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Asymptotic windings over the trefoil knot.

Introduction

Most knots obey the celebrated uniformization theorem of Thurston ([T]) : their complement in S 3 are homeomorphic to a unique complete hyperbolic manifold of finite volume, which assigns then a canonical geometrical structure to these manifolds. In this homeomorphism the knot is sent to infinity, namely to the unique cusp of the hyperbolic manifold.

In this canonical hyperbolic context, it makes sense and it is possible to compute the asymptotic Brownian and geodesic behaviors. This has been done in [F2]. See also [ELJ], [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], [START_REF] Enriquez | Central limit theorem for the geodesic flow associated with a Kleinian group, case δ > d/2[END_REF].

1

The trefoil knot T is the simplest of non-trivial torical and then non-uniformizable knots. There is a classical algebraic realization of T as a simple curve in C 2 , but this does not correspond to a precise canonical geometric structure, and the asymptotic Brownian windings about T one can compute in such model (the quantity computed so is the length of the knot (trefoil or other) divided by the global volume, see [F1]) is not intrinsic, and does not resemble anyway the uniformization. Now, there exists however for the complement of this particular knot some intrinsic geometrical structure, replacing the non-existing hyperbolic structure. Indeed it is known ( [M], [HP]) that the complement of T in S 3 is homeomorphic to the quotient G/Γ of the group G := P SL 2 (IR) by its modular subgroup Γ := P SL 2 (Z). Moreover it happens that any left-invariant Riemannian structure on this homogeneous space G/Γ is quasi-hyperbolic (and hyperbolic in the sense of Gromov), with a unique cusp corresponding to the trefoil knot T . The 1-cohomology of this space is a real line, generated by the harmonic 1-form computing the linking number about T .

Moreover this canonical structure for the complement of T admits a less known interesting feature. Among the cyclic branched covers of the complement of T , which exhibit a 6-fold periodicity, one unique presents an increase of the first Betti number : the 6-fold cyclic branched cover Σ 6 of the complement of T in S 3 has a 3-dimensional cohomology of 1forms. (For these questions, see [R]. For example, Σ 5 is the Poincaré sphere.) Σ 6 = Σ 6 ∪ T is a smooth compact manifold, and H 1 (Σ 6 ) ≡ IR 2 corresponds to two "angles" accounting for more information on the fundamental group of S 3 \ T than the linking number 1-form alone. Of course taking also this linking number into account, we have H 1 (Σ 6 ) ≡ IR 3 . Note that the two "angles" just mentioned are computed by bounded 1-forms, counter to the linking number 1-form. Now it happens that this cover Σ 6 is in turn homeomorphic to G/Γ , Γ := DSL 2 (Z) being the subgroup of the modular group Γ generated by its commutators. See Proposition 1 below. So we have a canonical structure for this interesting cyclic cover of the complement of T , at least once some natural left-invariant Riemannian metric is chosen on the Lie group G. We fix such metrics (depending on a real parameter a) by taking orthonormal some basis of the Lie algebra s 2 (IR) which diagonalizes the Killing form and is made of symmetrical and skew-symmetrical elements, and which is simply expressed in the Iwasawa coordinates. They happen to be canonical in a natural geometrical sense, viewing G as T 1 IH 2 , and pertain to the 6th of the eight 3-dimensional geometries described by Thurston ( [T]), viewing G/Γ as T 1 (IH 2 /Γ ) .

It becomes now fairly natural to compute in this canonical model the asymptotic behavior of the Brownian motion. This canonical Riemannian manifold G/Γ is quasi-hyperbolic, hyperbolic in the sense of Gromov, has finite volume, one unique cusp, and projects (by annihiling the maximal compact subgroup of G, a circle) onto IH 2 /Γ , a hyperbolic surface of genus 1, which carries the two "angles" mentioned above. These "angles" give raise to regular windings and then to a central limit theorem, while the linking number will be given roughly by windings around the cusp and then will generate singular windings.

To perform the computations, of the harmonic forms (see Theorem 1 below) and of their stochastic line-integrals along the Brownian paths, and then of the asymptotic behaviors of those integrals (see Theorem 2 below), we use the Iwasawa coordinates on G, taking advantage of this parametrization without singularity, which moreover shows up the hyperbolic part of G.

To be more precise, let us mention that our harmonic forms are very conveniently expressed (in Theorem 1 below) in terms of η 4 , the 4th power of the classical Dedekind η function : indeed the two handle (bounded) harmonic forms are given by η 4 (z)dz , and the linking number (unbounded) harmonic form is given by dθ + d(arg η 4 (z)) , θ denoting in T 1 (IH 2 /Γ ) the parameter of the circle above z ∈ IH 2 /Γ .

The asymptotic Brownian homology on G/Γ is now given by the asymptotic behavior of the 3-dimensional martingale obtained by integrating along the Brownian paths (up to time t) the 3 basic harmonic forms found in Theorem 1. Theorem 2 describes this asymptotic behavior by the following convergence in law, after normalization of the fast martingale by t and of the slow ones by √ t : the fast winding component goes to a Cauchy variable (with parameter 1 2 ), while the two slow winding components go to normal variables (centred with variance expressed by an integral of |η| 8 ) ; the main feature being the independence of these 3 limiting variables.

From a probabilistic and technical point of view, the arguments used here were already partly scattered in [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], [ELJ], [F1], and [F2], but the major difficulty in the proof of Theorem 2 below is to establish the asymptotic independence of regular and singular windings, that is to say the independence of the limiting laws of the slow and rapid windings. Such a question, relative to this type of independence, seems not to have been yet precisely addressed. See however on one hand [GLJ], for an analogous question concerning the geodesic flow on a surface, handled totally differently, by means of a coding method, and on the other hand [W], which states an analogous result for the Brownian motion on a Riemann surface, but without proving the asymptotic independence.

Then the geodesics of G are determined, in Proposition 2 below. They happen to project on IH 2 according to a generic Euclidian circle or line (intersected with IH 2 ), these projections having constant energy. Note that the geodesic flow is non-ergodic on the tangent bundle T 1 (G/Γ ).

However the description of geodesics (see Proposition 2) allows to exhibit a natural class of ergodic measures for the geodesic flow on G/Γ , each one carried by a leaf of T 1 (G/Γ ). Fixing any such ergodic invariant probability measure, the asymptotic geodesic behavior in G/Γ is calculated, by means of the joint asymptotic law of the integrals of the harmonic basis along geodesics. Indeed Theorem 3 below describes this asymptotic law : it is similar to the asymptotic law calculated in Theorem 2, but differs though by a constant depending on the parameters of the metric and of the leaf, and mainly by an additional contribution in the fast component, for which the circle form dθ is responsible.

The method for getting the geodesic result is based on a reduction to the Brownian behavior (calculated in Theorem 2), as in the series of articles [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], [START_REF] Enriquez | Central limit theorem for the geodesic flow associated with a Kleinian group, case δ > d/2[END_REF], [ELJ], [F2], [START_REF] Jan | The central limit theorem for the geodesic flow on non compact manifolds of constant negative curvature[END_REF]. There are however some noteworthy simplifications in comparison with the proofs in these articles, mainly due to the harmonicity of the integrated 1-forms, as in [START_REF] Jan | Sur l'enroulement géodésique des surfaces de Riemann[END_REF]. In particular, there is no more need of a spectral gap, nor to use a foliated diffusion. Another change (and hopefully clarification) with respect to these previous proofs is the use of a simultaneous disintegration of the Liouville and the Wiener measures : we avowedly condition the Brownian motion (starting from a given point z ∈ IH2 ) to exit the hyperbolic plane at the same point as a given geodesic (starting also from z). This point of view was more or less implicit in the preceding proofs, but did not really appear.

Finally it is worth noticing again that, counter to the hyperbolic case of [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], [START_REF] Enriquez | Central limit theorem for the geodesic flow associated with a Kleinian group, case δ > d/2[END_REF], [ELJ], [F2], [GLJ], [START_REF] Jan | Sur l'enroulement géodésique des surfaces de Riemann[END_REF], [START_REF] Jan | The central limit theorem for the geodesic flow on non compact manifolds of constant negative curvature[END_REF], the geodesic and Brownian asymptotic behaviors are here no longer the sames, though comparable. The spiral windings of the geodesics about their projections on IH 2 is mainly responsible for this feature. The main aim of these previous works, and in particular of [GLJ], [ELJ] and [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], which deal with surfaces, was already to compute the asymptotic windings law of geodesics, by means of integrals of winding forms, and, for [ELJ] and [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], of comparison with the Brownian analogue. An important difference however with the present study is the non-hyperbolicity (in the strict sense) and non-ergodicity of the present underlying manifold G/Γ , which allows a different asymptotic behavior between diffusions and geodesics. Another sensible difference is that these previous works did not consider jointly fast and slow Brownian windings. Indeed, while [ELJ] and [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF] deal only with fast windings, [GLJ] treats both sorts, but only for geodesics.

It is a pleasure to thank J.P. Wintenberger for having drawn my attention on congruence groups, Hurwitz formula, and Shimura's book, and T. Delzant for a useful remark.

The commutator subgroup of the modular group

Consider the group G := P SL 2 (IR), its modular subgroup Γ := P SL 2 (Z), and Γ := DSL 2 (Z) the subgroup of Γ generated by its commutators.

As usual, let us identify G with the unitary tangent bundle T 1 IH 2 ≡ IH 2 × S 1 of the hyperbolic plane IH 2 ≡ IR × IR * + , and also with the group of Möbius isometries (homographies) of IH 2 .

Let us distinguish the following elements u, v, β, γ of G, defined by :

u(z) := -1/z , v(z) := (z -1)/z , β(z) := (2z + 1)/(z + 1) , γ(z) := (z + 1)/(z + 2) .
Consider also the subgroup Γ 6 of elements of Γ which are congruent to the unity modulo 6, that is to say equivalently : Γ 6 is the kernel of the natural projection p of Γ onto

P SL 2 (Z/6Z) . Let [α 1 , α 2 ] := α 1 α 2 α -1 1 α -1
Denote by D 0 the most usual fundamental domain for the action of the modular group Γ on the hyperbolic Poincaré plane IH 2 : D 0 is the ideal triangle of IH 2 delimited by the vertical half-lines [e Then we have the following fundamental domains for the action of Γ :

D 0 ∪ vD 0 ∪ v 2 D 0 ∪ uD 0 ∪ vuD 0 ∪ v 2 uD 0 , and 
D := D 0 ∪ β -1 vβ -1 D 0 ∪ βv 2 βD 0 ∪ βuγD 0 ∪ vuD 0 ∪ v 2 uβ -1 D 0 . As β -1 vβ -1 (z) = z -2 , βv 2 β(z) = z + 2 , βuγ(z) = z + 3 , v 2 uβ -1 (z) = z -1 ,
we see that D is merely the union of the translates of D 0 successively by -2, -1, 0, 1, 2, 3 .

We have the following identifications on the boundary of D :

γ e √ -1 2π/3 -2 , √ -1 -2 , e √ -1 2π/3 -1 = e √ -1 2π/3 + 2 , √ -1 + 1 , e √ -1 2π/3 + 1 , β e √ -1 2π/3 -1 , √ -1 -1 , e √ -1 2π/3 = e √ -1 2π/3 + 3 , √ -1 + 2 , e √ -1 2π/3 + 2 , βγ -1 e √ -1 2π/3 , √ -1 , e √ -1 2π/3 + 1 = e √ -1 2π/3 + 4 , √ -1 + 3 , e √ -1 2π/3 + 3 , [β, γ -1 ] e √ -1 2π/3 -2 + √ -1 IR + = e √ -1 2π/3 + 4 + √ -1 IR + .
Lemma 2 Γ is a congruence group. More precisely, we have Γ 6 ⊂ Γ , and in Γ a word in {β, γ} belongs to Γ 6 if and only if its total weights with respect to β and γ are even and equal modulo 6. Moreover [Γ : Γ 6 ] = 12 = Card(p(Γ )), the quotient group p(Γ)/p(Γ ) is isomorphic to Z/6Z , and the quotient group Γ /Γ 6 is isomorphic to Z/6Z × Z/2Z .

Proof We saw with the fundamental domain D above that Γ/Γ is made of the cosets (z → z + k)Γ , for k ∈ {0, .., 5} . Then we have [p(β), p(γ) -1 ] = p([β, γ -1 ]) = 1 , showing that p(β) and p(γ) commute. Thus for any integers m, n the element p(β m γ n ) is (as a matrix) symmetrical in p(Γ), that is to say symmetrical or skew-symmetrical as a matrix in SL 2 (Z/6Z) , since β and γ are.

Moreover, p(β) 6 = p(γ) 6 = 1, and

p(Γ) = p (z → z+k)β m γ n 0 ≤ k ≤ 5, 0 ≤ m, n ≤ 5 . And p (z → z + k)β m γ n = 1 ⇐⇒ a + kεb b + kd bε d = ε 0 0 ε modulo 6 , where ε, ε = ±1 and p(β m γ n ) = a b bε d , showing that p (z → z + k)β m γ n = 1 ⇐⇒ k = 0 and p(β) m p(γ) n = 1 .
Hence we have shown that Γ 6 ⊂ Γ , and also the second statement of the lemma, since it is easily seen that p(β) m p(γ) n = 1 ⇐⇒ m ∈ 2Z and m -n ∈ 6Z .

The above also implies the isomorphism between p(Γ)/p(Γ ) and Z/6Z , and that the kernel of Z/6Z (m, n) -→ p(β) m p(γ) n ∈ p(Γ ) is isomorphic to Z/3Z . Whence Card(p(Γ )) = 12 , [Γ : Γ 6 ] = Card(p(Γ)) = 72 , and [Γ : Γ 6 ] = 72/6 = 12 . The last claim is now clear from the above, which shows that Γ /Γ 6 is generated by the cosets of β and βγ , which commute and are of order respectively 6 and 2.

3 Modular forms on IH 2 /Γ

The Hurwitz formula (see for example [Sh], Section 1.5) asserts in the present case that

2 × genus (IH 2 /Γ ) -2 = 6 × (2 × genus (IH 2 /Γ) -2) + z∈IH 2 /Γ (r(z) -1) ,
where r(z) denotes the ramification index of the covering (IH 2 /Γ → IH 2 /Γ) at z, which satisfies

z above z r(z) = 6 for any z ∈ IH 2 /Γ .
Here the ramifications occur only above ∞ , √ -1 , and e √ -1 2π/3 . There are 1 point above ∞, with index 6, 3 points above √ -1 , with index 2, and 2 points above e √ -1 2π/3 , with index 3. Since IH 2 /Γ is homeomorphic to IH 2 , and then has genus 0, we get the genus 1 for IH 2 /Γ . Now, theorems 2.23 and 2.24 of ( [Sh], Section 2.6, case k = 2 and genus =1) assert that the modular forms f (z)dz, for IH 2 /Γ as for IH 2 /Γ 6 , are all proportional.

We need next the η function of Dedekind, defined on IH 2 (seen as the Poincaré halfplane) by : η(z

) := e √ -1 π z/12 × n∈IN * (1 -e √ -1 2π n z ) .
We shall also need its logarithmic derivative :

η(z) := η (z)/η(z) = √ -1 π 12 -2π √ -1 n∈IN * n e - √ -1 2π n z -1 ,
which converges absolutely uniformly in D. η and η are holomorphic, and bounded in D.

η clearly satisfies η(z + 1) = e √ -1 π/12 η(z) , and is known (see for example ( [A], Theorem 3.1 of Section III.3)) to satisfy also (with as the square root the usual principal branch) :

η(-1/z) = e - √ -1 π/4 √ z η(z) .
As a consequence, η(g(z)) = η(z) × g (z) -1/4 up to some 24-fold root of 1 (depending on g) for any g ∈ Γ , and in particular η(g(z)) = η(z) × g (z) -1/4 for any g ∈ Γ .

Hence we have the first sentence of the following lemma (owing to the canonical injection of H 1 (IH 2 /Γ ) into H 1 (G/Γ ), induced by the canonical projection g → g( √ -1 ) from G onto IH 2 ). The second sentence is obtained merely by differentiating the above relation for η . The third is straightforward from the above expressions of η and η .

Lemma 3 (i) η 4 (z)dz is a closed modular form on IH 2 /Γ , and thus on G/Γ .

(ii) We have η(-1/z) = z 2 × η(z) + z/2 and η(z + 1) = η(z) for any z ∈ IH 2 .

(iii) We have in D : η(z) = O(e -π y/12 ) and η(z) = √ -1 π/12 + O(e -2π y ) .

Remark 1 Set Θ(z) := n∈Z e √ -1 πn 2 z , which is holomorphic in IH 2 . Poisson formula applied to the function n → e -πyn 2 shows that (for z = √ -1 y and then for any

z ∈ IH 2 ) Θ(-1/z) = e - √ -1 π/4 √ z Θ(z)
as for η above. But this theta function Θ is only 2-periodic, and has no 1-periodic power, so that (since vu = βuγ(vu) -2 ) it cannot be used to get a Γ -automorphic form.

4 Link with the trefoil knot Denote by T the trefoil knot, realized in the sphere S 3 . Denote by Σ k the k-fold cyclic branched cover of its complement S 3 \ T , for k ∈ IN * . See [R], in particular ([R], X, C,D), ( [R], VI,B), and

([R], VII,D). Σ k is a compact 3-dimensional smooth manifold, H 1 (Σ k ) = H 1 (Σ k+6 ) , and H 1 (Σ k ) is trivial for k / ∈ 6IN . (A pleasant feature, irrelevant here, is that Σ 5 is the Poincaré 3-sphere.)
It is not very hard to see that H 1 (Σ 6 ) ≡ Z 2 . Indeed Π 1 (Σ 6 \ T ) is made of those lifts of elements in Π 1 (S 3 \ T ) which are still loops, that is those which have linking number (with respect to T ) belonging to 6Z. This implies that Π 1 (Σ 6 \ T ) (up to an isomorphism) is generated by the center (isomorphic to Z) and the commutator subgroup (free on two generators) of Π 1 (S 3 \ T ). Whence the abelianised H 1 (Σ 6 \ T ) ≡ Z 3 , the H 1 (Σ 6 ) ≡ Z 2 component corresponding to the commutator subgroup contribution.

The real cohomology of 1-forms of S 3 \ T , H 1 (S 3 \ T ) , identified with the space of harmonic 1-forms on S 3 \ T , is generated by the harmonic 1-form computing the linking number about T . Considering Σ 6 := Σ 6 \ T , we have a 6-fold cover of S 3 \ T which has a threedimensional real cohomology of 1-forms : H 1 (Σ 6 ) ≡ IR 3 , generated by the lifts of the harmonic forms belonging to H 1 (S 3 \ T ) ≡ IR and the restrictions of the harmonic forms belonging to

H 1 (Σ 6 ) ≡ IR 2 .
It is convenient to think of those two more directions brought by H 1 (Σ 6 ) into H 1 (Σ 6 ) as two "angles" accounting for more of the complicated fundamental group of S 3 \ T , than the mere linking number 1-form generating H 1 (S 3 \ T ) does alone.

The following proposition links this interesting cover with the preceding section, confering thereby to Σ 6 a somehow canonical structure of homogeneous space.

Proposition 1

S 3 \ T is homeomorphic to G/Γ , and moreover Σ 6 is homeomorphic to G/Γ . Proof The first assertion seems to be due to Milnor. See [M], and [HP]. The second one does not seem to be widely known, but M. Boileau, F. Bonahon and T. Delzant knew it.

G/Γ is clearly a cover of G/Γ , with as a fibre the cyclic group Γ/Γ ≡ Z/6Z , as it must be. So it remains to be sure that this cover is indeed a cyclic branched cover, and namely that near the trefoil knot the canonical projection is diffeomorphic to ((s, z) → (s, z 6 )). Now, [HP] shows that in G/Γ, T has been sent to infinity (it corresponds to the subgroups of IR 2 isomorphic to IR, while its complement correspond to the lattices with unit area). And near infinity, G/Γ is locally homeomorphic to the unit tangent bundle of a neighborhood of ∞ in the fundamental domain D (with identification of its two vertical edges by means of (z → z + 6)). It should now be clear that the cover G/Γ → G/Γ has the required structure near infinity, being given by (θ,

x + √ -1 y) → (θ, 6 x + √ -1 y) , θ denoting the parameter of the circle above the point x + √ -1 y ∈ D .
Observe that the harmonic 1-forms of G/Γ ≡ Σ 6 are sums of forms of two different types : the forms arising from G/Γ ≡ S 3 \ T and then from the linking number (with respect to T ), which are unbounded, and the forms coming from Σ 6 or equivalently from the modular surface IH 2 /Γ (onto which G/Γ ≡ T 1 (IH 2 /Γ ) canonically projects, and which has 1 handle, see section 3), which are bounded.

5 Iwasawa coordinates and metrics on G G = P SL 2 (IR) is classically parametrized by the Iwasawa coordinates

(z = x + √ -1 y , θ) ∈ IH 2 × (IR/2πZ
) , in the following way : each g ∈ G writes uniquely g = g(z, θ) := n(x)a(y)k(θ) , where n(x) , a(y) , k(θ) are the one-parameter subgroups defined by :

n(x) := 1 x 0 1 , a(y) := √ y 0 0 1/ √ y , k(θ) := cos(θ/2) sin(θ/2) -sin(θ/2) cos(θ/2) ,
and generated respectively by the following elements of the Lie algebra s 2 (IR) :

ν := 0 1 0 0 , α := 1/2 0 0 -1/2 , κ := 0 1/2 -1/2 0 . Note that g = g(z, θ) ⇐⇒ g( √ -1 ) = z and g ( √ -1 ) = y e √ -1 θ .
Set also λ := ν -κ = 0 1/2 1/2 0 , which is natural, since α, λ are symmetrical while κ is skew-symmetrical, and since in the basis (α, λ, κ) of s 2 (IR) the Killing form is diagonal : it has matrix

   -2 0 0 0 -2 0 0 0 2    .
For this reason, we take on s 2 (IR) the inner product such that the basis (α, λ, aκ) is orthonormal, for some arbitrary parameter a ∈ IR * . And since we want to work on the homogeneous space G/Γ , the Riemannian metric to be considered on G must be at least Γ -left-invariant, and then a natural choice for the Riemannian metric on G is the left-invariant metric, say ((g a ij )) , generated by the above inner product on s 2 (IR) . The simple lemma below shows that this choice of metric(s) is geometrically canonical (up to a trivial multiplicative constant), G being seen as T 1 IH 2 . This equips G/Γ ≡ T 1 (IH 2 /Γ ) with the 6th of the eight 3-dimensional geometries described by Thurston ([T]).

Let us denote by L ν , L α , L κ , L λ the left-invariant vector fields on G generated respectively by ν , α , κ , λ . A standard computation shows that

L λ = y sin θ ∂ ∂y + y cos θ ∂ ∂x -cos θ ∂ ∂θ , L α = y cos θ ∂ ∂y -y sin θ ∂ ∂x + sin θ ∂ ∂θ , L κ = ∂ ∂θ .
Lemma 4 The Riemannian metrics ((g a ij )) defined above are, up to a multiplicative constant, the only ones on G which are left-invariant and also invariant with respect to the action of the (Cartan compact subgroup) circle {k(θ)} . They are given in Iwasawa coordinates (y, x, θ) by

((g a ij )) :=    y -2 0 0 0 (1 + a -2 )y -2 a -2 y -1 0 a -2 y -1 a -2    .
Proof The left-invariant metrics on G are those which are given by a constant matrix

((a ij )) in the basis L := (L α , L λ , L κ ) . Set I := ∂ ∂y , ∂ ∂x , ∂ ∂θ .
We have I = LA , with

A :=    y -1 cos θ -y -1 sin θ 0 y -1 sin θ y -1 cos θ 0 0 y -1 1   
, so that the left-invariant metrics are given in the basis I by t A((a ij ))A . Among them, the ones we want have to satisfy

∂ ∂θ t A((a ij ))A = 0 . A direct computation shows that this is equivalent to ((a ij )) = c 2    1 0 0 0 1 0 0 0 a -2  
 , and then to ((g a ij )) being as in the lemma.

Note that with these metrics the holomorphic form η 4 (z)dz of Lemma (3,i) is coclosed and then harmonic.

The left Laplacian on G corresponding to the basis (α, λ, aκ) is the Beltrami Laplacian associated with the metric ((g a ij )), and is given by

∆ a := L 2 λ + L 2 α + a 2 L 2 κ = y 2 ∂ 2 ∂y 2 + ∂ 2 ∂x 2 -2y ∂ 2 ∂θ∂x + (1 + a 2 ) ∂ 2 ∂θ 2 .
Note that L λ and L α generate the canonical horizontal left-invariant vector fields lifted from IH 2 to G, IH 2 being endowed with its Levi-Civita connexion, so that ∆ 0 is the Bochner horizontal left Laplacian, and

∆ a = ∆ 0 + a 2 ∂ 2 ∂θ 2 .
The measure µ(dg) := dx dy dθ 4π 2 y 2 is bi-invariant, and its projection onto G/Γ is a probability measure (as is easily seen by integrating over D × [0, 2π] ), proportional to the volume measure of G/Γ . Thus the volume of G/Γ is 4π 2 /|a| .

Let ỹ denote the height in the cusp of the projection IH 2 /Γ of G/Γ , that is to say ỹ = y when we identify IH 2 /Γ with its fundamental domain D (see section 2). Let us consider ỹ as a function on G/Γ or on IH 2 /Γ as well, and then also as a Γ -invariant function on G or on IH 2 .

Winding form on G/Γ

Let us look here for the harmonic 1-form on G/Γ, which calculates the linking number about the trefoil knot sent to infinity. Let us denote it by

ω 0 = A(z, θ)dx + B(z, θ)dy + C(z, θ)dθ = U (z, θ)dz + Ū (z, θ)dz + C(z, θ)dθ , with A, B, C real and 2U = A - √ -1 B . C must be non-null, since H 1 (IH 2 /Γ) ≡ 0 .
ω 0 must be left-invariant under Γ, which amounts to say such that γ * ω 0 = ω 0 for γ(z) = z + 1 and for γ(z) = -1/z .

Clearly the invariance with respect to z → z + 1 is equivalent to the 1-periodicity of A, B, C (with respect to the variable z).

We have then to write down the invariance with respect to u = (z → -1/z) . Now u g(z, θ) = g(-1/z , θ -2 arg z) , using the notation of section 5, so that

u * ω 0 = U • u dz z 2 + Ū • u dz z2 + C • u × dθ + √ -1 |z| -2 (zdz -zdz) equals ω 0 if and only if C is Γ-invariant and U (-1/z , θ -2 arg z) = z 2 U (z, θ) - √ -1 z C(z, θ) for all z, θ .
Observe that with the metric ((g a ij )) given in section 5, the divergence of ω 0 is

δω 0 = y 2 ∂B ∂y + ∂(A -C/y) ∂x + ∂( 1+a 2 y 2 C -A/y) ∂θ = y 2 ∂A ∂x + ∂B ∂y -y ∂C ∂x + ∂((1+a 2 )C -yA) ∂θ .
Hence ω 0 is harmonic if and only if

∂U ∂ z is real , ∂U ∂θ = ∂C ∂z , and 
∂A ∂x + ∂B ∂y -y -1 ∂C ∂x + y -2 ∂((1 + a 2 )C -yA) ∂θ = 0 , which is equivalent to ∂U ∂θ = ∂C ∂z and ∂U ∂ z = 4y -1 ∂C ∂x -4y -2 ∂((1 + a 2 )C -yA) ∂θ . Now Lemma (3, ii) shows that C ≡ 1 and U (z, θ) ≡ -2 √ -1 η(z) is a solution.
So our 1-form ω 0 must be ω 0 = dθ + 4 Im(η(z)) dx + 4 Re(η(z)) dy , up to a multiplicative constant (which we take equal to 1, to have the linking number calculated by ω 0 /2π , see the comment below).

Gathering this, Lemma (3,i), and section 4, we get the following :

Theorem 1 A basis of H 1 (G/Γ
) is made of the 3 following harmonic 1-forms, expressed in the Iwasawa coordinates :

ω 0 := dθ + 4 Im(η(z)) dx + 4 Re(η(z)) dy = d θ + 4 arg(η(z)) , ω 1 := Re(η 4 (z)) dx -Im(η 4 (z)) dy , ω 2 := Im(η 4 (z)) dx + Re(η 4 (z)) dy .
ω 1 and ω 2 are bounded, and

ω 0 = π 3 dx + dθ + O(ye -2π y ) near y = ∞ .
As usual, we identify the forms on G/Γ with the Γ -(left-)invariant forms on G .

Note that the norms of the forms dx and dy are of magnitude ỹ (defined in section 5), though the norm of dθ is of magnitude 1. Then ω 0 is unbounded, having a singularity at the cusp of G/Γ , and does not belong to L 1 (G/Γ , µ) . This agrees with the different natures of the windings involved : whereas ω 0 calculates the singular windings about the trefoil knot (even if located at infinity), ω 1 and ω 2 calculate regular windings around a handle, and belong to L 2 (G/Γ , µ) .

Observe that ω 0 also calculates a sort of angle, about the trefoil knot at infinity, and that the corresponding linking number is then calculated by ω 0 /2π . This is coherent with the approximation in Theorem 1 above :

ω 0 2π = dx 6 + O(1) near y = ∞ ,
showing that our linking number is mainly made of the number of windings around the cusp performed by the projection on IH 2 /Γ ; note that it is clear on the fundamental domain D that a loop aroud the cusp corresponds to an increase of x by ±6 . The norms mentioned above are relative to any left-invariant Riemannian structure on the Lie group G (and on G/Γ ). But more precisely, with respect to the precise canonical Riemannian structure ((g a ij )) (see section 5), we have the following.

Corollary 1 Expressed in the dual basis

(L * α , L * κ , L * λ ) of (L α , L κ , L λ ) , we have ω 0 = L * κ + sin θ + 4y[Re(η(z)) cos θ -Im(η(z)) sin θ] L * α + -cos θ + 4y[Re(η(z)) sin θ + Im(η(z)) cos θ] L * λ , ω 1 = [Re(η 4 (z)) cos θ -Im(η 4 (z)) sin θ]yL * λ -[Re(η 4 (z)) sin θ + Im(η 4 (z)) cos θ]yL * α , ω 2 = [Re(η 4 (z)) sin θ + Im(η 4 (z)) cos θ]yL * λ + [Re(η 4 (z)) cos θ -Im(η 4 (z)) sin θ]yL * α .
As a consequence, we have

|ω 0 | 2 = 1 + a 2 + 16y 2 |η(z)| 2 -8y Im(η(z)) , |ω 1 | 2 = |ω 2 | 2 = y 2 |η(z)| 8 , ω 1 , ω 2 = 0 , ω 0 , ω 1 = 4y 2 [Re(η 4 (z))Im(η(z)) -Im(η 4 (z))Re(η(z))] -y Re(η 4 (z)) , ω 0 , ω 2 = 4y 2 [Re(η 4 (z))Re(η(z)) + Im(η 4 (z))Im(η(z))] -y Im(η 4 (z)) .

Left Brownian motion on G

The Brownian motion g s = g(z s , θ s ) = g(y s , x s , θ s ) on G has infinitesimal generator Setting dU s := sin θ s dY s + cos θ s dX s and dV s := cos θ s dY s -sin θ s dX s , we get a standard 3-dimensional Brownian motion (U s , V s , W s ) such that

dy s = y s dU s , dx s = y s dV s , dθ s = a dW s -dV s .
Hence we see that the projection of our Brownian motion g s = (y s , x s , θ s ) on the hyperbolic plane IH 2 , that is to say on the Iwasawa coordinates (y, x) , is simply the standard hyperbolic Brownian motion of IH 2 , and that the angular component (θ s ) is just a real Brownian motion with variance (1 + a 2 ).

Remark 2 The degenerate limit-case a = 0 is quite possible for the left Brownian motion (g s ) . It corresponds to the Carnot degenerate metric on G, and to the horizontal left Brownian motion on G, associated with the Levi-Civita connexion on IH 2 .

Three martingales

Let us denote by

M j t := g[0,t]
ω j , j ∈ {0, 1, 2} , the 3 martingales obtained by integrating the 3 harmonic forms ω j along the paths of the left Brownian motion (g s ).

Let us introduce also

M t := M 1 t + √ -1 M 2 t = g[0,t]
η 4 (z) dz , which by Corollary 1 is a conformal martingale.

Note that we may as well consider the Brownian motion (g s ) as living on G or on G/Γ .

Section 7 and Theorem 1 show that

M 0 t = a W t + t 0 4 Re η(z s ) y s dU s + (4 Im η(z s ) y s -1) dV s , M 1 t = t 0 Re η 4 (z s ) y s dV s -Im η 4 (z s ) y s dU s , M 2 t = t 0 Im η 4 (z s ) y s dV s +Re η 4 (z s ) y s dU s ,
and then

M t = t 0 η 4 (z s ) y s d(V s + √ -1 U s ) .
Lemma 5 The law of (M 1 t , M 2 t )/ √ t converges towards the centred Gaussian law with covariance matrix equal to the unit matrix multiplied by the variance 3 π D 0 |η(z)| 8 dxdy .

Proof By the above, we have some complex Brownian motion ( Zs ) such that

M t = Z M t = Z t 0 y 2 s |η(z s )| 8 ds ,
and then by scaling, we have the following identity in law (for each t > 0) :

t -1 2 M t ≡ Z M t /t = Z t -1 t 0 y 2 s |η(z s )| 8 ds ,
which by ergodicity converges to

Z G/Γ y 2 |η(z)| 8 dµ = Z D |η(z)| 8 dx dy 2π = Z 3 π D 0 |η(z)| 8 dx dy .
Then let us consider, for any r > 0 , the martingale

N r t := π 3 t 0 1 {ỹs>r} y s dV s = π 3 t 0 1 {ỹs>r} dx s ,
where ỹ is the height in the cusp (defined in section 5). Now using that ω 0 is bounded in the compact {ỹ s ≤ r} and using Lemma (3, iii) observe that M 0 t -N r t is a martingale with bounded quadratic variation, so that as t → ∞ M 0 t -N r t / √ t converges in law and M 0 t -N r t /t goes to 0 in L 2 -norm. Hence M 0 t /t behaves as N r t /t , which depends only on the hyperbolic Brownian motion (z s ) , as M t .

Asymptotic Brownian windings in G/Γ

The following theorem describes the asymptotic Brownian windings in G/Γ .

Theorem 2 As t → ∞, M 0 t t , M 1 t √ t , M 2 t √ t
converges in law towards (C, N 1 , N 2 ) , where the variables C, N 1 , N 2 are independent, C is Cauchy with parameter 1 2 , and N 1 , N 2 are centred Gaussian with variance 3

π D 0 |η(z)| 8 dxdy .
Observe the irrelevance of the parameter a in this theorem, which is valid as well in the degenerate case a = 0 . The reason is that a was initially the inverse norm of L κ = ∂ ∂θ , which does not concern ω 1 and ω 2 , and which in ω 0 contributes only to a second order term. Technically, in the proof of Theorem 2 below M 0 t /t is firstly replaced by N r t /t (defined at the end of Section 8) which, as M t , does not depend on the real parameter a .

Remark 3 Theorem 2 is true as well for all finite dimensional marginals :

as t → ∞, M 0 c j t /t , M 1 c j t / √ t , M 2 c j t / √ t , 1 ≤ j ≤ N , for any given N ∈ IN * and 0 < c 1 < .. < c N , converge jointly towards (C c j , N 1 c j , N 2 c j )
, where the processes C, N 1 , N 2 are independent, started from 0, C is Cauchy with parameter 1 2 , and N 1 , N 2 are real Brownian with variance 3

π D 0 |η(z)| 8 dz .
Proof of this remark 3 is somewhat more tedious than the proof of Theorem 2, but without notable additional difficulty (but notational). So it will be omitted.

Proof of Theorem 2

Let us split this involved proof in several items.

Note that a large part of the arguments and techniques employed below already appeared more or less in the union of [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], [ELJ], [F1], and [F2], but none of these articles contain them almost all, and the major difficulty here is to establish the asymptotic independence of regular and singular windings, that is to say the independence of C and (N 1 , N 2 ) in the theorem. Moreover such a question of independence seems not to have been yet dealed with, except in [GLJ] by means of a coding method concerning the geodesic flow on a surface. From a probabilistic and technical point of view, this could be the main interest of the present proof.

Excursions near the cusp

Fix r, q > 0 , and set τ := min{s > 0 | ỹs > r + q} , σ := min{s > 0 | ỹs < r} , τ 0 := 0 , and for n ∈ IN :

σ n := τ n + σ • Θ τn , τ n+1 := σ n + τ • Θ σn .
Note that [τ n , σ n ] is the n-th discretized excursion interval near the cusp (cut at level r).

Let us also set ζ

n := max{s ≤ σ n | ỹs ≥ r + q} . Denote by C r t := max{n ∈ IN | ζ n ≤
t} the number of complete discrete excursions near the cusp performed till time t . This is an additive functional, and then C r t /t converges almost surely as t → ∞, by the ergodic theorem, towards some constant .

Note that we shall finally let r and q go to ∞ , in such a way that q/r → 0 (taking for example q = √ r ).

Observe then that we have lim

N →∞ N n=1 (σ n -τ n )/N = IE(σ 1 -τ 1 ) almost surely, since
the irrelevance of the entrance points of our excursions (coming from the fact that (y s ) is an autonomous diffusion) and the Markov property imply the independence of the different variables (σ n -τ n ) . Observe also that t 0

1 {ỹs>r+q} ds ≤ 1+C r t n=0 (σ n -τ n ) and t 0 1 {ỹs>r} ds ≥ C r t n=1 (σ n -τ n ) .
Thus the ergodic theorem yields :

3 π (r+q) = µ[{ỹ > r + q}] ≤ × IE(σ 1 -τ 1 ) ≤ µ[{ỹ > r}] = 3 π r .

Laws of an excursion

We need the duration and winding law of the typical excursion. We proceed more or less as in [ELJ].

Fix c ∈ IR + , and observe by direct application of Itô's formula that

e -c s × (y s ) (1- √ 1+8c )/2
is a bounded martingale. Hence the optional sampling theorem gives

IE r+q e -c σ = 1 + q r (1- √ 1+8c )/2 . This implies that IE[σ n -τ n ] = 2 log 1 + q r for any n ∈ IN * .
Note that this and Section 10.1 imply that h(r, q) := 3 2π (r + q) log 1 + q r ≤ ≤ h (r, q) := 3 2π r log 1 + q r , and therefore that lim q/r→0 q = 3/(2π) . Note that this shows that the variables σn τn y 2 s ds n ≥ 1 are independent and stable with parameter 1 2 . Moreover using the existence of a standard real Brownian motion (w s ) independent of (y s ) such that during each excursion in {ỹ > r} we have

x s = x 0 + w s 0 ỹ2
t dt , we deduce that the variables ϕ n := σn τn dx s n ≥ 1 are independent and Cauchy with parameter q .

Approximation of regular windings

For j = 1, 2 , consider M j t (r) :

= t 0 1 {ỹs≤r} dM j s .
It is clear (see Lemma 5) that (M j t -M j t (r))/ √ t converges in law, with quadratic variation going almost surely to O µ({ỹ > r}) = O(1/r) ; so that (M j t -M j t (r))/t converges uniformly to 0 in probability as r → ∞ .

For ∈ IR 2 and n ∈ IN * , set J n :=

τ n+1 σn ( 1 dM 1 s (r) + 2 dM 2 s (r))
, so that we have

1 M 1 t (r) + 2 M 2 t (r) = 1 M 1 τ 1 (r) + 2 M 2 τ 1 (r) + C r t n=1 J n - τ C r t +1 t 1 {ỹs≤r} ( 1 dM 1 s + 2 dM 2 s ) . Now ( 1 M 1 τ 1 (r) + 2 M 2 τ 1 (r))/
√ t goes to 0 almost surely as t → ∞, and

R t := τ C r t +1 t 1 {ỹs≤r} ( 1 dM 1 s + 2 dM 2 s ) √ t = O sup{(τ n+1 -σ n ) | n ≤ C r t } t ,
so that for any ε > 0

IP (R t > ε ) ≤ IP (C r t > 2 t) + IP sup{(τ n+1 -τ n ) | n ≤ 2 t} ≥ ε t ≤ o(1) + 2 t IP (τ 2 -σ 1 ≥ ε t) = o(1) + O(1/t) ,
since (τ 2 -σ 1 ) is square integrable, as exit time of the compact {ỹ ≤ r + q} .

This shows that

τ C r t +1 t 1 {ỹs≤r} ( 1 dM 1 s + 2 dM 2 s )
√ t goes to 0 in probability as t → ∞ .

Then similarly

IP C r t n=1 J n - [ t] n=1 J n / √ t > ε ≤ IP |C r t /t -| > ε + IP O [( +ε )t] n=[( -ε )t] (τ n+1 -σ n ) > ε t = o(1) + O(1/t) ,
provided we can establish that the correlations between the variables (τ n+1 -σ n ) decay exponentially. To this end, observe that by Markov property and Schwarz inequality

Cov{(τ n+m+1 -σ n+m ), (τ n+1 -σ n )} 2 ≤ IE (τ n+1 -σ n ) 2 × IE IE zσ n+m (τ ) -IE zσ n (τ ) 2 ,
showing that we shall be done if we prove that IE zσ n (τ ) converges exponentially fast in L 2norm as n → ∞ . Now viewing the ergodic stationary historical process (z s | -∞ < s ≤ t) as a suspended flow under the function τ , we may apply Ambrose's Theorem to deduce that the induced Markov chain (z σn , z τ n+1 ) is stationary and ergodic under the so-called Palm invariant probability measure χ induced by µ . See ( [SLM], Exposés I and II). χ being clearly compactly supported, the transition operator of this Markov chain has a spectral gap in L 2 (χ) , from which our exponential decay directly follows.

Hence we have shown that

C r t n=1 J n - [ t] n=1
J n √ t goes to 0 in probability as t → ∞ .

Therefore we have proved that, as t → ∞ ,

1 M 1 t (r) + 2 M 2 t (r) / √ t behaves in probability as [ t] n=1 J n √ t .

Approximation of singular windings

Recall from Section 8 that (M 0 t -N r t )/t goes to 0 in L 2 -norm, and write

N r t = π 3 σ 0 0 1 {ỹs>r} dx s + π 3 C r t n=1 σn τn dx s + π 3 t τ t∧C r t +1 dx s + t 0 O(1)dV s .
It is obvious that 

σ 0 0 1 {ỹs>r} dx s t
= 0 = IP [ỹ t > r + q] = O(µ[{ỹ > r + q}]) = O(1/r) .
Moreover, using that the ϕ n = σn τn dx s , n ∈ IN * , are independent and Cauchy with parameter q , as shown in Section 10.2 above, and denoting by C a right continuous Cauchy process with parameter q , we have for any ε , ε > 0 :

IP C r t n=1 ϕ n - [ t] n=1 ϕ n t > ε -IP |C r t /t -| > ε ≤ 2IP max 0≤k≤ε t [ t]+k n=[ t] ϕ n > ε t ≤ IP sup 0≤s≤ε t |C s | > ε t = IP sup 0≤s≤ε |C s | > ε , showing that lim sup t→∞ IP C r t n=1 ϕ n - [ t] n=1 ϕ n t > ε ≤ IP sup 0≤s≤ε |C s | > ε ,
whence the convergence to 0 in probability of

C r t n=1 ϕ n - [ t] n=1
ϕ n t by letting ε decrease to 0. This method was already in [F1].

So we have proved that, as t → ∞ , M 0 t /t behaves in probability as π 3

[ t] n=1 ϕ n t , and this with probability 1 -O(1/r) .

Conditional independence

So far, we have established that for any ( ,

) ∈ IR 2 × IR A := lim t→∞ IE exp √ -1 [( 1 M 1 t + 2 M 2 t )/ √ t + M 0 t /t] = lim r→∞ lim t→∞ IE exp √ -1 [( 1 M 1 t (r) + 2 M 2 t (r))/ √ t + N r t /t] = lim r→∞   lim t→∞ IE exp √ -1 [ t] n=1 J n √ t + π 3 [ t] n=1 ϕ n t + O(1/r)   = lim r→∞ lim t→∞ IE IE F exp √ -1 [ t] n=1 J n √ t + π 3 t [ t] n=1 ϕ n ,
denoting by F the σ-algebra generated by the variables

{(z σn , z τ n+1 ) | n ∈ IN } .
Now the strong Markov property insures the conditional independence of the variables

{J n , ϕ n | n ∈ IN } . Therefore A = lim r→∞ lim t→∞ IE IE F exp √ -1 [ t] n=1 J / √ t n × IE F exp √ -1 ( π/3t) [ t] n=1 ϕ n = lim r→∞ lim t→∞ IE [ t] n=1 IE F e √ -1 J / √ t n × [ t] n=1 IE F e √ -1 ( π/3 t) ϕn = lim r→∞ lim t→∞ IE [ t] n=1 IE zτ n+1 zσ n e √ -1 J / √ t n × [ t] n=1 IE zσ n
zτ n e √ -1 ( π/3 t) ϕn .

Getting rid of the conditioning

We need to get rid of the above conditioning by F . We first follow the argument of ([EFLJ1], Lemma 12). Setting Y :=

σ 1 τ 1 y 2
s ds and using again that x s = x 0 + w s 0 y 2 t dt during each excursion, we have for any real b :

IE zσ n zτ n e √ -1 b ϕn = IE e √ -1 b w(Y ) w(Y ) modulo 1 ,
and for any real c and positive ε :

IE e √ -1 b w(Y ) w(Y ) ∈]c, c + ε [+Z -1 = IE e √ -1 b w(Y ) -1 × k∈Z 1 {c<w(Y )-k<c+ε } IE k∈Z 1 {c<w(Y )-k<c+ε } = IE (2πY ) -1/2 IR k∈Z e √ -1 b x -1 e -x 2 /(2Y ) 1 {c<x-k<c+ε } dx IE (2πY ) -1/2 IR k∈Z e -x 2 /(2Y ) 1 {c<x-k<c+ε } dx = IE (2πY ) -1/2 c+ε c k∈Z e √ -1 b (x+k) -1 e -(x+k) 2 /(2Y ) dx IE (2πY ) -1/2 c+ε c k∈Z e -(x+k) 2 /(2Y ) dx . Then sup |e √ -1 bk -1| × e -k 2 /(2Y ) k ∈ IR ≤ sup min{2, |bk|} × e -k 2 /(2Y ) k ∈ IR = max max {e -k 2 /(2Y ) | k ≥ 2/|b|} ; max {|bk| × e -k 2 /(2Y ) | 0 ≤ k ≤ 2/|b|} = max e -2(b 2 Y ) -1 ; min{2, |b| √ Y } × exp [-min{1, 4b -2 /Y }/2 ] = 2 e -2(b 2 Y ) -1 1 {Y >4b -2 } + |b| √ Y × e -1/2 1 {Y ≤4b -2 } ≤ |b| √ Y .
Hence we can replace the Riemannian sum above by a Riemannian integral + an error term :

k∈Z e √ -1 b (x+k) -1 e -(x+k) 2 ) = IR e √ -1 b (x+k) -1 e -(x+k) 2 /(2Y ) dk + O(|b| √ Y ) = e -b 2 Y /2 -1 √ 2πY + O(|b| √ Y ) .
Therefore we obtain for all c and ε > 0 (with a uniform O ) :

IE e √ -1 b W (Y ) w(Y ) ∈]c, c + ε [+Z -1 = ε × IE e -b 2 Y /2 -1 + O(|b|) ε × 1 + O(IE(Y -1/2 )) = e -|b|q -1 + O(|b|) 1 + O(1/q) , since IE e -b 2 Y /2 = e -|b|q , which in turn implies IE(Y -1/2 ) = (2π) -1/2
IR e -|b|q db = 1/q . This proves that

IE zσ n zτ n e √ -1 b ϕn = 1 -1 + O n (1/q) × 1 -e -|b|q + O n (|b|) = 1 -1 + O n (1)/q |b| q ,
with O n (1) denoting a uniformly bounded function of z σn .

End of the proof of Theorem 2

Let us apply the result of the preceding section 10.6 for large q and r/q , and for b = π/3t , with t → ∞ . We get from the above and from Birkhoff's ergodic Theorem applied to the Markov chain (z σn ) (via the sequence O n (1)) :

[ t] n=1 IE zσ n zτ n e √ -1 ( π/3 t) ϕn = [ t] n=1 1 -1 + O n (1)/q | |q π/3t = exp - | |q π 3t [ t] n=1 (1 + O n (1)/q) + o(1) t→∞ -→ exp - | | q π 3 (1 + O(1/q)) .
Coming back to Section 10.5 and taking for example q := √ r , this yields :

A = lim r→∞ lim t→∞ IE [ t] n=1 IE zτ n+1 zσ n e √ -1 J / √ t n × exp - | | q π 3 (1 + O(1/q)) = lim r→∞ lim t→∞ IE exp √ -1 √ t ( 1 M 1 t (r) + 2 M 2 t (r)) × exp - | | q π 3 (1 + O(1/q)) = lim t→∞ IE exp √ -1 √ t ( 1 M 1 t + 2 M 2 t ) × e -| |/2 = exp - 3| | 2 π D 0 |η(z)| 8 dz - | | 2 ,
by Section 10.2 and Lemma 5. This achieves the proof of Theorem 2, since A was defined in Section 10.5 as lim

t→∞ IE exp √ -1 1 M 1 t + 2 M 2 t √ t + M 0 t t .
11 Geodesics of G

Description of these geodesics

The Levi-Civita connexion of G = P SL 2 (IR) equipped with its Riemannian structure ((g a ij )) of Section 5 has Christoffel coefficients classically given by

Γ i jk = 1 2 ∂ j g a k + ∂ k g a j -∂ g a jk × g i a for 1 ≤ i, j, k ≤ 3 ,
and the geodesics (γ t ) are the solutions of the following system :

d 2 γ i t dt 2 + Γ i jk (γ t ) × dγ j t dt × dγ k t dt = 0 for 1 ≤ i ≤ 3 .
Using the expression of Lemma 4 for ((g a ij )) , a somewhat tedious but direct computation gives the equation of geodesics (γ t = (y t , x t , θ t )) of G in the Iwasawa coordinates by means of the following system :

y t -y 2 t /y t + (1 + a -2 )x 2 t /y t + a -2 x t θ t = 0 ; x t -(2 + a -2 )y t x t /y t -a -2 y t θ t = 0 ; θ t + (1 + a -2 )y t x t /y 2 t + a -2 y t θ t /y t = 0 .
Linearly combining the last two equations gives θ t = (-x t /y t ) . Consequently our geodesic system is equivalent to the following, for some real constant c . θ t = c -x t /y t ;

x t -2y t x t /y t -ca -2 y t = 0 ;

y t -y 2 t /y t + x 2 t /y t + ca -2 x t = 0 .
Eliminating ca -2 between the last two equations gives some real constant C such that

x 2 t + y 2 t = C 2 y 2 t .
Considering then the [-1, 1]-valued function f (t) := y t /(Cy t ) and eliminating x t , we get the equation

f + C (1 -f 2 ) ± ca -2 1 -f 2 = 0 . Now consider k := ±a -2 c/C , and h(z) := -1 C z 0 ds (1 -s 2 ) + k √ 1 -s 2 .
Letting apart the simple case when f is constant, and then when (y t , x t ) runs a straight line or is constant, we must have h • f (t) = t -t 0 . Changing the variable by 1] in the formula for h , we get successively the following computations.

u := 1- √ 1-s 2 s ∈ [-1,
-

If |k| = 1 : h(z) = -1± √ 1-z 2 Cz and then f (t) = -2C(t-t 0 ) 1+C 2 (t-t 0 ) 2 = -1 C d dt log 1 + C 2 (t -t 0 ) 2 , whence y(t) = C 1 + C 2 (t -t 0 ) 2 , x(t) = x 0 + CC (t -t 0 ) 1 + C 2 (t -t 0 ) 2 . -If |k| < 1 : h(z) = -2 C √ 1-k 2 argth 1-k 1+k 1- √ 1-z 2 z
and then

f (t) = -1 C × d dt log ch C √ 1 -k 2 (t -t 0 ) -k , whence y(t) = C ch [C √ 1 -k 2 (t -t 0 )] -k , x(t) = x 0 + C √ 1 -k 2 × sh [C √ 1 -k 2 (t -t 0 )] ch [C √ 1 -k 2 (t -t 0 )] -k . -If |k| > 1 : h(z) = -2 C √ k 2 -1 arctg k-1 k+1 1- √ 1-z 2 z
and then

f (t) = -1 C × d dt log k -cos C √ k 2 -1(t -t 0 ) , whence y(t) = C k -cos[C √ k 2 -1(t -t 0 )] , x(t) = x 0 + C √ k 2 -1 × sin[C √ k 2 -1(t -t 0 )] k -cos[C √ k 2 -1(t -t 0 )] .
As a consequence, we see that our geodesics project on the hyperbolic plane IH 2 in the following way.

-If |k| = 1 : (x(t) -x 0 ) 2 + (y(t) -C /2) 2 = (C /2) 2 , and we get an horocycle ;

-If |k| < 1 : (x(t) -x 0 ) 2 + (y(t) + C k 1-k 2 ) 2 = ( C 1-k 2 ) 2
, and we get an Euclidian circle intersecting IR, which is a geodesic if and only if k = 0 ;

-If |k| > 1 : (x(t) -x 0 ) 2 + (y(t) -C k k 2 -1 ) 2 = ( C k 2 -1
) 2 , and we get an Euclidian circle totally included in IH 2 (necessarily C k > 0). This is thus also an hyperbolic circle.

Finally we recover θ(t) from the initial equations.

For constant function f , we see at once that θ (t) must be constant.

For |k| = 1, we find that θ(t) = θ 0 + (1 + a 2 )Ct -2 arctg(C(t -t 0 )) . For |k| < 1, we find that θ(t) = θ 0 + Cka 2 t -2 arctg th[C √ 1 -k 2 (t -t 0 )/2] .
For |k| > 1, we find that θ(t

) = θ 0 + C|k|a 2 t - √ k 2 -1 C √ k 2 -1(t-t 0 ) 0 dϕ |k|-cos ϕ .
In this last case, we observe that we may choose k > 1, and that using the 2π periodicity we have v

0 dϕ |k|-cos ϕ = 2π √ k 2 -1 × [ v 2π ] + O(1)
. Observe still that the constant energy of these geodesics equals

g a ij (γ t ) dγ i t dt dγ j t dt = (1 + k 2 a 2 )C 2 .
Hence prescribing speed 1 gives |C| as a function of |k| . We have finally shown the following.

Proposition 2 For any geodesic γ(t) = (y(t), x(t), θ(t)) of speed 1 of G, there exist constants C ∈ [-1, 1] , C > 0 , and t 0 , x 0 , θ 0 ∈ IR such that one of the four following cases occurs. We let k ∈

[-1, 1] satisfy (1 + k 2 a 2 )C 2 = 1 .
Case 1 The projection on IH 2 is a straight line (quasi-geodesic or horocycle), or a point.

Case 2 |k| = 1 . The projection on IH 2 is the horocycle having equation

(x -x 0 ) 2 + (y -C /2) 2 = (C /2) 2 . Precisely, we have y(t) = C 1 + C 2 (t -t 0 ) 2 , x(t) = x 0 + CC (t -t 0 ) 1 + C 2 (t -t 0 ) 2 , θ(t) = θ 0 + t C -2 arctg(C(t -t 0 )) .
Case 3 |k| < 1 . The projection on IH 2 is the quasi-geodesic having equation

(x -x 0 ) 2 + (y + C k 1-k 2 ) 2 = ( C 1-k 2 ) 2
. Precisely, we have

y(t) = C ch [C √ 1 -k 2 (t -t 0 )] -k , x(t) = x 0 + C √ 1 -k 2 × sh [C √ 1 -k 2 (t -t 0 )] ch [C √ 1 -k 2 (t -t 0 )] -k , θ(t) = θ 0 + Cka 2 t -2 arctg th[C √ 1 -k 2 (t -t 0 )/2] .
Case 4 k > 1 . The projection on IH 2 is the circle (totally included in IH 2 ) having equation

(x -x 0 ) 2 + (y -C k k 2 -1 ) 2 = ( C k 2 -1 ) 2
. Precisely, we have

y(t) = C k -cos[C √ k 2 -1(t -t 0 )] , x(t) = x 0 + C √ k 2 -1 × sin[C √ k 2 -1(t -t 0 )] k -cos[C √ k 2 -1(t -t 0 )] , θ t = θ 0 + Cka 2 t - √ k 2 -1 C √ k 2 -1 t 0 dϕ k -cos ϕ = (ka 2 - √ k 2 -1 ) C t + O(1) .
In this case the geodesic has periodic projection, and even is periodic (with Riemannian length

2πq |C| √ k 2 -1 ) if ka 2 C √ k 2 -1
is rational (equal to p/q with p, q relatively prime integers). In all cases, we have x (t) 2 + y (t) 2 = C 2 y(t) 2 for any real t, so the projection on IH 2 has constant energy (speed), and it is the intersection of IH 2 with an Euclidian circle or line.

Corollary 2 Let (γ t ) denote the geodesic of G generated by (y, x, u, v, w) ∈ T 1 G , where γ 0 = (y, x, θ) is the base point in Iwasawa coordinates, and (u, v, w) are the coordinates of γ 0 in the basis y

∂ ∂y , y ∂ ∂x , ∂ ∂θ of T 1 (y,x,θ) G . So that (using Lemma 4) we have w = -v ± a √ 1 -C 2 =: w ± (u, v) , with C 2 := u 2 + v 2 .
Then the geodesic (γ t ) lives on the leaf of T 1 G , say L(C 2 , +) , having equations

{u 2 + v 2 = C 2 , w = w + (u, v)} , or on the leaf L(C 2 , -) , having equations {u 2 + v 2 = C 2 , w = w -(u, v)}
, and has closed (periodic) projection on IH 2 if and only if

C 2 < 1 1+a 2 .
Remark 4 1) The geodesics of G which project on a geodesic of IH 2 correspond to k = 0 , or equivalently to C 2 = 1 , and then are exactly the horizontal geodesics of G ≡ T 1 IH 2 , IH 2 being endowed with its Levi-Civita connexion.

2) The quasi-geodesic γt = (y(t), x(t)) of case 3 in Proposition 2 above is at bounded distance of the geodesic g of IH 2 having the sames ends :

g t = C √ 1-k 2 ch (Ct) , x 0 + C sh (Ct) √ 1-k 2 ch (Ct) .
More precisely, we see by an easy computation that for any real t

ch [dist(γ t , g √ 1-k 2 t )] = 1/ √ 1 -k 2 = ch [dist(γ t , g)] .
This is the same (as it must be by changing the point at ∞) for the quasi-geodesics (nonhorizontal half-lines) of case 1 in Proposition 2.

Consequently, all quasi-geodesics we get as projections on IH 2 of the geodesics of G are made of equidistant points with respect to some geodesic of IH 2 .

3) The case 1 in Proposition 2 above appears as exceptional only due to the choice of a particular point of ∂IH 2 sent to ∞ in the Poincaré half-plane model. This choice is directly dependent of the choice of the Iwasawa coordinates on G.

Exponential geodesics

Making a stronger use of the Lie group structure of G = P SL 2 (IR), we find among the geodesics which ones are given by exponentials.

Denote by ∇ the Levi-Civita connexion of G (of course still equipped with its Riemannian structure ((g a ij )) of Section 5). Again a somewhat tedious but direct computation (note however that by left-invariance it is enough to make this computation at the unit element of G ; or alternatively to use the formula

∇ L i L j = 1 2 k (c k i,j + L j 2 L k 2 c j k,i -L i 2 L k 2 c i j,k )L k ,
where the c k i,j are the structure constants of G) gives the following covariant derivatives for our basic left-invariant vector fields :

∇ L λ L λ = ∇ Lα L α = ∇ Lκ L κ = 0 ; ∇ Lα L λ = 1 2 L κ = -∇ L λ L α ; ∇ L λ L κ = 1 2a 2 L α ; ∇ Lκ L λ = (1 + 1 2a 2 )L α ; ∇ Lα L κ = -1 2a 2 L λ ; ∇ Lκ L α = -(1 + 1 2a 2 )L λ .
As a consequence we see that

∇ (uL λ +vLα+wLκ) (uL λ + vL α + wL κ ) = (1 + a -2 ) w (uL α -vL λ ) .
Hence we get the geodesics of G which are given by exponentials as the one-parameter left cosets generated by the vector fields aL κ and (cos ϕ)L λ + (sin ϕ)L α , ϕ ∈ IR/2πZ . Equivalently, these are the following exponentials : t → g 0 exp[atκ] = g(z 0 , θ 0 + at/2) , and t → g 0 exp (t cos ϕ)λ + (t sin ϕ)α = g 0 ch (t/2) + sin ϕ sh (t/2) cos ϕ sh (t/2) cos ϕ sh (t/2) ch (t/2) -sin ϕ sh (t/2) , which are respectively the vertical and horizontal geodesics.

12 Ergodic measures for the geodesic flow on G/Γ

Corollary 2 above shows that the leaves u 2 + v 2 = C 2 of T 1 G/Γ are stable under the geodesic flow, disjoint, and that they are made of closed geodesics for C 2 < 1 1+a 2 . Hence we have the following necessary condition for an ergodic measure to exist.

Corollary 3 Any ergodic invariant measure for the geodesic flow on G/Γ must be carried by a leaf

L(C 2 , ε) of equation {u 2 + v 2 = C 2 , w = w ε (u, v)} (in the basis chosen in Corollary 2 above, with C 2 ∈ [0, 1] and ε = ± ). Moreover if C 2 < 1 1+a 2 and if ka 2 C √ k 2 -1
is rational, then it must be carried by some closed (periodic) geodesic.

Notice that the ergodic invariant measures for the geodesic flow on G/Γ which are carried by a leaf L(C 2 , ε) such that C 2 < 1 1+a 2 would lead to a more or less trivial asymptotic result for the integrals of harmonic 1-forms along the geodesic flow on G/Γ . So we drop them henceforth.

Lemma 6 For (C 2 , ε) fixed such that 1 ≥ C 2 > 1 1+a 2 , there is a natural one-to-one map ψ = ψ C ε from the leaf L(C 2 , ε) (seen as made of geodesics of G/Γ having initial value θ 0 = 0 for their angular part θ t ) onto the set of geodesics of IH 2 /Γ . This map goes as follows : with any geodesic γ of the leaf L(C 2 , ε), associate successively the projection γ on IH 2 of its lift to G, and the projection ψ(γ) on IH 2 /Γ of the geodesic of IH 2 at bounded distance of γ. This map makes sense as well between the set of line-elements of L(C 2 , ε) and T 1 (IH 2 /Γ ) .

Proof Proposition 2 (case 3), Corollary 2 and Remark (4,2) insure that our map ψ = ψ C ε is well defined. Note indeed the necessary Γ -invariance : if two line-elements in T 1 G can be identified modulo some g ∈ Γ , then the same g identifies their projections in IH 2 /Γ . In the reverse sense, to any geodesic ψ(γ) of IH 2 /Γ corresponds a unique geodesic lifted to IH 2 , then two quasi-geodesics in IH 2 at constant distance 1/ √ 1 -k 2 = a/ √ a 2 + 1 -C -2 of this lift, according to the sign of k. Then since the formulas of Case 3 in Proposition 2 give θ (t) + x (t)/y(t) = Ca 2 k = ±a √ 1 -C 2 , we see that the choice of ε prescribes the sign of k (the sign of C determining the sense of the geodesic ψ(g)), and then a unique quasigeodesic, whence by the equations for the geodesics of G a unique γ (for any prescribed initial value θ 0 of the angular part). By using furthermore the orthogonal projection in IH 2 between our quasi-geodesics and their associated geodesic, we get at once the analogous map at the level of line-elements.

Remark 5 Note that in fact each leaf L(C 2 , ε) splits into a continuum of sub-leaves : L(C 2 , ε) = θ 0 ∈IR/2πZ L(C 2 , ε, θ 0 ), taking into account the initial value θ 0 of the angular part (either at time 0, or above the orthogonal projection of the fixed point √ -1 on the quasi-geodesic γ) of the geodesic γ. Thus this is indeed the set of its line-elements of each sub-leaf L(C 2 , ε, θ 0 ), which is set in one-to-one correspondence with T 1 (IH 2 /Γ ) ≡ G/Γ by the map ψ = ψ C ε,θ 0 . Note that L(C 2 , ε, θ 0 ) has indeed 3 dimensions, as G. However, this initial value θ 0 will not matter anyway in the following, so that we drop it henceforth, going on with the shorter notation L(C 2 , ε), ψ C ε .

Now it is known (see [H]) that the Liouville measure on T 1 (IH 2 /Γ ) is invariant and ergodic under the geodesic flow. This fact and Lemma 6 above allow therefore the following.

Definition 1 For (C 2 , ε) fixed such that 1 ≥ C 2 > 1 1+a 2 , denote by µ C ε the image of the normalized Liouville measure µ on T 1 (IH 2 /Γ ) ≡ G/Γ under the map ψ C ε of Lemma 6. So µ C
ε is a probability measure on the set of line-elements of the leaf L(C 2 , ε) , which is invariant and ergodic under the geodesic flow on G/Γ .

Asymptotic geodesic windings

We fix here a leaf L(C 2 , ε) , and endow it with the ergodic invariant probability measure µ C ε of Definition 1. We want to obtain the asymptotic law under µ C ε of

t -1 γ[0,t] ω 0 , t -1/2 γ[0,t] ω 1 , t -1/2 γ[0,t] ω 2 as t → ∞ ,
where the geodesic γ of G/Γ is chosen (at time 0) according to µ C ε and γ[0, t] denotes this geodesic γ run during the time-interval [0, t] .

Note that by the Γ -invariance of the forms ω j it makes no difference to think of the geodesics γ as started in the fundamental domain D and living on G, the forms being harmonic on G as well.

The following lemma reduces essentially our study of the geodesics of G to a study of the geodesics of IH 2 .

Lemma 7 As t → ∞, the asymptotic law of t -1

γ[0,t] ω 0 , t -1/2 γ[0,t] ω 1 , t -1/2 γ[0,t] ω 2 under µ C ε = µ C ε (dγ)
is the same as the asymptotic law under the Liouville measure µ = µ(dg) on T 1 (IH 2 /Γ ) of the following (ω 0 denoting (ω 0 -dθ)) :

ε a √ 1 -C 2 + a t √ 1 -C 2 -1 g[0,t] ω 0 , a t √ 1 -C 2 -1/2 g[0,t] ω 1 , a t √ 1 -C 2 -1/2 g[0,t] ω 2 .
Proof Let us deal first with ω 1 , ω 2 . By Definition 1 and Lemma 6 and the fact that ω j = π * ω j for 1 ≤ j ≤ 2, π denoting here the canonical projection from G ≡ T 1 IH 2 onto IH 2 , we just have to compare t -1/2 γ[0,t]

ω j = t -1/2 γ[0,t] ω j with t -1/2 ψ(γ)[0,t] ω j .
Now use that on IH 2 ω j = dF j is exact, and recall from Remark (4,2) that the geodesic ψ(γ) must be run at speed

|C| √ 1 -k 2 = √ 1 -C 2 /a , to get : γ[0,t] ω j - ψ(γ)[0, √ 1-C 2 t a ] ω j = F j (γ(t)) -F j (ψ(γ)( √ 1 -C 2 t a )) -F j (γ(0)) + F j (ψ(γ)(0)) ≤ 2 ω j ∞ √ 1 -k 2 . This shows that t -1/2 γ[0,t] ω j - ψ(γ)[0, √ 1-C 2 t a ]
ω j goes uniformly to 0, whence the result relating to ω 1 , ω 2 . Now we have to deal with ω 0 , which from Theorem 1 writes ω 0 = dθ + ω 0 , with ω 0 = π * ω 0 . Thus we can handle ω 0 as ω 1 , ω 2 above, to get :

γ[0,t] ω 0 = γ[0,t] ω 0 = ψ(γ)[0, √ 1-C 2 t a ] ω 0 + O(1) × Ỹ (ψ • γ, 0) + Ỹ (ψ • γ, t) , where Ỹ (g, t) := sup ỹ(z) dist(g( √ 1 -C 2 t a ), z) ≤ 1/ √ 1 -k 2 .
On the other hand we have by Proposition 2 (Case 3) and the proof of Lemma 6 :

γ[0,t] dθ = Cka 2 t + O(1) = ε a √ 1 -C 2 t + O(1) .
Therefore the asymptotic law of t -1 γ[0,t] ω 0 under µ C ε (dγ) is the same as the asymp-

totic law of ε a √ 1 -C 2 + t -1 g[0, √ 1-C 2 t a ]
ω 0 + O Ỹ (g, 0) + Ỹ (g, t) t under µ(dg) .

Observe further that under µ(dg) the process Ỹ (g, t) is stationary, so that the last term above asymptotically vanishes in probability. Hence we have shown that the asymptotic law of t -1 γ[0,t] ω 0 under µ C ε (dγ) is the same as the asymptotic law of

ε a √ 1 -C 2 + t -1 g[0, √ 1-C 2 t a ]
ω 0 under µ(dg) .

Finally the result is valid jointly for the term with ω 0 and the two others, since for each the neglected contributions vanish in probability. It remains only to replace t by a t √ 1-C 2 .

The following theorem describes the asymptotic geodesic windings in G/Γ , under the ergodic measures of Section 12.

Theorem 3 Let us consider a fixed leaf L(C 2 , ε) (defined in Corollary 3) of G/Γ , with 1 ≥ C 2 > 1 1+a 2 , endowed with the ergodic invariant probability measure µ C ε of Definition 1.

Then the law under µ

C ε = µ C ε (dγ) of t -1 γ[0,t] ω 0 , t -1/2 γ[0,t] ω 1 , t -1/2 γ[0,t] ω 2 converges as t → ∞ to the law of ε a √ 1 -C 2 + 2 √ 1 -C 2 a C , 2 √ 1 -C 2 a 1/2 N 1 , 2 √ 1 -C 2 a 1/2 N 2 ,
where the variables C, N 1 , N 2 are independent, C is Cauchy with parameter 1 2 , and N 1 , N 2 are centred Gaussian with variance 3 π D 0 |η(z)| 8 dxdy.

Note a clear difference between the Brownian and geodesic behaviors : mainly, here (counter to the Brownian case) the dθ-part of the form ω 0 is responsible for a non-negligible asymptotic contribution. Moreover the parameter a now appears in the limit law. This makes a noteworthy contrast with the hyperbolic case (see [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], [START_REF] Enriquez | Central limit theorem for the geodesic flow associated with a Kleinian group, case δ > d/2[END_REF], [F2]). This difference appears in Lemma 7 above, whereas once the dθ-part has been moved away, the remaining asymptotic law is essentially the same as the Brownian one, given by Theorem 2. So that our remaining task will be below mainly to compare on IH 2 the geodesic paths to the Brownian paths, somewhat in the spirit of the methods already employed in [START_REF] Enriquez | Stable windings on hyperbolic surfaces[END_REF], [ELJ], [F2], [START_REF] Jan | The central limit theorem for the geodesic flow on non compact manifolds of constant negative curvature[END_REF], but in a more synthetic and simple way, taking advantage of the fact that we have here, somewhat as in [START_REF] Jan | Sur l'enroulement géodésique des surfaces de Riemann[END_REF], to deal only with the closed forms ω 0 , ω 0 , ω 1 , ω 2 .

Proof of Theorem 3

The strategy for this proof is mainly to replace the geodesic paths by the Brownian paths, as in [ELJ], [F2], [START_REF] Jan | Sur l'enroulement géodésique des surfaces de Riemann[END_REF], in order to reduce Theorem 3 to Theorem 2. But we shall here take advantage of the closedness of our forms ω 0 , ω 0 , ω 1 , ω 2 , somewhat as in [START_REF] Jan | Sur l'enroulement géodésique des surfaces de Riemann[END_REF], to simplify sensibly the proofs of these articles. In particular, we do not any more have to use a spectral gap, nor to rise to the stable foliation. Another change (and hopefully clarification) with respect to these proofs is the use of a simultaneous disintegration of the Liouville and the Wiener measures : we avowedly condition the Brownian motion (starting from a given point z ∈ IH 2 ) to exit the hyperbolic plane at the same point as a given geodesic (starting also from z). This point of view was more or less implicit in the preceding proofs, but did not appear transparently.

The asymptotic law we are looking for is given by the asymptotic behavior, as t → ∞ and for ∈ IR 3 , of the following quantity :

J t := G/Γ exp √ -1 0 t g[0,t] ω 0 + 1 √ t g[0,t] ω 1 + 2 √ t g[0,t]
ω 2 µ(dg) .

Conditionning by the end-points

Using the notation g = g(z, θ) = g(y, x, θ) and the expression of µ = µ(y, x, θ) in the Iwasawa coordinates (seen in Section 5), and setting ω 0 := 0 ω 0 , ω := 1 ω 1 + 2 ω 2 , we have

J t = D 2π 0 exp √ -1 t -1 g(y,x,θ)[0,t] ω 0 + t -1/2 g(y,x,θ)[0,t]
ω dθ dx dy 4π 2 y 2 .

Then for (z = x + √ -1 y , θ) ∈ IH 2 × (IR/2πZ) , denote by (z θ t ) the geodesic defined by g(z, θ) , and by IP θ z the law of the Brownian motion (Z θ t ) of IH 2 , started from z and conditionned to exit IH 2 at the positive end z θ ∞ of the geodesic of IH 2 defined by g(z, θ) . Consider then the the hitting time by the coordinate process (Z t ) of the stable horocycle defined by (z θ ∞ , z θ t ) , say h t . It is defined precisely by The following lemma insures that the disintegration of the Liouville and Wiener measures is simultaneous, by conditionning with respect to the end-point z θ ∞ . A reason for that is that the harmonic measures at ∂IH 2 are the sames for both, namely p(z, u)du . Proof (Z θ t ) is by definition the h-process of the unconditioned Brownian motion, with h(z) = p(z, z θ ∞ ) , p(z, u) = y/|z -u| 2 still denoting the Poisson kernel. Hence we have for any (z, θ) , any t and any F t -measurable positive functional F t :

h t = h z,θ t := inf{s > 0 | B z θ ∞ (z, Z s ) = e t } ,
IE θ z [F t ] = IE z [B z θ ∞ (z, Z t ) × F t ]
. The first identity of the lemma follows, since for any z, θ, Z we have Integrating this first identity with respect to the normalized volume measure dx dy 2π y 2 gives immediately the second identity of the lemma.

From geodesics to Brownian paths

We perform here the substitution of the Brownian paths for the geodesics. Our first aim is to establish the following.

Proposition 3 As t → ∞ , J t (defined just before Section 14.1) behaves as

K t := D 2π 0 IE θ z exp √ -1 t Z h t z ω 0 + √ -1 √ t Z h t z
ω dθ dx dy 4π 2 y 2 .

Our forms being closed, we have the following expression for J t : is the point at which the Brownian motion (Z 0 t ) started from √ -1 and conditionned to exit at ∞ hits the horizontal horocycle having equation y = e t . Now (Z 0 t ) is the h-process of the unconditioned Brownian motion, with h(z) = p(z, ∞) ≡ y , so that its infinitesimal generator is 1 2 y -1 ∆ • y = 1 2 ∆ + y∂ y , ∆ denoting the Laplacian of IH 2 , and then we have Z 0 t = √ -1 e wt+t/2 + t 0 e ws+s/2 dW s , for two independent standard real Brownian motions (w t ) and (W t ).

J t = D 2π 0 IE θ z exp √ -
As a consequence, using the boundedness of ω , we have The technical Brownian behavior we need now and after is given by the following.

Lemma 9 As t → ∞ , e -t inf{s | ws+s/2=t} 0 e ws+s/2 dW s converges in law, and inf{s | w s + s/2 = t} = 2t + o(t q ) almost surely, for any q ∈]1/2, 1] .

Proof Fix c ∈ IR , and look for a C 2 function f on IR + such that R t := e -(c 2 /2) t 0 (y 0 s ) 2 ds f (y 0 t ) be a martingale, with y 0 t = e wt+t/2 . (y 0 t ) having generator 1 2 y 2 ∂ 2 y + y∂ y , we have by Itô's formula Finally, the second sentence of the lemma is straightforward from the following observation : setting again h t = h √ -1 ,0 t = inf{s | w s + s/2 = t} = inf{s | y 0 s = e t } , we have t = log y 0 ht = 1 2 h t + w ht = 1 2 h t + o((h t ) q ) .

As a consequence of this lemma and of the above, we see that t -1/2 z θ t Z h t ω goes to 0 in IP θ z -probability. This proves half of Proposition 3.

We have now to deal with the law of t -1 z θ t Z h t ω 0 under IP θ z , or equivalently by the same reason as above for ω, with the law of t -1 et Z 0 h t f * z,θ ω 0 . This cannot be further handled as above, since the form ω 0 is not bounded, whereas ω was. We only have now the following estimate, by integrating along the horizontal horocycle y = e t containing e t , Z [0,t] ω -K t = 0 , with := ( 0 /2, 1 / √ 2, 2 / √ 2) . Therefore using Corollary 4 and Proposition 3 we have proved that lim

ω 0 + √ -1 √ t Z
t→∞ J t = IE exp √ -1 (2 0 C + √ 2 1 N 1 + √ 2 2 N 2 ) .
This concludes the proof, since by Lemma 7 and by the very definition of J t (just before Section 14.1) this formula is equivalent to Theorem 3.

√- 1

 1 2π/3 , ∞] and [e √ -1 π/3 , ∞] and the segment of the trigonometric circle delimited by e √ -1 π/3 , e √ -1 2π/3 . Recall that {1, u} is the stabilisator of the elliptic point √ -1 , and {1, v, v 2 } is the stabilisator of the elliptic point e

Fix

  then b ∈ IR , and observe by direct application of Itô's formula that exp -|b|y sdt = e -|b| q .

  where (z, z ) → B u (z, z ) = p(z , u)/p(z, u) denotes the Busemann function based at u ∈ ∂IH 2 , p denoting the Poisson kernel.

  measure started from z, for any z ∈ IH 2 /Γ , and IP µ := IP θ z dµ(z, θ) is the stationary Wiener measure on IH 2 /Γ .

  ω = O e -t × inf{s | ws+s/2=t} 0 e ws+s/2 dW s .

v(∈

  ) 2 dv × (y 0 s ) 2 × f (y 0 s ) + 2(y 0 s ) -1 f (y 0 s ) -c 2 f (y 0 s ) ds ,whence the equation :f (y) + 2y -1 f (y) -c 2 f (y) = 0 . Setting f 1 (y) := √ yf (y) , this gives f 1 (y)+y -1 f 1 (y)-(c 2 +(2y) -2 )f 1 (y) = 0 .Since f 1 must be bounded near 0, we have, up to some multiplicative constant :f (y) = (cy) -1/2 I 1/2 (cy) = k≥0Changing c into ce -t , we get as t → ∞ : L 2 (IR, dc) , which proves the first sentence of the lemma.

  Applying the isometry f z,θ of IH 2 which maps g(1, 0) to g(z, θ) , we see that the law
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	of	z θ t Z h t	ω under IP θ z is the same as the law of	et h t Z 0	f				

* z,θ ω , where e t :=

√

-1 e t and Z 0 ht

  We have for any ∈ IR 3 : ( 0 C + 1 N 1 + 2 N 2 ) . Now Lemma 9 asserts that the time-change h t = h z,θ t appearing in K t of Proposition 3 satisfies h t = 2t + o(t) IP θ z -almost surely, uniformly with respect to (z, θ) . Indeed, the law under IP θ z of this h t equals the law of the h t = h in Lemma 9. So that with arbitrary large probability we can write h t = 2t + o(t) with a uniform deterministic o(t) . This allows to replace t by h t in the formula of Corollary 4 above, and likewise to insure that

	et h t Z 0 t→∞ IE µ exp f lim	√ lim sup -1 t t→∞	Z[0,t] IE µ exp ω 0 + √ √ √ -1 t Z[0,t] -1 t Z[0,t]	ω = IE exp -1 √ √ -1 ,0 t	θ ht :

* z,θ ω 0 ≤ e -t ht 0 e ws+s/2 dW s × sup |f * z,θ ω 0 | ( √ -1 +x)e t |x| ≤ e -t ht 0 e ws+s/2 dW s , Corollary 4

denote as usual the commutator of α 1 , α 2 ∈ G .Lemma 1 The group Γ is generated by {u, v} and admits the presentation {u, v | u 2 = v

= 1} ; The group Γ is the free group generated by {β, γ} ; The quotient group Γ/Γ is isomorphic to Z/6Z . Moreover we have :β = [v, u] , γ = [v -1 , u] , vu(z) = z + 1 , [β, γ -1 ] = (vu) 6 = (z → z + 6) ∈ Γ 6 .

where again h t = h √ -1 ,0 t = inf{s | y 0 s = e t } = inf{s | w s + s/2 = t} . Fix any r > 0 .

Lemma 9 shows that the laws of e -t ht 0 e ws+s/2 dW s , t large, are tight, and then provides some R > 0 such that IP e -t ht 0 e ws+s/2 dW s > R < r for any large enough positive t .

We deduce from these last two estimates that

, and then by integrating against µ and using Lemma 8 :

where (H x , x ∈ IR) denotes the positive horocycle flow. For the last equality, we used the invariance of the Liouville measure µ under the geodesic flow.

By continuity of |ω 0 | , sup |ω 0 | Hx(z) |x| ≤ R is finite for every z, and thus we just proved :

Since in the last expression above for J t (immediately after Proposition 3), we were not only under the law IP θ z , but indeed under the law IP µ = IP θ z dµ(z, θ) , we have so far proved Proposition 3.

End of the proof of Theorem 3

Section 7 allows to denote also by IP µ the stationary Wiener measure on G/Γ , since the Brownian motion of G projects on the Brownian motion of IH 2 (and similarly for the volume measures). Let us recall also that our forms ω 0 , ω 1 , ω 2 come from IH 2 /Γ : they are defined on G/Γ and on IH 2 /Γ as well, in other words are invariant under pull back π * by the canonical projection. Hence the joint laws of their integrals along the Brownian paths are the same, no matter whether they are understood on G/Γ or on IH 2 /Γ . Moreover we have seen in Section 7 also that the angular Brownian component θ s is a mere one-dimensional Brownian motion. As a consequence, it is immediate that t -1 g[0,t] dθ = (θ t -θ 0 )/t goes to 0 IP µ -almost surely. Therefore we can replace in Theorem 2 the form ω 0 by the form ω 0 = ω 0 -dθ . These remarks show that the following is simply a second version of Theorem 2 (with the notations of Section 14.1 and of Theorem 2).