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Coherent behavior of balls in a vibrated box
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We report observations on very low density limit of one and two balls, vibrated in a box, showing a
coherent behavior along a direction parallel to the vibration. This ball behavior causes a significant
reduction of the phase space dimension of this billiard-like system. We believe this is because the
lowest dissipation process along a non-ergodic orbit eliminates ball rotation and freezes transverse
velocity fluctuations. ¿From a two-ball experiment performed under low-gravity conditions, we
introduce a “laser-like” ball system as a prototype of a new dynamical model for very low density
granular matter at nonequilibrium steady state.

PACS numbers: 05.45.-a, 45.50.-j, 45.70.-n, 81.70.Bt, 81.70.Ha, 83.10.Pp

The present letter starts with the experimental study
of the dynamical behavior of a single ball vibrated in
a three-dimensional (3D) box. It can be viewed as a
3D experimental version of accelerator models of particle
physics impacting oscillating heavy objects, and vibrat-
ing billiard type systems, where the physics of ergodicity,
i.e., filling of the available phase space by stochastic mo-
tion, can be examined from the bouncing ball models
[1, 2, 3]. Figs. 1a and 1b give schematic presentation
of the two most known accelerator models of one bounc-
ing ball, the so-called Pustylnikov and Ulam versions of
the Fermi acceleration mechanism (see [1] and references
therein for details). In the Pustylnikov version, the ball
moves freely above the vibrating wall, under a constant
acceleration (here the g0 Earth’s gravity acceleration),
while in the Ulam version, the particle moves with con-
stant velocity between impacts with two walls - one vi-
brating and one fixed.

It can be studied also as the ultimate limit for a forced
dilute granular gas [4], when grain-grain collisions are
negligible. This can occur, for example, in a cubic cell
when the small amount N of grains only covers a very
small fraction of one vibrating wall surface. Therefore,
the grain mean free path lg between two grain-grain colli-
sions is much larger than the cell size L, corresponding to
the so-called Knudsen-like regime [5]. Most of the grains
are in a ballistic motion between one vibrating wall and
the lid, or between two vibrated walls, following the se-
lected experimental configuration of the container. Thus,
the low density limit of a non-interacting granular matter
is reached after a progressive reduction of the dissipated
internal energy. This reduction is due to the decreasing
frequency of the inelastic grain-grain collisions.

Our basic understanding of single particle dynamics
comes from 1 g0 experiments of one bouncing ball (diam-
eter φ) on a vibrating plate, when the restitution coeffi-
cient ε associated with the ball-plate contact exhibits a
finite value 0 < ε ≤ 1 [6, 7, 8]. The analysis of the re-

Figure 1: (a) Pustylnikov version of the Fermi acceleration, in
which a ball returns to an oscillatory wall under the g0 Earth’s
gravity acceleration (see [1, 3] and references therein); (b)
Ulam version, in which a ball bounces back and forth between
an oscillating wall and a fixed wall separated by distance L
under 0 g0 (see [1, 2] and references therein); (c) schematic
illustration of the ball rotation and transverse velocity fluctu-
ations frozen in the dissipative Ulam version with restitution
coefficient ε < 1. The particle motion appears then quasi-1D
and regular, with a significant increase of its average energy
due to a non-stochastic acceleration when the wall oscillation
is a periodic function of time.

sults is mainly concentrated on the rich phase space for
the long-term behavior of this impacting system, which
makes questionable the experimental conditions to ob-
serve the evolution to chaos [6]. Thus, our initial in-
tuition suggests that the ball dynamics in a finite-sized
box remains poorly affected by a second wall, provided
that the wall-plate distance L is larger than the vibra-
tion amplitude Ap. In fact, as demonstrated in 1 g0 and
random-low (< 1) g0 experiments below, the assumption
where stochastic trajectories of the ball occur as the most
probable dissipative situations for the long-term behavior
of the system, is not realistic within a large plate velocity

range. On the contrary, the ball tends to behave quasi-
instantaneously as a regular particle in a 1D vibrating
cavity with the translation motion parallel to the vibra-
tion direction. In the same time, a significantly audible
sound is generated by the characteristic resonant “im-
pact noise”. The ball resonant behavior demonstrates a
drastic reduction of the phase space dimension because
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the second wall increases the dissipation, eliminating the
rotation of the ball and freezing its transverse velocity-
fluctuations after a very few number of back and forth,
as schematically shown on Fig. 1c and as discussed be-
low. The gain on the mean velocity of the resonant ball is
used here to report very accurate variations of the normal
restitution coefficient as a function of the ball velocity.

Figure 2: (a) Experimental set-up of the Ulam model for
1-ball (φ = 2.0 mm diameter), used for ground-based stud-
ies (z-axis parallel to Earth’s gravity direction) and for low-
gravity studies (residual random acceleration ≤ 5 10−2 g0)
during parabolic flights of the CNES-A300-ZeroG airplane.
(b) Part of video picture showing 2-ball coherent flight posi-
tions (φ = 1.2 mm ball diameter), vibrated along the z-axis at
f = ω

2π
= 14.75 Hz and Ap = 0.3241 mm, in very low-gravity

conditions (residual random acceleration ≤ 10−4 g0), during
our experiment on the ESA-funded sounding rocket Maxus 5
(see text). The sensor location appears in dashed line.

Our first experiment studies the dynamics of a sin-
gle ball in a static cylindrical cell of L = 10 mm height,
closed at the bottom by a vibrating piston (Fig. 2a).
The piston moves along the z-axis, according to z =
Apsin [ωt] (i.e. acceleration gz = −Γpsin [ωt] with
Γp = ω2Ap). gz-accelerations are monitored using a
piezoelectric tri-axial accelerometer (PCB Piezotronics,
Model M356A08) attached to the moving part of an
electromagnetic shaker. The piston, Dp = 12.7 mm in
diameter, is made from type AISI 316L stainless steel.
The static transparent cylinder, 13.0 mm inner diame-
ter, 20 mm outer diameter, and 22 mm height, is made
from PMMA. At the top of the cell, the ball impacts the
flat cylindrical cap (12.7 mm diameter, 9.0 mm thick-
ness) of a covered-sensor housing made from type 17-4
stainless steel, in contact with the flat sensing surface of
a force sensor (PCB Piezotronics, Model 200B02). The
ball resonant motion is observed by stroboscopic illumi-
nation at the shaker frequency. The signals from the z-
axis accelerometer and the force sensor are recorded with
a resolution of 0.5 µs. Amplitude, frequency, and accel-
eration ranges used here are 0.44 mm < Ap < 0.62 mm,
30 Hz . f = ω

2π
. 120 Hz, and 3 g0 < |gz| < 40 g0,

respectively.

This vibrating facility was operated both on ground
and under reduced-gravity conditions, during parabolic
flights on the French Space Agency (CNES) A300 ZeroG
airplane. One experimental run time covers a typical ∆t

duration of ≃ 20 s, (the low-gravity period of a parabolic
flight), during which the numerical data are stored.

Figure 3: 1 g0 synchronized signals of the z-axis accelerometer
and force sensor showing impact times (lower) and flight times
(upper) for back and forth resonant behavior of a single ball
at f = 121.2 Hz with Ap = 0.486 mm. For each period, t0 (n)
corresponds to the piston position z [t0 (n)] = −Ap, where the
length cavity is maximum (see text).

Fig. 3 reports typical signals for a ball resonant be-
havior in the case of one stainless steel spherical ball,
φ = 2.000 ± 0.002 mm in diameter, vibrated at f =
121.2 Hz with Ap = 0.486 mm (Γp = 28.7 g0). The
z-axis accelerometer response to each ball-piston im-
pact is superimposed on the sinusoidal variation of gz-
component. This figure gives a typical sequence of n,
n + 1 resonant impacts on the piston (subscript P )
and on the force sensor cap (subscript S). The ref-
erence time t0(n) = 3n

4f
of the nth sequence starts at

the time when the piston reaches its maximum ampli-
tude position for which the cavity length is maximum.
∆tn = t0 (n) − tP (n) is the time delay for the nth

ball-piston impact at tP (n) , where the piston position
is zimpact (n) = −Apcos [ϕn], associated to the impact
phase ϕn = −2πf∆tn. The impact times, tP (n) , tS (n),
the flight times, ∆tPS (n), ∆tSP (n), the time delay ∆tn,
the impact position zimpact (n) and phase ϕn of the pis-
ton, are then obtained by numerical data analysis over
each run time ∆t. Our measurement precision (≤ 5 µs)
of relative times appears to be much bigger than in pre-
vious bouncing ball experiments [9, 10].

The ideal resonant behavior over ∆t, gives nT,ideal =
f∆t for the ideal total impact number, while our sta-
tistical signal analysis counts the effective impact num-
ber nT,eff . Fig. 4a gives the ball resonance rate (%),
(

nT,eff

nT,ideal
× 100

)

, as a function of f , for a nearly con-

stant amplitude value Ap ≃ 0.5 mm ≃ L
20 ≃ φ

4 . The
results from 1 g0 (full diamonds) and ≤ 5 10−2 g0 (open
diamonds) experiments are reported. Fig. 4a shows that
the ball resonant behavior is all the more frequent as f in-
creases and gravity level decreases. This result enhances
the relative influence of the gravity effects and/or of the
finite size effects at low frequency.

In addition, the ϕn statistical analysis provides the
〈|zimpact|〉

Ap
= cos [〈ϕ〉] behavior as a function of f which is

reported on Fig. 4b (〈x〉 corresponds to x mean value).
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The resonance corresponds to the nearly-maximal length
of the cavity for which the gain on the ball energy is then
a (maximal) extremum, while the wall velocity at the
impact tends to a (minimal) extremum (close to zero).
These results can be understood in terms of the small but
finite impact dissipation of energy (∼ 1−ε2), with ε < 1.
The periodic condition at 0 g0 gives vb,up = 1+εP

1−εP εS
vp

and vb,down = − (1+εP )εS

1−εP εS
vp, where vp, vb,up, and vb,down,

are the respective velocities for the piston, for the ball
moving up from the piston to the sensor cap, and down
from the sensor cap to the piston. εP and εS are the
respective restitution coefficients for the ball-piston and
ball-sensor cap contacts. The regular behavior at fixed
values of L − φ, εP , εS , f and Ap, satisfies

α + cos [〈ϕ〉] = βsin [〈ϕ〉] (1)

with α = L−φ
Ap

and β = 2π 1+εP

1+εS

εS

1−εP εS
. This non-

equilibrium steady state expresses the balance between
forced and dissipated energies, which occurs for one sin-
gle mean reduced length of the cell (given by the left
hand member of Eq. (1)). That corresponds to a single
mean momentum exchange in the simplified Ulam ver-
sion [1, 2, 3] for ε < 1, in which the moving wall imparts
momentum to the ball but occupies a fixed position.

Figure 4: (a) Ball resonance rate (%); (b) Relative wall posi-
tion at the ball impact time. Full diamonds) 1-ball 1 g0 exper-
iment; Open diamonds) 1-ball airplane experiment; Open cir-
cles) 2-ball Maxus-5 experiment. In (b), black + and grey ×
correspond to the cos [〈ϕ〉], with the 〈ϕ〉-determination from
Eq. (1), for 〈εS〉 = 〈εP 〉 = ε mean values shown in Fig. 5,
at each selected {f ; Ap} run (note the agreement with direct

analysis of
〈|zimpact|〉

Ap
). |zimpact| corresponds to the position

of the flat top of the piston (1-ball experiment), or the flat
cap of the force sensor (2-ball Maxus-5 experiment).

Therefore, our accurate velocity measurements associ-
ated with the regular behavior of the ball provide direct
access to εS = −

vb,down

vb,up
and εP =

vb,up−vp

vp−vb,down
. Fig. 5

shows the statistical behavior of εS (black +), and εP

(grey ×), as a function of vi = vb,down, and vi = vb,up,
respectively (accounting for gravity effects). We observe
that εP

∼= εS , leading to simplified forms of above rela-
tions. That permits to check the validity of the Eq.(1),
as shown by cos [〈ϕ〉] values (black + and grey ×), re-
ported in Fig. 4b, which have been obtained using

〈εS〉 = 〈εP 〉 = ε mean values, (black + and grey ×,
within white square), shown in Fig. 5, for each selected
{f, Ap} pair. We also note that our ε measurements are
in sharp contrast with the solid curve representing a re-
cent fit of former results [11] (see also Ref.[12]). It high-
lights that only the absence of significative ball rotation
can explain such ε high values.

Figure 5: εS (black +), and εP (grey ×), measurements for
ball-sensor cap and ball-piston contacts (see text), according
to ball incident velocity (1 g0 experiments). Symbols in white
squares correspond to associated mean values which are used
for〈ϕ〉-determination from Eq. (1), for each selected {f ; Ap}
run (see Fig. 4b). The maximum velocity range for our vi-
brating piston is indicated on the vi-axis below the bracket.
The full curve corresponds to a fit [11] of previous measure-
ments. The decrease in restitution at large velocity is inter-
preted as being due to plasticity effects in the solid [12].

A second experiment was performed on the Maxus-
5 sounding rocket funded by the European Space
Agency (ESA), where residual random acceleration was
≤ 10−4 g0. For the first time, this experiment stud-
ies the dynamics of two hard-brass spherical balls, φ =
1.190± 0.002 mm in diameter, in a vibrating parallelepi-
pedic box of 5 mm height and 10×10 mm2 internal cross
section, where the sensitive cap of the force sensor is
used as an opposite cell-wall (see Fig. 2b for details).
The experimental conditions maintain the ratio relation
Ap

L
≃ 1

4
φ
L

. Fig. 6a is similar to Fig. 3, except that
the sensor position and the ball-sensor impact force are
the only recorded signals. Fig. 6a evidences nearly ideal
concomitancy of the 2-ball resonant behaviors during a
time period of 500 ms selected among the 65 s run at
f = 14.75 Hz, with Ap = 0.3241 mm (Γp = 0.3 g0).
The ∆tn = t0 (n) − 1

2 [tS,1 (n) + tS,2 (n)] values for the
nth 2-ball impacts occurring at tS,1 and tS,2, respec-
tively, are reported on Fig. 6b, for a total number of
recorded impacts (2nT,eff = 1906) very close to ideal
value (2nT,ideal = 1918). This figure illustrates the quasi-
perfect coherent behaviors of the two balls during this
long run time. This coherent behavior is called hereafter
the “laser-like” behavior for granular matter at very low
density. Fig. 4a (open circles) shows that this “laser-
like” behavior approaches the 100% ball resonance rate
in weightlessness for a significative range of low frequen-
cies, confirming then the gravity-sensitivity of the ball
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acceleration mechanism. Fig. 4b (open circles) extends
the behavior of the (sensor) wall mean position at impact
times to the low frequency range.

Figure 6: (a) low-gravity typical resonant behavior of two
balls (ESA Sounding rocket Maxus-5 experiment) for a period
of 500 ms selected among a vibration run at f = 14.75 Hz
with Ap = 0.3241 mm amplitude; upper) z-position of the
vibrated box ; lower) force sensor response showing regular
two ball impacts; (b) Variation of ∆tn, (mod f−1) along the
65 s of the run, corresponding to 2nT,eff = 1906 impacts of
the 2 balls during their “laser-like” behavior (see text). Time
reference is when position is maximum (see Fig. 2b and text).
The mean value is 〈△t〉 = (nT,eff )−1 ∑

n
∆tn,.

We can approach the inelastic ball resonant behavior
from a billiard-like viewpoint where closed orbits are not
ergodic, i.e. the so-called eigen modes of the billiard
cavity. The vibration excites the ball motion on these
modes. Those that dissipate too much cannot be sus-
tained, while those that dissipate too little do not exist or
split precisely on eigen modes. Therefore, in our present
3D-configuration of the box, only a few eigen modes can
be excited by vibrations. That explains the few possible
orbits (such as the observed one, parallel to the vibration
direction) which act as attractive basins with lowest dis-
sipation. Thanks to this phenomenon, the real shape of
the cavity should play a role in the ergodic/non-ergodic
problem. However the ball orbit parallel to the vibra-
tion direction remains stable, for example when we tilt
(up to 10◦) the sensor cap surface compared to the per-
pendicular direction of the vibration (which simulates a
distorsion of the cavity shape), or when we add a sec-
ond ball of lower diameter (which simulates an obstacle
within the cavity). That confirms the loss of ergodicity
in this 3D experimental problem and the reduction of the
non-interacting-ball phase space by dissipation. Each 1-
ball phase space typically goes from a 11D space (3D for
positions, 2D for rotations, 5D for associated velocities,
and 1D for time) to a 1D space (for time).

Considering the fact that this observed resonant be-
havior cannot correspond to the case of the so-called
Knudsen-like regime (lg ≫ L), in which particles explore
space ergodically but do not increase their energy on the
average, we conclude that our understanding of the very
low density limit of a non-interacting granular matter
should be revisited, in the absence of gravity, in order
to investigate : i) the “low-energy” regime, correspond-

ing to small aspect ratio
vpiston

vball
≈

Ap

L−φ
≪ 1, which can

permit one to check the relevance of a threshold value
(

vpiston

vball

)

th
. 1−ε needed to observe some more irregular

motion; ii) the “high-energy” regime, corresponding to

larger values of the surface ratio N
(

φ
Dp

)2

, for which we

can expect that above a possible threshold number Nmin

of balls (which remains to be determined), the presently
observed “laser-like” behavior could be replaced by the
classical dynamical behavior where more frequent inelas-
tic interparticle collisions increase dissipation and restore
the ergodic motion of a dilute granular “gas”.
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