one major limitation for grammar-guided GP comes from the initializa­
tion procedure (how to find admissible and sufficiently diverse trees with 
a limited depth), an initialization procedure based on dynamic gram­
mar pruning is proposed. The approach is validated on the problem of 
identification of a materials response to a mechanical test. 

1 Introduction 

This paper investigates the use of Genetic Programming [Koz92] for Machine 
Discovery (MD), the automatic discovery of empirical laws. In the classical Ma­
chine Learning framework introduced in the seminal work of Langley [LSB83], 
MD systems are based on inductive heuristics combined with systematic explo­
ration of the search space. This approach suffers from severe limitations with 
real-world problems, due to ill-conditioned data and huge search spaces. 

Such limitations are avoided in Genetic Programming (GP) due to its stochas­
tic search principle. The price to pay is that GP offers no direct way to incor­
porate expert knowledge, although the knowledge-based issues of Evolutionary 
Computation are now recognized [Jan93]. In this paper, the emphasis is put on 
a particular, albeit rather general, expertise: in all application domains, vari­
ables most often have physical dimensions that cannot be ignored, for exam­
ple, mass and length can not be added together. The restriction of the search 
space to dimensionally admissible laws has been tackled by [WM97] in a Machine 
Learning framework and by [KB99], using dedicated GP operators. On the other 
hand, an elegant and promising way to encode domain-knowledge is by formal 
grammars [RC098,H6r96]. One major difficulty with Grammar-Guided Genetic 
Programming (G3P) lies in the initialization step, the importance of which can­
not be overestimated [Dai99]. Finding admissible trees within a maximum depth 
might be challenging enough to result in poorly diversified populations. 

This paper investigates the use of grammars to restrict the GP search space 
to dimensionally admissible laws. The next section briefly presents context-free 
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grammars and Sect. 3 discusses some related works. Sect. 4 describes a class of 
grammars for dimensionally admissible expressions, Sect. 5 presents its use for 
generating the population, and finally, Sect. 6 reports on numerical experiments 
with G3P for the identification of phenomenological laws in materials science. 

2 Context-Free Grammars 

A Backus-Naur form (BNF) grammar describes the admissible constructs of a 
language through a 4-tuple {S, N, T, P } , where S denotes the start symbol, N 
the set of non-terminal symbols, T the set of terminal symbols, and P the pro­
duction rules. Any expression is built up from the start symbol. Production rules 
specifie how should the non-terminal symbols, e.g. < expr >, be rewritten into 
one of their derivations (e.g. (< oper >< expr >< expr >)or< var>) until 
the expression contains terminal symbols only. 

Example: 

N = { < ex pr >, < oper >, < var > }
T={ x,R, + ,  * , ( , )} 
P = { S :=< expr > 

< expr > ·- (< oper >< expr >< expr >)I <var> 
< oper > ·- + I * 
<var> := x IR } 

The above grammar describes all polynomials of the variable x (R is inter­
preted as any real-valued constant); hence it is equivalent to the GP search space 
with the node set .N = { +, *}  and terminal set 1 T = { x, R}. One advantage 
of grammars is to allow fine-grained constraints to be imposed on the search 
space. Assume for instance that for one particular application, the parent node 
of an additive node must be a multiplicative node only, and vice versa. This is 
enforced via grammars by describing two non-terminals, < add - expr > and 
< mult -expr >, with the following production rules: 

<add-expr > 
< mult -expr > 

( + <mult-expr><mult-expr>)I <var>; 
( * < add -expr > < add -expr >) I < var >; 

In canonical GP, satisfying this constraint would require either to design a spe­
cific initialization procedure and evolution operators, or to filter out any non­
complying individual. 

3 GP and Grammars: Previous Works 

Canonical GP relies on the hypothesis of closure of the search space [Koz92], 
which assumes that the return value of any subtree is a valid argument for any 

1 It should be clear that non-terminals and terminals have different meanings in canon-
ical GP and in BNF grammars. In the former, terminals are the leaves (variables 
and constants), and non-terminals are the nodes (operators), while in the latter, 
terminals comprise both variables and operators, and non-terminals are expressions 
that must be resolved into terminals. 
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function. This ensures that simple crossover and mutation (respectively swap­
ping sub-trees and replacing an arbitrary subtree by a random one) shall produce 
admissible offsprings. What is gained in procedural overhead is lost in expres­
siveness: neither syntactic nor semantic restrictions are accounted for, and prior 
knowledge can dictate nothing but the node set. This implies several limitations: 

- The size of the search space is huge, even for problems of moderate difficulty 
[Whi95]:  it is typically exponential with respect to the number of terminals 
and nodes and to the maximum depth. 

- The general shape of the trees is arbitrary. 
- No consideration is given to the types (integers, reals, complexes, ... ). 
- Variables are assumed to be dimensionless. 

Consequently, the use of canonical GP with typed or dimensioned variables 
implies the useless generation of a vast majority of irrelevant trees [CY97]. Sev­
eral authors have addressed this problem using various kinds of bias. A first 
kind is provided by the expert through domain knowledge. The importance of 
taking this knowledge into account is now generally admitted [Jan93]. In an MD 
context, prior knowledge might concern the shape of the solution2. A significant 
improvement in the success rate of a GP application can be obtained by biasing 
the shape of the parse trees toward some shapes that are a priori judged inter­
esting. This can be enforced by syntactic constraints; their beneficial effect have 
been illustrated by Whigham [Whi95] for the 6-multiplexer problem. 

The use of syntactic constraints with genetic programming have been sug­
gested as a potential form of bias by Koza [Koz92] in 1992. More formally, 
Gruau [Gru96] has shown that syntactic constraints can be used for reducing 
the size of the search space by allowing only type-consistent parse trees. How­
ever, a major limitation of Gruau's approach is that no limitation is put on the 
depth of the trees. This usually results in a severe growth in tree size. 

A second kind of bias consists of constraining the types of the variables 
manipulated by the tree expression. These constraints might be related to the 
adequacy of the variables and operators (e.g. don't take the square root of a neg­
ative value), or to the physical dimensionality of the variables. A first step toward 
dimensionally aware GP was proposed by Keijzer and Babovic [KB99]. The di­
mensionality of each expression is encoded by a label which consists of a vector 
of the exponents of the basic units. For example, a variable expressed in Newtons 
(kg x m/ s2) is labeled [1, 1, -2]. The requirements on the label of a subtree is 
defined from its parent and sibling nodes. This implies that the initialization 
procedure may have to construct a subtree with any label (compound unit). A 
DimTransform function is defined and produces a terminal of the required units. 
Since no terminal exists for each possible unit, DimTransform might introduce 
non-physically meaningful constructs, precluding the physical relevance of the 
final tree. Therefore, an auxiliary fitness measure is introduced in order to favor 
trees with few calls to DimTransform. 

2 For instance, in the example presented below, the force recorded during an experi­
ment with the parameters x has the form :F(x, t) = fi (x) x eh(x)t 
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Type constraints are closely related to the strongly typed GP (STGP) pro­
posed by Montana (Mon95] and extended by Haynes et al. (HSW96]. In STGP, 
a type label is associated to every terminal, argument, and return value. The 
initial population is created by restricting the random choices to terminals or 
functions having the appropriate type label. Crossover operates by swapping a 
subtree with another subtree of the same type, and mutation replaces a subtree 
with a random subtree of the same type. STGP does not address, however, the 
problem of the dimensional consistency of the expressions. 

Formal grammars have been implemented in a GP system by Horner [Hor96], 
with crossover and mutation using procedures that are similar to those of the 
STGP. However, Homer's system suffered limitations from the difficulty of ini­
tializing valid parse trees, as was pointed out by Ryan [RC098]. 

4 Dimensionalization through formal grammars 

The new concepts presented in this paper are twofold. The first part consists 
of using grammar rules for incorporating dimensionality constraints into a GP 
framework. Second, the limitations of Grammar-Guided GP are broken down by 
a new initialization procedure based on a dynamic pruning of the grammar, in 
order to generate only feasible trees of prescribed derivation depth. 

This approach is illustrated by a problem of mechanical behavior law identi­
fication. The elementary units involved are mass, length and time. The charac­
terization of any compound unit as an n-tuple giving its exponent with respect 
to the elementary units is borrowed from [KB99]. The allowed compound units 
are specified by the user. The present study is restricted to integer powers of 
the basic units in the range { -2 . . .  2}. This excludes operators that returns 
fractional units (e.g., the square root). The domain of allowed units therefore 
contains 53 = 125 possible combinations. A non-terminal symbol is defined for 
each allowed compound units, together with the corresponding derivation rules 
to express all the admissible ways of resolving this symbol. Such a large number 
of combinations makes necessary the use of an automatic grammar generator. It 
might be objected that the size of this grammar makes it unpractical for real­
world applications. Indeed, its memory complexity is exponential with respect to 
the number of elementary units, but no extra housekeeping is devoted to the GP 
kernel for units management. Therefore, the computational cost of this approach 
is no larger than other grammar-guided GP systems, and the use of a standard 
GP engine is allowed with no internal modifications. For instance, the results 
presented in this paper use Homer's GP kernel as a basic engine [Hor96]. 

The grammar generator builds up each production rule with all the dimen­
sionally coherent derivations. For example, a non-terminal with units [i, j, k] can 
be replaced by the multiplication of two non-terminals with units [a, b, c] and 
[d, e, f] if and only if (a, b, c] + [d, e, f] = [i,j, k]. A similar rule applies to di­
vision, and addition/subtraction require both arguments to be of units (i, j, k]. 
Experts have to provide the derivation rule associated to the start symbol S, 
thereby encoding its expected units, and possibly the shape of the sought solu-
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tion. The set of available variables and their units should also be provided. The 
procedure is described as follows: 

Begin Grammar Generation 
For each combination of units [i, j, k] do 

Create the production rule <NTijk> : = exprijk 
with exprijk = + <NTijk><NTijk> I - <NTijk><NTijk>
exprijk = exprijk I <NTijk> x exp <NTOOO> 

For each variable/constant terminal Tc with units [i, j, kl 
exprijk = exprijk I Tc 

For each pair of combinations of units [a, b, cl , [d, e, fl do 
If [a, b, cl + [d, e, fl = [i, j, kl

exprijk = exprijk I x <NTabc><NTdef> 

If [a, b, cl - [d, e, fl= [i,j, k] 
exprijk = expr;jk I -;- <NTabc><NTdef> 

End for each pair [a, b, cl , [d, e, fl
End for each [i, j, kl 

End procedure 

5 Initialization of Bounded Depth Trees 

The initialization procedure has to build up trees based on the provided gram­
mar. A major difficulty arises with the dimensioned grammar since most deriva­
tion rules can not be resolved directly into a terminal. The fraction of terminal 
derivations can be so small that there is almost no chance for a random process 
to select a terminal symbol. This implies, as noted by Ryan [RC098], that the 
trees tend to be very deep. On the other hand, if the user specifies a maximum 
tree depth, the initialization proceeds by massively rejecting oversized trees. 
The problem is similar to what occurs in constrained optimization whenever the 
feasible region is very small. 

Some mechanisms for controlling the derivation depth must therefore be in­
corporated in the initialization procedure. The proposed approach is intended to 
bound the initialization operator to the domain of dimensionally-feasible trees of 
depth equal or inferior to a prescribed value Dmax. During grammar generation, 
to each non-terminal symbol <NT> is associated an integer d( <NT>), giving the 
depth of the smallest tree needed to rewrite <NT> into terminal symbols. The 
depth associated to each terminal symbol (operators, variables and constants) is 
set to 1. The depth of each <NT>, initially set to infinity, is recursively computed 
according to the following relations: 

d( <OP><NTa><NTb>) = 1 + max ( d( <NTa>), d( <NTb>))

d(<NTi>) =min {d(deriv1)} for <NTi> = deriv1lderiv2I · . .  jderivn; 
J 

(1) 
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During the tree-generation phase, depth labels are employed in order to en­
force the bound on tree size. Given a non-terminal node at a depth D in a tree, 
and assuming a maximum tree depth of Dmax, the remaining allowed depth 
Dmax - D is computed. The chosen derivation is randomly drawn among the 
subset of the derivations for which d( <NT>) � Dmax - D. This way, it is impos­
sible for the algorithm to engage into a path that has no fully terminal solution 
in less than Dmax- D steps, and by the way, all the generated trees are feasible. 

6 Numerical Experiments 

The test-case presented herein is a simplified real-world application where an al­
gebraic law is expected to be found for modeling experimental data correspond­
ing to the constitutive law of a material during an indentation test. Figure 1 
presents a schematic view of the experimental setup. A hard indenter of a pre­
scribed shape (usually conical or tetrahedral) is pressed against the surface of 
the material to be tested out. The experimenter records the reaction force F 
along time t and displacement u. 

For simple constitutive laws, the analytical relations between force, displace­
ment, and materials properties are well known [Joh87]. For complex constitutive 
laws, finite elements models allow one to simulate the material reaction force. 
However, this simulation is rather expensive (3 hours on an HP350 workstation) . 
For ill-known materials, only experimental data are available. This pinpoints the 
need for a simple analytical model in the two latter cases. 

Material sample 

Fig. 1. Experimental setup of the 
indentation tests 

1400 
1200 
1000 

� BOO . 
_§ 600 

400 
200 

6 time(s) 

ExarJl>le1 �;) Exa!TJlle 2 ·--....... :1-
,/'i 

10 

Fig. 2. Typical force vs time rela­
tions of numerical simulation 

Examples have been generated according to random values of the material 
properties, and the material behavior has been computed with the finite element 
model. The examples are, by the way, noisy, due to the limitations of the numer­
ical method: roundoff errors and modeling approximations. Typical results of 
simulated force-time relation are presented on Figure 2. From prior knowledge, 
this relation is expected, during the loading phase, to be of the form: 

(2) 
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where A and Pare unknown functions of the materials properties. The avail­
able physical quantities and their associated units are presented on Table 1. Due 
to the noisy nature of the examples, it is not expected that GP, nor any other 
machine discovery algorithm, will find out a solution that exactly fits the data. 

Table 1. Physical units Table 2. GP parameters 

Quantity mass length time Parameter name Value 
E (Young's modulus) +1 -1 -2 Population size 4000 
K (viscous modulus) +1 -1 -1 Max. number of generations 1000 
n (plasticity factor) 0 0 0 Probability of Crossover 0.8 
Sy (yield strength) +1 -1 -2 Probability of Tree Mutation 0.2 
u (displacement) 0 +1 0 Probability of Point Mutation 0.8 
t (time) 0 0 +1 Number of training examples 20 
F (Indentation Force) +1 +1 -2 Number of independent runs 20 

Machine Discovery experiments have been conducted with the GP parame­
ters given on Table 2. The crossover consists of swapping two arbitrary subtrees 
from two parents, with a choice restricted to subtrees having a root node of the 
same type. Tree mutation consists of crossing over one individual with a ran­
dom admissible tree. The point mutation replaces one terminal node by another 
terminal of the same type. This operator is analogous to a local improvement 
operator, and has been observed, for the present problem, to be less destructive 
than the tree mutation. Six grammars were devised and are described as follows: 

1. universal-non-dim: The most general case, with no a priori knowledge or 
dimensional constraints. This grammar is equivalent to canonical GP: 

S :=<NT>; 
<NT> : = <DP> <TER> <TER> I <OP> <NT> <NT> 

<OP> <TER> <NT> I <OP> <NT> <TER> 
<DP> : = + I - I * I ..;-. I exp ; 

<TER> : = E I K I N I Sy I u I t I 1 I 2 I 
<=N) 

3 I 4; <=T) 

2. [AePt]-non-dim: A partial constraint on the shape of the tree is introduced
by this second grammar:

S : =exp <NT> <NT1> 
<NT1> := * <NT> t ; 

<NT> : = <DP> <TER> <TER> I <OP> <NT> <NT> 
<OP> <TER> <NT> I <OP> <NT> <TER> 

<DP> : = + I - I * I ..;-. ; 
<TER> : = EI K I N I Sy I u I t I 1.0 I 2.0 I 3.0 I 4.0 ; 

This grammar enforces two constraints on the search space: the highest­
level (root) operator is necessarily an exp operator, and this exp operator is 
multiplied by an arbitrary expression (first argument) but exponentiates an 
expression multiplied by the time t. 
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3. [Au2ePt]-non-dim: The complete shape constraint [Au2 exp(Pt)] is now
enforced in a way similar to the previous case.

4. universal-dim: Dimensional constraints but no shape constraint. The so­
lution is expressed in Newtons, so the start symbol is defined a priori as:

S : = <NT+l+l-2>; 

5. [AePt]-dim: Dimensional constraints plus the partial shape constraint of
the second grammar.

6. [Au2ePt]-dim: Dimensional constraints plus the complete shape constraint
as in the third grammar.

Figure 3 presents the size of the search space computed as a function of
the allowed derivation depth, with the universal grammar (case 1), and the 
dimensionally-constrained grammar (case 4). These curves show that in both 
cases, the number of solutions grows exponentially, but the search space can be 
reduced by several order of magnitude with the use of dimensional constraints. 
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Fig. 3. Number of solutions in the search space with respect to the derivation depth, 
for non-dimensional (universal) and dimensional grammars. 

Average best fitness value over 20 independent runs, and standard deviation 
are presented on Table 3, while the evolution of the average best fitness with 
respect to the number of evaluations is plotted on Fig. 4 for the non-dimensional 
grammars and on Fig. 5 for the dimensional grammars. Comparisons based on 
the number of evaluations are fair benchmarks since no significant variation in 
total computation time have been noticed between the grammars. 

Figures 4 and 5 ask for two comments. First of all, giving the expected shape 
of the equation does not necessarily improve the results3. It partially does so in 
the case of non-dimensional grammars. But this might be due to the fact that 
the shape constraint prevents the search from being trapped in the same local 

3 Note that the problem at hand is based on real data where the solution is actually 
unknown. 
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optimum the universal grammar always falls in, which causes the null standard 
deviation observed for this case. This local optimum corresponds to the function 
F = t2e2eu. For the dimensional grammars, shape constraints are detrimental
to the quality of the results in both cases. Second, the dimensional constraints 
appear to be clearly beneficial since the results obtained with dimensional gram­
mars always supersede those obtained with untyped grammars, by an average 
of 6 standard deviations. 

Table 3. Results 

Grammar Average fitness Std. deviation 
universal-untyped 
[Aexp(Pt)]-untyped 
[Au2 exp(Pt)]-untyped 
universal-dim 
[A exp(Pt)-dim 
[Au2 exp(Pt)-dim 
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Fig. 4. Average best fitness for the three 
non-dimensional grammars 
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Fig. 5. Average best fitness for the three 
dimensional grammars 

The innovations presented in this paper are twofold. First, a novel approach for 
the management of dimensionality constraints by the means of an automatic 
grammar has been presented. Second, the point of designing an admissible and 
still sufficiently diversified initial population has been addressed through dy­
namic pruning of the grammar, depending on the maximum tree depth allowed, 
and the current position in the tree. So far, the initialization step was a major 
limitation to the use of formal grammar for constraining a GP search space. 
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The main limitation of the presented approach is its dependence over a lim­
ited range of allowed units. Using fractional units can be made possible by the 
use of rational instead of integer numbers. This would allow the use of a broader 
range of operators (square root, powers, ... ), but would be equivalent to having 
twice as many basic units. Further research will be devoted to the simultaneous 
evolution of the grammar and the GP trees, in order to evolve grammars that 
facilitate the discovery of fitter individuals. 
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