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Abstract— This papers deals with active control of combus-
tion instabilities through measurement and feedback of pressure
oscillations. The measurement is used to construct a multiplica-
tive feedback control. The aim of such a control is to quench the
oscillations associated with the instability associated with lean
pre-mixed combustion. This quenching is analyzed using the
Krylov-Bogoliubov approach applied to a tractable gray-box
model of the underlying process and fitted using experimental
data. A linear and a nonlinear feedback law are considered and
conditions for quenching the oscillations established. Both give
successful results verified by the simulation tests.

Index Terms— active control, combustion instability, nonlin-
ear oscillating systems, Krylov-Bogoliubov method.

I. I NTRODUCTION

Thermo-acoustic combustion instabilities are dynamic
phenomena that manifest themselves through strong self-
sustained oscillations. They cause serious degradation of,
particularly, pollution performance in combustion turboma-
chinery systems such as gas turbine powerplants and jet
engines. These instabilities occur in lean premixed com-
bustion and effectively dispel the low-pollution properties
of such operating regimes. Physically the instabilities are
highly nonlinear phenomena, that can be explained by a
positive feedback coupling between the thermal heat-release
process and the acoustics of the combustion chamber. The
positive feedback coupling leads the creation of nonlinear
limit cycles, which can be sometimes characterized by co-
existence of oscillations at several distinct non-harmonic
frequencies.

From a practical perspective, the modulation of a fuel
flow fraction into the combustor is possible as a control
input. This modulation has been widely tested in experiments
as a candidate for active control for suppressing the com-
bustion instability [1], [2]. In the literature, several active
control method have been proposed; an excellent overview
of existing methods is given in [3]. Systematic design and
implementation of active control requires a realistic low order
model which exhibits the dominant dynamical effects. The
parsimonious modelling of such nonlinear systems is an
extremely difficult task, given that high-order, physics-based
computational fluid dynamical codes can be unreliable in
demonstrating the phenomenon well. One particular feature
which the model should capture is the simultaneous coexis-
tence of two non-harmonic oscillating modes, [4], [5].

In the literature, three approaches to combustion instability
modeling are considered. The first iswhite-box modelling,

which derives from physical theory directly and relies on
partial differential equations describing the reacting-flow
fluid dynamics with boundary conditions given by the com-
bustor geometry. The complexity of this task is evident in
the difficulties evident in computational verification of the
observed phenoena. To develop a low-order model of use
for control, Galerkin projection, averaging and truncation are
used in [6], yielding a low order model with two oscillating
modes. This model was used in [7] for controller design
of a simple case study (The frequencies of both modes
are 1 and 2.). The second approach,black-box modelling
uses data directly with system identification methods [8],
[9] often with model structures which have no physical
interpretation. The third approach,grey-box modelling uses
physical insight to determine the model structure and the
input/output data to fit the parametrized model. This ap-
proach is more attractive inasmuch as it represents the middle
ground between white-box and black-box approaches. In
[10], Peracchio and Proscia proposed a low order model
resulting from several physical investigations. The model
was characterized by a linear resonator in feedback with a
delay and a nonlinear static function. By using the grey-
box approach and in order to explain the coexistence of
two modes in the data, Dunstan and Bitmead [11] have
extended the model through the inclusion of and additional
third-harmonic resonance. In [12], the relationship between
the occurrence of oscillations in combustion instabilities and
the van der Pol equation has been discussed, and used to
derive a model. In order to make modelling more realistic
in [13], the model was generalized by incorporating delay
and filtering. The model was successfully analyzed using
the Krylov-Bogoliubov (K-B) method (detailed in [14], [15],
[16], [17], [18]). This analysis showed that the model has the
ability to capture a number of important distinct phenomena
observed in practice, including the coexistence of two modes
oscillating called the simultaneous self-sustained oscillations
phenomenon, which can occur with a frequency ratios dif-
ferent from those demonstrated in models earlier; 1, 3 and1

3.
The best known control method in active control of

periodic oscillations is phase-shift control. This method feeds
back the fundamental frequency component of the pressure
measurement with an appropriate phase shift in order to
reduce or to quench the oscillations. In the design of this
controller, generally the combustion instability is considered
as a single resonator. The controller is implemented for the



resonant frequency with a bandpass filter which eliminates
all other (and therefore regarded as uncontrolled) frequen-
cies. The control method gives successful results in many
applications [2]. However, at some operating conditions this
controller can induce excitations at other non-controlled
frequencies. Their are still many issues to be resolved with
such a control design.

The present work is a continuation of [13]. The possi-
bility of quenching oscillations by multiplicative feedback
feedback control will be investigated. The multiple-resonator
model model presented in [13] will be considered as the
base for the study of oscillation quenching in combustion
instabilities. However in order to illustrate the methodology a
single resonator model will be considered first. The previous
analysis [12], [13] indicates clearly that the K-B method is
a powerful analysis method for the combustion instabilities.
For this reason, the method will be considered in this paper
as the main tool for the description of the system and its
behavior.

II. F IRST K-B APPROXIMATION FOR AUTONOMOUS

MULTI -RESONATOR SYSTEMS

Consider a system withn resonators described by differ-
ential equations of the form,

d2x j

dt2 +ω2
j x j = ε f j

(

x,
dx
dt

)

, ( j = 1,2, . . . ,n), (1)

wherex = {x1, . . . ,xn}, dx
dt = { dx1

dt , . . . , dxn
dt } andε is a small

parameter. For thejth resonator, the first K-B approximation
(for more details see Chapter 2 of [17]) proposes the solution

x j = a j cos(ψ j), (2)

where ψ j = ωjt + θ j, a j and θ j are slowly time-varying
functions obeying the equations







da j
dt = − ε

2ωj
H j j(a1, . . . ,an,θ1, . . . ,θn),

dθ j
dt = − ε

2ωja j
G j j(a1, . . . ,an,θ1, . . . ,θn),

(3)

with H j j and G j j obtained from the functionf j
(

x, dx
dt

)

by
substituting

{

xk = ak cos(ωkt +θk),
dxk
dt = −akωk sin(ωkt +θk),

(k = 1,2, . . . ,n) (4)

and by setting it in the form

f j (a1cos(ω1t +θ1), . . . ,an cos(ωnt +θn),
−a1ω1sin(ω1t +θ1), . . . ,−anωn sin(ωnt +θn))

= H j j sin(ωjt +θ j)+G j j cos(ωjt +θ j)

+
r

∑
ωj 6≈ωℓ

(

Hℓ j sin(ωℓt +θℓ)+Gℓ j cos(ωℓt +θℓ)
)

, (5)

whereωℓ andθℓ are integer linear combinations ofω1, . . . ,ωn

andθ1, . . . ,θn, respectively, andr is the number of possible
integer linear combinations ofω1, . . . ,ωn different fromωj.
For x j the coefficients of the fundamental term in (5) are
used and the all other terms are eliminated.
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Fig. 1. Closed-loop control for model based on a generalized Van der Pol
equation
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Fig. 2. Simulation test of quenching oscillations on a model described by a
generalized van der Pol equation, whereK = 1, ϕv0 = 0.45, ϕv1 = ϕv1 = 0.1
andω = 1.

III. S IMPLE CASE STUDY: MODEL BASED ON A

GENERALIZED VAN DER POL EQUATION

In this section a reduced-order model with one single
resonator and without time delay (corresponding to a gener-
alized van der Pol equation) will be considered to illustrate
the potential effectiveness of the closed-loop multiplicative
control. This output-feedback control is introduced into the
model by multiplying a function of the outputx to capture the
effect of fuel flow modulation on the heat release rate. The
control strategy is presented in the block diagram shown in
Figure 1 and it is characterized by the following differential
equation.

ẍ+ω2x =
d
dt

{

(1+Φ(x))
(

ϕv0 +ϕv1x−
ϕv3

3
x3

)}

, (6)

where;ω is the natural frequency,ϕv1 andϕv3 are arbitrary
positive constants,ϕv0 is an arbitrary constant different from
zero and the feedback lawΦ(x) is a polynomial function
of x.

It is well known that for the uncontrolled generalized
van der Pol equation [14], [15], the solutionx is a self-
sustained oscillation with steady frequency close toω and
with steady amplitude close to 2

√

ϕv1
ϕv3

. In order to quench
this oscillation, the control law must force the system (6) to
be asymptotically stable at the origin. Hence, one considers
the following lemma.

Lemma 1: For the following control low

Φ(x) = −Kx−
1

ϕv0

(

ϕv1x−
ϕv3

3
x3

)

, (7)



whereK is a constant of the same sign ofϕv0, the system
(6) is locally asymptotically stable at the origin.
Proof: Introducing the expression (7) into the differential
equation (6), one gets

ẍ+ω2x = −Kϕv0ẋ−2ϕv1

(

K + ϕv1
ϕv0

)

xẋ

+4ϕv3
3

(

K + 2ϕv1
ϕv0

)

x3ẋ−2
ϕ 2

v3
3ϕv0

x5ẋ

Expressing this equation in state equation form withz1 = x
and z2 = ẋ, one obtains















ż1 = z2

ż2 = −ω2z1−Kϕv0z2−2ϕv1

(

K + ϕv1
ϕv0

)

z1z2

+4ϕv3
3

(

K + 2ϕv1
ϕv0

)

z3
1z2−2

ϕ2
v3

3ϕv0
z5
1z2

.

Computation of the linearized system matrix around the
origin gives

Az =

[

0 1
−ω2 −Kϕv0

]

, (8)

since by assumptionK and ϕv0 have the same sign, the
eigenvalues of matrixAz will have negative real part. By
using Lyapunov’s indirect method, one can deduce that the
system is locally asymptotically stable at the origin.

The local asymptotical stability at the origin implies that
quenching of the oscillation is possible and can occur in a
local domain around the origin which can be estimated [19].
This quenching is illustrated by the simulation test presented
in Figure 2.

IV. COMBUSTION INSTABILITY MODEL

The model from [13] is chosen as a basis for the de-
velopment of effective control methods for quenching both
oscillation modes present in combustion instabilities. How-
ever, the multiplicative effect of the control action must be
included in the representation to capture the modulation of a
fraction of the fuel flowu into the combustion chamber and
its consequent effect on the heat release rate [11], [5]. This
leads to the following differential equations.
{

ẍ1 +ω2
1x1 = d

dt LPF
{

(1+u)
(

ϕv0 +ϕv1 ṗτ −
ϕv3
3 ṗ3

τ
)}

,

ẍ2 +ω2
2x2 = d

dt LPF
{

(1+u)
(

ϕv0 +ϕv1 ṗτ −
ϕv3
3 ṗ3

τ
)}

.
(9)

where;ϕv0 is an arbitrary constant,ϕv1 andϕv3 are arbitrary
negative constants,τ is a transport time delay from nozzle
to flame surface,LPF is the transfer function operator of
a low pass filter,p = x1 + x2 is the downstream pressure
perturbation at the burning plane, ˙pτ is the output of the
delay-plus-differentiator block, andq = ϕv0 +ϕv1 ṗτ −

ϕv3
3 ṗ3

τ
is the flame heat release rate. Figure 3 shows a simulation
test with an appropriate choice of parameter values for coex-
istence of two non-harmonic oscillations. For the following
simulations, these parameter values will be used.

From an analytical point of view, the presence of the delay
τ and the filterLFP leads to some difficulties, which will
be the subject of two assumptions proposed (and discussed
more fully) in [13].
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Fig. 3. Coexistence of two modes in the combustion instability model
of [13], with ω1 = 2π× 210, ω2 = 2π× 740, ϕv0 = 0.45, ϕv1 = −0.135,
ϕv3 = −5.4×10−3, LPF = 2π×500

s+2π×500 and τ = 4.8×10−3

Assumption 1: For small values of the time delayτ , the
oscillatory components of the output of delay block can
approximated by

ẋ1(t − τ ) ≈ ω1a1cos(ω1t +θ1 + π
2 −ω1τ )

ẋ2(t − τ ) ≈ ω2a2cos(ω2t +θ2 + π
2 −ω2τ ).

Assumption 2: The output of the linear low pass filter
for sinusoidal inputs with slowly time-varying amplitudes
and phases can be approximated by

LPF (acos(ωt +θ)) ≈ G(ω)acos(ωt +θ −φ(ω)) (10)

where a, ω and θ are the amplitude, the frequency and
the phase of input, respectively,G(ω) and φ(ω) are the
gain and the phase at frequencyω introduced by the filter,
respectively.

V. CLOSED-LOOP CONTROL OF COMBUSTION

INSTABILITIES

In this section, the possibility of dealing with the instabil-
ities by linear and nonlinear feedback law is analyzed. The
basic idea is to use the pressure measurement p in feedback
for quenching both oscillations simultaneously. Two types
of control law are considered, one linear the other nonlinear,
for the calculation of the input to the multiplicative control
actuator.

To study the effects of each control we use the K-B
method. The following assumption is proposed concerning
the validity of the K-B approximation.

Assumption 3: Let a1 and a2 be the amplitudes of the
oscillations x1 and x2 obtained from K-B approximation.
If a1 and a2 are asymptotically locally (globally) stable at
the origin, then the original system is asymptotically locally
stable at the origin.
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Fig. 4. Block diagram of the linear feedback controller

A. Linear feedback: Compensation of negative damping

For a linear feedback the control law will be of the form
u =−K1x1−K2x2, whereK1 andK2 are gains. Unfortunately,
the pressure measurementp = x1 + x2 and to obtainx1 and
x2, band pass filters should be considered. In what follows
we will assume thatx1 and x2 are available in order to
explore the possibility of stabilizing the system with a linear
feedback. This control strategy corresponds to the block
diagram shown in Figure 4. The aim of such a control is
to compensate for the negative damping introduced by the
physical loop and to introduce another positive damping,
which causes the system (9) to become asymptotically locally
stable at the origin. The gainsK1 and K2 must be tuned
to accommodate the phase delay and to ensure closed-loop
stability.

Lemma 2: Consider the system (9) and linear control law
above subject to the previous assumptions. Then provided

{

K1ϕv0cos(φ(ω1)) > ω1ϕv1sin(φ(ω1)+ω1τ ),
K2ϕv0cos(φ(ω2)) > ω2ϕv1sin(φ(ω2)+ω2τ ),

(11)

the system is locally asymptotically stable at the origin.
Proof: We make the following identifications in the K-B
approximation representation (1) withε = 1.

f1 = f2 = f = d
dt LPF

{

(1+u)
(

ϕv0 +ϕv1 ṗτ −
ϕv3
3 ṗ3

τ
)}

. (12)

As in [13], we introduce notationsxi = ai cos(ωit + thetai)
and ẋi = −aiωi sin(ωit +θi), i = 1,2 in (12). After trigono-
metric simplifications and using Assumptions 1 and 2, one
obtains

f ≈ a1G(ω1)sin(ω1t +θ1)

{

K1ϕv0ω1 cos(φ(ω1))−ϕv1ω2
1

[

1− ϕv3
ϕv1

(

(ω1a1)2

4

+ (ω2a2)2

2

)]

sin(ω1τ +φ(ω1))

}

−a1G(ω1)cos(ω1t +θ1)

{

K1ϕv0ω1

×sin(φ(ω1))+ϕv1ω2
1

[

1− ϕv3
ϕv1

(

(ω1a1)2

4 + (ω2a2)2

2

)]

cos(ω1τ +φ(ω1))

}

+a2G(ω2)sin(ω2t +θ2)

{

K2ϕv0ω2 cos(φ(ω2))−ϕv1ω2
2

[

1− ϕv3
ϕv1

(

(ω2a2)2

4

+ (ω1a1)2

2

)]

×sin(ω2τ +φ(ω2))

}

−a2G(ω2)cos(ω2t +θ2)

{

K2ϕv0ω2

sin(φ(ω2))−ϕv1ω2
2

[

1− ϕv3
ϕv1

(

(ω2a2)2

4 + (ω1a1)2

2

)]

cos(ω2τ +φ(ω2))

}

+
r

∑
ωℓ 6≈ω1∧ω2

(Hℓ(a1,a2,θ1,θ2)sin(ωℓt +θℓ)+Gℓ(a1,a2,θ1,θ2)cos(ωℓt +θℓ)) ,

where; ωℓ is a linear combination ofω1 and ω2, θℓ is a
linear combination ofθ1 andθ2, r is the number of possible
linear combinations ofω1 andω2 different fromω1 andω2.
After applying the rule (3) for amplitudes, this leads to the
following approximations.






























da1
dt = G(ω1)ϕv1ω1 sin(ω1τ+φ(ω1))

2 a1

[

1− ϕv3
ϕv1

(

(ω1a1)2

4 + (ω2a2)2

2

)

]

−G(ω1)K1ϕv0 cos(φ(ω1))
2 a1,

da2
dt = G(ω2)ϕv1ω2 sin(ω2τ+φ(ω2))

2 a2

[

1− ϕv3
ϕv1

(

(ω2a2)2

4 + (ω1a1)2

2

)

]

−G(ω2)K2ϕv0 cos(φ(ω2))
2 a2.

The linearized system matrix around the origin becomes,
[

G(ω1)
2 (ϕv1ω1sin(ω1τ +φ(ω1))−K1ϕv0cos(φ(ω1))) 0

0 G(ω2)
2 (ϕv1ω2sin(ω2τ +φ(ω2))−K2ϕv0cos(φ(ω2)))

]

This matrix has two negative eigenvalues if the conditions
(11) are satisfied. In this case, the amplitudes are locally
asymptotically stable at the origin. Appealing to assumption
3, one can concludes the result.

Local asymptotic stability at the origin implies that
quenching the oscillations is possible, and occurs in a local
domain which depends on the gainsK1 and K2. When
the valuesK1 and K2 increase, the domain of asymptotic
stability around origin should also increase. For this reason
and by comparison to damped second-order linear systems,
the following gains are chosen in the subsequent simulations
of this controller.







K1 = max
(

2ηω1+ϕv1ω1G(ω1)sin(φ(ω1)+ω1τ )
ϕv0G(ω1)cos(φ(ω1)) ,0

)

K2 = max
(

2ηω2+ϕv1ω2G(ω2)sin(φ(ω2)+ω2τ )
ϕv0G(ω2)cos(φ(ω2)) ,0

) , (13)

whereη is the desired damping factor.
We consider two scenarios for simulation testing of this

controller. In the first, the control is applied at the appearance
of oscillations inx1 or x2. This is illustrated by a simulation
test executed withη = 0.05 (K1 = 0 and K2 = 4051) and
presented in Figure 5. One can observe from the Figure 5,
that this control law requires a very weak control signal
u, noting that this depends on the ratioϕv1

ϕv0
, c.f (13). The

second scenario is where the control is applied after that
the oscillations inx1 and x2 have already reached steady-
state operation. Compared with the previous scenario, this
requires sufficient control action to effect damping but also
a need not to violate the validity of the approximations
including linearization. This is illustrated by a simulation test
with η = 0.1 (K1 = 160 andK2 = 5700) and is presented in
Figure 6.

This linear strategy under the conditions (11) offers local
asymptotic stability, which makes quenching possible, but
without any guarantee in a larger domain. However to effec-
tively implement such quenching, the problem of obtaining
x1 and x2 ba appropriate filtering has to be solved (work in
progress). It would be preferable if the amplitudesa1 anda2

were to be globally stable. For this a non-linear close loop
feedback must be considered.



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−4

−2

0

2

4
x 10

−4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1

0

1
x 10

−4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.5

0

0.5

x1 

x2 

u 

Time[sec] 

Control−on

Fig. 5. Linear feedback control applied at the first appearance of the
oscillations.
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B. Non-linear feedback: feedback linearization

In this section, the pressure measurementp is differen-
tiated and delayed with a delayτ to obtain ˙pτ , which is
introduced into a non-linear functionΦ, to obtain a control
law u = Φ(p, ṗτ ). This control strategy is explained in the
block diagram shown in Figure 7. This control law will be
used to add damping and to compensate the physical feed-
back caused by the coupling between the thermal heat-release
process and the acoustics of the combustion chamber. If
such a control is designed, the system will be asymptotically
stable at the origin and the quenching of oscillations will
occur. This can be interpreted also as a feedback linearization
which in addition stabilizes the system.For this reason, one
considers the following lemma
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Fig. 7. Block diagram of non-linear feedback.

Lemma 3: For the control law

Φ(p, ṗτ ) = −K p−
1

ϕv0

(

ϕv1 ṗτ −
ϕv3

3
ṗ3

τ

)

, (14)

whereK is a constant satisfying the conditions
{

Kϕv0cos(φ(ω1)) > 0,

Kϕv0cos(φ(ω2)) > 0,
(15)

the system is locally asymptotically stable at the origin.
Proof: Replacing the function (14) in (9) yields,






















ẍ1 +ω2
1x1 = d

dt LPF
{

ϕv0−Kϕv0p−Kϕv1pṗτ +K ϕv3
3 pṗ3

τ

−
ϕ 2

v1
ϕv0

ṗ2
τ +2ϕv1ϕv3

3ϕv0
ṗ4

τ −
ϕ2

v3
9ϕv0

ṗ6
τ

}

,

ẍ2 +ω2
2x2 = d

dt LPF
{

ϕv0−Kϕv0p−Kϕv1pṗτ +K ϕv3
3 pṗ3

τ

−
ϕ 2

v1
ϕv0

ṗ2
τ +2ϕv1ϕv3

3ϕv0
ṗ4

τ −
ϕ 2

v3
9ϕv0

ṗ6
τ

}

.

Therefore, for the K-B approximation (1) withε = 1 one
may consider the following choice.

f1 = f2 = f = d
dt LPF

{

ϕv0−Kϕv0p−Kϕv1pṗτ +K ϕv3
3 pṗ3

τ

−
ϕ 2

v1
ϕv0

ṗ2
τ + 2ϕv1ϕv3

3ϕv0
ṗ4

τ −
ϕ 2

v3
9ϕv0

ṗ6
τ

}

. (16)

Introducingxi = ai cos(ωit +θi) and ẋi =−aiωi sin(ωit +θi),
i = 1,2, in (16) and after trigonometric simplifications and
using assumption 2, one obtains the expression

f ≈ Kϕv0ω1G(ω1)a1

[

cos(φ(ω1))sin(ω1t +θ1)−sin(φ(ω1))cos(ω1t +θ1)
]

+Kϕv0ω2G(ω2)a2

[

cos(φ(ω2))sin(ω2t +θ2)−sin(φ(ω2))cos(ω2t +θ2)
]

+
r

∑
ωℓ 6≈ω1∧ω2

(Hℓ(a1,a2,θ1,θ2)sin(ωℓt +θℓ)+Gℓ(a1,a2,θ1,θ2)cos(ωℓt +θℓ)) .

Applying the rule (3) for the amplitudes leads to the
following approximations.

{ da1
dt = −1

2G(ω1)Kϕv0cos(φ(ω1))a1,
da2
dt = −1

2G(ω2)Kϕv0cos(φ(ω2))a2.
(17)

These are linear differential equations for the uncoupled
amplitudesa1 and a2. The amplitudes are globally asymp-
totically stable at origin if the conditions (15) are satisfied.
Appealing to the assumption 3, one deduces the result.
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Fig. 8. Linear feedback control applied at the first appearance of
oscillations.
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Fig. 9. Non-linear feedback control applied after the oscillation has reached
steady-state.

This strategy has been tested in simulation, with gainK =
100 for the two scenarios as before. First, when the control
is applied at the appearance of oscillations inx1 or x2. This
is presented in Figure 8. Then when the control is applied
after that the oscillations ofx1 andx2 have already reached
steady-state operation. This is presented in Figure 9. One
can note that compared to linear feedback, the quenching
of oscillations is very slow. On the other hand, the control
amplitude is smaller.

The satisfaction of conditions (15) on parameterK, is com-
pletely possible when the product cos(φ(ω1))cos(φ(ω2)) is
strictly positive. However, when the product is negative, it is
difficult and sometimes impossible to find a valueK satisfy-
ing (15). The problem can be avoided by using the Filters F1
and F2 (the same Filters used in the linear feedback) which
allows the replacement ofK p by K1x1 +K2x2 in the control

a1

a2

K1

K2

Validity domain of K-B 
approximations and
non-linear feedback

Validity domain of 
linear feedback

(0,0)

Fig. 10. Comparison between the computed quenching domains of both
feedback controllers.

law to obtain the following conditions which are easier to
satisfy.

{

K1ϕv0cos(φ(ω1)) > 0,

K2ϕv0cos(φ(ω2)) > 0.
(18)

VI. COMPARISON BETWEEN THE CONTROL STRATEGIES

The nonlinear control law yields asymptotic local stability
at the origin. The domain of amplitudesa1 and a2 where
quenching oscillations is guaranteed, is delimited by the
boundary of validity the K-B method applied to (9). For
the linear feedback law, the quenching domain is limited not
just by the validity of the K-B method, but also by the local
limitations on the gain valuesK1 and K2 of feedback loop
(Figure 10). Additionally, the nonlinear feedback requires
less restriction on the delay value, since it does not use the
Assumption 1. It is however important to note however, that
both control strategies are predicated on having good knowl-
edge of the parameters values in the combustion instability
model, particularly of the value of the delayτ .

VII. C ONCLUSION

This paper presents control methodologies for quenching
oscillations in combustion instabilities based on a tractable
model derived elsewhere, which exhibits the coexistence of
two oscillating modes observed in combustion instabilities.
The K-B method has been considered as a main tool for
analysis and conditions for quenching have been established.

Control by linear feedback was firstly considered. The
study showed that quenching oscillations is possible in a
local stability domain, which depends on the feedback gains.
The simulation tests show that quenching was successfully,
requiring more control efforts in the case of oscillations
which had reached steady state. To increase the local sta-
bility domain, the non-linear feedback was considered as an
alternative solution. This feedback also quenches oscillations
in a local stability domain, but one which depends solely
on the domain of validity of K-B approximations. In other
word, the feedback offers a stability domain larger than the
domain obtained by linear feedback. Good knowledge of
model parameters is necessary for quenching with either
feedback approach.

Further work will focus on the robustness of these ap-
proaches with respect to model parameters uncertainties as
well as a quantitative evaluation of the stability domain.
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