Maximum entropy principle and texture formation
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The macro-to-micro transition in a heterogeneous material is envisaged as the selection of a probability distribution by the Principle of Maximum Entropy (MAXENT). The material is made of constituents, e.g. given crystal orientations. Each constituent is itself made of a large number of elementary constituents. The relevant probability is the volume fraction of the elementary constituents that belong to a given constituent and undergo a given stimulus. Assuming only obvious constraints in MAXENT means describing a maximally disordered material. This is proved to have the same average stimulus in each constituent. By adding a constraint in MAXENT, a new model, potentially interesting e.g. for texture prediction, is obtained.

1

The principle of maximum statistical entropy (MAXENT)

MAXENT gives a link between information theory and statistical mechanics [START_REF] Jaynes | Information theory and statistical mechanics[END_REF]. According to information theory, the "amount of uncertainty " represented by a probability distribution (p i ) i = 1, ..., M on a finite set E = {x 1 , ..., x M } is the statistical entropy given by

S = - i M = ∑ 1 p i Log p i . ( 1 
)
MAXENT applies to the case where only some expectation values

〈φ q 〉 ≡ i M = ∑ 1 p i φ q (x i ) = a q (q = 1, ..., Q) (2) 
are known (with φ q known functions and Q << M). In a such case, it is clear that the distribution (p i ) i = 1, ..., M is not determined by the data a q (q = 1, ..., Q). MAXENT says that the relevant distribution (p i ) makes S a maximum with the Q constraints [START_REF] Balian | From microphysics to macrophysics[END_REF]. This amounts to selecting the broadest probability distribution compatible with the available information.

Statistical mechanics, on the other hand, considers a system made of a huge number N of "elementary constituents", e.g. molecules (in the kinetic theory of gases). The micro-state (velocity and position) of each molecule is in one among M possible boxes, with 1 << M << N. Let l i (i = 1, ..., M ) be the number of molecules in box (i). The corresponding fraction is p i = l i /N (thus p i ≥ 0 and p 1 + ... + p M = 1, as required for a probability distribution). The macro-state is a set of relevant macroscopic parameters: pressure, density, temperature, ... Each parameter making the macro-state should be computable from the probability distribution (p i ), as the average (expectation) 〈φ 〉 of some known function φ. Now a given probability distribution (p i ) is obtainable by a large number of distinct configurations [a configuration is the mapping: molecule → box (i)]. The hypothese made in statistical mechanics is that the "real " distribution is the one that may be obtained by the largest number of distinct configurations. Since the possible configurations must be compatible with the given macro-state, the most general version of this hypothese is MAXENT [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Balian | From microphysics to macrophysics[END_REF]. Indeed MAXENT has become the most fundamental principle in statistical physics [START_REF] Balian | From microphysics to macrophysics[END_REF].

Implementation of MAXENT in physics of heterogeneous media

Consider a heterogeneous medium, e.g. a polycrystal, with two microscopic fields: stimulus and response, e.g. strain-rate d and stress σ. (In a porous medium, these would be replaced by the pressure gradient and the filtration velocity. It would be easy to give many more examples.) The ideal goal of the macro-to-micro transition is to determine the micro-fields d(x), σ(x) from the mere data of the macro-stimulus, say D. This seems to be an unattainable goal, the more so if the microscopic constitutive relation is non-linear [START_REF] Arminjon | Proc. IUTAM Symp. Micro-and macrostructural aspects of thermoplasticity[END_REF]. In order that the macro-to-micro transition in the polycrystal (for example) may fit with the MAXENT procedure, the first step is to define the micro-state in the heterogeneous medium. This we define as the joint data of the microscopic stimulus [thus here the value of d(x)] and the local state X(x) in the heterogeneous medium [START_REF] Arminjon | Proc. IUTAM Symp. Micro-and macrostructural aspects of thermoplasticity[END_REF], with X(x) being the set of the internal and/or geometrical variables that make the microscopic constitutive law depend on the micro position x [START_REF] Arminjon | Proc. IUTAM Symp. Microstructure-property interactions in composite materials[END_REF]. For a polycrystal, the heterogeneity is mainly due to the anisotropy of the constitutive crystals. The microscopic constitutive law d(x) -σ(x) is hence often considered to be known from the mere data of the local orientation R(x), which means that X(x) = R(x). We shall use this assumption to fix the ideas in the following, but it is by no means necessary to the general method discussed. Thus in a deformed polycrystal, the micro-state is (d(x), R(x)). The second step is to discretize the possible values of the micro-state. First, we assume a discrete orientation distribution:

at time t, R(x, t)∈{R 1 (t), ..., R n (t)}. (3) 
[Note that, in an ideal polycrystal, the crystal orientations would have a priori a discrete distribution: in that case, the discretization of R(x, t) would be trivial. Many procedures exist to discretize the orientation distribution in a real polycrystal, i.e., to approximate the real orientation field by a piecewise constant field satisfying [START_REF] Arminjon | Proc. IUTAM Symp. Micro-and macrostructural aspects of thermoplasticity[END_REF].] The volume fractions f k (k = 1, ..., n) of the different orientations are given, with f 1 + ... + f n = 1. The current texture may be characterized by the data of (f 1 , R 1 (t)), ..., (f n , R n (t)). Due to the incompressibility of plastic deformation, the fractions f k may be assumed constant. Yet the texture evolves due to the evolution of the orientations, i.e., due to the dependence

R k = R k (t).
An attainable aim for macro-to-micro transition (e.g. in a polycrystal), is to calculate the list (D k ) k = 1, ..., n with D k = D k (t) the average strain-rate in the orientation R k (t). Thus D k (t) is the average of the micro-field d(x, t) over the zone Z k of the polycrystal where the crystal orientation is R k (t). Then, using the constitutive law for this orientation, the (average) stress σ k (t) is obtained. The (average) rotation rates

Ω k (t) = & R k R k (t) -1
are also obtained, hence an evolution (averaged over each orientation) is got. But, in order to use MAXENT so as to calculate the distribution (D k (t)), we still have to discretize the possible values taken by the strain-rate d(x, t). In the following, we consider a fixed time t, hence we omit the dependence with t henceforth. Using a (hyper)cubic mesh with a small size ε for the strain-rate, the discretization is defined by the nodes of the mesh, say D 1 , ..., D m . We substitute for d(x) the following piecewise constant field:

d'(x) = (d' 1 (x), ..., d' 6 (x)) with d' l (x) = ε Int (d l (x)/ε) [(Int(ξ) = k) ⇔ (k integer and k ≤ ξ < k +1)] ( 4 
)
where T 1 , ..., T 6 are the independent components of a second-order symmetric tensor T. Thus, the domains

Ω j ≡ {x ; d'(x) = D j } (j = 1, ..., m) (5) 
are well-defined, two by two disjoined, and their union covers the whole polycrystal. The same is true for the Z k 's. We have

||d(x) -D j || ∞ = ||d(x) -d'(x) || ∞ ≤ ε for x∈ Ω j . (6) 
Here ||T || ∞ ≡ max (|T 1 |, ..., |T 6 |) for a second-order symmetric tensor T. The relevant probability distribution is defined as

p j k = volume fraction of Ω j ∩ Z k in the polycrystal = V(Ω j ∩ Z k ) / V(Ω ). ( 7 
)
Thus p j k is the probability of the joint event d'(x) = D j and R(x) = R k , the probability being defined as the volume fraction. [I.e., P(A) ≡ V(A)/V(Ω), Ω being the considered representative volume element (RVE) of the polycrystal. Strictly speaking, the notion of RVE is an asymptotic one [START_REF] Arminjon | Proc. IUTAM Symp. Microstructure-property interactions in composite materials[END_REF][START_REF] Arminjon | Limit distributions of the states and homogenization in random media[END_REF], but a simpler illustration is got if exactly representative volume elements like Ω are assumed to exist.] The domains ω jk = Ω j ∩ Z k are the elementary constituents. They depend on the discretization imposed to the strain-rate field, i.e., they depend on the small parameter ε. Hence the micro-state (d', R) belongs to the finite product set {D 1 , ..., D m }×{R 1 , ..., R n }, so i has become (j, k) and M = m × n in eq. ( 1). The volume average of the strain-rate d' in orientation R k is given (cf. Bayes' conditional probability formula) by

D k = (p 1 k D 1 + ... + p m k D m )/f k . ( 8 
)
Now we want to use MAXENT to determine the discrete probability distribution (p j k ). There are two obvious constraints:

i) The volume fraction of polycrystal in the orientation R k is the data

f k = V(Z k ) / V(Ω ).
Since the domains Ω j are two by two disjoined, and since their union covers the whole polycrystal (or the RVE Ω), we get from (7):

j m j k k p f = ∑ = 1 (k = 1, ..., n). ( 9 
)
ii) The average strain-rate is the applied macroscopic strain-rate D:

p j k j j k D D = ∑ , .
(

Hence we may define a model based on MAXENT as follows:

Model (a): Maximize S = - k n j m = = ∑ ∑ 1 1
p j k Log p j k under constraints ( 9) and ( 10).

(11)

Since the statistical entropy S is a measure of disorder, the latter MAXENT model with obvious constraints may be called the "volume-fraction model with maximum disorder " [the disorder is that of the strain-rate distribution (p j k )]. It is often said that the self-consistent models describe a situation with perfect disorder (this is the ideal situation where spatial correlations of a finite range do not exist). Indeed there are arguments showing that the classical self-consistent model for linear elasticity may correspond to that ideal situation [START_REF] Kröner | Self-consistent scheme and graded disorder in polycrystal elasticity[END_REF]. Taking words naively, one might then wonder if the volume-fraction model with maximum disorder is something like a self-consistent model. We prove below that it is not the case.
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The volume-fraction model with maximum disorder is "the Voigt-Taylor model plus random fluctuations "

I.e., this model (eq. ( 11)) leads to the following prediction for the average strain-rate D k in orientation R k , defined by ( 8):

D k = D for all k = 1, ..., n. ( 1 2 ) 
P r o o f. We use the method of Lagrange multipliers to find the maximum (11): any solution of ( 11) is a stationary point of

Φ ≡ - j k , ∑ p j k Log p j k - = ∑λ k k n 1 ( ) f p k j m j k - = ∑ 1 - = ∑ μ l l 1 6 ( ) , D p D l j k j l j k -∑ (13) (with D l the l th component of D and D j l the l th component of D j ). That is, we must have ∂ ∂ Φ / p j k = 0. This is equivalent to p e D j k l j l l k = - ∑ λ μ 1 exp( ) = p j k (λ k , (μ l )). (14) 
The multipliers λ k and μ l are determined by the condition that the p j k 's making Φ stationary (eq. ( 14)) satisfy the constraints (9) and (10). In the present case, inserting (14) into the constraint (9) allows to eliminate λ k by 14) and (15) gives 12), though it also describes some random fluctuation, in each constituent, of the stimulus field d around the macroscopic stimulus D.

e f D k k j m l j l l λ μ - = = = ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ∑ ∑ 1 1 1 6 / exp . ( 15 
) Calculating D k l ≡ (D k ) l = p D f j k j l j k ∑ / using (
D D D D k l j l l j l l l j l l j m j m = ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ = ∑ = = = ∑ ∑ ∑

4

A more interesting MAXENT model (one more constraint)

Equation ( 12) is unrealistic. To obtain a better model, we must add information, i.e. add constraints in MAXENT. One possible new constraint is to impose that the average potential is known (assuming therefore that the micro-law expressing σ(x) as a function of d(x) does derive from a potential, say u k in the orientation R k ) [START_REF] Arminjon | Proc. IUTAM Symp. Micro-and macrostructural aspects of thermoplasticity[END_REF] :

〈u〉 ≡ ( ) f u f u p f k k k k k k k j k j k j D D ≡ ∑ ∑ ∑ ( ) / ≡ U(D) known (17)
This is the minimum information to add in order to determine the macroscopic behavior since, in the most favourable case, the average potential is indeed a potential for the macro-law [START_REF] Arminjon | Limit distributions of the states and homogenization in random media[END_REF][START_REF] Hill | Elastic potentials and the structure of inelastic constitutive laws[END_REF]. Yet it means the micro-to-macro transition is solved! In a previously studied "inhomogeneous variational model" (IVM), the data U(D) may be replaced by the data of the average heterogeneity h, with (for some real exponent p ≥ 1, depending on the behavior of the u k potentials at large d [START_REF] Arminjon | Proc. IUTAM Symp. Microstructure-property interactions in composite materials[END_REF][START_REF] Arminjon | Limit distributions of the states and homogenization in random media[END_REF])

h f p k k p k n ≡ - = ∑ D D 1 ( 1 8 ) 
It has been shown in Ref. [START_REF] Arminjon | Proc. IUTAM Symp. Micro-and macrostructural aspects of thermoplasticity[END_REF] that the macro-to-micro transition, i.e., determining the distribution (D k ) k = 1, ..., n from data D (plus necessary additional data: either h or U(D), in the present case), is very close in that model and in the above MAXENT model based on constraints (9), ( 10) and ( 17). But it is simpler to impose directly the average heterogeneity h, because it is computable from the unknown (p j k ) of the MAXENT procedure.Indeed, using eq. ( 8), one finds easily that

h p f f p j k j k j m k n p k p = - = = - ∑ ∑ D D 1 1 1 / . ( 19 
)
Thus we propose a new model, that consists in adding the constraint h = r (with r a given number) in model (a) defined by eq. ( 11). This new model does not need that the micro-law derives from a potential. Actually, in this purely statistical model, the micro-law itself influences the strain distribution very indirectly -through the value r of the actual heterogeneity, which in reality does indeed depend on the micro-law (and on the geometry), but which is considered, in the new model, as the relevant information (in addition to the volume fractions). Note that the actual heterogeneity r is measurable. But, to make use of the new model, r should rather be phenomenologically assumed, as is also done in the IVM [START_REF] Arminjon | Proc. IUTAM Symp. Microstructure-property interactions in composite materials[END_REF]. To study rotation effects, one may think to substitute the velocity gradient l (with 9 independent components) for d [START_REF] Böhlke | GAMM conference[END_REF].

Conclusions

i) A general formulation of the Maximum Entropy Principle (MAXENT) has been given for the macro-to-micro transition in a heterogeneous medium. This formulation was illustrated for a textured polycrystal with inelastic deformation.

ii) MAXENT demands constraints. The most obvious ones (the volume fractions are imposed, and the macro-average of the micro-stimulus is the macro-stimulus) lead to predict the same average stimulus in each constituent (as in Voigt's model).

iii) Imposing the value of the average potential gives [START_REF] Arminjon | Proc. IUTAM Symp. Micro-and macrostructural aspects of thermoplasticity[END_REF] a model close to the inhomogeneous variational model [START_REF] Arminjon | Proc. IUTAM Symp. Microstructure-property interactions in composite materials[END_REF][START_REF] Arminjon | Limit distributions of the states and homogenization in random media[END_REF]. But the new model proposed consists in imposing directly the average heterogeneity as an additional constraint in MAXENT.

iv) MAXENT provides a general method to build more and more accurate models by adding information (i.e. constraints).
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