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One-dimensional random field Kac’s model:

weak large deviations principle *

Enza Orlandi 1 and Pierre Picco 2

Dedicated to A.V. Skorohod for the fiftieth birthday of its fundamental paper [37].

Abstract We prove a quenched weak large deviations principle for the Gibbs measures of a Random

Field Kac Model (RFKM) in one dimension. The external random magnetic field is given by symmetrically

distributed Bernoulli random variables. The results are valid for values of the temperature, β−1, and

magnitude, θ, of the field in the region where the free energy of the corresponding random Curie Weiss

model has only two absolute minima mβ and Tmβ. We give an explicit representation of the rate functional

which is a positive random functional determined by two distinct contributions. One is related to the free

energy cost F∗ to undergo a phase change (the surface tension). The F∗ is the cost of one single phase

change and depends on the temperature and magnitude of the field. The other is a bulk contribution due to

the presence of the random magnetic field. We characterize the minimizers of this random functional. We

show that they are step functions taking values mβ and Tmβ. The points of discontinuity are described by a

stationary renewal process related to the h−extrema for a bilateral Brownian motion studied by Neveu and

Pitman, where h in our context is a suitable constant depending on the temperature and on magnitude of

the random field. As an outcome we have a complete characterization of the typical profiles of RFKM (the

ground states) which was initiated in [14] and extended in [16].

1 Introduction

We consider a one-dimensional spin system interacting via a ferromagnetic two-body Kac potential and

external random magnetic field given by symmetrically distributed Bernoulli random variables. Problems

where a stochastic contribution is added to the energy of the system arise naturally in condensed matter

physics where the presence of the impurities causes the microscopic structure to vary from point to point.

Some of the vast literature on these topics may be found consulting [1-4], [6], [8], [12], [21- 24], [28], [36].

Kac’s potentials is a short way to denote two-body ferromagnetic interactions with range 1
γ , where γ is a

dimensionless parameter such that when γ ↓ 0, i.e. very long range, the strength of the interaction becomes

very weak keeping the total interaction between one spin and all the others finite. They were introduced

in [25], and then generalized in [29] and [33] to present a rigorous validity of the van der Waals theory of

a liquid-vapor phase transition. Performing first the thermodynamic limit of the spin system interacting

via Kac’s potential, and then the limit of infinite range, γ ↓ 0, Lebowitz and Penrose rigorously derived

the Maxwell rule, i.e the canonical free energy of the system is the convex envelope of the corresponding

canonical free energy for the Curie–Weiss model. The consequence is that, in any dimension, for values of the

temperature at which the free energy corresponding to the Curie-Weiss model is not convex, the canonical
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free energy of the Kac’s model is not differentiable in the limit γ ↓ 0. These results show that long range

models give satisfactory answer for canonical free energies. At the level of Gibbs measures the analysis is

more delicate since the behavior of Gibbs measures depends strongly on the dimension.

There are several papers trying to understand qualitatively and quantitatively how a refined analysis of

the Gibbs measures of the Kac models allows to see some features of systems with long, but finite range

interaction, see for instance [18], [30], [11].

For γ fixed and different from zero, if d = 1, there exists an unique Gibbs state for the Kac model while

for the Curie–Weiss model the measure induced by the empirical magnetization weakly converges, when

the number of sites goes to infinity, to a convex contribution of two different Dirac measures. In the one

dimensional case, the analysis [17] for Ising spin and [9] for more general spin, gives a satisfactory description

of the typical profiles. In these papers a large deviations principle for Gibbs measures was established. The

ground state of the system in suitable chosen mesoscopic scales, is concentrated sharply near the two values

of the minimizers of the corresponding Curie-Weiss canonical free energy. The typical magnetization profiles

are constant near one of the two values over lengths of the order e
β
γ F where F was explicitly computed and

represents the cost in term of canonical free energy to go from one phase to the other, i.e the surface tension.

Moreover, suitably marking the locations of the phase changes of the typical profiles and scaling the space

by e−
β
γ F , one gets as limiting Gibbs distribution of the marks, the one of a Poisson Point Process. The

thermal fluctuations are responsible for the stochastic behavior on this scale.

The same type of questions could be asked for the RFKM which is one of the simplest disordered spin

system. This motivated the [14], [16] as well as the present paper. The answers we found, as explained below,

are dramatically different from the ones obtained without the presence of the random field. The analysis

done holds in dimension d = 1 and for values of the temperature and magnitude of the field in the whole

region of two absolute minima for the canonical free energy of the corresponding Random Field Curie Weiss

model. This region is denoted E , see (2.19) for the precise definition. In the first paper [14] we gave the

results for (β, θ) in a subset of E , under some smallness condition, whereas in [16] as well as in this paper we

give the result for (β, θ) in E without further constraints. We will comment later about this, but one should

bear in mind that the results proven in [14] hold for almost all realizations of the random magnetic fields,

the ones proven in [16] hold for a set of realizations of the random magnetic fields of probability that goes

to one when γ ↓ 0, while the ones in the present paper hold merely in law.

Let us recall the previous results: Here, as well in the previous papers, the first step is a coarse graining

procedure. Through a block-spin transformation, the microscopic system is mapped into a system on T =

L∞(IR, [−1, 1]) × L∞(IR, [−1, 1]), see (2.14), for which the length of interaction becomes of order one (the

macroscopic system). The macroscopic state of the system is determined by an order parameter which

specifies the phase of the system. It has been proven in [14] that for almost all realizations of the random

magnetic fields, for intervals whose length in macroscopic scale is of order (γ log log(1/γ))−1 the typical block

spin profile is either rigid, taking one of the two values (mβ or Tmβ) corresponding to the minima of the

canonical free energy of the random field Curie Weiss model, or makes at most one transition from one of

the minima to the other. In the following, we will denote these two minima the + or − phases. It was also

proven in [14], that if the system is considered on an interval of length 1
γ (log 1

γ )p, p ≥ 2, the typical profiles

are not rigid over any interval of length larger or equal to L1(γ) = 1
γ (log 1

γ )(log log 1
γ )2+ρ, for any ρ > 0.

In [16] the following was proved: On a set of realizations of the random field of overwhelming probability

(when γ → 0) it is possible to construct random intervals of length of order 1
γ (macro scale) and to associate

a random sign in such a way that, typically with respect to the Gibbs measure, the magnetization profile

is rigid on these intervals and, according to the sign, it belongs to the + or − phase. Hereafter, “random”

means that it depends on the realizations of the random fields (and on β, θ). A description of the transition

from one phase to the other was also discussed in [16]. We recall these results in Section 2. The main
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problem in the proof of the previous results is the “non locality” of the system, due to the presence of the

random field. There is an interplay between the ferromagnetic two-body interaction which attracts spins

alike and the presence of the random field which would like to have the spins aligned according to its sign.

It is relatively easy to see that the fluctuations of the random field over intervals in macro scale 1
γ play an

important role. To determine the beginning and the end of the random interval where the profiles are rigid

and the sign attributed to it, it is essential to verify other local requirements for the random field. We need

a detailed analysis of suitable functions of the random fields in all subintervals of the interval of order 1
γ .

In fact, it could happen that even though at large the random fields undergoe to a positive (for example)

fluctuation, locally there are negative fluctuations which make not convenient (in terms of the cost of the

total free energy) for the system to have a magnetization profile close to the + phase in that interval.

Another problem in the previous analysis is due to the fact that the measure induced by the block-spin

transformation contains multibody interaction of arbitrary order. Estimated roughly as in [14], this would

give a contribution proportional to the length of the interval in which the transformation is done, there

the length of intervals was (γ log log(1/γ))−1 and the (log log(1/γ))−1 help us to get a small contribution.

Here we are interested in intervals of length 1
γ . Luckily enough, exploiting the randomness of the one body

interaction, it is enough to estimate the Lipschitz norm of the multibody potential. Using cluster expansion

tools, this can be estimated through the representation of the multibody interaction as an absolute convergent

series.

In this paper we first extend the results of [16] by defining a random profile u∗
γ which belongs to

BV ([−Q(γ), Q(γ)], {mβ, Tmβ}), the set of function from [−Q(γ), Q(γ)] to {mβ , Tmβ} having bounded vari-

ation. Here Q(γ) ↑ ∞ when γ ↓ 0 in a convenient way. On a probability subspace of the random magnetic

field configurations of overwhelming probability, we identify a suitable neighborhood of u∗
γ that has a over-

whelming Gibbs measure.

Then we prove that when γ ↓ 0 the limiting distribution of the interdistance between the jump points of

u∗
γ with respect to the distribution of the random magnetic fields is the Neveu-Pitman [32] stationary renewal

process of h-extrema of a bilateral Brownian motion. The value of h depends on β and θ. Surprisingly the

residual life distribution of the renewal process that we obtained is the same (setting h = 1) of the one

determined independently by Kesten [26] and Golosov [22] representing the limit distribution of the point of

localization of Sinai’s random walk in random environment, see Remark 2.7, in Section 2.

This allows us to define the limiting (in Law) typical profile u∗ that belongs to BVloc(IR, {mβ , Tmβ}),
the set of functions from IR to {mβ , Tmβ} that have bounded variations on each finite interval of IR. The

total variation of u∗ on IR is infinite.

Note that here, the Gibbs measure is strongly concentrated on a random profile that we relate to a renewal

process, the randomness being the one of the random magnetic fields. The phase change of this random

profile occurs on such a small scale that we cannot see the thermal fluctuations that were responsible in the

case without magnetic field of the previously described Poisson Point Process. At the same scale where we

find the renewal process, the system without magnetic fields is completely rigid, constantly equal to mβ or

Tmβ. Having exhibited the typical profile u∗
γ and its limit in Law u∗ the next natural question concerns the

large deviations with respect to this typical profile. Formally we would like to determine a positive functional

Γ(u) for u ∈ A, where A ⊂ T , so that

µω
γ [A] ∼ exp{−β

γ
inf
u∈A

Γ(u)}. (1.1)

When A ≡ A(u) ⊂ T is a convenient, see (2.33), neighborhood of u ∈ BVloc(IR, {Tmβ, mβ}) and u is a
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suitable local perturbation of the typical profile u∗
γ , (1.1) should be understood as

lim
γ↓0

[
−γ

β
log µω

γ [A(u)]

]
= Γ(u). (1.2)

One has to give a probabilistic sense to the above convergence. It appears that contrarily to the large

deviation functional associated to the global empirical magnetization (the canonical free energy of the RFKM,

see (2.18)) which is not random, Γ(u) is random and the above convergence holds in Law. In fact Γ(u) can

be expressed in term of u, the limiting u∗ and the bilateral Brownian motion. It represents, in the chosen

limit, the random cost for the system to deviate from the equilibrium value u∗. The interplay between the

surface free energy F∗ (the cost of one single phase change) and the random bulk contribution appears in

a rather clear way. Note that in (1.2) the functional is evaluated at u even if the considered neighborhood

of u does not shrink when γ ↓ 0 to u. This fact allows us to avoid to face difficult measurability problems

when performing infimum over family of sets. The random functional Γ in (1.2) could be seen as the “ De

Giorgi Gamma-limit in Law” for a sequence of intermediate random functionals obtained through a coarse

graining procedure over T . Since a precise definition of such a convergence is beyond the scope of the paper,

see however [19], and presents more complications than simplifications we will not pursue it here.

The plan of the paper is the following. In Section 2 we give the description of the model and present the

main results. In Section 3 we recall the coarse graining procedure. In section 4 we prove the main estimates

to derive upper and lower bound to deduce the large deviation estimates. In Section 5 we prove the above

mentioned convergence in Law of the localization of the jumps of u∗
γ to the stationary renewal process of

Neveu–Pitman. In section 6 we give the proof of the main results.

Acknowledgements We are indebted to Errico Presutti who gave us years ago the expression of the random

functional, see (2.46). We thank Jean–François Le Gall for mentioning to us the article by Neveu and Pitman,

Jean Bertoin, Zhang Shi and Isaac Meilijson for illuminating discussions.

2 Model, notations and main results

2.1. The model

Let (Ω,A, IP ) be a probability space on which we define h ≡ {hi}i∈ZZ , a family of independent, identically

distributed Bernoulli random variables with IP [hi = +1] = IP [hi = −1] = 1/2. They represent random signs

of external magnetic fields acting on a spin system on ZZ, and whose magnitude is denoted by θ > 0. The

configuration space is S ≡ {−1, +1}ZZ. If σ ∈ S and i ∈ ZZ, σi represents the value of the spin at site i. The

pair interaction among spins is given by a Kac potential of the form Jγ(i − j) ≡ γJ(γ(i − j)), γ > 0. We

require that for r ∈ IR: (i) J(r) ≥ 0 (ferromagnetism); (ii) J(r) = J(−r) (symmetry); (iii) J(r) ≤ ce−c′|r|

for c, c′ positive constants (exponential decay); (iv)
∫

J(r)dr = 1 (normalization). For sake of simplicity we

fix J(r) = 1I[|r|≤1/2](r), where we denote by 1IA(·) the indicator function of the set A.

For Λ ⊆ ZZ we set SΛ = {−1, +1}Λ; its elements are denoted by σΛ; also, if σ ∈ S, σΛ denotes its

restriction to Λ. Given Λ ⊂ ZZ finite and a realization of the magnetic fields, the Hamiltonian in the volume

Λ, with free boundary conditions, is the random variable on (Ω,A, IP ) given by

Hγ(σΛ)[ω] = −1

2

∑

(i,j)∈Λ×Λ

Jγ(i − j)σiσj − θ
∑

i∈Λ

hi[ω]σi. (2.1)
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In the following we drop the ω from the notation.

The corresponding Gibbs measure on the finite volume Λ, at inverse temperature β > 0 and free boundary

condition is then a random variable with values on the space of probability measures on SΛ. We denote it

by µβ,θ,γ,Λ and it is defined by

µβ,θ,γ,Λ(σΛ) =
1

Zβ,θ,γ,Λ
exp{−βHγ(σΛ)} σΛ ∈ SΛ, (2.2)

where Zβ,θ,γ,Λ is the normalization factor called partition function. To take into account the interaction

between the spins in Λ and those outside Λ we set

Wγ(σΛ, σΛc) = −
∑

i∈Λ

∑

j∈Λc

Jγ(i − j)σiσj . (2.3)

If σ̃ ∈ S, the Gibbs measure on the finite volume Λ and boundary condition σ̃Λc is the random probability

measure on SΛ, denoted by µσ̃Λc

β,θ,γ,Λ and defined by

µσ̃Λc

β,θ,γ,Λ(σΛ) =
1

Z σ̃Λc

β,θ,γ,Λ

exp {−β(Hγ(σΛ) + Wγ(σΛ, σ̃Λc))} , (2.4)

where again the partition function Z σ̃Λc

β,θ,γ,Λ is the normalization factor.

Given a realization of h and γ > 0, there is a unique weak-limit of µβ,θ,γ,Λ along a family of volumes

ΛL = [−L, L] ∩ ZZ, L ∈ IN ; such limit is called the infinite volume Gibbs measure µβ,θ,γ. The limit does

not depend on the boundary conditions, which may be taken h-dependent, but it is a random element, i.e.,

different realizations of h give a priori different infinite volume Gibbs measures.

2.2. Scales

When dealing with local long range interaction, as we did in [17], [14] and [16], the analysis of the

configurations that are typical for µβ,θ,γ in the limit γ ↓ 0, involves a block spin transformation which

transforms the microscopic system on ZZ in a system on IR. Such changes of scales are standard in Kac

type problems. Here, notations are particularly troublesome because we have three main different scales and

according to the case it is better to work with one or the other. There will be also intermediate scales that

we will discuss later. For historical reasons the three main scales are called: microscopic, macroscopic and

Brownian scale. More properly they should be denoted microscopic, mesoscopic and macroscopic. Since in

the previous papers, [14] and [16], the intermediate scale was called macroscopic, we continue to call it in

such a way to avoid confusion. Then we will call mesoscopic scales all the intermediate scales between the

microscopic and macroscopic scales. These mesoscopic scales are not intrinsic to the system but superimposed

to study it.

• The microscopic and macroscopic scales.

The basic space is the “microscopic space”, i.e. the lattice ZZ whose elements are denoted by i, j and so

on. The microscopic scale corresponds to the length measured according to the lattice distance. The spin

σi are indexed by ZZ and the range of interaction in this scale is of order 1
γ .

The macroscopic regions correspond to intervals of IR that are of order 1
γ in the microscopic scale ; i.e.

if I ⊂ IR, is an interval in the macroscopic scale then it will correspond to the interval I
γ in the microscopic

scale. Since the range of the interaction is of order γ−1 in the microscopic scale, in the macroscopic scale it

becomes of order 1.
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• The Brownian scale

The Brownian scale is linked to the random magnetic fields. The Brownian regions correspond to intervals

of IR that are of order 1
γ2 in the microscopic scale; i.e. if [−Q, Q] ⊂ IR, Q > 0 is an interval in Brownian scale

then it will correspond to [− Q
γ2 , Q

γ2 ] in the microscopic scale. In the Brownian scale the range of interaction

is of order γ.

• The partition of IR.

Given a rational positive number δ, Dδ denotes the partition of IR into intervals Ãδ(u) = [uδ, (u+1)δ) for

u ∈ ZZ. If δ = nδ′ for some n ∈ IN , then Dδ is coarser than Dδ′ . A function f(·) on IR is Dδ–measurable if it

is constant on each interval of Dδ. A region Λ is Dδ–measurable if its indicator function is Dδ–measurable.

For r ∈ IR, we denote by Dδ(r) the interval of Dδ that contains r. Note that for any r ∈ [uδ, (u + 1)δ), we

have that Dδ(r) = Ãδ(u). To avoid rounding problems in the following, we will consider intervals that are

always Dδ–measurable. If I ⊆ IR denotes a macroscopic interval we set

Cδ(I) = {u ∈ ZZ; Ãδ(u) ⊆ I}. (2.5)

• The mesoscopic scales

The smallest mesoscopic scale involves a parameter 0 < δ∗(γ) < 1 satisfying certain conditions of smallness

that will be fixed later. However we assume that δ∗γ−1 ↑ ∞ when γ ↓ 0. The elements of Dδ∗ will be

denoted by Ã(x) ≡ [xδ∗, (x + 1)δ∗), with x ∈ ZZ. The partition Dδ∗ induce a partition of ZZ into blocks

A(x) = {i ∈ ZZ; iγ ∈ Ã(x)} ≡ {a(x), . . . , a(x + 1) − 1} with length of order δ∗γ−1 in the microscopic scale.

For notational simplicity, if no confusion arises, we omit to write the explicit dependence on γ, δ∗. To

avoid rounding problems, we assume that γ = 2−n for some integer n, with δ∗ such that δ∗γ−1 is an integer,

so that a(x) = xδ∗γ−1, with x ∈ ZZ. When considering another mesoscopic scale, say δ > δ∗, we always

assume that δ−1 ∈ IN and δ = kδ∗ for some integer k ≥ 2.

2.3 Basic Notations.

• block-spin magnetization

Given a realization of h and for each configuration σΛ, we could have defined for each block A(x) a pair of

numbers where the first is the average magnetization over the sites with positive h and the second to those

with negative h. However it appears, [14], to be more convenient to use another random partition of A(x)

into two sets of the same cardinality. This allows to separate on each block the expected contribution of the

random field from its local fluctuations. More precisely we have the following.

Given a realization h[ω] ≡ (hi[ω])i∈ZZ , we set A+(x) =
{
i ∈ A(x); hi[ω] = +1

}
and A−(x) =

{
i ∈

A(x); hi[ω] = −1
}
. Let λ(x) ≡ sgn(|A+(x)| − (2γ)−1δ∗), where sgn is the sign function, with the convention

that sgn(0) = 0. For convenience we assume δ∗γ−1 to be even, in which case:

IP [λ(x) = 0] = 2−δ∗γ−1

(
δ∗γ−1

δ∗γ−1/2

)
. (2.6)

We note that λ(x) is a symmetric random variable. When λ(x) = ±1 we set

l(x) ≡ inf{l ≥ a(x) :
l∑

j=a(x)

1I{Aλ(x)(x)}(j) ≥ δ∗γ−1/2} (2.7)
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and consider the following decomposition of A(x): Bλ(x)(x) =
{
i ∈ Aλ(x)(x); i ≤ l(x)

}
and B−λ(x)(x) =

A(x) \ Bλ(x)(x). When λ(x) = 0 we set B+(x) = A+(x) and B−(x) = A−(x). We set D(x) ≡ Aλ(x)(x) \
Bλ(x)(x). In this way, the set B±(x) depends on the realizations of the random field, but the cardinality

|B±(x)| = δ∗γ−1/2 is the same for all realizations. Set

mδ∗

(±, x, σ) =
2γ

δ∗
∑

i∈B±(x)

σi. (2.8)

We call block spin magnetization of the block A(x) the vector

mδ∗

(x, σ) = (mδ∗

(+, x, σ), mδ∗

(−, x, σ)). (2.9)

The total empirical magnetization of the block A(x) is, of course, given by

γ

δ∗
∑

i∈A(x)

σi =
1

2
(mδ∗

(+, x, σ) + mδ∗

(−, x, σ)) (2.10)

and the contribution of the magnetic field to the Hamiltonian (2.1) is

γ

δ∗
∑

i∈A(x)

hiσi =
1

2
(mδ∗

(+, x, σ) − mδ∗

(−, x, σ)) + λ(x)
2γ

δ∗
∑

i∈D(x)

σi. (2.11)

• spaces of the magnetization profiles

Given a volume Λ ⊆ ZZ in the original microscopic spin system, it corresponds to the macroscopic volume

I = γΛ = {γi; i ∈ Λ}, assumed to be Dδ∗–measurable. The block spin transformation, as considered in [14]

and [16], is the random map which associates to the spin configuration σΛ the vector (mδ∗

(x, σ))x∈Cδ∗ (I),

see (2.9), with values in the set

Mδ∗(I) ≡
∏

x∈Cδ∗(I)

{
−1,−1 +

4γ

δ∗
,−1 +

8γ

δ∗
, . . . , 1 − 4γ

δ∗
, 1

}2

. (2.12)

We use the same notation µβ,θ,γ,Λ to denote both, the Gibbs measure on SΛ, and the probability measure

induced on Mδ∗(I), through the block spin transformation, i.e., a coarse grained version of the original

measure. Analogously, the infinite volume limit (as Λ ↑ ZZ) of the laws of the block spin (mδ∗

(x))x∈Cδ∗ (I)

under the Gibbs measure will also be denoted by µβ,θ,γ.

We denote a generic element in Mδ∗(I) by

mδ∗

I ≡ (mδ∗

(x))x∈Cδ∗ (I) ≡ (mδ∗

1 (x), mδ∗

2 (x))x∈Cδ∗ (I). (2.13)

Since I is assumed to be Dδ∗–measurable, we can identify mδ∗

I with the element of

T = {m ≡ (m1, m2) ∈ L∞(IR) × L∞(IR); ‖m1‖∞ ∨ ‖m2‖∞ ≤ 1} (2.14)

piecewise constant, equal to mδ∗

(x) on each Ã(x) = [xδ∗, (x + 1)δ∗) for x ∈ Cδ∗(I), and vanishing outside I.

Elements of T will be called magnetization profiles. Recalling that I = γΛ, the block spin transformation

can be identified with a map from the space of spin configurations {−1, +1}Λ (with Λ a microscopic volume)

into the subset of Dδ∗–measurable functions of L∞(I) × L∞(I) (with I = γΛ a macroscopic volume).

7



For δ ≥ δ∗, recalling that ∀r ∈ [uδ, (u + 1)δ), we have Dδ(r) = Ãδ(u), we define for m = (m1, m2) ∈ T
and i = 1, 2

mδ
i (r) =

1

δ

∫

Dδ(r)

mi(s)ds. (2.15)

This defines a map from T into the subset of Dδ–measurable functions of T . We define also a map from T
into itself by

(Tm)(x) = (−m2(x),−m1(x)) ∀x ∈ IR. (2.16)

In the following we denote the total magnetization at the site x ∈ IR

m̃(x) =
m1(x) + m2(x)

2
. (2.17)

• The Random Field Curie–Weiss model

The Lebowitz -Penrose theory, [29], is easy to prove for the Random Field Kac Model see [14], Theorem

2.2. Namely, performing first the thermodynamic limit of the spin system interacting via Kac’s potential

and then the limit of infinite range, γ → 0, the canonical free energy of the Random Field Kac model is the

convex envelope of the corresponding canonical free energy for the Random Field Curie-Weiss model.

The canonical free energy for the Random Field Curie-Weiss model derived in [17] is

fβ,θ(m1, m2) = − (m1 + m2)
2

8
− θ

2
(m1 − m2) +

1

2β
(I(m1) + I(m2)), (2.18)

where I(m) = (1+m)
2 log

(
1+m

2

)
+ (1−m)

2 log
(

1−m
2

)
. In Section 9 of [16], it was proved that

E =

{
0 < θ < θ1,c(β), for 1 < β < 3

2 ;
0 < θ ≤ θ1,c(β) forβ ≥ 3

2 ,
(2.19)

where

θ1,c(β) =
1

β
arctanh (1 − 1

β
)1/2, (2.20)

is the maximal region of the two parameters (β, θ), whose closure contains (1, 0) in which fβ,θ(·, ·) has

exactly three critical points mβ , 0, Tmβ. The two equal minima correspond to mβ = (mβ,1, mβ,2) and

Tmβ = (−mβ,2,−mβ,1) and 0 a local maximum. Calling m̃β =
mβ,1+mβ,2

2 , on E we have

β

2 cosh2(β(m̃β + θ)
+

β

2 cosh2 β(m̃β − θ)
< 1. (2.21)

Moreover, for all (β, θ) ∈ E , the minima are quadratic and therefore there exists a strictly positive constant

κ(β, θ) so that for each m ∈ [−1, +1]2

fβ,θ(m) − fβ,θ(mβ) ≥ κ(β, θ)min{‖m− mβ‖2
1, ‖m− Tmβ‖2

1}, (2.22)

where ‖ · ‖1 is the ℓ1 norm in IR2.

• The spatially homogeneous phases
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We introduce the so called “excess free energy functional” F(m), m ∈ T :

F(m) = F(m1, m2)

=
1

4

∫ ∫
J(r − r′) [m̃(r) − m̃(r′)]

2
drdr′ +

∫
[fβ,θ(m1(r), m2(r)) − fβ,θ(mβ,1, mβ,2)] dr

(2.23)

with fβ,θ(m1, m2) given by (2.18) and m̃(r) = (m1(r)+m2(r))/2. The functional F is well defined and non-

negative, although it may take the value +∞. Clearly, the absolute minimum of F is attained at the functions

constantly equal to mβ (or constantly equal to Tmβ), the minimizers of fβ,θ. These two minimizers of F are

called the spatially homogeneous phases. The functional F represents the continuum approximation of the

deterministic contribution to the free energy of the system (cf. (3.3)) normalized by subtracting fβ,θ(mβ),

the free energy of the homogeneous phases. Notice that F is invariant under the T -transformation, defined

in (2.16).

• The surface tension

In analogy to systems in higher dimensions, we denote by surface tension the free energy cost needed by the

system to undergo to a phase change. It has been proven in [15] that under the condition m1(0)+m2(0) = 0,

and for (β, θ) ∈ E , there exists a unique minimizer m̄ = (m̄1, m̄2), of F over the set

M∞ = {(m1, m2) ∈ T ; lim sup
r→−∞

mi(r) < 0 < lim inf
r→+∞

mi(r), i = 1, 2}. (2.24)

Without the condition m1(0) + m2(0) = 0, there is a continuum of minimizers obtained translating m̄. The

minimizer m̄(·) is infinitely differentiable and converges exponential fast, as r ↑ +∞ (resp. −∞) to the limit

value mβ , (resp.Tmβ). Since F is invariant by the T -transformation, see (2.16), interchanging r ↑ +∞ and

r ↓ −∞ in (2.24), there exists one other family of minimizers obtained translating Tm̄. We denote by

F∗ ≡ F∗(β, θ) = F(m̄) = F(Tm̄) > 0, (2.25)

the surface tension.

• how to detect local equilibrium

As in [14], the description of the profiles is based on the behavior of local averages of mδ∗

(x) over k

successive blocks in the block spin representation, where k ≥ 2 is a positive integer. Let δ = kδ∗ be such

that 1/δ ∈ IN . Let ℓ ∈ ZZ, [ℓ, ℓ + 1) be a macroscopic block of length 1, Cδ([ℓ, ℓ + 1)), as in (2.5), and ζ > 0.

We define the block spin variable

ηδ,ζ(ℓ) =





1, if ∀u∈Cδ([ℓ,ℓ+1))
δ∗

δ

∑
x∈Cδ∗ ([uδ,(u+1)δ)) ‖mδ∗

(x, σ) − mβ‖1 ≤ ζ;

−1, if ∀u∈Cδ([ℓ,ℓ+1))
δ∗

δ

∑
x∈Cδ∗ ([uδ,(u+1)δ)) ‖mδ∗

(x, σ) − Tmβ‖1 ≤ ζ;
0, otherwise.

(2.26)

where for a vector v = (v1, v2), ‖v‖1 = |v1| + |v2|. When ηδ,ζ(ℓ) = 1, (resp. −1), we say that a spin

configuration σ ∈ {−1, 1} 1
γ [ℓ,ℓ+1) has magnetization close to mβ, (resp. Tmβ), with accuracy (δ, ζ) in

[ℓ, ℓ + 1). Note that ηδ,ζ(ℓ) = 1 (resp −1) is equivalent to

∀y ∈ [ℓ, ℓ + 1)
1

δ

∫

Dδ(y)

dx‖mδ∗

(x, σ) − v‖1 ≤ ζ (2.27)
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for v = mβ (resp. Tmβ), since for any u ∈ Cδ([ℓ, ℓ + 1)), for all y ∈ [uδ, (u + 1)δ) ⊂ [ℓ, ℓ + 1), Dδ(y) =

[uδ, (u + 1)δ). We say that a magnetization profile mδ∗

(·), in a macroscopic interval I ⊆ IR, is close to the

equilibrium phase τ , for τ ∈ {−1, +1}, with accuracy (δ, ζ) when

{ηδ,ζ(ℓ) = τ, ∀ℓ ∈ I ∩ ZZ} (2.28)

or equivalently if

∀y ∈ I
1

δ

∫

Dδ(y)

dx‖mδ∗

(x, σ) − v‖1 ≤ ζ (2.29)

where v = mβ if τ = +1 and v = Tmβ if τ = −1. In the following the letter ℓ will always indicate an

element of ZZ. This will allow to write (2.28) as {ηδ,ζ(ℓ) = τ, ∀ℓ ∈ I}. In (2.29) the interval I is always

given in the macro–scale. The definition (2.29) can be used for function v more general than the constant

ones. In particular, given v = (v1, v2) ∈ T , δ = nδ∗ for some positive integer n, ζ > 0, and [a, b) an interval

in Brownian scale, we say that a spin configuration σ ∈ {−1, 1}[ a

γ2 , b

γ2 )
has magnetization profile close to v

with accuracy (δ, ζ) in the interval [a, b) if σ belongs to the set

{
σ ∈ {−1, 1}[ a

γ2 , b
γ2 )

: ∀y ∈ [
a

γ
,
b

γ
)

1

δ

∫

Dδ(y)

dx‖mδ∗

(x, σ) − vδ∗

(x)‖1 ≤ ζ

}
. (2.30)

In view of the results on the typical configurations obtained in [16] the above notion is too strong. In fact

the typical profiles form long runs of length of order γ−1 (in the macroscopic scale) of ηδ,ζ(·) = 1 that are

followed by short runs of ηδ,ζ(·) = 0 that are in turn followed by long runs of ηδ,ζ(·) = −1. The typical

profiles undergo to a phase change within the runs of ηδ,ζ(·) = 0 . The length of these runs, see Theorem

2.4 in [16], is smaller than 2R2 = 2R2(γ) ↑ ∞ in the macroscopic scale, see (2.66). In the Brownian scale,

this length becomes 2γR2 and one obtains that γR2 ↓ 0. So in Brownian scale, when γ ↓ 0, the localization

of the phase change shrinks to a point : the point of a jump. For small γ > 0, the results in [16] allow to

localize these points within an interval of length 2ρ >> 2γR2 centered around well defined points depending

on the realizations of the random field. We call ρ the fuzziness and ρ = ρ(γ) ↓ 0 in the Brownian scale.

With this in mind, a candidate for the limiting support of µβ,θ,γ when γ ↓ 0 is an appropriate neighborhood

of functions on IR, (considered in the Brownian scale), taking two values mβ = (mβ,1, mβ,2) or Tmβ =

(−mβ,2,−mβ,1) that have finite variation. To fix the notations, we recall the standard definitions. Let us

define, for any bounded interval [a, b) ⊂ IR (in the Brownian scale) BV ([a, b), {mβ, Tmβ}) as the set of

right continuous bounded variation functions on [a, b) with value in {mβ, Tmβ}. Since we consider mainly

bounded variation functions with value in {mβ, Tmβ}, we write BV ([a, b)) ≡ BV ([a, b), {mβ, Tmβ}). Since

any bounded variation function u is the difference of two increasing functions, it has a left limit. We call the

jump at r the quantity Du(r) = u(r)− u(r−) where u(r−) = lims↑r u(s). If r is such that Du(r) 6= 0 we call

r a point of jump of u, and in such a case ‖Du(r)‖1 = 4m̃β. We denote by N[a,b)(u) the number of jumps

of u on [a, b) and by V b
a (u) the variation of u on [a, b), i.e.

V b
a (u) ≡

∑

a≤r<b

‖Du(r)‖1 = N[a,b)(u)2[mβ,1 + mβ,2] = 4m̃βN[a,b)(u) < ∞. (2.31)

Note that Du(r) 6= 0 only on points of jump of u and therefore the sum in (2.31) is well defined. We denote

by BVloc ≡ BVloc(IR, {mβ , Tmβ}) the set of functions from IR with values in {mβ , Tmβ} which restricted

to any bounded interval have bounded variation but not necessarily having bounded variation on IR. If

u ∈ BVloc(IR, {mβ, Tmβ}), then, see (2.17), ũ ∈ BVloc(IR, {m̃β,−m̃β}) where m̃β is defined before (2.21).
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Since a phase change can be better detected in macro units we state the following definition which corresponds

to Definition 2.3 of [16].

Definition 2.1 The macro interfaces Given an interval [ℓ1, ℓ2] (in macro-scale) and a positive integer

2R2 ≤ |ℓ2 − ℓ1|, we say that a single phase change occurs within [ℓ1, ℓ2] on a length R2 if there exists

ℓ0 ∈ (ℓ1 + R2, ℓ2 − R2) so that ηδ,ζ(ℓ) = ηδ,ζ(ℓ1) ∈ {−1, +1}, ∀ℓ ∈ [ℓ1, ℓ0 − R2]; ηδ,ζ(ℓ) = ηδ,ζ(ℓ2) =

−η(ℓ1), ∀ℓ ∈ [ℓ0 + R2, ℓ2], and {ℓ ∈ [ℓ0 − R2, ℓ0 + R2] : ηδ,ζ(ℓ) = 0} is a set of consecutive integers. We

denote by W1([ℓ1, ℓ2], R2, ζ) the set of configurations ηδ,ζ with these properties.

In words, on W1([ℓ1, ℓ2], R2, ζ), there is an unique run of ηδ,ζ = 0, with no more than 2R2 elements, inside

the interval [ℓ1, ℓ2]. To take into account that for the typical profiles the point of jumps are determined with

fuzziness ρ, it is convenient to associate to u ∈ BV ([a, b)) a partition of the interval [a, b) (in Brownian scale)

as follows :

Definition 2.2 Partition associated to BV functions Given u ∈ BV ([a, b)), ρ > δ = nδ∗, with 8ρ + 8δ

smaller than the minimal distance between two points of jumps of u, let Ci(u), i = 1, .., N[a,b)(u), (see (2.31)),

be the smallest Dδ measurable interval that contains an interval of diameter 2ρ, centered at the i−th jump

of u in [a, b). We have Ci(u) ∩ Cj(u) = ∅ for i 6= j.

Let C(u) = ∪N[a,b)(u)

i=1 Ci(u). We set B(u) = [a, b) \ C(u) and write [a, b) = C(u) ∪ B(u). We denote by

Ci,γ(u) = γ−1Ci(u), Cγ(u) = γ−1C(u) and Bγ(u) = γ−1B(u) the elements of the induced partition on the

macroscopic scale.

Whenever we deal with functions in T we will always assume that their argument varies on the macroscopic

scale. So m ∈ T means that m(x), x ∈ I where I ⊂ IR is an interval in the macroscopic scale. Whenever we

deal with bounded variation functions, if not further specified, we will always assume that their argument

varies on the Brownian scale. Therefore u ∈ BV ([a, b)) means that u(r), r ∈ [a, b) and [a, b) is considered in

the Brownian scale. This means that in the macroscopic scale we need to write u(γx) for x ∈ [ a
γ , b

γ ). For

u ∈ BV ([a, b)), we define for x ∈ [ a
γ , b

γ ) i.e in the macroscopic scale,

uγ,δ∗

(x) =
1

δ∗

∫

Dδ∗ (x)

u(γs) ds. (2.32)

Given [a, b) (in the Brownian scale), u in BV ([a, b)), ρ > δ = nδ∗ > 0, with 8ρ + 8δ satisfying the condition

of Definition 2.2, ζ > 0, we say that a spin configuration σ ∈ {−1, 1}[ a

γ2 , b

γ2 )
has magnetization profile close

to u with accuracy (δ, ζ) and fuzziness ρ if σ ∈ Pρ
δ,γ,ζ,[a,b)(u) where

Pρ
δ,γ,ζ,[a,b)(u) =

{
σ ∈ {−1, 1}[ a

γ2 , b

γ2 )
: ∀y ∈ Bγ(u),

1

δ

∫

Dδ(y)

‖mδ∗

(x, σ) − uγ,δ∗

(x)‖1 dx ≤ ζ

}N[a,b)(u)⋂

i=1

W1([Ci,γ(u)], R2, ζ).

(2.33)

In (2.33) we consider the spin configurations close with accuracy (δ, ζ) to mβ or Tmβ in Bγ(u) according to

the value of uγ,δ∗

(·). In Cγ(u) we require that the spin configurations have only one jump in each interval

Ci,γ(u), i = 1, ..N , and are close with accuracy (δ, ζ) to the right and to the left of this interval to the value of

u in those intervals of Bγ(u) that are adjacent to Ci,γ(u). With all these definitions in hand we can slightly

improve the main results of [16].
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Theorem 2.3 [COPV] Given (β, θ) ∈ E, see (2.19), there exists γ0(β, θ) so that for 0 < γ ≤ γ0(β, θ),

for Q = exp[(log g(1/γ))/ log log g(1/γ)], with g(1/γ) a suitable positive, increasing function such that

limx↑∞ g(x) = +∞, limx↑∞ g(x)/x = 0 for suitable values of δ > δ∗ > 0, ρ > 0, ζ > 0, a′ > 0, R2

there exists Ω1 ⊂ Ω with

IP [Ω1] ≥ 1 − K(Q)

(
1

g(1/γ)

)a′

(2.34)

where

K(Q) = 2 + 5(V (β, θ)/(F∗)2)Q log[Q2g(1/γ)], (2.35)

F∗ = F∗(β, θ) is defined in (2.25) and

V (β, θ) = log
1 + mβ,2 tanh(2βθ)

1 − mβ,1 tanh(2βθ)
. (2.36)

For ω ∈ Ω1 we explicitly construct u∗
γ(ω) ∈ BV ([−Q, Q]) so that the minimal distance between jumps of u∗

γ

within [−Q, +Q] is bounded from below by 8ρ + 8δ,

µβ,θ,γ

(
Pρ

δ,γ,ζ,[−Q,Q](u
∗
γ(ω))

)
≥ 1 − 2K(Q)e−

β
γ

1
g(1/γ) , (2.37)

and

V Q
−Q(u∗

γ) ≤ 4m̃βK(Q). (2.38)

The previous Theorem is a direct consequence of Theorem 2.1, Theorem 2.2 and Theorem 2.4 proven in [16],

together with Lemma 5.14 that gives the value (2.35). The control of the minimal distance between jumps

of u∗
γ is done at the end of Section 5.

To facilitate the reading we did not write explicitly in the statement of Theorem 2.3 the choice done

of the parameters δ, δ∗, ζ, g, R2 nor the explicit construction of u∗
γ . We dedicate the entire Subsection 2.5

to recall and motivate the choice of the parameters done in [16] as well as in this paper. The u∗
γ(ω) in

Theorem 2.3 is a function in BV ([−Q, Q]) associated to the sequence of maximal elongations and their sign

as determined in [16] Section 5. For the moment it is enough to know that it is possible to determine random

points α∗
i = α∗

i (γ, ω) and a random sign ±1 associated to intervals [ǫα∗
i , ǫα

∗
i+1) in the Brownian scale, where

ǫ = ǫ(γ) has to be suitably chosen. These random intervals are the so called maximal elongations. We denote

u∗
γ(ω)(r) ≡

{
mβ , r ∈ [ǫα∗

i , ǫα
∗
i+1) if the sign of elongation [ǫα∗

i , ǫα
∗
i+1) is = +1

Tmβ, r ∈ [ǫα∗
i , ǫα

∗
i+1) if the sign of elongation [ǫα∗

i , ǫα
∗
i+1) is = −1.

(2.39)

for i ∈ {κ∗(−Q) + 1, . . . ,−1, 0, 1, . . . , κ∗(Q) − 1}, where

κ∗(Q) = inf(i ≥ 0 : ǫα∗
i > Q), κ∗(−Q) = sup(i ≤ 0 : ǫα∗

i < −Q) (2.40)

with the convention that inf(∅) = +∞, sup(∅) = −∞ and ǫα∗
0 < 0 and ǫα∗

1 > 0, that is just a relabeling

of the points determined in [16], Section 5. The κ∗(−Q) and κ∗(Q) are random numbers and Lemma 5.14

gives that, with a IP–probability absorbed in (2.34), we have |κ∗(−Q)| ∨ κ∗(Q) ≤ K(Q), with K(Q) given

in (2.35). This implies (2.38)

2.4. The main results
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Let u and u∗ ∈ BVloc. Denote by (W (r), r ∈ IR) the Bilateral Brownian motion (BBM) , i.e. the Gaussian

process with independent increments that satisfies IE(W (r)) = 0, IE(W 2(r)) = |r| for r ∈ IR (and therefore

W (0) = 0) and by P its Wiener measure on C (IR,B(C(R))). Let W be a real valued continuous function

from IR to IR, that is a realization of a BBM. Let [a, b) ⊂ IR be a finite interval and denote by N[a,b)(u, u∗)

the points of jump of u or u∗ in [a, b):

N[a,b)(u, u∗) = {r ∈ [a, b) : ‖Du(r)‖1 6= 0 or ‖Du∗(r)‖1 6= 0}. (2.41)

Note that by right continuity if ‖Du(a)‖1 6= 0 then a ∈ N[a,b)(u, u∗), while if ‖Du(b)‖1 6= 0 then b /∈
N[a,b)(u, u∗). Since u and u∗ are BVloc functions N[a,b)(u, u∗) is a finite set of points. We index in increasing

order the points in N[a,b)(u, u∗) and by an abuse of notation we denote {i ∈ N[a,b)(u, u∗)} instead of {i : ri ∈
N[a,b)(u, u∗)}. Define for u ∈ BVloc, the following finite volume functional

Γ[a,b)(u|u∗, W )

=
1

2m̃β

∑

i∈N[a,b)(u,u∗)

{F∗

2

[
‖Du(ri)‖1 − ‖Du∗(ri)‖1

]
− V (β, θ)(ũ(ri) − ũ∗(ri))[W (ri+1) − W (ri)]

}
.

(2.42)

The functional in (2.42) is always well defined since it is sum of finite terms. In the following u∗ ≡ u∗(W ) is

a BVloc function determined by the realization of the BBM. We construct it through the h−extrema of BBM

where h = 2F∗

V (β,θ) . In Section 5, we recall the construction done by Neveu and Pitman, [32], together with all

its relevant properties. Here we only recall what is needed to state the main theorems. Denote, as in [32] , by

{Si ≡ S
(h)
i ;∈ ZZ} the points of h− extrema with the labeling convention that . . . S−1 < S0 ≤ 0 < S1 < S2 . . ..

They proved that {Si ≡ S
(h)
i ;∈ ZZ} is a stationary renewal process, and gave the Laplace transform of the

inter-arrival times. The u∗ = u∗(W ) is the following random BVloc function:

u∗(r) =

{
mβ , for r ∈ [Si, Si+1), if Si is a point of h–minimum for W ;

Tmβ, for r ∈ [Si+1, Si+2).
(2.43)

u∗(r) =

{
Tmβ, for r ∈ [Si, Si+1), if Si is a point of h–maximum for W ;

mβ , for r ∈ [Si+1, Si+2).
(2.44)

For W and u∗(W ) chosen as described, we denote for u ∈ BVloc

Γ(u|u∗, W ) =
∑

j∈ZZ

Γ[Sj ,Sj+1)(u|u∗(W ), W ). (2.45)

Since |[Sj , Sj+1)| is P a.s a finite interval, Γ[Sj,Sj+1)(u|u∗(W ), W ) is well defined. Actually it can be proven,

see Theorem 2.4 stated below, that the sum is positive and therefore the functional in (2.45) is well defined

although it may be infinite. The Γ(·|u∗, W ) provides an extension of the functional (2.42) in IR. One can

formally write the functional (2.45) as

Γ(u|u∗, W ) =
1

2m̃β

{F∗

2

∫

IR

dr
[
‖Du(r)‖1 − ‖Du∗(r)‖1

]
− V (β, θ)

∫

IR

(ũ(r) − ũ∗(r))dW (r)

}
. (2.46)

The stochastic integral in (2.46) should be defined but since we use merely (2.45) that is well defined, we

leave (2.46) as a formal definition. We have the following result:
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Theorem 2.4 P a.s. one can construct an unique u∗ = u∗(W ) ∈ BVloc such that for any u ∈ BVloc,

Γ(u|u∗, W ) ≥ 0.

Theorem 2.5 and Corollary 2.6 stated next relate u∗
γ(ω) defined in (2.39) with u∗(W ) the minimizer of

Γ(u|u∗, W ).

Theorem 2.5 Given (β, θ) ∈ E, see (2.19), choosing the parameters as in Subsection 2.5, setting h = 2F∗

V (β,θ) ,

we have that

lim
γ→0

ǫ(γ)α∗
i (γ)

Law
= S

(h)
i ≡ Si (2.47)

for i ∈ ZZ. The {Si, i ∈ ZZ} is a stationary renewal process on IR. The Si+1 − Si, (and S−i − S−i−1) for

i > 1 are independent, equidistributed, with Laplace transform

IE[e−λ(Si+1−Si)] = [cosh(h
√

2λ)]−1 for λ ≥ 0 (2.48)

(mean h2) and distribution given by

d

dx
(IP [S2 − S1 ≤ x]) =

π

2

∞∑

k=0

(−1)k (2k + 1)

h4
exp

[
−(2k + 1)2

π2

8

x

h2

]
for x > 0. (2.49)

Moreover S1 and −S0 are equidistributed, have Laplace transform

IE[e−λS1 ] =
1

h2λ

(
1 − 1

cosh(h
√

2λ)

)
for λ ≥ 0 (2.50)

and distribution given by

d

dx
(IP [S1 ≤ x]) =

4

π

∞∑

k=0

(−1)k

(2k + 1)h2
exp

[
−(2k + 1)2

π2

8

x

h2

]
for x > 0. (2.51)

The formula (2.48) was given by Neveu and Pitman in [32] and is reported here for completeness.

Corollary 2.6 Under the same hypothesis of Theorem 2.5, for the topology induced by the Skorohod metric

that makes BVloc a complete separable space, see (5.4) we have

lim
γ↓0

u∗
γ

Law
= u∗. (2.52)

The proof of Theorem 2.5 and Corollary 2.6 are given in Section 5.

Remark 2.7 . Note that the Laplace transform (2.50) is the one of the limiting distribution of the age or

the residual life of a renewal process whose Laplace transform of inter-arrival times is given is (2.48). The

explicit expression given in (2.51) is the same found by H. Kesten, [26], and independently by Golosov, [22],

for the limiting distribution of the point of localization of the Sinai random walk in one dimension given that

this point is positive, [35]. The formula (2.49) can be easily obtained from (2.51) knowing that (2.51) is the

limiting distribution of the age of the above renewal process.

Remark 2.8 . An immediate consequence of Theorems 2.3 and 2.5 is that to construct the limiting (in Law

when γ ↓ 0) typical profile of the Gibbs measure one can proceed in the following way: Starting on the right
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of the origin take a sample of a random variable with distribution (2.51) and put a mark there and call it

S1, make the same on the left of the origin and call the mark S0. Then the limiting typical profile will be

constant on [S0, S1). To determine if it is equal to mβ or Tmβ, just take a sample of a symmetric Bernoulli

random variable τ with value in {mβ, Tmβ} and take the profile accordingly. To continue the construction,

use the above renewal process to determine marks S2 and S−1 then take for the typical limiting profile in

[S1, S2) and [S−1, S0) the one with Tτ defined in (2.16) with T 2 the identity, then continue.

Recall that the results of Theorem 2.3 are obtained in a probability subset Ω1 depending on γ and u∗
γ is

defined only on the interval [−Q, +Q] ≡ [−Q(γ), Q(γ)] which is finite for any fixed γ, see (2.67). To our aim

it is convenient to consider u∗
γ ∈ BV ([−Q, +Q]) as an element of BVloc by replacing u∗

γ by u∗Q
γ where for

u ∈ BV ([−Q, +Q]),

uQ(r) =

{
u(r ∧ Q), if r ≥ 0;
u(r ∨ (−Q), if r < 0.

(2.53)

In Theorem 2.5 we related the profile u∗
γ(ω) ∈ BV ([−Q(γ), Q(γ)]), (or what is the same u∗Q

γ in BVloc)

to u∗(W ) ∈ BVloc. Next result which is a weak large deviation principle, connects the random functional

Γ(·|u∗, W ), (2.45), with a functional obtained when estimating the (random) Gibbs measures of the neigh-

boorhood Pρ
δ,γ,ζ,[−Q,+Q](u) for u belonging to a class of perturbations of u∗

γ(ω) that has to be specified. Let

us denote for Q ≡ Q(γ) and f(Q) a positive increasing real function,

UQ(u∗
γ) =

{
u ∈ BVloc; uQ(r) = u∗Q

γ (r), ∀ |r| ≥ Q − 1, V Q
−Q(u) ≤ V Q

−Q(u∗
γ)f(Q)

}
. (2.54)

The last requirement in (2.54) imposes that the number of jumps of u does not grow too fast with respect

to the ones of u∗
γ . Note that u in UQ(γ)(u

∗
γ(ω)) is a random function depending on γ that is u ≡ u(γ) and

u ≡ u(γ, ω) if one needs to emphasize the ω dependence.

Theorem 2.9 Given (β, θ) ∈ E, let u∗ ∈ BVloc be the P a.s. minimizer for Γ(·|u∗, W ) given in (2.43),

(2.44). Setting the parameters as in Subsection 2.5, taking

f(Q) = e( 1
8+4a−b)(log Q)(log log Q), (2.55)

with 0 < b < 1/(8 + 4a), for u(γ, ω) ∈ UQ(u∗
γ(ω)) such that

lim
γ↓0

(u(γ), u∗
γ)

Law
= (u, u∗) (2.56)

we have

lim
γ↓0

[
−γ log µβ,θ,γ

(
Pρ

δ,γ,ζ,[−Q,Q](u(γ))
)]

Law
= Γ(u|u∗, W ). (2.57)

Let us consider some examples: Suppose u1 ∈ UQ(u∗
γ(ω)) is such that for some L > 0

u1(ω)(r) = v(r)1I[−L,L](r) + u∗
γ(ω)1I[−Q,Q]\[−L,L](r), (2.58)

where v ∈ BVloc is non random function. When L is a fixed number independent on γ then (u1, u
∗
γ) converges

in Law when γ ↓ 0 to

(v(r)1I[−L,L](r) + u∗(r, W )1IIR\[−L,L](r), u
∗(r, W ))
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and the functional in the r.h.s. of (2.57) is computed on u(r) = v(r)1I[−L,L](r)+u∗(r, W )1IIR\[−L,L](r). When

L ≡ L(γ) in (2.58) goes to infinity when γ ↓ 0 then (u1, u
∗
γ) converges in Law to (v, u∗) and the functional

in the r. h. s. of (2.57) is computed on the function u(r) ≡ v(r). Theorem 2.9 is a consequence of accurate

estimates, see Proposition 4.2, where approximate terms and errors are explicitly computed.

2.5 Choice of the parameters We regroup here the choice of the parameters that will be used all along

this work. This choice is similar to the one done in [16]. First one chooses a function g on [1,∞) such that

g(x) > 1, g(x)/x ≤ 1, ∀x > 1 and limx↑∞ x−1g38(x) = 0. Any increasing function slowly varying at infinity

can be modified to satisfy such constraints. A possible choice is g(x) = 1 ∨ log x or any iterated of it. For

δ∗, which represents the smallest coarse graining scale, we have two constraints:

(δ∗)2

γ
g3/2(

δ∗

γ
) ≤ 1

βκ(β, θ)e3213
, (2.59)

where κ(β, θ) is the constant in (2.22) and

(
2γ

δ∗
)1/2

(
log

1

γδ∗
+

log g(δ∗/γ)

log log g(δ∗/γ)

)
≤ 1

32
. (2.60)

A possible choice of δ∗ is

δ∗ = γ
1
2+d∗

for some 0 < d∗ < 1/2. (2.61)

The first constraint, (2.59), is needed to represent in a manageable form the multibody interaction that

comes from the block spin transformation, see Lemma 3.5; the second one, (2.60) is needed to estimate the

Lipschitz norm when applying a concentration inequality to some function of the random potential.

Taking g slowly varying at infinity, the conditions (2.61) (2.59) and (2.60) are satisfied by taking γ small

enough. For (ζ, δ), the accuracy chosen to determine how close is the local magnetization to the equilibrium

values, there exists a ζ0 = ζ0(β, θ) such that

1

[κ(β, θ)]1/3g1/6( δ∗

γ )
< ζ ≤ ζ0, (2.62)

and δ is taken as

δ =
1

5(g( δ∗

γ ))1/2
. (2.63)

The fuzziness ρ is chosen as

ρ =

(
5

g(δ∗/γ)

)1/(2+a)

, (2.64)

where a is an arbitrary positive number. Note that δ ≤ ρ and ρ/δ ↑ ∞, so in Definition 2.2 we have just a

constraint of the form γ ≤ γ0(u). Furthermore ǫ that appears in (2.39) is chosen as

ǫ = (5/g(δ∗/γ))4, (2.65)

R2 that appears in Definition 2.2 is chosen as

R2 = c(β, θ)(g(δ∗/γ))7/2 (2.66)

for some positive c(β, θ), and

Q = exp[(log g(δ∗/γ))/ log log g(δ∗/γ)]. (2.67)
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Note that choosing δ∗ as in (2.61), in Theorem 2.3 we have called g(1/γ) what is really g(γ−(1/2)+d∗

) however

since g is rather arbitrary this is the same. Note also that since g is slowly varying at infinity, as we already

mentioned γR2 ↓ 0 when γ ↓ 0. At last, note that the only constraint on ζ is (2.62). In particular one can

also choose ζ in Theorem 2.3 as

ζ = ζ(γ) ≡ 2
1

[κ(β, θ)]1/3g1/6( δ∗

γ )
(2.68)

that goes to zero with γ.

3 The block spin representation and Basic Estimates

As explained in the introduction the first step is a coarse graining procedure. The microscopic spin

system is mapped into a block spin system (macro scale), for which the length of the interaction becomes

1. In this section we state the results of this procedure, see Lemmas 3.1 and 3.2. The actual computations

are straightforward, but tedious. Once this procedure has been accomplished one needs to estimate and

represent in a form, convenient for further computations, the multibody interaction, which is a byproduct

of the coarse graining procedure, and the main stochastic contribution to the coarse grained energy. The

multibody interaction is represented as a convergent series applying a well known Statistical Mechanics

technique, the Cluster expansion, see Lemma 3.5. The main stochastic term is represented with the help of

Central Limit Theory, in Proposition 3.6. We then give some basic estimates which we will apply in Section

4.

With Cδ∗(V ) as in (2.5), let Σδ∗

V denote the sigma–algebra of S generated by mδ∗

V (σ) ≡ (mδ∗

(x, σ), x ∈
Cδ∗(V )), where mδ∗

(x, σ) = (mδ∗

(+, x, σ), mδ∗

(−, x, σ)), cf. (2.8). We take I = [i−, i+) ⊆ IR with i± ∈ ZZ.

The interval I is assumed to be Dδ∗–measurable and we set ∂+I ≡ {x ∈ IR: i+ ≤ x < i+ + 1}, ∂−I ≡
{x ∈ IR: i− − 1 ≤ x < i−}, and ∂I = ∂+I ∪ ∂−I. For (mδ∗

I , mδ∗

∂I) in Mδ∗(I ∪ ∂I), cf. (2.12), we set

m̃δ∗

(x) = (mδ∗

1 (x) + mδ∗

2 (x))/2,

E(mδ∗

I ) ≡ −δ∗

2

∑

(x,y)∈Cδ∗(I)×Cδ∗ (I)

Jδ∗(x − y)m̃δ∗

(x)m̃δ∗

(y), (3.1)

E(mδ∗

I , mδ∗

∂±I) ≡ −δ∗
∑

x∈Cδ∗(I)

∑

y∈Cδ∗ (∂±I)

Jδ∗(x − y)m̃δ∗

(x)m̃δ∗

(y), (3.2)

where Jδ∗(x) = δ∗J(δ∗x). Further denote

F̂(mδ∗

I |mδ∗

∂I) =E(mδ∗

I ) + E(mδ∗

I , mδ∗

∂I) −
θδ∗

2

∑

x∈Cδ∗ (I)

(mδ∗

1 (x) − mδ∗

2 (x))

− δ∗
∑

x∈Cδ∗ (I)

γ

βδ∗
log

(
δ∗γ−1/2

1+mδ∗
1 (x)

2 δ∗γ−1/2

)(
δ∗γ−1/2

1+mδ∗
2 (x)

2 δ∗γ−1/2

)
,

(3.3)

G(mδ∗

I ) ≡
∑

x∈Cδ∗ (I)

Gx,mδ∗ (x)(λ(x)) (3.4)

where for each x ∈ Cδ∗(I), Gx,mδ∗ (x)(λ(x)) is the cumulant generating function:

Gx,mδ∗ (x) (λ(x)) ≡ − 1

β
log IEδ∗

x,mδ∗(x)(e
2βθλ(x)

∑
i∈D(x)

σi
), (3.5)
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of the “canonical” measure on {−1, +1}A(x), defined through

IEδ∗

x,mδ∗(x)(ϕ) =

∑
σ ϕ(σ)1I{mδ∗ (x,σ)=mδ∗ (x)}∑

σ 1I{mδ∗ (x,σ)=mδ∗ (x)}
, (3.6)

the sum being over σ ∈ {−1, +1}A(x). Finally denote

V (mδ∗

I ) ≡ VI(m
δ∗

I , h) = − 1

β
log IEmδ∗ (I)[

∏

x 6=y
x,y∈Cδ∗ (I)×Cδ∗ (I)

e−βU(σA(x),σA(y))]. (3.7)

where

U(σA(x), σA(y)) = −
∑

i∈A(x),j∈A(y)

γ
[
J(γ|i − j|) − J(δ∗|x − y|)

]
σiσj . (3.8)

and

IEmδ∗

I
[f ] ≡

∑
σγ−1I

∏
x1∈Cδ∗ (I) 1I{mδ∗ (x1,σ)=mδ∗ (x1)}e

2βθλ(x1)
∑

i∈D(x1)
σi

f(σ)

∑
σγ−1I

∏
x1∈Cδ∗ (I) 1I{mδ∗ (x1,σ)=mδ∗ (x1)}e

2βθλ(x1)
∑

i∈D(x1)
σi

. (3.9)

Let F δ∗

be a Σδ∗

I -measurable bounded function, mδ∗

∂I ∈ Mδ∗(∂I) and µβ,θ,γ

(
F δ∗ |Σδ∗

∂I

)
the conditional

expectation of F δ∗

given the σ–algebra Σδ∗

∂I . We obtain:

Lemma 3.1

µβ,θ,γ

(
F δ∗ ∣∣ Σδ∗

∂I

)
(mδ∗

∂I) =
e±

β
γ 2δ∗

Zβ,θ,γ,I(mδ∗

∂I)

∑

mδ∗

I
∈Mδ∗ (I)

F δ∗

(mδ∗

)e
−β

γ

{
F̂(mδ∗

I |mδ∗

∂I )+γG(mδ∗

I )+γV (mδ∗

I )
}
, (3.10)

where equality has to be interpreted as an upper bound for ± = +1 and a lower bound for ± = −1, and

Zβ,γ,θ,I(m
δ∗

∂I) =
∑

mδ∗

I
∈Mδ∗ (I)

e
− β

γ

{
F̂(mδ∗

I |mδ∗

∂I)+γG(mδ∗

I )+γV (mδ∗

I )
}
. (3.11)

That is, up to the error terms e±
β
γ 2δ∗

, we are able to describe the system in terms of the block spin variables

giving a rather explicit form to the deterministic and stochastic part. The explicit derivation of Lemma 3.1

is done in Section 3 of [16]. Here we only point out that since

|1I{γ|i−j|≤1/2} − 1I{δ∗|x−y|≤1/2}| ≤ 1I{−δ∗+1/2≤δ∗|x−y|≤δ∗+1/2} (3.12)

one can estimate

|U(σA(x), σA(y))| ≤ γ(
δ∗

γ
)21I{1/2−δ∗≤δ∗|x−y|≤1/2+δ∗}. (3.13)

Therefore, given mδ∗

I ∈ Mδ∗(I), we easily obtain from (3.13)

∣∣∣∣∣∣
H(σγ−1I) + θ

∑

i∈γ−1I

hiσi −
1

γ
E(mδ∗

I )

∣∣∣∣∣∣
=

1

β

∣∣∣∣∣∣
log
[ ∏

x∈Cδ∗(I)

∏

y∈Cδ∗ (I)

e−βU(σA(x),σA(y))
]
∣∣∣∣∣∣
≤ |I|δ∗γ−1, (3.14)

18



for σ ∈ {σ ∈ γ−1I : mδ∗

(x, σ) = mδ∗

(x), ∀x ∈ Cδ∗(I)}. The following lemma gives an explicit integral form

of the deterministic part of the block spins system. For m ∈ T , fβ,θ(m) defined in (2.18), let us call

F̃(mI |m∂I) =

∫

I

fβ,θ(m(x)) dx +
1

4

∫

I

∫

I

J(x − y)[m̃(x) − m̃(y)]2 dxdy

+
1

2

∫

I

dx

∫

Ic

J(x − y)[m̃(x) − m̃(y)]2 dy.

(3.15)

Lemma 3.2 Set mδ∗

I∪∂I ∈ Mδ∗(I ∪ ∂I), m(r) = mδ∗

(x) for r ∈ [xδ∗, (x + 1)δ∗) and x ∈ Cδ∗(I ∪ ∂I), then

one has

|F̂(mδ∗

I |mδ∗

∂I) − F̃(mI |m∂I) +
δ∗

2

∑

y∈Cδ∗ (∂I)

[
m̃δ∗

(y)
]2 ∑

x∈Cδ∗ (I)

Jδ∗(x − y)| ≤ |I| γ

δ∗
log

δ∗

γ
. (3.16)

Proof:

Using Stirling formula, see [?], we get

∣∣∣δ∗
∑

x∈Cδ∗ (I)

1

2β

(
I(mδ∗

1 ) + I(mδ∗

2 )
)
− δ∗

∑

x∈Cδ∗ (I)

γ

βδ∗
log

(
δ∗γ−1/2

1+mδ∗
1 (x)

2 δ∗γ−1/2

)(
δ∗γ−1/2

1+mδ∗
2 (x)

2 δ∗γ−1/2

)∣∣∣

≤ 1

β
|I| γ

δ∗
log

δ∗

γ
,

(3.17)

where I(·) is defined after (2.18). Recalling the definition of fβ,θ(m), cf. (2.18), the lemma is proven.

There are two random terms in (3.10): G(mδ∗

I ), the main random contribution, and V (mδ∗

I ), the random

expectation of the deterministic term (3.8). To treat them we will use the following classical deviation

inequality for Lipschitz function of Bernoulli random variables. See [31] or [14] for a short proof.

Lemma 3.3 Let N be a positive integer and F be a real function on SN = {−1, +1}N and for all i ∈
{1, . . . , N} let

‖∂iF‖∞ ≡ sup
(h,h̃):hj=h̃j ,∀j 6=i

∣∣∣F (h) − F (h̃)
∣∣∣

|hi − h̃i|
. (3.18)

If IP is the symmetric Bernoulli measure and ‖∂(F )‖2
∞ =

∑N
i=1 ‖∂i(F )‖2

∞ then, for all t > 0

IP [F − IE(F ) ≥ t] ≤ e
− t2

4‖∂(F )‖2
∞ (3.19)

and also

IP [F − IE(F ) ≤ −t] ≤ e
− t2

4‖∂(F )‖2
∞ . (3.20)

When considering volumes I that are not too large, we use the following simple fact that follows from (3.4)

and (3.5)

|G(mδ∗

I )| ≤ 2θ sup
σI∈{−1,+1}I/γ

∑

x∈Cδ∗(I)

∣∣∣
∑

i∈D(x)

σi

∣∣∣ ≤ 2θ
∑

x∈Cδ∗ (I)

|D(x)|. (3.21)

Lemma 3.3 implies the following rough estimate:
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Lemma 3.4 (The rough estimate) For all δ∗ > γ > 0 and for all positive integer p, that satisfy

12(1 + p)δ∗ log
1

γ
≤ 1 (3.22)

there exists ΩRE = ΩRE(γ, δ∗, p) ⊆ Ω with IP [ΩRE ] ≥ 1 − γ2 such that on ΩRE we have:

sup
I⊆[−γ−p,γ−p]

∑
x∈Cδ∗ (I) (|D(x)| − IE[|D(x)|])

√
|I|

≤
√

3(1 + p)

γ

√
γ log

1

γ
(3.23)

and, uniformly with respect to all intervals I ⊆ [−γ−p, γ−p],

sup
mδ∗

I
∈Mδ∗ (I)

γ|G(mδ∗

I )|| ≤ 2θ

( |I|
2

√
γ

δ∗
+
√

3(1 + p)

√
|I|γ log

1

γ

)
≤ 2θ|I|

√
γ

δ∗
. (3.24)

This lemma is a direct consequence of Lemma 3.3, since |D(x)| = (|D(x)| − IE[|D(x)|]) + IE[|D(x)|] ,

|D(x)| = |∑i∈A(x) hi|/2, and IE[|D(x)|] ≤ 1
2

√
δ∗/γ by Schwarz inequality. When we use the estimate

(3.24), V (mδ∗

I ) is estimated using (3.14) and one has

sup
mδ∗

I
∈Mδ∗ (I)

γ|V (mδ∗

I )| ≤ δ∗|I|. (3.25)

However when (3.24) and (3.25) give useless results, one can use Lemma 3.3 to estimate V (mδ∗

I ) and at some

point ‖∂iV (mδ∗

)‖∞ will be needed. In Theorem 8.1 in [16], with the help of the cluster expansion, we prove

the following.

Lemma 3.5 For any finite interval I, let

‖∂iVI‖∞ ≡ sup
(h,h̃):hj=h̃j ,∀j 6=i

∣∣∣VI(m
δ∗

I , h) − VI(m
δ∗

I , h̃)
∣∣∣

|h − h̃|
. (3.26)

Then, for all β > 0, for all δ∗ > γ > 0, such that

(δ∗)2

γ
≤ 1

6e3β
(3.27)

we have

sup
I⊆ZZ

sup
i∈I

‖∂iVI‖∞ ≤ 1

β

S

1 − S
, (3.28)

where 0 < S ≤ 6e3β (δ∗)2

γ .

Together with the above estimates for VI , we need an explicit expression for G(mδ∗

I ). Since D(x) ⊆ B−λ(x)(x),

Gx,mδ∗ (x) (λ(x)), see (3.5), depends only on one component of mδ∗

(x), precisely on mδ∗

3+λ(x)
2

. In fact, we have

Gx,mδ∗ (x) (λ(x)) = − 1

β
log

∑
σ∈{−1,+1}B−λ(x)(x) 1I{mδ∗

3+λ(x)
2

(x,σ)=mδ∗

3+λ(x)
2

}e
2βθλ(x)

∑
i∈D(x)

σi

∑
σ∈{−1,+1}B−λ(x)(x) 1I{mδ∗

3+λ(x)
2

(x,σ)=mδ∗

3+λ(x)
2

}
, (3.29)
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since the sums over the spin configurations in {−1, +1}Bλ(x)(x) – the ones that depend on mδ∗

3−λ(x)
2

– cancel

out between the numerator and denominator in (3.6). The formula (3.29) is almost useless. One can think

about making an expansion in βθ as we basically did in [14], Proposition 3.1 where βθ was assumed to be

as small as needed. Since here we assume (β, θ) ∈ E , one has to find another small quantity. Looking at the

term
∑

i∈D(x) σi in (3.5) and setting

p(x) ≡ p(x, ω) = |D(x)|/|Bλ(x)(x)| = 2γ|D(x)|/δ∗, (3.30)

it is easy to see that for I ⊆ IR, if
(

2γ

δ∗

)1/2

log
|I|
δ∗

≤ 1

32
, (3.31)

we have

IP

[
sup

x∈Cδ∗ (I)

p(x) > (2γ/δ∗)
1
4

]
≤ e−

1
32 (

δ∗

2γ )
1
2

. (3.32)

Depending on the values of mδ∗

3+λ(x)
2

, Gx,mδ∗ (x) (λ(x)) has a behavior that corresponds to the classical Gaus-

sian, Poissonian, or Binomial regimes, as explained in [14]. It turns out, see Remark 4.11 of [16], that

we need accurate estimates only for those values of mδ∗

3+λ(x)
2

for which Gx,mδ∗ (x) (λ(x)) is in the Gaussian

regime. In this regime, applying the Central Limit Theorem, we obtain a more convenient representation

of Gx,mδ∗ (x) (λ(x)) which is the content of next proposition. Let g0(n) be a positive increasing real function

with limn↑∞ g0(n) = ∞ such that g0(n)/n is decreasing to 0 when n ↑ ∞.

Proposition 3.6 For all (β, θ) ∈ E, there exist γ0 = γ0(β, θ) and d0(β) > 0 such that for 0 < γ ≤ γ0,

γ/δ∗ ≤ d0(β), on the set {supx∈Cδ∗ (I) p(x) ≤ (2γ/δ∗)1/4}, if

|mδ∗

3+λ(x)
2

(x)| ≤ 1 −
(

g0(δ
∗γ−1/2)

δ∗γ−1/2
∨ 16p(x)βθ

1 − tanh(2βθ)

)
, (3.33)

then

Gx,mδ∗ (x) (λ(x)) = − 1

β
log

Ψλ(x)2βθ,p(x),mδ∗

3+λ(x)
2

(x)

Ψ0,0,mδ∗

3+λ(x)
2

(x)

− 1

β
|D(x)|

[
log cosh(2βθ) + log

(
1 + λ(x)mδ∗

3+λ(x)
2

(x) tanh(2βθ)
)

+ ϕ̂(mδ∗

3+λ(x)
2

(x), 2λ(x)βθ, p(x))
]

,

(3.34)

where
∣∣∣ϕ̂(mδ∗

3+λ(x)
2

(x), 2λ(x)βθ, p(x))
∣∣∣ ≤

(
2γ

δ∗

)1/4
32βθ(1 + βθ)

(1 − |mδ∗

3+λ(x)
2

(x)|)2(1 − tanh(2βθ))
(3.35)

and ∣∣∣∣∣∣∣
log

Ψλ(x)2βθ,p(x),mδ∗

3+λ(x)
2

(x)

Ψ0,0,mδ∗

3+λ(x)
2

(x)

∣∣∣∣∣∣∣
≤ 18

g0(δ∗γ−1/2)
+

(
2γ

δ∗

)1/4

c(βθ), (3.36)

with

c(βθ) =
tanh2(2βθ)(1 + tanh2(2βθ))2

[1 − tanh2(2βθ)]2[1 − tanh(2βθ)]6
. (3.37)
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The proof of Proposition 3.6 is given in Proposition 3.5 of [16]. In the following we deal with quotients of

quantities (partition functions) of the type (3.11) with boundary conditions that might be different between

numerator and denominator. For this reason it is convenient to introduce the following notations. Let I any

finite interval. We set mδ∗

∂I = (mδ∗

∂−I , m
δ∗

∂+I) and, see (3.11), we denote

Zβ,θ,γ,I

(
mδ∗

∂−I = ms1 , m
δ∗

∂+I = ms2

)
≡ Z

ms1 ,ms2

I (3.38)

where (ms1 , ms2) ∈ {m−, 0, m+}2 and for ms1 = 0, we set in (3.11) E(mδ∗

I , mδ∗

∂−I) = 0 while for ms2 = 0 we

set E(mδ∗

I , mδ∗

∂+I) = 0. In a similar way, recalling (3.10), if F δ∗

is Σδ∗

I –measurable we set

Z
ms1 ,ms2

I (F δ∗

)

Z
ms1 ,ms2

I

≡
∑

mδ∗

I
∈Mδ∗ (I) F (mδ∗

I )e
−β

γ

{
F̂(mδ∗

I |mδ∗

∂−I
=ms1mδ∗

∂+I
=ms2)+γG(mδ∗

I )+γV (mδ∗

I )
}

Z
ms1 ,ms2

I

. (3.39)

Further, let mδ∗

β be one of the points in
{
−1,−1 + 4γ

δ∗ , . . . , 1 − 4γ
δ∗ , 1

}2
which is closest to mβ . Let mδ∗

β,I

be the function which coincides with mδ∗

β on I and vanishes outside I and Rδ,ζ(η) for η = ±1 the set of

configurations which are close with accuracy (δ, ζ), see (2.28), to mβ when η = 1 and to Tmβ when η = −1.

By definition, |mδ∗

β − mβ| ≤ 8γ/δ∗ and choosing suitable the parameters we obtain that mδ∗

β (resp. Tmδ∗

β )

is in Rδ,ζ(+1), (resp Rδ,ζ(−1)). According to the results presented in Section 2, the typical configurations

profiles are long runs close to one equilibrium value followed by a jump, then again long runs close to the

other equilibrium value an so on. It is therefore comprehensible that the following quantities will play an

important role.

Z0,0
I (1ITRδ,ζ(η))

Z0,0
I (1IRδ,ζ(η))

≡ Z0,0
I (TRδ,ζ(η))

Z0,0
I (Rδ,ζ(η))

. (3.40)

Since the two minima of fβ,θ, see (2.18), are mβ and Tmβ, we have TRδ,ζ(η) = Rδ,ζ(−η), and we write

(3.40) as

Z0,0
I (Rδ,ζ(−η))

Z0,0
I (Rδ,ζ(η))

≡ eβ∆ηG(mδ∗

β,I )
Z0,0

I,0 (R(−η))

Z0,0
I,0 (R(η))

(3.41)

where

∆ηG(mδ∗

β,I) ≡ η
[
G(mδ∗

β,I) − G(Tmδ∗

β,I)
]

= −η
∑

x∈Cδ∗ (I)

X(x), (3.42)

X(x) = Gx,mδ∗

β
(λ(x)) − Gx,Tmδ∗

β
(λ(x)), (3.43)

and

Z0,0
I,0 (R(−η))

Z0,0
I,0 (R(η))

≡
∑

mδ∗

I
∈Mδ∗ (I) 1I{Rδ,ζ(η)}e

−β
γ

{
F̂(mδ∗

I ,0)+γ∆−η
0 G(mδ∗

I )+γV (Tmδ∗

I )
}

∑
mδ∗

I
∈Mδ∗ (I) 1I{Rδ,ζ(η)}e

− β
γ

{
F̂(mδ∗

I
,0)+γ∆η

0G(mδ∗

I
)+γV (mδ∗

I
)
} ,

(3.44)

and

∆η
0G(mδ∗

I ) ≡
∑

x∈Cδ∗(Ĩ12)

∆η
0Gh

x,mδ∗ (x) (3.45)
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where recalling (3.5),

∆η
0Gh

x,mδ∗ (x) = G
x,T

1−η
2 mδ∗ (x)

(λ(x)) − G
x,T

1−η
2 mδ∗

β
(x)

(λ(x)) (3.46)

with T 0 equal to the identity. When flipping hi to −hi, for all i, then λ(x) → −λ(x), B+(x) → B−(x) while

D(x) does not change. Therefore,

Z0,0
I (R(−η))

Z0,0
I (R(η))

(h) =
Z0,0

I (R(η))

Z0,0
I (R(−η))

(−h), (3.47)

which implies that log
Z0,0

I
(R(−η))

Z0,0
I

(R(η))
(h) is a symmetric random variable, in particular has mean zero. Further

the X(x) in (3.43) is a symmetric random variable as it can be directly checked inspecting (3.5). Therefore

log
Z0,0

I,0
(R(−η))

Z0,0
I,0

(R(η))
(h) is a symmetric random variable having mean zero and it has been estimated in [16] applying

Lemma 3.3. In [16] this term was denoted
Z−η,0,δ,ζ(I)
Zη,0,δ,ζ (I) . The estimate is reported in the next Lemma.

Lemma 3.7 Given (β, θ) ∈ E, there exist γ0 = γ0(β, θ) > 0, d0 = d0(β, θ) > 0, and ζ0 = ζ0(β, θ) such that

for all 0 < γ ≤ γ0, for all δ∗ > γ with γ/δ∗ ≤ d0, for all 0 < ζ < ζ0 that satisfy the following condition

ζ ≥
(
5184(1 + c(βθ))2(

γ

δ∗
)1/2

)
∨
(

12
e3β

c(β, θ)

(δ∗)2

γ

)2

(3.48)

where c(βθ) is given in (3.37) and c(β, θ) is another β, θ dependent constant, then for all a > 0,

IP



max
I⊆∆Q

∗ max
Ĩ12⊆I

∣∣∣∣∣∣
log

Z0,0

Ĩ12,0
(R(−η))

Z0,0

Ĩ12,0
(R(η))

∣∣∣∣∣∣
≥ β

4a + 12ζ

γ



 ≤ 2Q

ǫ

e−
u
ǫ

1 − e−
u
ǫ

(3.49)

where maxI⊆∆Q
∗ denote the maximum over the intervals I ⊆ ∆Q such that |I| = ǫγ−1 and u ≡ a2β2

8ζc2(β,θ) .

To apply Lemma 3.3 one needs a control of the Lipschitz norm of the object to be estimated. The Lipschitz

norm of log
Z0,0

I,0
(R(−η))

Z0,0
I,0

(R(η))
is given in Lemma 4.9 of [16]. The estimate in Lemma 3.7 holds for interval I,

|I| = ǫγ−1. To treat intervals longer than ǫ
γ , see Lemma 4.19, Section 4, one needs a non trivial extension of

Lemma 3.7 and a convenient choice of the parameters involved in the estimate. This was done in the proof

of Lemma 6.3 of [16]. The estimate (3.49) is useful when ǫ is small (ǫ → 0). When dealing with intervals

of order 1
γ , (ǫ = 1) to get an useful estimate we need to have u → ∞. The only way to obtain this, see the

choice of u in Lemma 3.7, is to let ζ(γ) → 0 as γ → 0. But ζ is the accuracy we choose and we would like

to have ζ satisfying (3.48), small but not going to zero when γ → 0. So the main effort is to show, that

eventhough the accuracy to define the vicinity of the profiles to mβ or Tmβ is kept finite, it is possible to

find with overwhelming Gibbs probability and IP a.s., blocks in which the typical magnetization profiles are

indeed at distance less than ζ5 to mβ or Tmβ, with ζ5(γ) → 0 as γ → 0. This allows to replace the ζ in the

definition of u with ζ5. This is done in Theorem 7.4 of [16] and it will be applied when proving Proposition

4.2 in Section 4.

To treat the term in (3.42) we apply Proposition 3.6 on the set {p(x) ≤ (2γ/δ∗)1/4} and we obtain a very

convenient representation for X(x)

X(x) = −λ(x)|D(x)|
[
log

1 + mδ∗

β,2 tanh(2βθ)

1 − mδ∗

β,1 tanh(2βθ)
+ Ξ1(x, βθ, p(x))

]
− λ(x)Ξ2(x, βθ, p(x)) (3.50)
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where Ξ1 and Ξ2 are easily obtained from (3.34). Furthermore, choosing g0(n) = n1/4 in Proposition 3.6, it

follows that

|Ξ1(x, βθ, p(x))| ≤ 64
βθ(1 + βθ)

(1 − mβ,1)2(1 − tanh(2βθ))
(2

γ

δ∗
)1/4 (3.51)

and

|Ξ2(x, βθ, p(x)| ≤ (2
γ

δ∗
)1/4 [36 + 2c(βθ)] (3.52)

where c(βθ) is given in (3.37). The X(x) are in fact symmetric random variables as it follows from (3.50).

We have that

IE[X(x)1I{p(x)≤(2γ/δ∗)1/4}] = 0,

IE[X2(x)1I{p(x)≤(2γ/δ∗)1/4}] =
δ∗

γ
c(β, θ, γ/δ∗)

(3.53)

where c(β, θ, γ/δ∗) satisfies

c(β, θ, γ/δ∗) ≤ (V (β, θ))
2
[
1 + (γ/δ∗)

1
5

]2

c(β, θ, γ/δ∗) ≥ (V (β, θ))
2
[
1 − (γ/δ∗)

1
5

]2 (3.54)

and V (β, θ) is defined in (2.36). By the results in [16], the runs of configurations close to mβ or to Tmβ are

of order 1 in Brownian scale ( 1
γ2 in micro units), so it is convenient to partition IR into blocks of length ǫ, in

the Brownian scale; i.e. each block in micro units is of length ǫ
γ2 and the basic assumption is that ǫ ≡ ǫ(γ),

limγ→0 ǫ(γ) = 0, ǫ
γ2 > δ∗

γ , so that each block of length ǫ
γ2 contains at least one block A(x); to avoid rounding

problems we assume ǫ/γδ∗ ∈ IN , and that the basic initial partition A(x): x ∈ Cδ∗(IR) is a refinement of the

present one. We define for α ∈ ZZ:

χ(ǫ)(α) ≡ γ
∑

x:δ∗x∈Ãǫ/γ(α)

X(x)1I{p(x)≤(2γ/δ∗)1/4}, (3.55)

where Ãǫ/γ(α) = [α ǫ
γ , (α + 1) ǫ

γ ) and for the sake of simplicity the γ, δ∗ dependence is not explicit. To

simplify further, and if no confusion arises, we shall write simply χ(α). Note that χ(α) is a symmetric

random variable and from (3.53)

IE[χ(α)] = 0

IE[χ2(α)] = ǫc(β, θ, γ/δ∗).
(3.56)

It was proved in [16], Lemma 5.4, that there exists d0(β, θ) > 0 such that if γ/δ∗ ≤ d0(β, θ) then for all

λ ∈ IR we have

IE
[
eλχ(α)

]
≤ e

3λ2

4 ǫV 2(β,θ) (3.57)

where V (β, θ) is defined in (2.36).

4 Finite volume estimates

In this section, we give upper and lower bounds of the infinite volume random Gibbs probability

µβ,θ,γ

(
Pρ

δ,γ,ζ,[−Q,Q](u)
)

in term of finite volume quantities, see Proposition 4.2. This is the fundamental

ingredient in the proof of Theorem 2.9. By assumption u ∈ UQ(u∗
γ(ω)), see (2.54), where for ω ∈ Ω1, the

24



probability subset in Theorem 2.3, u∗
γ(ω) ∈ BV ([−Q, +Q]) is the profile defined in (2.39). There is no lost

of generality to assume that there exists a positive integer L, L < Q such that

uγ(r) = u∗
γ(r), ∀ |r| ≥ L. (4.1)

To avoid the case that a jump of u∗
γ(ω) occurs at L or −L, we require that

{−L} ∪ {L} /∈ ∪κ∗(Q)
i=κ∗(−Q)[ǫα

∗
i − 2ρ, ǫα∗

i + 2ρ], (4.2)

where κ∗(±Q) are defined in (2.40) and ρ is chosen as in (2.64). To see that requirement (4.2) is harmless,

let

Ω3 ≡ Ω3(Q) =
⋃

L∈[1,Q]∩ZZ

{
ω : {−L} ∪ {L} ∈ ∪k(Q)

i=k(−Q)[ǫα
∗
i − 2ρ, ǫα∗

i + 2ρ]
}

. (4.3)

We have the following result.

Lemma 4.1 There exist γ0(β, θ) > 0 and a > 0 such that for γ ≤ γ0 = γ0(β, θ) we have

IP [Ω3] ≤
Q

(g( δ∗

γ ))
1∧a

8(2+a)

≤ 1

(g( δ∗

γ ))
1∧a

10(2+a)

. (4.4)

Proof: Note that

Ω3 ⊂
⋃

L∈[1,Q]∩ZZ

{∃i ∈ {κ∗(−Q), . . . , κ∗(Q)}, ǫα∗
i ∈ [L − 2ρ, L + 2ρ] ∪ [−L − 2ρ,−L + 2ρ]} . (4.5)

To estimate the probability of the event (4.5), we use Lemma 5.14 where it is proven that uniformly with

respect to Q and with IP–probability larger than 1− (5/g(δ∗/γ))
a

8(2+a) , κ∗(Q) and κ∗(−Q) are bounded by

K(Q) given in (2.35). The other ingredient is the estimate of the probability that ǫα∗
0 or ǫα∗

1 ∈ [−2ρ, +2ρ].

This is done in Theorem 5.1 of [16] (see formula 5.29, 5.30 and 6.66 of [16]). Then for some c(β, θ), a > 0,

when γ ≤ γ0(β, θ) we have the following:

IP [∃i ∈ {κ(∗−Q), . . . , κ∗(Q)} : ǫα∗
i ∈ [L − 2ρ, L + 2ρ]]

≤ 2c(β, θ)K(Q)[g(δ∗/γ)]−1/(4(2+a)) +

(
5

g( δ∗

γ )

) a
8(2+a)

≤ 1

(g( δ∗

γ ))
1∧a

8(2+a)

.
(4.6)

By subadditivity one gets (4.4), recalling that Q = exp
[
log(g( δ∗

γ ))/ log log(g( δ∗

γ ))
]
.

¿From now on, we will always consider ω ∈ Ω1 \ Ω3 and since the union is over L ∈ [1, Q] ∩ ZZ in (4.3),

this probability set is the same for all u ∈ UQ(u∗
γ(ω)). For u ∈ UQ(u∗

γ(ω)) and L so that (4.1) holds, denote

r1 = inf(r : r > −Q, ‖Du(r) − Du∗
γ(r)‖1 > 0); rlast = sup(r : r < Q, ‖Du(r) − Du∗

γ(r)‖1 > 0) (4.7)

where Du is defined before (2.31). The r1 is the first point starting from −Q where u differs from u∗
γ(ω) and

rlast is the last point smaller than Q where u differs from u∗
γ(ω). We denote by

ri i = 1, ..N1, rN1 ≡ rlast (4.8)
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the points of jumps of u or u∗
γ(ω), between r1 > −Q and rlast < Q, in increasing order. Note that ri could

be a point of jump for both u and u∗
γ(ω) and

N1 ≤ N[−L,+L](u) + N[−L,+L](u
∗
γ(ω)). (4.9)

We have the following result.

Proposition 4.2 Take the parameters as in Subsection 2.5. Let Ω1 be the probability subspace of Theorem

2.3 and Ω3 defined in (4.3), Ω4 defined in Corollary 4.14 and Ω5 defined in (4.96). On Ω1 \ (Ω3 ∪Ω4 ∪Ω5),

with IP [Ω1 \ (Ω3 ∪ Ω4 ∪ Ω5))] ≥ 1 − 3(g( δ∗

γ ))
− 1∧a

10(2+a) , for some a > 0, for all u ∈ UQ(u∗
γ(ω)) such that

N[−Q,+Q](u) ≤ N[−Q,+Q](u
∗
γ)e( 1

8+4a −b)(log Q)(log log Q) (4.10)

for 0 < b < 1/(8 + 4a), there exists a γ0 = γ0(β, θ, u) such that for all 0 < γ ≤ γ0(β, θ, u), we have that

γ

β
log
[
µβ,θ,γ

(
Pρ

δ,γ,ζ,[−Q,Q](u)
)]

=

−F∗
N1∑

i=1

[‖Du(ri)‖1 − ‖Du∗
γ(ri)‖1

4m̃β

]
+

N1∑

i=1

ũ(ri) − ũ∗
γ(ri)

2m̃β




∑

α: ǫα∈[ri,ri+1)

χ(α)


 ± g(δ∗/γ)−b

(4.11)

we have an upper bound for ± = +1 and a lower bound for ± = −1.

Since the proof of Proposition 4.2 is rather long, we divide it in several intermediate steps. It is convenient

to state the following definitions.

Definition 4.3 Partition associated to a couple (u, v) of BV ([a, b]). Let u and v be in BV ([a, b]). We

associate to (u, v) the partition of [a, b] obtained by taking C(u, v) = C(u)∪C(v) and B(u, v) = [a, b]\C(u, v).

The C(u) and C(v) are the elements of the partitions in Definition 2.2. We set C(u, v) = ∪N̄[a,b]

i=1 Ci(u, v),

where N̄[a,b] ≡ N̄(u, v, [a, b]) is the number of disjoint intervals in C(u, v), max{N[a,b](u), N[a,b](v)} ≤ N̄[a,b] ≤
N[a,b](u) + N[a,b](v).

By definition, for i 6= j, Ci(u) ∩ Cj(u) = ∅ and Ci(v) ∩ Cj(v) = ∅, however when u and v have jumps at

distance less than ρ, Ci(u)∩Cj(v) 6= ∅ for some i 6= j and in this case one element of C(u, v) is Ci(u)∪Cj(v).

Remark 4.4 . The condition that ρ and δ are small enough in such a way that the distance between two

successive jumps of u or v is larger than 8ρ + 8δ, see Definition 2.2, implies that the distance between any

two distinct Ci(u, v) is at least 2ρ + 2δ. This means that in a given Ci(u, v) there is at most two jumps, one

of u and the other of v.

The partition in Definition 4.3 induces a partition on the rescaled (macro) interval 1
γ [a, b] = Cγ(u, v)∪Bγ(u, v)

where Cγ(u, v) = ∪N̄[a,b]

i=1 Ci,γ(u, v) and Ci,γ(u, v) = γ−1Ci(u, v).

We will use Definition 4.3 for the couple (u, u∗
γ(ω)) for u ∈ UQ(u∗

γ(ω)), [a, b] = [r1, rlast], see (4.7). For

simplicity we denote

N̄(u, u∗
γ(ω), [r1, rlast]) ≡ N̄ .
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Of course, N1 ≥ N̄ , see (4.9). We write in macroscale

Cγ(u, u∗
γ) = ∪N̄

i=1[ai, bi), [ai, bi) ∩ [aj, bj) = ∅ 1 ≤ i 6= j ≤ N̄. (4.12)

Remark 4.5 . In Proposition 4.2, γ0 = γ0(β, θ, u) depends on u since 8ρ(γ) + 8δ(γ) has to be smaller than

the distance between two successive jumps of u.

Since the estimates to prove Proposition 4.2 are done in intervals written in macroscale we make the following

convention:

m(x) = u(γx), m∗(x) = u∗
γ(γx) for x ∈ 1

γ
[−Q, Q]

q1 = −Q

γ
, q2 =

Q

γ
; v1 = −L

γ
, v2 =

L

γ
; xi =

ri

γ
, i = 1, . . . , N1

Pρ
[q1,q2](m) ≡ Pρ

δ,γ,ζ,[−Q,Q](uγ),

(4.13)

where we recall that ri are the points where u or u∗
γ jumps, see (4.8). Furthermore, let us define

η(ℓ, v) =





0 if ℓ ∈ Cγ(v);

1 when m(x) equal to mβ for x ∈ Bγ(v);

− 1 when m(x) equal to Tmβ for x ∈ Bγ(v).

Note that η(ℓ, v) is associated to the function v not to a block-spin configuration.

Definition 4.6 For δ and ζ positive, for two integers p1 < p2 define

Oδ,ζ
0 ([p1, p2]) ≡

{
ηδ,ζ(ℓ) = 0, ∀ℓ ∈ [p1, p2]

}
(4.14)

and for η̄ ∈ {−1, +1},
Rδ,ζ(η̄, [p1, p2]) ≡

{
ηδ,ζ(ℓ) = η̄, ∀ℓ ∈ [p1, p2]

}
. (4.15)

The first set Oδ,ζ
0 ([p1, p2]) contains configurations for which the block spin variable, see (2.26), is ζ far

from the equilibrium values. The second set Rδ,ζ(η̄, [p1, p2]) contains configurations for which the block spin

variable is ζ close to the equilibrium value mβ when η̄ = 1 or Tmβ when η̄ = −1.

Using a simple modification of the rather involved proof of Theorem 7.4 in [16] one gets the following.

Proposition 4.7 Take the parameters as in Subsection 2.5. Let Ω1 \ Ω3 be the probability subset with Ω1

in Theorem 2.3 and Ω3 defined in (4.3). There exist γ0 = γ0(β, θ) and ζ0 such that for all ω ∈ Ω1, for all

η̄ ∈ {−1, +1}, for all ℓ0 ∈ IN , for all δ, ζ, ζ5 with 1 > δ > δ∗ > 0, and any ζ0 > ζ > ζ5 ≥ 8γ/δ∗, for all

[p̄1, p̄2] ⊂ [p1, p2] ⊂ [q1, q2] with p̄1 − p1 ≥ ℓ0, p2 − p̄2 ≥ ℓ0, we have

µβ,θ,γ

(
Rδ,ζ(η̄, [p1, p2]) ∩ Oδ,ζ5

0 ([p̄1, p̄2])
)
≤ e

−β
γ

{
(p̄2−p̄1)

(
κ(β,θ)

4 δζ3
5−48(1+θ)

√
γ

δ∗

)
−2ζe−α(β,θ,ζ0)2ℓ0−4ℓ0

√
γ

δ∗

}

.

(4.16)

Here α(β, θ, ζ0) is a strictly positive constant for all (β, θ) ∈ E, κ(β, θ) is the same as in (2.22). Moreover

sup
[p1,p2]⊆[−γ−p,γ−p]

Z0,0
[p1,p2]

(
Rδ,ζ(η̄, [p1, p2]) ∩ Oδ,ζ5

0 ([p̄1, p̄2])
)

Z0,0
[p1,p2] (Rδ,ζ(η̄, [p1, p2]))

(4.17)
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satisfies the same estimates as (4.16).

Remark 4.8 . The terms with
√

γ/δ∗ in the right hand side of (4.16) comes from the rough estimates

see Lemma 3.4. The fact that α(β, θ, ζ0) > 0 is a consequence of (2.21). The term κ(β, θ)δζ3
5 comes from

estimating the contribution of (2.22) for spin configuration in Oδ,ζ5

0 ([p̄1, p̄2]).

We have the following.

Lemma 4.9 (reduction to finite volume) Under the same hypothesis of Proposition 4.2 and on the

probability space Ω1 \ Ω3, for ζ5 that satisfies

δζ3
5 ≥ 384(1 + ζ

γ

δ∗
+ θ)

1

κ(β, θ)α(β, θ, ζ0)

√
γ

δ∗
log

δ∗

γ
, (4.18)

we have

µω
β,θ,γ

(
Pρ

[q1,q2]
(m)

)
≥ e−

β
γ (4ζ5+8δ∗)

(
1 − 2K(Q)e−

β
γ

1
g(δ∗/γ) − 2e−

β
γ

κ(β,θ)
8 δζ3

5

)
×

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2](m
∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)
(4.19)

and

µω
β,θ,γ

(
Pρ

[q1,q2]
(m)

)
≤ 2e

−β
γ

{
L1

κ(β,θ)
8 δζ3

5

}
+ e

β
γ (4ζ5+8δ∗)×

∑

v1−L1−1≤n′
0≤v1

v2≤n′
N̄+1

≤v2+L1+1

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m), ηδ,ζ5(n′

0) = η(n′
0, m

∗), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m∗)
)

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m

∗), ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1
) = η(n′

N̄+1
, m∗)

) ,

(4.20)

where L1 satisfies L1 + ℓ0 ≤ ρ/γ and

ℓ0 =
log(δ∗/γ)

α(β, θ, ζ0)
. (4.21)

Proof: Recalling (4.13) and (4.1), for ω ∈ Ω1 \ Ω3 see (4.3), one has

η(ℓ, m) = η(ℓ, m∗) 6= 0 for ℓ ∈ [v1 −
ρ

γ
, v1 +

ρ

γ
] ∪ [v2 −

ρ

γ
, v2 +

ρ

γ
]. (4.22)

Therefore the spin configurations in Pρ
[q1,q2](m) satisfy

ηδ,ζ(ℓ)(σ) = η(ℓ, m) = η(ℓ, m∗) = η(v1, m
∗) 6= 0; ∀ℓ ∈ [v1 −

ρ

γ
, v1 +

ρ

γ
]

and ηδ,ζ(ℓ)(σ) = η(ℓ, m) = η(ℓ, m∗) = η(v2, m
∗) 6= 0; ∀ℓ ∈ [v2 −

ρ

γ
, v2 +

ρ

γ
].

(4.23)

We start proving the lower bound (4.19). Within the proof we present a fundamental procedure, the cutting

which allows us to estimate the infinite volume Gibbs measure with finite volume quantities. This procedure

will be constantly used in the following. We explain here in details, referring to it when needed.
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The lower bound

We just impose extra constraints at v1 − 1 and v2 + 1, that is

µβ,θ,γ

(
Pρ

[q1,q2]
(m)

)
≥ µβ,θ,γ

(
Pρ

[q1,q2]
(m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 +1) = η(v2 +1, m∗)

)
. (4.24)

As mentioned in Section 2.1 there is an unique infinite volume Gibbs measure that can be obtained as the

weak limit of finite volume Gibbs measure with 0 boundary conditions. So to estimate the infinite volume

Gibbs measure in (4.24) we start considering the Gibbs measure in a volume [−a, a] with a > 0 big enough

so that [q1, q2] ⊂ [−a, a]. We write

Z0,0
[−a,a]

(
Pρ

[q1,q2](m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)
)

Z0,0
[−a,a]

. (4.25)

The goal is to estimate (4.25) uniformly with respect to a. This will be achieved by cutting at v1 − 1 and

v2 + 1, which we explain now. Divide the interval [−a, a] in three pieces [−a, v1 − 2],[v1 − 1, v2 + 1], and

[v2 + 2, a]. Then, associate the interaction between the first and the second interval to the first interval, and

the one between the second and the third to the third interval. Use (3.14) with I = [v1 − 2, v1] to make the

block spin transformation there, this will give an error term β2δ∗/γ. Use ηδ,ζ5(v1 − 1) 6= 0 to get that for all

configurations σ

∣∣E(mδ∗

[v1−2,v1−1)(σ), mδ∗

[v1−1,v1)
(σ′)) − E(mδ∗

[v1−2,v1−1)(σ), T
1−η(v1−1,m)

2 mδ∗

β,[v1−1,v1))
∣∣ ≤ ζ5 (4.26)

for σ′ such that ηδ,ζ5(v1 − 1)(σ′
[v1−1,v1)

) = ηδ,ζ5(v1 − 1) where mδ∗

β is defined after (3.39). Therefore one sees

that up to an error e±
β
γ (2δ∗+ζ5) we can replace in (4.25) the σ, σ′ interaction between [−a, v1−2] and [v1−1, a]

by an interaction between σ and a constant profile T
1−η(v1−1,m)

2 mδ∗

β,[v1−1,v1)
. Making similar computations

in the intervals [v2, v2 + 1), [v2 + 2, a) and recalling (3.39), one gets

Z0,0
[−a,a]

(
Pρ

[q1,q2](m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)
)

Z0,0
[−a,a]

= e±
β
γ (2ζ5+4δ∗) 1

Z0,0
[−a,a]

Z0,m∗

[−a,v1−2]

(
Pρ

[q1,v1−2](m
∗)
)

Zm∗,0
[v2+2,a]

(
Pρ

[v2+2,q2](m
∗)
)
×

× Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)
.

(4.27)

In the first term on the right hand side of (4.27), using (4.1), one has Pρ
[q1,v1−2](m

∗) = Pρ
[q1,v1−2](m) and

Pρ
[v2+2,q2](m

∗) = Pρ
[v2+2,q2](m). Furthermore the boundary condition Z0,m∗

[−a,v1−2](·) is written in term of m∗,

but since on v1 − 1 we have η(v1 − 1, m) = η(v1 − 1, m∗) we could have also written Z0,m
[−a,v1−2](·). Similar

considerations hold for the partition function in [v2 + 2, a]. The above procedure which allows to factorize

the partition function up to some minor error, see (4.27), will be denoted cutting at v1 − 1 and v2 + 1.

Remark 4.10 . To perform a cutting at some point ℓ and to get an error term e±
β
γ (2δ∗+ζ5), one needs to

have ηδ,ζ5(ℓ) 6= 0 at this point. Trying to cut at a point ℓ where ηδ,ζ(ℓ) = 0 gives an error term e
β
γ (2δ∗+1)

that will definitively ruin all future estimates. Trying to cut at a point ℓ where ηδ,ζ(ℓ) 6= 0 gives an error

term e
β
γ (2δ∗+ζ). Since we are not imposing that ζ goes to zero, this will also ruin all the future estimates.
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Multiplying and dividing (4.27) by

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)
(4.28)

and then regrouping, one gets

Z0,0
[−a,a]

(
Pρ

[q1,q2]
(m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)

Z0,0
[−a,a]

≥

≥ e−
β
γ (2ζ5+4δ∗) 1

Z0,0
[−a,a]

Z0,m∗

[−a,v1−2]

(
Pρ

[q1,v1−2](m
∗)
)

Zm∗,0
[v2+2,a]

(
Pρ

[v2+2,q2]
(m∗)

)
×

× Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2](m
∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)
×

×
Z0,0

[v1−1,v2+1]

(
Pρ

[v1,v2](m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)
)

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2](m
∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

) .

(4.29)

The last term in (4.29) is the main contribution to the lower bound stated in (4.19). So to complete the

proof we need to estimate from below the remaining terms in (4.29). To achieve this we do the conceptual

opposite procedure of cutting. Namely we glue the first three partitions function in the right hand side of

(4.29) at v1 − 1 and v2 + 1, applying again (4.26). That is

1

Z0,0
[−a,a]

Z0,m∗

[−a,v1−2]

(
Pρ

[q1,v1−2](m
∗)
)

Zm∗,0
[v2+2,a]

(
Pρ

[v2+2,q2](m
∗)
)
×

× Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)

≥ e−
β
γ (2ζ5+4δ∗)×
1

Z0,0
[−a,a]

Z0,0
[−a,a]

(
Pρ

[q1,q2](m
∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)
.

(4.30)

By definition (2.33) and assumption, see (4.22), when σ ∈ Pρ
[q1,q2](m

∗) ηδ,ζ(v1−1, σ) 6= 0 and ηδ,ζ(v2+1, σ) 6=
0, then

Pρ
[q1,q2](m

∗) =
(
Pρ

[q1,q2]
(m∗), ηδ,ζ5(v1 − 1) = 0, ηδ,ζ5(v2 + 1) = 0

)
∪

(
Pρ

[q1,q2](m
∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)
.

(4.31)

Therefore taking the limit when a ↑ ∞ in the right hand side of (4.30), using Theorem 2.3 and Proposition

4.7 with ℓ0 = log(δ∗/γ)
α(β,θ,ζ0)

, p̄2 − p̄1 = 1, p2 − p1 > 2ℓ0 one gets

lim
a↑∞

1

Z0,0
[−a,a]

Z0,0
[−a,a]

(
Pρ

[q1,q2]
(m∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)

≥ 1 − K(Q)e−
β
γ

1
g(δ∗/γ) − 2e

−β
γ

(
κ(β,θ)

4 δζ3
5−48(1+θ)

√
γ

δ∗

log δ∗

γ
α(β,θ,ζ0)

)

,

(4.32)

where K(Q) is given in (2.35). Collecting (4.27), (4.29), and (4.30), using (4.18) one gets

µω
β,θ,γ

(
Pρ

[q1,q2](m)
)
≥ e−

β
γ (4ζ5+8δ∗)

(
1 − 2K(Q)e−

β
γ

1
g(δ∗/γ) − 2e−

β
γ

κ(β,θ)
8 δζ3

5

)
×

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2](m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)
)

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)
(4.33)
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which is (4.19).

The upper bound In the proof of the lower bound we could cut making an error proportional to ζ5 by

simply restricting to those configurations having magnetization close to the equilibrium values with accuracy

(δ, ζ5) in the chosen [ℓ, ℓ + 1) block . In the upper bound obviously this procedure cannot be applied. We

need to find a block where the spin configurations have magnetization close to the equilibrium values with

accuracy (δ, ζ5). This makes notations more cumbersome. To facilitate the reading, we use indexes with a ′

to denote the points ℓ where ηδ,ζ5(ℓ) 6= 0. We search these points within the intervals [v1 − L1 − 1, v1 − 1]

and [v2 − 1, v2 + L1 + 1] where L1 is an integer which will be suitable chosen. ¿From (4.23) we have that

ηδ,ζ(ℓ)(σ) = η(ℓ, m∗) = η(v1, m
∗) 6= 0 for ℓ ∈ [v1 − L1 − 1, v1 − 1] and ηδ,ζ(ℓ)(σ) = η(ℓ, m∗) = η(v2, m

∗) 6= 0

ℓ ∈ [v2 − 1, v2 + L1 + 1], provided L1 < ρ
γ . Then we apply Proposition 4.7 in both the intervals, taking ℓ0

as in (4.21) and setting

p1 = v1 − L1 − ℓ0, p2 = v1 + ℓ0,

p̄1 = v1 − L1 − 1, p̄2 = v1

(4.34)

for some L1 such that 0 < L1 + ℓ0 ≤ ρ/γ to be chosen later. We have p̄2 − p̄1 = L1 + 1 and

µβ,θ,γ

(
Rδ,ζ(η̄, [p1, p2]) ∩ Oδ,ζ5

0 ([p̄1, p̄2])
)
≤ e

−β
γ

{
(L1+1)

(
κ(β,θ)

4 δζ3
5−48(1+ζ γ

δ∗
+θ)

√
γ

δ∗

)
−4

log(δ∗/γ)

α(β,θ,ζ0)

√
γ

δ∗

}

≤ e
−β

γ

{
L1

κ(β,θ)
8 δζ3

5

}
.

(4.35)

At the last step, we have used (4.18). We do similarly in the interval [v2, v2 +L1 +1] . We apply Proposition

4.7 setting

p3 = v2 − ℓ0, p4 = v2 + L1 + ℓ0

p̄3 = v2, p̄4 = v2 + L1 + 1,
(4.36)

then one gets that µβ,θ,γ

(
Rδ,ζ(η̄, [p3, p4])∩Oδ,ζ5

0 ([p̄3, p̄4])
)

satisfies the same estimate as in (4.35). Therefore

one has the basic estimate

µβ,θ,γ

(
Pρ

[q1,q2](m)
)
≤ µβ,θ,γ

(
Pρ

[q1,q2](m) ∩
(
Oδ,ζ5

0 ([p̄1, p̄2])
)c ∩

(
Oδ,ζ5

0 ([p̄3, p̄4])
)c)

+ 2e
−β

γ

{
L1

κ(β,θ)
8 δζ3

5

}
. (4.37)

In the set
(
Pρ

[q1,q2]
(m)∩

(
Oδ,ζ5

0 ([p̄1, p̄2])
)c ∩

(
Oδ,ζ5

0 ([p̄3, p̄4])
)c)

there exists at least one block variable indexed

by n′
0 with p̄1 ≤ n′

0 ≤ p̄2 such that ηδ,ζ5(n′
0) = η(n′

0, m
∗) and one block variable indexed by n′

N̄+1
, p̄3 ≤

n′
N̄+1

≤ p̄4 where ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m∗). These are the blocks where we will cut. Consider the Gibbs

measure in a volume [−a, a] with a > 0 large enough so that [q1, q2] ⊂ [−a, a]. We have the simple estimate

Z0,0
[−a,a]

(
Pρ

[q1,q2] ∩
(
Oδ,ζ5

0 ([p̄1, p̄2])
)c ∩

(
Oδ,ζ5

0 ([p̄3, p̄4])
)c)

Z0,0
[−a,a]

≤

∑

p̄1≤n′
0≤p̄2

p̄3≤n′
N̄+1

≤p̄4

Z0,0
[−a,a]

(
Pρ

[q1,q2](m), ηδ,ζ5(n′
0) = η(n′

0, m), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m)
)

Z0,0
[−a,a]

.

(4.38)

Consider now a generic term in the sum in the right hand side of (4.38). Recalling (4.27) and cutting at n′
0
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and n′
N̄+1

, in the numerator we get

Z0,0
[−a,a]

(
Pρ

[q1,q2](m), ηδ,ζ5(n′
0) = η(n′

0, m), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m)
)

Z0,0
[−a,+a]

≤ e
β
γ (2ζ5+4δ∗) 1

Z0,0
[−a,a]

× Z0,m∗

[−a,n′
0−1](P

ρ
[q1,n′

0−1](m
∗))×

× Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m), ηδ,ζ5(n′

0) = η(n′
0, m

∗), ηδ,ζ5(n′
N̄+1) = η(n′

N̄+1, m
∗)
)
Zm∗,0

[n′
N̄+1

+1,a](P
ρ
[n′

N̄+1
+1,q2]),

(4.39)

see (3.39) to recall notations. Multiplying and dividing by

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m

∗) , ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1) = η(n′
N̄+1, m

∗)
)

one gets, after regrouping the terms

Z0,0
[−a,a]

(
Pρ

[q1,q2](m), ηδ,ζ5(n′
0) = η(n′

0, m), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m)
)

Z0,0
[−a,a]

≤ e
β
γ (2ζ5+4δ∗)×

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m), ηδ,ζ5(n′

0) = η(n′
0, m

∗), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m∗)
)

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m

∗), ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1
) = η(n′

N̄+1
, m∗)

)×

Z0,m∗

[−a,n′
0−1](P

ρ
[q1,n′

0−1](m
∗))

Z0,0
[−a,a]

×

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m

∗), ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1) = η(n′
N̄+1, m

∗)
)
Zm∗,0

[n′
N̄+1

+1,a](P
ρ
[n′

N̄+1
+1,q2]

)

.

(4.40)

Now, glueing at n′
0 and n′

N̄+1
, as in (4.30), uniformly with respect to a, we have

Z0,m∗

[−a,n′
0−1](P

ρ
[q1,n′

0−1](m
∗))

Z0,0
[−a,a]

×

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m

∗), ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1) = η(n′
N̄+1, m

∗)
)
×

Zm∗,0
[n′

N̄+1
+1,a](P

ρ
[n′

N̄+1
+1,q2]) ≤ e

β
γ (2ζ5+4δ∗)

Z0,0
[−a,+a]

(
Pρ

[q1,q2](m
∗),
)

Z0,0
[−a,a]

≤ e
β
γ (2ζ5+4δ∗).

(4.41)

From (4.40) and (4.41) we get

Z0,0
[−a,a]

(
Pρ

[q1,q2](m), ηδ,ζ5(n′
0) = η(n′

0, m), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m)
)

Z0,0
[−a,a]

≤ e
β
γ (4ζ5+8δ∗)×

×
Z0,0

[n′
0,n′

N̄+1
]

(
Pρ

[n′
0,n′

N̄+1
](m), ηδ,ζ5(n′

0) = η(n′
0, m

∗), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m∗)
)

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m

∗), ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1
) = η(n′

N̄+1
, m∗)

) .

(4.42)
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Collecting (4.38) and (4.42), one get (4.20). This ends the proof of the lemma.

The configurations in Pρ
[v1,v2]

(m) and Pρ
[v1,v2](m

∗) are long runs of ηδ,ζ(ℓ) 6= 0 followed by phase changes

in the intervals [ai, bi), for i = 1, . . . N̄ , see (4.12). So to estimate the ratio of the partition function in

(4.19) and (4.20), it is convenient to separate the contribution given by those intervals in which the spin

configurations undergo to a phase change, i.e in which the block spin variables are ηδ,ζ(ℓ) = 0, from those

intervals in which the block spin variables are ηδ,ζ(ℓ) 6= 0. This can be achieved cutting at suitable points

the partition function. We require these points to be such that ηδ,ζ5(ℓ) 6= 0 to obtain error terms which are

negligible. We start proving an upper bound for (4.20). To facilitate the reading, as before, we use indexes

with ′ and ′′ to denote the points ℓ where ηδ,ζ5(ℓ) 6= 0. Denote a generic term in (4.20) by

Z(n′
0, n

′
N̄+1) ≡

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m), ηδ,ζ5(n′

0) = η(n′
0, m

∗), ηδ,ζ5(n′
N̄+1

) = η(n′
N̄+1

, m∗)
)

Z0,0
[n′

0,n′
N̄+1

]

(
Pρ

[n′
0,n′

N̄+1
](m

∗), ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1
) = η(n′

N̄+1
, m∗)

) . (4.43)

We have the following:

Lemma 4.11 Under the same hypothesis of Proposition 4.2, on the probability space Ω1 \ (Ω3 ∪ Ω4), and

for ζ5 as in (4.18), we have

Z(n′
0, n

′
N̄+1) ≤ e

− β
γ

F∗

2m̃β

∑
−L≤r≤L

[|Dũ(r)|−|Dũ∗
γ(r)|]

e
β
γ

∑N̄

i=1

ũ(ri)−ũ∗
γ (ri)

2m̃β

[∑
α: ǫα∈[ri,ri+1)

χ(α)

]

× e
β
γ N̄

[
4ζ5+8δ∗+γ log ρ

γ +γ log L1+
20V (β,θ)

(g(δ∗/γ))1/4(2+a)
+32θ(R2+ℓ0+L1)

√
γ

δ∗

]

+ N̄2eN̄ log ρ
γ e

β
γ (8δ∗+4ζ)e−

β
γ L1

κ(β,θ)
8 δζ3

5 .

(4.44)

Proof: Recalling(2.33), and (4.12), one sees that in each interval [ai, bi], there is a single phase change on

a length R2 for m or m∗. There are three possible cases:

Case 1 [ai, bi] ∈ Cγ(u) and [ai, bi] ∈ Bγ(u∗
γ). Therefore

η(ai, m) = −η(bi, m) 6= 0

η(ai, m
∗) = η(bi, m

∗) 6= 0.
(4.45)

Case 2 [ai, bi] ∈ Bγ(u) and [ai, bi] ∈ Cγ(u∗
γ). Therefore

η(ai, m) = η(bi, m) 6= 0

η(ai, m
∗) = −η(bi, m

∗) 6= 0.
(4.46)

Case 3 [ai, bi] ∈ Cγ(u) and [ai, bi] ∈ Cγ(u∗
γ). Therefore

η(ai, m) = −η(bi, m) 6= 0

η(ai, m
∗) = −η(bi, m

∗) 6= 0.
(4.47)

In the first two cases there exists an unique xi ∈ [ai, bi], see (4.13), so that, in the the case 1, |Dm̃(xi))| > 0

and in the case 2, |Dm̃∗(xi)| > 0. In the case 3, both m and m∗ have one jump in [ai, bi]. Recalling (4.15)

and Definition 2.1 we denote

W1(ℓi, m) ≡ W1([ℓi − R2, ℓi + R2], R2, ζ) ∩ {ηδ,ζ(ℓi − R2) = η(ai, m), ηδ,ζ(ℓi + R2) = η(bi, m)}, (4.48)
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the set of configurations undergoing to a phase change induced by m in [ℓi −R2, ℓi + R2]. We denote in the

cases 1 and 3

Pρ
[ai,bi]

(m, ℓi, i) ≡ Rδ,ζ(η(ai, m), [ai, ℓi − R2 − 1]) ∩W1(ℓ1, m) ∩Rδ,ζ(η(bi, m), [ℓi + R2 + 1, bi]) (4.49)

and in the case 2

Pρ
[ai,bi]

(m, ℓi, i) ≡

Rδ,ζ(η(ai, m), [ai, ℓi − R2 − 1]) ∩Rδ,ζ(η(ai, m), [ℓi − R2, ℓi + R2]) ∩Rδ,ζ(η(bi, m), [ℓi + R2 + 1, bi]).
(4.50)

The set Pρ
[ai,bi]

(m, ℓi, i) denotes the spin configurations which, in the case 1 and 3, have a jump in the interval

[ai, bi], starting after the point ℓi − R2 and ending before ℓi + R2 and close to different equilibrium values

in [ai, bi] \ [ℓi − R2, ℓi + R2]. In the case 2, it denotes the spin configurations which are in all [ai, bi] close to

one equilibrium value, namely they do not have jumps. The ℓi in this last case is written for future use. We

use for both m and m∗ the notation (4.49) and (4.50). In the case 3 both m and m∗ have a jump in [ai, bi].

Obviously we have

Pρ
[ai,bi]

(m) ⊂
⋃

ℓi∈[ai+R2+1,bi−R2−1]

Pρ
[ai,bi]

(m, ℓi, i). (4.51)

To get an upper bound for (4.43), we use the subadditivity of the numerator in (4.43) to treat the ∪ in (4.51)

obtaining a sum over ℓi ∈ [ai + R2 + 1, bi −R2 − 1]. For the denominator we obtain an upper bound simply

restricting to the subset of configurations which is suitable for us, namely

Pρ
[ai,bi]

(m∗) ⊃ Pρ
[ai,bi]

(m∗, ℓi, i). (4.52)

To short notation, let ℓ ⊂ [a, b] ≡ {ℓi ∈ [ai + R2 + 1, bi − R2 − 1], ∀i, 1 ≤ i ≤ N̄} and set

A(m, ℓ) ≡
(
Pρ

[n′
0,n′

N̄+1
](m) ∩N̄

i=1 Pρ
[ai,bi]

(m, ℓi, i), ηδ,ζ5(n′
0) = η(n′

0, m
∗), ηδ,ζ5(n′

N̄+1) = η(n′
N̄+1, m

∗)
)
, (4.53)

Z(n′
0, n

′
N̄+1, ℓ) ≡

Z0,0
[n′

0,n′
N̄+1

]

(
A(m, ℓ)

)

Z0,0
[n′

0,n′
N̄+1

]

(
A(m∗, ℓ)

) . (4.54)

Therefore, recalling (4.43), we can write

Z(n′
0, n

′
N̄+1) ≤

∑

ℓ⊂[a,b]

Z(n′
0, n

′
N̄+1, ℓ). (4.55)

The number of terms in the sum in (4.55) does not exceed
∏N̄

i=i(bi − ai) ≤ exp(N̄ log(ρ/γ)). For future use,

when B is an event let us define

Z(n′
0, n

′
N̄+1, ℓ; B) ≡

Z0,0
[n′

0,n′
N̄+1

]

(
A(m, ℓ) ∩ B

)

Z0,0
[n′

0,n′
N̄+1

]

(
A(m∗, ℓ)

) . (4.56)

For ℓ0 defined in (4.21), for the very same L1 to be chosen later and ζ5 that satisfies (4.18) , let us denote

R̄2 = R2 + ℓ0 and define

D(m, ℓ) ≡
∪1≤i≤N̄

(
Rδ,ζ(η(ℓi − R2, m), [ℓi − R2 − L1 − 2ℓ0, ℓi − R2]) ∩ Oδ,ζ5([ℓi − R̄2 − L1, ℓi − R̄2])

)
∪

∪1≤i≤N̄

(
Rδ,ζ(η(ℓi + R2, m), [ℓi + R2, ℓi + R2 + 2ℓ0 + L1]) ∩ Oδ,ζ5([ℓi + R̄2, ℓi + R̄2 + L1])

)
.

(4.57)
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The D(m, ℓ) is the set of configurations which are simultaneously ζ close and ζ5 distant, (recall ζ > ζ5), from

the equilibrium values in the interval [ℓi −R2−L1− 2ℓ0, ℓi −R2]∪ [ℓi + R̄2, ℓi + R̄2 +L1] where ℓi are chosen

as in (4.52). Recalling (4.56) and Proposition 4.7 one gets

∑

ℓ⊂[a,b]

Z(n′
0, n

′
N̄+1, ℓ;D(m, ℓ)) ≤ N̄2eN̄ log ρ

γ e
β
γ (8δ∗+4ζ)e−

β
γ L1

κ(β,θ)
8 δζ3

5 . (4.58)

To get (4.58) one cuts at the points ℓi +R2 and ℓi +R2 +2ℓ0 +L1 for the set Rδ,ζ(η(ℓi +R2, m), [ℓi +R2, ℓi +

R2 + 2ℓ0 + L1]) ∩Oδ,ζ5([ℓi + R̄2, ℓi + R̄2 + L1]), and at the points ℓi −R2 −L1 − 2ℓ0 and ℓi −R2 for the set

Rδ,ζ(η(ℓi −R2, m), [ℓi −R2 −L1− 2ℓ0, ℓi −R2])∩Oδ,ζ5([ℓi − R̄2 −L1, ℓi − R̄2]). Notice that we cut at points

ηδ,ζ 6= 0 and each time we make the error e
β
γ (2ζ+4δ∗). This is the only place where making an error so large

does not cause a problem. Namely we can choose L1 suitable in (4.58) so that L1
κ(β,θ)

16 δζ3
5 > (8δ∗ + 4ζ).

Furthermore denote

B(ℓ) ≡ ∩1≤i≤N̄

(
Oδ,ζ5([ℓi − R̄2 − L1, ℓi − R̄2])

)c ∩
(
Oδ,ζ5([ℓi + R̄2, ℓi + R̄2 + L1])

)c
. (4.59)

Since for each ℓ, A(m, ℓ) ∩D(m, ℓ)c ⊂ A(m, ℓ) ∩ B(ℓ) we are left to estimate

∑

ℓ⊂[a,b]

Z
(
n′

0, n
′
N̄+1, ℓ;B(ℓ)

)
.

On each A(m, ℓ)∩
(
Oδ,ζ5([ℓi − R̄2 − L1, ℓi − R̄2])

)c
, 1 ≤ i ≤ N̄ , there exists at least one block, say [n′

i, n
′
i +1)

contained in [ℓi−R̄2−L1, ℓi−R̄2) with ηδ,ζ5(n′
i) = η(ai, m). Making the same on the right of ℓi and indexing

n′′
i the corresponding block where ηδ,ζ5(n′′

i ) = η(bi, m), one gets

∑

ℓ⊂[a,b]

Z
(
n′

0, n
′
N̄+1, ℓ,B(ℓ)

)
≤

∑

ℓ⊂[a,b]

∑

n′⊂[ℓ−R̄2−L1,ℓ−R̄2]

n′′⊂[ℓ+R̄2,ℓ+R̄2+L1]

Z
(
n′

0, n
′
N̄+1, ℓ; ∩1≤i≤N̄{ηδ,ζ5(n′

i) = η(ai, m), ηδ,ζ5(n′′
i ) = η(bi, m)}

)
.

(4.60)

The number of terms in the second sum of (4.60) does not exceed exp(2N̄(log L1)). Consider now a generic

term in (4.60),

Z
(
n′

0, n
′
N̄+1, ℓ;∩1≤i≤N̄{ηδ,ζ5(n′

i) = η(ai, m), ηδ,ζ5(n′′
i ) = η(bi, m)}

)
. (4.61)

Recalling (4.56), we cut the numerator of the partition function, as in (4.39), at the points n′ and n′′ to get

an upper bound. Each time we cut we get the error term e
β
γ (2δ∗+ζ5). In the denominator, see (4.54), restrict

the configurations to be in

A(m∗, ℓ) ∩1≤i≤N̄

{
ηδ,ζ5(n′

i) = η(ai, m
∗), ηδ,ζ5(n′′

i ) = η(bi, m
∗)
}

(4.62)

and then cut at all the points n′ and n′′. In this way we obtain an upper bound for (4.61). We use notation

(4.49) (case 1 and 3) and (4.50) (case 2) after cutting at n′
i and n′′

i . Note that η(n′
i + 1) = η(ai, m) and

η(n′′
i − 1) = η(bi, m) therefore we have in the case 1 and 3, see (4.49),

Pρ
[n′

i
+1,n′′

i
−1](m, ℓi, i) =

Rδ,ζ(η(ai, m), [n′
i + 1, ℓi − R2 − 1]) ∩W1(ℓi, m) ∩Rδ,ζ(η(bi, m), [ℓi + R2 + 1, n′′

i − 1]),
(4.63)
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in the case 2, see (4.50),

Pρ
[n′

i
+1,n′′

i
−1](m, ℓi, i) = Rδ,ζ(η(ai, m), [n′

i + 1, ℓi − R2 − 1])∩

Rδ,ζ(η(ai, m), [ℓi − R2, ℓi + R2]) ∩Rδ,ζ(η(bi, m), [ℓi + R2 + 1, n′′
i − 1]).

(4.64)

For the remaining parts corresponding to runs between two phase changes, i.e the intervals [n′′
i , n′

i+1],

n′′
i ∈ [ai, bi] and n′

i+1 ∈ [ai+1, bi+1], for i ∈ {1, . . . , N̄}, we denote

Pρ
[n′′

i
,n′

i+1
](m, ζ5) ≡ Rδ,ζ(η(bi, m), [n′′

i + 1, n′
i+1 − 1]) ∩ {ηδ,ζ5(n′′

i ) = ηδ,ζ5(n′
i+1) = η(bi, m)}. (4.65)

Similarly in the intervals [n′
0, n

′
1], and [n′′

N̄
, n′

N̄+1
], recalling (4.22) and (4.23), we have

Pρ
[n′

0,n′
1](m, ζ5) ≡ Rδ,ζ(η(v1, m), [n′

0, n
′
1]) ∩ {ηδ,ζ5(n′

0) = ηδ,ζ5(n′
1) = η(v1, m)}

= Pρ
[n′

0,n′
1]
(m∗, ζ5),

(4.66)

Pρ
[n′′

N̄
,n′

N̄+1
](m, ζ5) ≡ Rδ,ζ(η(v2, m), [n′′

N̄ , n′
N̄+1]) ∩ {ηδ,ζ5(n′′

N̄ ) = ηδ,ζ5(n′
N̄+1) = η(v2, m)}

= Pρ
[n′′

N̄
,n′

N̄+1
](m

∗, ζ5).
(4.67)

As a result we have

Z
(
n′

0, n
′
N̄+1, ℓ;∩1≤i≤N̄{ηδ,ζ5(n′

i) = η(ai, m), ηδ,ζ5(n′′
i ) = η(bi, m)}

)
≤

e+N̄ β
γ (4ζ5+8δ∗)

Z0,0
[n′

0,n′
1]

(
Pρ

[n′
0,n′

1]
(m, ζ5)

)

Z0,0
[n′

0,n′
1]

(
Pρ

[n′
0,n′

1]
(m∗, ζ5)

)×

N̄−1∏

i=1




Zm,m

[n′
i
+1,n′′

i
−1]

(
Pρ

[n′
i
+1,n′′

i
−1](m, ℓi, i)

)

Zm∗,m∗

[n′
i
+1,n′′

i
−1]

(
Pρ

[n′
i
+1,n′′

i
−1](m

∗, ℓi, i)
)

Z0,0
[n′′

i
,n′

i+1
]

(
Pρ

[n′′
i

,n′
i+1

](m, ζ5)
)

Z0,0
[n′′

i
,n′

i+1
]

(
Pρ

[n′′
i

,n′
i+1

](m
∗, ζ5)

)



×

Zm,m
[n′

N̄
+1,n′′

N̄
−1]

(
Pρ

[n′
N̄

+1,n′′
N̄
−1](m, ℓN̄ , N̄)

)

Zm∗,m∗

[n′
N̄

+1,n′′
N̄
−1]

(
Pρ

[n′
N̄

+1,n′′
N̄
−1](m

∗, ℓN̄ , N̄)
)

Z0,0
[n′′

N̄
,n′

N̄+1
]

(
Pρ

[n′′
N̄

,n′
N̄+1

](m, ζ5)

)

Z0,0
[n′′

N̄
,n′

N̄+1
]

(
Pρ

[n′′
N̄

,n′
N̄+1

](m
∗, ζ5)

) .

(4.68)

Remark 4.12 . Note that the boundary conditions of restricted partition functions as

Zm,m
[n′

i+1,n′′
i −1](P

ρ
[n′

i+1,n′′
i −1](m, ℓi, i))

in (4.68) are related on the left to η(ai, m) and on the right to η(bi, m), see (4.63) and (4.64).

Now the goal is to estimate separately all the ratios in the right hand side of (4.68). It follows from (4.22),

(4.66), and (4.67) that

Z0,0
[n′

0,n′
1]

(
Pρ

[n′
0,n′

1]
(m, ζ5)

)

Z0,0
[n′

0,n′
1]

(
Pρ

[n′
0,n′

1]
(m∗, ζ5)

) =

Z0,0
[n′′

N̄
,n′

N̄+1
]

(
Pρ

[n′′
N̄

,n′
N̄+1

](m, ζ5)

)

Z0,0
[n′′

N̄
,n′

N̄+1
]

(
Pρ

[n′′
N̄

,n′
N̄+1

](m
∗, ζ5)

) = 1.
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The remaining ratios are estimated in Lemma 4.13, Corollary 4.14 and Lemma 4.15 given below.

Collecting We insert the results of Lemma 4.13, Corollary 4.14 and Lemma 4.15 in (4.68). To write in a

unifying way the contributions of the jumps we note that for (4.84)

−F∗ = − F∗

2m̃β

∑

ai≤s≤bi

|Dm̃(s)| = − F∗

2m̃β

∑

ai≤s≤bi

(|Dm̃(s)| − |Dm̃∗(s)|) (4.69)

since in the case 1, see (4.45),
∑

ai≤s≤bi
|Dm̃∗(s)| = 0. For (4.85)

+F∗ =
F∗

2m̃β

∑

ai≤s≤bi

|Dm̃∗(s)| = − F∗

2m̃β

∑

ai≤s≤bi

(|Dm̃(s)| − |Dm̃∗(s)|) (4.70)

since in the case 2, see (4.46),
∑

ai≤s≤bi
|Dm̃(s)| = 0. Moreover, since neither m̃ nor m̃∗ have jump in

[bi + 1, ai+1] for i ∈ {1, . . . , N̄}, in [v1, a1 − 1], and in [bN̄ + 1, v2], one gets simply

N̄∏

i=1

e
−β

γ
F∗

2m̃β

∑
ai≤s≤bi

[|Dm̃(s)|−|Dm̃∗(s)|]
= e

−β
γ

F∗

2m̃β

∑
−L≤r≤L

[|Dũ(r)|−|Dũ∗
γ(r)|]

. (4.71)

Using (4.78), the random terms give a contribution

e
β
γ

∑N̄

i=1

ũ(ri)−ũ∗
γ (ri)

2m̃β

[∑
α: ǫα∈[ri,ri+1)

χ(α)

]

. (4.72)

It remains to collect the error terms, see (4.58), (4.60), (4.68), (4.78), and Lemma 4.15. Denote

E1 ≡ N̄

[
4ζ5 + 8δ∗ + γ log

ρ

γ
+ γ log L1 +

20V (β, θ)

(g(δ∗/γ))1/4(2+a)
+ 32θ(R2 + ℓ0 + L1)

√
γ

δ∗

]
, (4.73)

−A2 ≡ 2
γ

β
log N̄ +

γ

β
N̄ log

ρ

γ
+ 8δ∗ + 4ζ − L1

κ(β, θ)

8
δζ3

5 , (4.74)

and

A ≡ F∗

2m̃β

∑

−L≤r≤L

[
|Dũ(r)| − |Dũ∗

γ(r)|
]
−

N̄∑

i=1

ũ(ri) − ũ∗
γ(ri)

2m̃β




∑

α: ǫα∈[ri,ri+1)

χ(α)


 . (4.75)

We have proved

Z(n′
0, n

′
N̄+1) ≤ e−

β
γ Ae

β
γ E1 + e−

β
γ A2 (4.76)

that entails (4.44).

Next we state the lemmas used for estimating the different ratios in (4.68).

Lemma 4.13 Under the same hypothesis of Proposition 4.2 and on the probability space Ω1 \ Ω3, for all

1 ≤ i ≤ N̄ − 1, for all n′′
i , n′

i, we have

Z0,0
[n′′

i
,n′

i+1
]

(
Pρ

[n′′
i

,n′
i+1

](m, ζ5)
)

Z0,0
[n′′

i
,n′

i+1
]

(
Pρ

[n′′
i

,n′
i+1

](m
∗, ζ5)

) =





1 when η(bi, m) = η(bi, m
∗);

e
± β

γ
1

4c2(β,θ)g(δ∗/γ) e
β
γ

m̃(bi)−m̃∗(bi)

2m̃β

[∑
α: ǫα∈γ[n′′

i
+1,n′

i+1
−1]

χ(α)

]

when η(bi, m) = −η(bi, m
∗),

(4.77)
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where in the last term we have an upper bound for ± = + and a lower bound for ± = −.

Proof: When η(bi, m) = η(bi, m
∗) (4.77) is immediate, see definition (4.65). When η(bi, m) = −η(bi, m

∗)

the estimate is a direct consequence of Lemma 4.19.

The r.h.s of (4.77) gives when η(bi, m) = −η(bi, m
∗) a term which should give the second sum in the right

hand side of (4.11). However in (4.77) one has
∑

α: ǫα∈γ[n′′
i
+1,n′

i+1
−1] χ(α) instead of

∑
α: ǫα∈[ri,ri+1)

χ(α) in

(4.11). To obtain the term in (4.11) we add the missed random field to reconstruct
∑

α: ǫα∈[ri,ri+1)
χ(α). We

therefore need to subtract the same term we added as a result one has

Corollary 4.14 Under the same hypothesis of Proposition 4.2 and on the probability space Ω1 \ (Ω3 ∪Ω4),

with IP (Ω4) ≤ e
−(log g(δ∗/γ))

(
1− 1

log log g(δ∗/γ)

)
, for all 1 ≤ i ≤ N̄ −1, for all n′′

i , n′
i, when η(bi, m) = −η(bi, m

∗)

we have

Z0,0
[n′′

i
,n′

i+1
]

(
Pρ

[n′′
i

,n′
i+1

](m, ζ5)
)

Z0,0
[n′′

i
,n′

i+1
]

(
Pρ

[n′′
i

,n′
i+1

](m
∗, ζ5)

) = e
± β

γ
20V (β,θ)

(g(δ∗/γ))1/4(2+a) e
β
γ

ũ(ri)−ũ∗
γ (ri)

2m̃β

[∑
α: ǫα∈[ri,ri+1)

χ(α)

]

(4.78)

where we have an upper bound for ± = + and a lower bound for ± = −.

Proof: Recalling that γxi = ri, see (4.13), we need to estimate

K(i, n′′
i , n′

i+1) =
∑

α: ǫα∈γ[xi,n′′
i
]

χ(α) +
∑

α: ǫα∈γ[n′
i+1

,xi+1]

χ(α) (4.79)

uniformly with respect to 1 ≤ i ≤ N̄ , xi, n′′
i , n′

i+1. It is enough to estimate

max
1≤i≤N̄

max
xi

max
1≤ℓ≤L1+ργ−1

∣∣∣
∑

α:ǫα∈γ[xi,ℓ+xi]

χ(α)
∣∣∣. (4.80)

However since the point xi might be random and depending on χ(α), a little care is needed. An upper bound

for (4.80) is clearly

K(Q, L1, ρ, ǫ) ≡ max
α0:ǫα0∈[−Q,+Q]

max
1≤ǫᾱ≤γL1+ρ

∣∣∣
ᾱ∑

α=α0

χ(α)
∣∣∣. (4.81)

Using, Levy inequality, (3.57) and exponential Markov inequality, one has

IP

[
K(Q, L1, ρ, ǫ) ≥ 2V (β, θ)

√

2(γL1 + ρ) log(g5(
δ∗

γ
))

]

≤ 2Q + 1

ǫ
IP

[
max

1≤ǫᾱ≤γL1+ρ

∣∣∣
ᾱ∑

α=α0

χ(α)
∣∣∣ ≥ 2V (β, θ)

√

2(γL1 + ρ) log(g5(
δ∗

γ
))

]

≤ 2Q + 1

ǫ

1

g5( δ∗

γ )
≤ e

− log g( δ∗

γ )

(
1− 1

log log g( δ∗
γ

)

)

,

(4.82)
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where we have used (2.65) and (2.67) at the last step. Recalling that 0 ≤ L1 + ℓ0 ≤ ργ−1 and (2.64), one

has

2(γL1 + ρ) log(g5(
δ∗

γ
)) ≤ 4ρ log(g5(

δ∗

γ
)) ≤ 4

(
5

g( δ∗

γ )

)1/(2+a)

log(g5(
δ∗

γ
)) ≤ 52

(
1

g( δ∗

γ )

)1/2(2+a)

. (4.83)

that entails (4.78) after an easy computation.

Next we estimate the remaining type of ratio in (4.68). Recall that n′
i ∈ [ℓi − R̄2 − L1, ℓi − R̄2] and

n′′
i ∈ [ℓi + R̄2, ℓi + R̄2 + L1] with R̄2 = R2 + ℓ0, where ℓ0 is defined in (4.34).

Lemma 4.15 On Ω1 \ Ω3, choosing the parameters as in Subsection 2.5, for all 1 ≤ i ≤ N̄ , in the case 1,

we have

Zm,m
[n′

i
+1,n′′

i
−1]

(
Pρ

[n′
i
+1,n′′

i
−1](m, ℓi, i)

)

Zm∗,m∗

[n′
i
+1,n′′

i
−1]

(
Pρ

[n′
i
+1,n′′

i
−1](m

∗, ℓi, i)
) = e−

β
γ (F∗±32θ(R2+ℓ0+L1)

√
γ

δ∗
). (4.84)

In the case 2, we have

Zm,m
[n′

i
+1,n′′

i
−1]

(
Pρ

[n′
i
+1,n′′

i
−1](m, ℓi, i)

)

Zm∗,m∗

[n′
i
+1,n′′

i
−1]

(
Pρ

[n′
i
+1,n′′

i
−1](m

∗, ℓi, i)
) = e+β

γ (F∗±32θ(R2+ℓ0+L1)
√

γ
δ∗

). (4.85)

In the case 3, we have

Zm,m
[n′

i
+1,n′′

i
−1]

(
Pρ

[n′
i
+1,n′′

i
−1](m, ℓi, i)

)

Zm∗,m∗

[n′
i+1,n′′

i −1]

(
Pρ

[n′
i+1,n′′

i −1](m
∗, ℓi, i)

) = e±
β
γ (32θ(R2+ℓ0+L1)

√
γ

δ∗
). (4.86)

Remark 4.16 . Note that here one needs to have L1

√
γ
δ∗ ↓ 0.

The proof of (4.84) and (4.85) follows from Lemma 4.18. The (4.86) is a consequence of (4.84) and (4.85).

Next we estimate from below the r.h.s. of (4.19).

Lemma 4.17 Under the same hypothesis of Proposition 4.2 and on the probability space Ω1 \ (Ω3 ∪ Ω4),

for ζ5 as in (4.18), we have

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m∗), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)

≥
(
e

β
γ (A+E1) + e−

β
γ A2

)−1

(4.87)

where A, E1, and A2 are defined in (4.75), (4.73), and (4.74) respectively.

Proof: Obviously one can get the lower bound simply proving an upper bound for the inverse of l.h.s. of

(4.87), i.e.

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m∗), ηδ,ζ5(v1 − 1) = η([v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

)

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m∗), ηδ,ζ5(v2 + 1) = η(v2 + 1, m∗)

) . (4.88)
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Note that η(v1−1, m∗) = η(v1−1, m) and η(v2 +1, m∗) = η(v2 +1, m) and in the proof of the upper bound,

see Lemma 4.11, we never used that m∗ in the denominator is the one given in Theorem 2.3. Then (4.88) is

equal to

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2](m
∗), ηδ,ζ5(v1 − 1) = η([v1 − 1, m), ηδ,ζ5(v2 + 1) = η(v2 + 1, m)

)

Z0,0
[v1−1,v2+1]

(
Pρ

[v1,v2]
(m), ηδ,ζ5(v1 − 1) = η(v1 − 1, m), ηδ,ζ5(v2 + 1) = η(v2 + 1, m)

) . (4.89)

Then by Lemma 4.11 we obtain (4.87).

Proof of Proposition 4.2 To prove (4.11), we use Lemma 4.9, then Lemma 4.17 to get a lower bound

and Lemma 4.11 and Corollary 4.14 to get an upper bound. For the lower bound we get applying (4.19) and

(4.87)

µβ,θ,γ

(
Pρ

[q1,q2]
(m)

)
≥ e−

β
γ (4ζ5+8δ∗)

(
1 − 2K(Q)e

−β
γ

1
g(δ∗/γ) − 2e−

β
γ

κ(β,θ)
16 δζ3

5

)(
e

β
γ Ae

β
γ E1 + e−

β
γ A2

)−1

. (4.90)

For the upper bound we get

µβ,θ,γ

(
Pρ

[q1,q2]
(m)

)
≤ e−

β
γ Ae+ β

γ E1 + 2e−
β
γ A2 (4.91)

where A2 is defined in (4.74). To get (4.11) from (4.91), one needs A2 > A, this will be a consequence of an

upper bound on A and a lower bound on A2. We start estimating the terms of A. We easily obtain

F∗

4m̃β

∑

−L≤r≤L

[
‖Du(r)‖1 − ‖Du∗

γ(r)‖1

]
≤ F∗ [N[−L,L](u) + N[−Q,Q](u

∗
γ)
]
. (4.92)

We use that N[−Q,Q](u
∗
γ) ≤ K(Q), see (5.91), where K(Q) is given in (2.35). If L is finite for all γ, then

N[−L,L](u) is bounded since u ∈ BVloc. When L diverges as Q when γ ↓ 0 from the assumption (4.10) we

have that

N̄ ≤ N[−L,L](u) + N[−Q,Q](u
∗
γ) ≤ [f(Q) + 1]K(Q) (4.93)

where we set

f(Q) = e( 1
8+4a−b)(log Q)(log log Q). (4.94)

The second term of A can be estimated as

∣∣∣∣∣∣

N̄∑

i=1

ũ(ri) − ũ∗
γ(ri)

2m̃β




∑

α: ǫα∈[ri,ri+1)

χ(α)




∣∣∣∣∣∣
≤ N̄ max

{−Q
ǫ ≤α0≤Q

ǫ }
max

{α0≤ᾱ≤Q
ǫ }

∣∣∣∣∣

ᾱ∑

α=α0

χ(α)

∣∣∣∣∣

≤ 2N̄ max
{−Q

ǫ ≤ᾱ≤Q
ǫ }

∣∣∣∣∣∣

ᾱ∑

α=−Q
ǫ

χ(α)

∣∣∣∣∣∣
.

(4.95)

To estimate the last term in (4.95), we use Levy inequality, (3.57) and exponential Markov inequality to get

IP
[

max
{−Q

ǫ ≤ᾱ≤Q
ǫ }

∣∣∣∣∣∣

ᾱ∑

α=−Q
ǫ

χ(α)

∣∣∣∣∣∣
≥

√
3V (β, θ)

√
[2Q + 1] log(g(

δ∗

γ
))
]
≤ 4e− log(g( δ∗

γ )) =
4

g( δ∗

γ )
. (4.96)
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Denote Ω5 the probability space for which (4.96) holds. Then for ω ∈ Ω1 \ (Ω3 ∪ Ω4 ∪ Ω5) and γ0 small

enough, one has

A ≤ 2[f(Q) + 1]K(Q)V (β, θ)

√
(2Q + 1) log(g(

δ∗

γ
)) ≤ c̄(β, θ)f(Q)Q3 (4.97)

for some c̄(β, θ). The last inequality in (4.97) is obtained from the choice of f(Q) in (4.94), the one of K(Q)

in (2.35) and the choice of Q in (2.67). Namely, from (2.67) Q2g(δ∗/γ) ≤ g2(δ∗/γ). Notice that in A2, see

(4.74), L1 enters. We make the following choice of L1

L1 =

(
g(

δ∗

γ
)

)19/2

. (4.98)

This choice satisfies the requirement in Proposition 4.9, i.e. L1 < ρ
γ , see (2.64). Furthermore as in [16] we

make the choice

ζ5 =
1

218c6(β, θ)

1

g3(δ∗/γ)
(4.99)

for some constant c(β, θ). Obviously (4.99) satisfies requirement (4.18) provided ζ is chosen according

(2.62). Since Q = g(δ∗/γ)
1

log log g(δ∗/γ) , see (2.67), we have log g(δ∗/γ) = (log Q)(log log g(δ∗/γ)). Iterating

this equation, for γ0 small enough to have log log log g(δ∗/γ) > 0, one gets

log g(δ∗/γ) = (log Q)(log log Q)
(
1 +

log log log g(δ∗/γ)

log log g(δ∗/γ) − log log log g(δ∗/γ)

)
≥ (log Q)(log log Q). (4.100)

Therefore, recalling (2.63) and using (4.94) one can check that

L1
κ(β, θ)

16
δζ3

5 ≥ c(β, θ)f(Q)Q3. (4.101)

It is not difficult to check that (4.101) implies

L1
κ(β, θ)

16
δζ3

5 > 2γ log N̄ + γN̄ log
ρ

γ
+ 8δ∗ + 4ζ. (4.102)

Therefore, recalling (4.74), (4.101) entails A2 > A and finally one gets

µβ,θ,γ

(
Pρ

[q1,q2]
(m)

)
≤ e−

β
γ Ae

β
γ E1

(
1 + 2e

−β
γ

{
L1

κ(β,θ)
16 δζ3

5

})
. (4.103)

It remains to check that E1 ↓ 0. Recalling (2.64), one has γ log(ρ/γ) ≤ (g(δ∗/γ))−1. Recalling (2.66) one has

(R2 + ℓ0)
√

γ/δ∗ ≤ (g(δ∗/γ))−1. Therefore, using (4.100), (4.94) and recalling that 0 < b < 1/(8 + 4a), see

Proposition 4.2, one has

E1 ≤ K(Q)(f(Q) + 1)
[
ζ5 + 32θL1

√
γ

δ∗
+

c(β, θ)

(g(δ∗/γ))1/(8+4a)

]
≤ (g(δ∗/γ))−b. (4.104)

So one gets the upper bound in (4.11). Recalling (4.90), it is easy to get the corresponding lower bound.
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Lemma 4.18 For ω ∈ Ω1 and choosing the parameters as in Subsection 2.5 we have

e−
β
γ (F∗+32θR2

√
γ

δ∗
) ≤

Zm,m
[ℓ,ℓ+2R2]

(W1([ℓ, ℓ + 2R2], R2, ζ))

Zm∗,m∗

[ℓ,ℓ+2R2]

(
Pρ

[ℓ,ℓ+2R2]
(m∗)

) ≤ e−
β
γ (F∗−32θR2

√
γ

δ∗
). (4.105)

The Lemma is proven in [16], see Lemma 7.3. The random field is estimated as in Lemma 3.3 (the rough

estimates). The upper bound can be easily obtained since F∗ is the minimum amount of energy needed to

go from one phase to the other, see (2.25). More care should be taken to show the lower bound, see formula

(7.34) of [16].

Next we summarize in Lemma 4.19 the estimates needed to prove Lemma 4.13. Let I be the interval that

gives rise to an elongation. Denote by sign (I) = 1, if I gives rise to a positive elongation, sign (I) = −1 in

the other case.

Lemma 4.19 Let Ω1 be the probability space of Theorem 2.3, let I ⊂ ∆Q be an interval that gives rise to

an elongation. Then for any interval I ⊂ γ−1I we have

Z0,0
I

(
ηδ,ζ1(ℓ) = − sign (I), ∀ℓ ∈ I

)

Z0,0
I (ηδ,ζ1(ℓ) = sign (I), ∀ℓ ∈ I)

= e
− sign (I) β

γ

∑
α∈ǫ−1γI

χ(α) Z0,0
I,0

(
ηδ,ζ1(ℓ) = − sign (I), ∀ℓ ∈ I

)

Z0,0
I,0 (ηδ,ζ1(ℓ) = sign (I), ∀ℓ ∈ I)

.

(4.106)

On Ω1, the last ratio satisfies: For all I ⊂ γ−1I ⊂ γ−1[−Q, +Q]

∣∣∣∣∣log
Z0,0

I,0

(
ηδ,ζ1(ℓ) = − sign (I), ∀ℓ ∈ I

)

Z0,0
I,0 (ηδ,ζ1(ℓ) = sign (I), ∀ℓ ∈ I)

∣∣∣∣∣ ≤
β

γ

1

4c2(β, θ)g(δ∗/γ)
(4.107)

where g is the function given in Subsection 2.5 and c(β, θ) is some positive constant that depends only on

β, θ.

The proof has been done in [16], see the proofs of Lemma 6.3 and of Proposition 4.8 there. It consists

essentially in extracting the leading stochastic part and estimating the remaining term by using a classical

deviation inequality for Lipschitz functions of Bernoulli random variables. The corresponding Lipschitz

norms are estimated using the cluster expansion. The proof is however long and tedious.

5 Probability estimates and Proof of Theorem 2.5

In this section we prove the probability estimates needed for proving the main results stated in Section

2. The proof of Theorem 2.5 is given after Lemma 5.10. This section is rather long and we divided into

several subsections. In the first by using a simple and direct application of the Donsker invariance principle

in the Skorohod space, we prove that the main random contribution identified in (3.42) suitably rescaled,

converges in law to a bilateral Brownian process (BBM), see (5.7).

In the second subsection we recall the construction done by Neveu-Pitman, [32], to determine the h-

extrema for a bilateral Brownian motion and then we adapt it to the random walk corresponding to the

previous random contribution. In Subsection 5.3 we state definitions and main properties of the maximal

b–elongations with excess f introduced in [16]. In Subsection 5.4, which is the most involved, we identify

them with the h–extrema of Neveu–Pitman by restricting suitably the probability space we are working on.

Here b, f , and h are positive constant which will be specified. In the last section we present rough estimates

on the number of renewals up to time R, needed to prove the Theorem 2.3.
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5.1. Convergence to a Bilateral Brownian Motion

Let ǫ ≡ ǫ(γ), limγ→0 ǫ(γ) = 0, ǫ
γ2 > δ∗

γ , so that each block of length ǫ
γ2 contains at least one block A(x)

(see section 2.2 ) ; to avoid rounding problems it is assumed that ǫ/γδ∗ ∈ IN , and that the basic initial

partition A(x): x ∈ Cδ∗(IR) is a refinement of the present one, see (2.65) for the actual choice of ǫ. Denote

by {Ŵ ǫ(t); t ∈ IR} the following continuous time random walk:

Ŵ ǫ(t) ≡






V ǫ
1 (t) =

1√
c(β, θ, γ/δ∗)

[ t
ǫ ]∑

α=1

χ(α), t ≥ ǫ ;

0, −ǫ ≤ t ≤ ǫ ;

V ǫ
2 (−t) =

1√
c(β, θ, γ/δ∗)

α=−1∑

α=−[ t
ǫ ]

χ(α), t ≤ −ǫ.

(5.1)

Here [x] is the integer part of x and χ(α) was defined in (3.55) for all α ∈ ZZ. Definition (5.1) allows to see

Ŵ ǫ(·) as a trajectory in the space of real functions on the line that are right continuous and have left limit,

i.e in the Skorohod space D(IR, IR) endowed with the Skorohod topology. To define a metric that makes

it separable and complete, let us denote ΛLip the set of strictly increasing Lipschitz continous function λ

mapping IR onto IR such that

‖λ‖ = sup
s6=t

∣∣∣ log
λ(t) − λ(s)

t − s

∣∣∣ < ∞. (5.2)

For v ∈ D(IR, IR) and T ≥ 0, let us define

vT (t) =

{
v(t ∧ T ), if t ≥ 0;
v(t ∨ (−T )), if t < 0.

(5.3)

Define for v and w in D(IR, IR)

d(v, w) ≡ inf
λ∈ΛLip

[
‖λ‖ ∨

∫ ∞

0

e−T sup
t∈IR

(1 ∧ (|vT (t) − wT (λ(t))|) dT

]
. (5.4)

Note that for a given T ∈ R, the quantity |vT (t) − wT (λ(t))| is constant for t > T ∨ λ(T ) and for t <

(−T )∧(λ(−T )), therefore the previous supremum over t ∈ IR is merely over (−T )∧(λ(−T )) ≤ t ≤ T ∨λ(T ).

See [7] chapter 3 or [20] chapter 3 where the case of D[0,∞) is considered with all the needed details. Let

us define the bilateral Brownian motion W = (W (t); t ∈ IR) by

W (t) ≡ Wt =

{
B1(t) t ≥ 0

B2(−t) t ≤ 0.
(5.5)

with (B1(t), t ≥ 0) and (B2(−t), t ≤ 0) two independent standard Brownian motions. Note that E[(W (t))2] =

|t| for all t ∈ IR, in particular W (0) = 0, and when s ≤ 0 ≤ t, E[(W (t) − W (s))2] = t − s. Since χ(α)

depends on ǫ = ǫ(γ), we need the following generalization of the Donsker Invariance Principle that can be

proved following step by step the proof of Billingsley [7] pg 137.

Theorem (Invariance Principle) Let ǫ ≡ ǫ(γ) > 0 so that ǫ
γ2 > δ∗

γ , limγ→0 ǫ(γ) = 0. Let Pǫ be the

measure induced by {Ŵ ǫ(t), t ∈ IR} on D (IR,B(IR)) Then as γ ↓ 0, Pǫ converges weakly to the Wiener

measure P, under which the coordinate mapping process W (t), t ∈ IR is a bilateral Brownian motion.
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Remark: One can wonder about the coherence between the fact that Ŵ ǫ(t) = 0, for −ǫ ≤ t ≤ ǫ in (5.1)

and χ(0) 6= 0. However we have χ(0) ≡ γ
∑

x:δ∗x∈Ãǫ/γ(0) X(x)1I{p(x)≤(2γ/δ∗)1/4}.

Lemma 5.1

lim
γ→0

IP [χ(0) = 0] = 1 (5.6)

Proof: Using (3.57), one gets immediately for c > 0, IP [|χ(0)| ≥ c] ≤ 2e−
c2

3ǫV 2 which implies (5.6), since

ǫ = ǫ(γ) ↓ 0.

The following result is immediate

Lemma 5.2 Set η = ±1, I = [ a
γ , b

γ ] (macro scale), a and b in IR. Then, see (3.42), we obtain

lim
γ→0

[
−ηγ∆ηG(mδ∗

β,I)
]

Law
= V (β, θ)[W (b) − W (a)]. (5.7)

Proof: Recalling (5.1), for η = ±1 and I = [ a
γ , b

γ ] in macroscopic scale with 0 < a < b or a < b < 0 one gets

the following

γ∆ηG(mδ∗

β,I) = −ηγ
∑

x∈Cδ∗ (I)

X(x) = −η

[ b
ǫ ]∑

α=[ a
ǫ ]

χ(α) = −η
√

c(β, θ, γ/δ∗)
[
Ŵ ǫ(b) − Ŵ ǫ(a)

]
. (5.8)

When 0 ∈ [a, b], we get

γ∆ηG(mδ∗

β,I) = −η
√

c(β, θ, γ/δ∗)
[
Ŵ ǫ(b) − Ŵ ǫ(a)

]
− ηχ(0). (5.9)

Therefore, using Lemma 5.1 to take care of the χ(0) term and (3.54) we obtain (5.7).

Remark: Note that I = [ a
γ , b

γ ] corresponds to γI = [a, b] in the Brownian scale, according to the notation

in Subsection 2.2. The (5.7) is the main reason to have introduced the notion of “Brownian” scale. In this

scale the main random contribution identified in (3.42) becomes a functional of a bilateral Brownian motion.

5.2. The Neveu-Pitman construction of the h–extrema for the random walk {Ŵ ǫ}

We shortly recall the Neveu-Pitman construction [32], used to determine the h–extrema for the bilateral

Brownian Motion (Wt, t ∈ IR). Realize it as the coordinates of the set Ω of real valued functions ω on IR

which vanishes at the origin. Denote by (θt, t ∈ IR), the flow of translation : [θtω(·) = ω(t + ·) − ω(t)] and

by ρ the time reversal ρω(t) = ω(−t). For h > 0, the trajectory ω of the BBM admits an h–minimum at

the origin if Wt(ω) ≥ W0(ω) = 0 for t ∈ [−Th(ρω), Th(ω)] where Th(ω) = inf[t : t > 0, Wt(ω) > h], and

−Th(ρω) = − inf[t > 0 : W−t(ω) > h] ≡ sup[t < 0, W−t(ω) > h]. The trajectory ω of the BBM admits an

h–minimum (resp. h maximum) at t0 ∈ IR if W oθt0 (resp. −W oθt0) admits an h minimum at 0.

To define the point process of h–extrema for the BBM, Neveu-Pitman consider first the one sided Brownian

motion (Wt, t ≥ 0, W0 = 0), i.e the part on the right of the origin of the BBM. Denote its running maximum

by

Mt =
(
max(Ws ; 0 ≤ s ≤ t), t ≥ 0

)
(5.10)
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and define

τ = min(t ; t ≥ 0, Mt − Wt = h),

β = Mτ ,

σ = max(s ; 0 ≤ s ≤ τ , Ws = β).

(5.11)

The stopping time τ is the first time that the Brownian motion achieves a drawdown of size h, see [38,39].

Its Laplace transform is given by IE[exp(−λτ)] = (cosh(h
√

2λ))−1, λ > 0. This is consequence of the

celebrated Lévy Theorem [27] which states that (Mt − Wt; 0 ≤ t < ∞) and (|Wt|; 0 ≤ t < ∞) have the

same law. Therefore τ has the same law as the first time a reflected Brownian motion reaches h. The

Laplace transform of this last one is obtained applying the optional sampling theorem to the martingale

cosh(
√

2λ|Wt|) exp(−λt). Further Neveu and Pitman proved that (β, σ) and τ − σ are independent and give

the corresponding Laplace transforms. In particular one has

IE[e−λσ] = (h
√

2λ)−1 tanh(h
√

2λ). (5.12)

Now call τ0 = τ, β0 = β, σ0 = σ and define recursively τn, βn, σn (n ≥ 1), so that (τn+1−τn, βn+1, σn+1−τn)

is the (τ, β, σ)–triplet associated to the Brownian motion
(
(−1)n−1(Wτn+t −Wτn), t ≥ 0

)
. By construction,

for n ≥ 1, σ2n is the time of an h-maximum and for n ≥ 0, σ2n+1 is the time of a h-minimum. Note that

since we have considered just the part on the right of the origin, in general σ0 is not an h maximum. The

definition only requires Wt ≤ Wσ0 for t ∈ [0, σ0), therefore Wσ0 = Wσ0 − B0 could be smaller than h. The

trajectory of the BBM on the left of the origin will determine whether σ0 is or is not an h–maximum. From

the above mentioned fact that (β, σ) and τ − σ are independent, it follows that the variables σn+1 − σn for

n ≥ 1 are independent with Laplace transform (cosh(h
√

2λ))−1. In this way Neveu and Pitman define a

renewal process on IR+, with a delay distribution, i.e. the one of σ0, that have Laplace transform (5.12).

Since the times of h-extrema for the BBM depend only on its increments, these times should form a

stationary process on IR. The above one side construction does not provide stationary on the positive real

axis IR+ since the delay distribution is not the one of the limiting distribution of the residual life as it should

be, see [5] Theorem 3.1. In fact the Laplace transform of limiting distribution of the residual life is given by

(2.50) which is different from (5.12).

There is a standard way to get a stationary renewal process. Pick up an r0 > 0, translate the origin to

−r0 and repeat for (Wt+r0 , t > −r0) the above construction. One gets σ0(r0) and the sequence of point of

h-extrema (σn(r0), n ≥ 1). Let ν(r0) ≡ inf(n > 0 : σn(r0) > 0) be the number of renewals up to time 0

(starting at −r0). In this way, σν(r0)(r0) is the residual life at “time” zero for the Brownian motion starting

at −r0. So taking r0 ↑ ∞, the distribution of σν(r0)(r0) will converge to the one of the residual life and

using [5], Theorem 3.1, one gets a stationary renewal process on IR+. So conditionally on σ1(r0) < 0, define

Si(r0) = σν(r0)+i−1(r0) for all i ≥ 1. Then since the event {σ1(r0) < 0} has a probability that goes to 1 as

r0 ↑ ∞, one gets, as r0 ↑ ∞, a stationary renewal process on IR+ as well on IR. Since the Laplace transform

of the inter–arrival time distribution is (cosh(h
√

2λ))−1, one gets easily that the Laplace transform of the

distribution of S1 (and also of S0) is (2.50).

With this in mind we start the construction for the random walk {Ŵ ǫ}. Denote

V ǫ(t) =





V ǫ
1 (t) =

1√
c(β, θ, γ/δ∗)

[ t
ǫ ]∑

α=1

χ(α) t ≥ ǫ,

0 0 ≤ t ≤ ǫ

(5.13)
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and F̂+
t , t ≥ 0 the associated σ- algebra. Define the rescaled running maximum for V ǫ(t), t ≥ 0

√
ǫM̂(n) = max

0≤k≤n
V ǫ(kǫ). (5.14)

The
√

ǫ multiplying M̂(n) comes from the observation, see (3.56), that IE

[(
1√
ǫ
V ǫ(kǫ)

)2
]

= k. For any

h > 0, define the F̂+
t stopping time

τ̂0(ǫ) ≡ τ̂0 = min{n ≥ 0 :
√

ǫM̂(n) − V ǫ(nǫ) ≥ h}, (5.15)

√
ǫβ̂0(ǫ) ≡

√
ǫβ̂0 = max{V ǫ(kǫ) : 1 ≤ k ≤ τ̂0} (5.16)

and

σ̂0(ǫ) ≡ σ̂0 = max{k : 1 ≤ k ≤ τ̂0; V
ǫ(kǫ) =

√
ǫβ̂0}. (5.17)

By construction √
ǫβ̂0 ≡ √

ǫM̂(τ̂0) = max
0≤k≤τ̂0

V ǫ(kǫ) = V ǫ(σ̂0ǫ) ≥ V ǫ(τ̂0ǫ) + h. (5.18)

It follows from the invariance principle and the continuous mapping theorem, Theorem 5.2 of [7], that the

joint distribution of [√
ǫM̂([

t

ǫ
]), ǫτ̂0(ǫ),

√
ǫβ̂0(ǫ), ǫσ̂0(ǫ)

]

converges as ǫ → 0, to the joint distribution of the respective quantities defined for a Brownian motion, see

(5.11) i.e

[Mt, τ0, β0, σ0] .

Since τ̂0 is a F̂+
t stopping time for (V ǫ(t), t ≥ 0) , the translated and reflected motion (−1)[V ǫ(ǫτ0 + t)−

V ǫ(ǫτ0)], for t ≥ 0, is a new random walk independent of (V ǫ(t), 0 ≤ t ≤ ǫτ0) on which we will iterate the

previous construction. We have

τ̂1(ǫ) ≡ τ̂1 = min{n ≥ τ̂0 : max
τ0≤k≤n

[−V ǫ(kǫ)] + V ǫ(nǫ) ≥ h}

= min{n ≥ τ̂0 : − min
τ0≤k≤n

V ǫ(kǫ) + V ǫ(nǫ) ≥ h}

= min{n ≥ τ̂0 : min
τ0≤k≤n

V ǫ(kǫ) − V ǫ(nǫ) ≤ −h}

. (5.19)

√
ǫβ̂1(ǫ) ≡

√
ǫβ̂1 = max{(−V ǫ(kǫ)) : τ̂0 ≤ k ≤ τ̂1}

= −min{V ǫ(kǫ) : τ̂0 ≤ k ≤ τ̂1}
(5.20)

σ̂1(ǫ) ≡ σ̂1 = max{k : τ̂0 ≤ k ≤ τ̂1;−V ǫ(kǫ) =
√

ǫβ̂1} (5.21)

Now for any i ∈ IN , we can iterate the above procedure to get as Neveu and Pitman the family

[√
ǫM̃([

t

ǫ
]), ǫτ̂0(ǫ),

√
ǫβ̂0(ǫ), ǫσ̂0(ǫ), . . . , ǫτ̂i(ǫ),

√
ǫβ̂i(ǫ), ǫσ̂i(ǫ)

]
. (5.22)

Using again the invariance principle and the continuous mapping theorem one gets that

lim
ǫ↓0

[
ǫτ̂i(ǫ),

√
ǫβ̂i(ǫ), ǫσ̂i(ǫ), i ≥ 0, i ∈ IN

]
Law
= [τi, βi, σi, i ≥ 0, i ∈ IN ] , (5.23)
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where the quantity in the right hand side of (5.23) are the ones defined after (5.12). Let us note the following

properties of the previous points of h–extrema. By construction the random walk satisfies, in the interval

[σ̂0, σ̂1], the following :

Property (4.A) In the interval [σ̂0, σ̂1] we have

V ǫ(σ̂1ǫ) − V ǫ(σ̂0ǫ) ≤ −h, V ǫ(kǫ) − V ǫ(k′ǫ) < h ∀k′ < k ∈ [σ̂0, σ̂1], (5.24)

V ǫ(σ̂1ǫ) ≤ V ǫ(kǫ) ≤ V ǫ(σ̂0ǫ) σ̂0 < k < σ̂1. (5.25)

The first property in (5.24) is easily obtained. Namely adding and subtracting V ǫ(ǫτ̂0) one has

[V ǫ(ǫσ̂1) − V ǫ(ǫτ̂0)] + [V ǫ(ǫτ̂0) − V ǫ(ǫσ̂0)] ≤ −h

since [V ǫ(ǫσ̂1) − V ǫ(ǫτ̂0)] ≤ 0 and by construction V ǫ(ǫσ̂0) − V ǫ(ǫτ̂0) ≥ h. The other properties are easily

checked. Properties similar to (5.24) and (5.25) hold in the interval [σ̂2i, σ̂2i+1], for i > 0. Namely by

construction σ̂2i is a point of h-maximum and σ̂2i+1 is a point of h-minimum. Further, since by construction

σ̂2i−1 is a point of h-minimum and σ̂2i is a point of h-maximum in the interval [σ̂2i−1, σ̂2i], i ≥ 1, we have

the following:

Property (4.B) In the interval [σ̂2i−1, σ̂2i], i ≥ 1, we have

V ǫ(σ̂2iǫ) − V ǫ(σ̂2i−1ǫ) ≥ h, V ǫ(kǫ) − V ǫ(k′ǫ) > −h ∀k′ < k ∈ [σ̂2i−1, σ̂2i], (5.26)

V ǫ(σ̂2i−1ǫ) ≤ V ǫ(kǫ) ≤ V ǫ(σ̂2iǫ) σ̂2i−1 < k < σ̂2i. (5.27)

Following the Neveu–Pitman construction, one translates the origin of the random walk {V ǫ} to −r0,

being r0 positive and large enough and repeats the previous construction. To obtain the h–extrema as in

Neveu-Pitman we should let first ǫ → 0, obtaining by the Donsker invariance principle that

V ǫ
r0

(·) ≡ V ǫ(· + r0) (5.28)

converges in law to the standard BM translated by −r0, then r0 → ∞. However we cannot proceed in this

way since to control some probability estimates we need to have ǫ small but different from zero. For the

moment, the picture to have in mind is merely to take a suitable r0 = r0(γ) that diverges when γ ↓ 0. We

denote by (σ̂i(r0) = σ̂i(ǫ, r0), i ≥ 1, i ∈ IN) the points of h–extrema for V ǫ
r0

(·).

5.3. The maximal b elongations with excess f as defined in [16]

In this subsection we recall definitions of the maximal elongations from [16]. We extract them from the

first 5 pages of Section 5 of [16], with different conventions that will be pointed out. This subsection is

not completely self–contained since an involved probability estimate done in [16], see (5.37) is just recalled.

However if one accepts it, the rest is self–contained. In [16], formula (5.3) we introduced the following

Y(α) ≡





∑

α̃∈[0,α]

χ(α̃), if α ≥ 1;

0 if α = 0;

−
∑

α̃∈(α,−1)

χ(α̃), if α < −1

α ∈ ZZ. (5.29)
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Definition 5.3: Given b > f positive real numbers, we say that an interval [α1, α2] gives rise to a negative

b–elongation with excess f , for Y(α), α ∈ ZZ if

Y(α2) − Y(α1) ≤ −b − f ; Y(y) − Y(x) ≤ b − f, ∀x < y ∈ [α1, α2]. (5.30)

We say that [α1, α2] gives rise to a positive b–elongation with excess f if

Y(α2) − Y(α1) ≥ b + f ; Y(y) − Y(x) ≥ −b + f, ∀x < y ∈ [α1, α2]. (5.31)

In the first case we say that the sign of the b–elongation with excess f is −; in the second case, +.

Remark 5.4 . To decide if a given interval [α1, α2] gives rise to a b–elongation with excess f depends only

on the variables χ(α) with α1 ≤ α ≤ α2, i.e. it is a local procedure.

To our aim we need to determine the b–elongations with excess f which are “maximal”, i.e the intervals of

maximum length which give rise to a positive or negative b–elongations with excess f .

Definition 5.5(The maximal b–elongations with excess f). Given b > f positive real numbers, the

Y(α), α ∈ ZZ, have maximal b–elongations with excess f if there exists an increasing sequence {α∗
i , i ∈ ZZ}

such that in each of the intervals [α∗
i , α

∗
i+1] we have either (1) or (2) below:

(1) In the interval [α∗
i , α

∗
i+1] (negative maximal elongation):

Y(α∗
i+1) − Y(α∗

i ) ≤ −b − f ; Y(y) − Y(x) ≤ b − f, ∀x < y ∈ [α∗
i , α

∗
i+1]; (5.32)

Y(α∗
i+1) ≤ Y(α) ≤ Y(α∗

i ), α∗
i ≤ α ≤ α∗

i+1. (5.33)

(2) In the interval [α∗
i , α

∗
i+1] (positive maximal elongation):

Y(α∗
i+1) − Y(α∗

i ) ≥ b + f ; Y(y) − Y(x) ≥ −b + f, ∀x < y ∈ [α∗
i , α

∗
i+1]; (5.34)

Y(α∗
i ) ≤ Y(α) ≤ Y(α∗

i+1), α∗
i ≤ α ≤ α∗

i+1. (5.35)

Moreover, if in the interval [α∗
i , α

∗
i+1] we have (5.32) and (5.33) (resp. (5.34) and (5.35)) then in the adjacent

interval [α∗
i+1, α

∗
i+2] we have (5.34) and (5.35) (resp. (5.32) and (5.33)). At last, we make the convention

α∗
0 ≤ 0 < α∗

1. (5.36)

Remark 5.6 . In [16] the convention α∗
−1 ≤ 0 < α∗

0 was assumed.

We say that the interval [α∗
i , α

∗
i+1] gives rise to negative maximal b elongations with excess f in the first case

and the interval [α∗
i , α

∗
i+1] gives rise to positive maximal b elongations with excess f in the second case.

Remark 5.7 . Note that if {α∗
i , i ∈ ZZ} gives rise to maximal b elongations with excess f > 0, then

{α∗
i , i ∈ ZZ} gives rise to maximal b elongations with excess f ′ with 0 ≤ f ′ ≤ f .

The α∗
i are in fact α∗

i ≡ α∗
i (γ, ǫ, b, f, ω). We will write explicitly the dependence on one, some or all the

parameters only when needed. Since we are considering a random walk and α∗
i are points of local extrema,

see (5.33) and (5.35), for a given realization of the random walk, various sequences {α∗
i , i ∈ ZZ} could have

the properties listed above. This because a random walk can have locally and globally multiple maximizers

or minimizers. Almost surely this does not happen for the Brownian motion. In [16], we have chosen to

take the first minimum time or the first maximum time instead of the last one as in (5.11). In the Brownian

motion case the last and first maximum (resp. minimum) time are almost surely equal. However we could
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have taken the last minimum time or the last maximum time without any substantial change. From now

on, we make this last choice. With this choice and the convention (5.36) the points α∗
i are unambiguously

defined. The interval [α∗
0, α

∗
1] is called maximal b–elongation with excess f that contains the origin.

Remark 5.8 . Obviously the construction of maximal b–elongation with excess f cannot be a local proce-

dure. So to determine [α∗
0, α

∗
1], for example, implies to know that the intervals adjacent to [α∗

0, α
∗
1] give risen

to b–elongation with excess f (not necessarily maximal) of sign opposite to the one associated to [α∗
0, α

∗
1].

In [16] we determined the maximal b– elongation with excess f containing the origin and estimated the

IP -probability of the occurrence of [α∗
0, α

∗
1] ⊂ [−Q/ǫ, +Q/ǫ] taking care of ambiguities mentioned above.

Namely, applying 5.8, 5.9 and Corollary 5.2 of [16], choosing δ∗, Q and ǫ as in Subsection 2.5, b = 2F∗, and

see (5.30) in [16], f = 5/g(δ∗/γ), we have proved

IP [([α∗
0, α

∗
1] ⊂ [−Q/ǫ, +Q/ǫ])

c
] ≤ 3e

− Q
2C1 + ǫ

a
16(2+a) + Q2ǫ

a
8+2a + Qe

− 1

2ǫ3/4V 2(β,θ)

≤ ǫ
a

32(2+a) =
( 5

g(δ∗/γ)

) a
8(2+a)

.
(5.37)

where C1 ≡ C1(β, θ) is an explicit constant, V (β, θ) as in (2.36) and a > 0. Estimate (5.37) is obtained in

[16] estimating the probability to have enough b–elongation with excess f (not necessarily maximal) within

[−Q/ǫ, Q/ǫ] to be sure that there exists a maximal one containing the origin. Here we have a slightly different

point of view, we want to be able to construct all the maximal b–elongations with excess f that are within

[−Q/ǫ, Q/ǫ]. After a moment of reflection, one realizes that the simultaneous occurrence of the events that

two b–elongations with excess f not necessarily maximal with opposite sign on the right of [−Q/ǫ, Q/ǫ]

and the same on its left should allow to construct all the maximal b–elongations with excess f that are

within [−Q/ǫ, Q/ǫ]. There is a simple device used constantly in [16], to estimate the IP –probability of the

simultaneous occurrence of such events on [Q/ǫ, (Q + L)/ǫ] and on [−(Q + L)/ǫ,−Q/ǫ] for some L > 0. Let

us call these events Ω−
L (Q, f, b) and Ω+

L(Q, f, b). Since it is rather long to introduce this device and it will

be used for other purposes, we postpone to the Subsection 5.5 the proof that choosing the parameter as in

Subsection 2.5, taking L = cte log(Q2g(1/γ)), one gets

IP [Ω−
L ([Q, f, b) ∩ Ω+

L(Q, f, b)] ≥ 1 − 2ǫ
a

32(2+a) (5.38)

for some a > 0, see after (5.84). Let us call

ΩL([−Q, +Q], f, b, 0) ≡ Ω−
L ([Q, f, b) ∩ {[α∗

0, α
∗
1] ⊂ [−Q/ǫ, +Q/ǫ]} ∩ Ω+

L(Q, f, b) (5.39)

where 0 in the argument of ΩL(·) is to recall that Y(0) = 0. The space ΩL([−Q, +Q], f, b, 0) depends on the

variables χ(α) for ǫα ∈ [−Q − L, Q + L]. Collecting (5.37) and (5.38) one gets

IP [ΩL([−Q, +Q], f, b, 0)] ≥ 1 − 3ǫ
a

32(2+a) . (5.40)

On ΩL([−Q, Q], f, b, 0) we have

−Q

ǫ
< α∗

κ∗(−Q)+1 ≤ . . . ≤ α∗
0 < 0 < α∗

1 ≤ . . . α∗
κ∗(Q)−1 <

Q

ǫ
. (5.41)

where κ∗(±Q) are defined in (2.40). The construction done in [16], just described is a bilateral construction.

We considered the process Y(·), Y(0) = 0, see (5.29) and we determined to the right and to the left of the

origin the b− elongations with excess f . The Neveu–Pitman construction, recalled in Subsection 5.2 is a one
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side construction. The determination of the points Si is achieved moving the origin of the BM to −r0, and

then letting r0 → ∞. To be able to compare what we just recalled with the Neveu–Pitman construction for

the random walk we translate the origin to −r0 = −4pQ, for some p ∈ IN , and called Yr0 the new random

walk with Yr0(r0) = 0. We want to construct in the interval [−Q/ǫ, +Q/ǫ] the maximal b–elongations with

excess f for the process (Yr0(α), α ∈ ZZ) considering as above, extra elongations on the left and on the right

of [−Q/ǫ, +Q/ǫ]. In this way we are able to compare in the same probability space the construction done in

[16] with the one by Neveu-Pitman specialized for the random walk Yr0 .

Repeating step by step the construction of maximal b–elongations with excess f given in [16], and recalling

(5.39), on a subset ΩL([−Q, +Q], f, b, r0) that depends only of the variables χ(α) for ǫα ∈ [−Q−L, Q+L] (and

in particular does not depends of the variables χ(α) for ǫα ∈ [−Q − L − r0,−Q − L − 1]), we can construct

all the maximal elongations that are within [−Q, +Q] for the process (Yr0 (α), α ∈ ZZ). By translation

invariance, using (5.40) we have

IP [ΩL([−Q, +Q], f, b, r0)] = IP [ΩL([−Q, +Q], f, b, 0)] ≥ 1 − 3ǫ
a

32(2+a) . (5.42)

Similarly to (5.41) we have on ΩL([−Q, +Q], f, b, r0)

−Q

ǫ
< α∗

κ∗(−Q,r0)
(r0) + 1 ≤ . . . ≤ α∗

0(r0) < 0 < α∗
1(r0) ≤ . . . α∗

κ∗(Q,r0)−1(r0) <
Q

ǫ
(5.43)

where

κ∗(−Q, r0) = sup(i ≥ 1 : ǫα∗
i (r0) < −Q) (5.44)

and

κ∗(Q, r0) = inf(i ≥ κ∗(−Q, r0) : ǫα∗
i (r0) > Q) (5.45)

with the usual convention inf(∅) = +∞.

Since the previous construction depends only on the increments of Y(α) and is exactly the one used to

construct (α∗
i , i : −Q < ǫα∗

i < Q), we have

(α∗
i (r0), ∀i ∈ ZZ : κ∗(−Q, r0) < i < κ∗(Q, r0)) on ΩL([−Q, +Q], f, b, r0)

Law
= (α∗

i , ∀i ∈ ZZ : κ∗(−Q) < i < κ∗(Q)) on ΩL([−Q, Q], f, b, 0).
(5.46)

Here X on Ω1 =Law Y on Ω2 means that the respective conditional distributions are the same. Note

that we have α∗
0(r0) < 0 < α∗

1(r0) and α∗
0 < 0 < α∗

1. In particular (5.46) implies that α∗
1(r0) on

ΩL([−Q, +Q], f, b, r0) and α∗
1 on ΩL([−Q, Q], f, b, 0) have the same law.

5.4. Relation between h–extrema and maximal b–elongation with excess f

Recalling (5.1), we have

Y(α) =
√

c(β, θ, γ/δ∗)Ŵ ǫ(αǫ), ∀α ∈ ZZ. (5.47)

Furthermore taking into account that (σ̂i(r0), i ≥ 1) are the times of h–extrema for the random walk V ǫ
r0

starting a −r0 = −4pQ, see the end of Subsection 5.2, and the properties (4.A) and (4.B) satisfied by

(σ̂i(r0), i ≥ 1) one recognizes immediately that the intervals [σ̂i(r0), σ̂i+1(r0)) for i ≥ 1, i ∈ IN give rise to

maximal b = h
√

c(β, θ, γ/δ∗) elongations with excess f = 0, for any b > 0. Let us define

κ̂(−Q, r0) = sup (i ≥ 1 : ǫσ̂i(r0) < −Q) . (5.48)

We impose i ≥ 1 in (5.48) so that σ̂κ̂(−Q,r0)(r0) is a time of a h–extremum. Recall that σ̂0(r0) may not be a

point of h–extrema. Furthermore we define

ν̂(r0) = inf (i ≥ κ̂(−Q, r0) : ǫσ̂i(r0) > 0) (5.49)
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and

κ̂(Q, r0) = inf (i ≥ ν̂(r0) : ǫσ̂i(r0) > Q) . (5.50)

Note that on {κ̂(Q, r0) < ∞}, there are κ̂(Q, r0) − κ̂(−Q, r0) + 1 points of h–extremum within [−Q, +Q].

So let

Ω0(Q, r0) ≡ {ω ∈ Ω, κ̂(−Q, r0) < ν(r0) < κ̂(Q, r0) < ∞, κ̂(Q, r0) − κ̂(−Q, r0) ≥ 1} (5.51)

be the set of realizations such that there exists at least one interval [ǫσ̂i(r0), ǫσ̂i+1(r0)] ⊂ [−Q, Q], for some

i ∈ ZZ with σ̂i(r0) and σ̂i+1(r0) that are h–extrema of V ǫ
r0

(·). On Ω0(Q, r0) we have

−Q

ǫ
< σ̂κ̂(−Q,r0)+1(r0) < ... < σ̂ν̂(r0)−1(r0) < 0 < σ̂ν̂(r0)(r0) < ... < σ̂κ̂(Q,r0)−1(r0) <

Q

ǫ
. (5.52)

Note that Ω0(Q, r0) ⊃ ΩL([−Q, +Q], b, f, r0). Namely, see Remark 5.7, if [ǫα∗
i (f, r0), ǫα

∗
i+1(f, r0)) gives rise

to a maximal b–elongation with excess f , then it gives rise to a maximal b–elongation with excess f = 0.

Therefore ǫα∗
i (f, r0) and ǫα∗

i+1(f, r0) are points of h = b/
√

c(β, θ, δ∗/γ) extrema. Of course, it could exist a

pair of points of h–extrema, h = b/
√

c(β, θ, δ∗/γ), ǫσ̂i(r0), ǫσ̂i+1(r0) for κ̂(−Q, r0) ≤ i < κ̂(Q, r0) such that

[ǫσ̂i(r0), ǫσ̂i+1(r0)) gives rise to a maximal b–elongation with excess f = 0 without giving rise to a maximal b–

elongation with excess f > 0. That is, a priori on Ω0(Q, r0)∩ΩL([−Q, +Q], b, f, r0) = ΩL([−Q, +Q], b, f, r0),

we have κ̂(Q, r0) − κ̂(−Q, r0) > κ∗(Q, r0) − κ∗(−Q, r0).

Lemma 5.9 Set b = 2F∗, h = 2F∗√
c(β,θ,δ∗/γ)

, all the remaining parameters as in Subsection 2.5, L =

cte log(Q2g( δ∗

γ )) and f = 5
g( δ∗

γ )
. Set

Ω(f, r0) = ΩL([−Q, +Q], b, f, r0) ∩ {κ̂(Q, r0) − κ̂(−Q, r0) > κ∗(Q, r0) − κ∗(−Q, r0)} . (5.53)

We have

IP [Ω(f, r0)] ≤ 3e−
Q

2C1 + ǫ
a

16(2+a) + Q2ǫ
a

8+2a + Qe
− 1

2ǫ3/4V 2(β,θ) ≤ ǫ
a

32(2+a) . (5.54)

where C1 ≡ C1(β, θ) is an explicit constant, V (β, θ) as in (2.36) and a > 0.

Proof: Denote

Ω′ =
{
ω : −Q

ǫ
< σ̂κ̂(−Q,r0)+1(r0) < . . . < σ̂ν̂(r0)−1(r0) < 0 < σ̂ν(r0)(r0) < . . . < σ̂κ̂(Q,r0)−1(r0) <

Q

ǫ
;

∃i, κ̂(−Q, r0) + 1 ≤ i ≤ κ̂(Q, r0) − 2 such that [σ̂i(r0), σ̂i+1(r0)) does not satisfy (1) and (2) of

Definition 5.5 but does satisfy (5.24) and (5.25) or (5.26) and (5.27)
}

(5.55)

Note that

Ω(f, r0) ⊂ Ω′ ∩ ΩL([−Q, +Q], f, b, r0). (5.56)

To estimate the IP–probability of the event in the right hand side of (5.56), let i, κ̂(−Q, r0) + 1 ≤ i ≤
κ̂(Q, r0) − 2 be such that [σ̂i(r0), σ̂i+1(r0)] does not satisfy (1) and (2) of Definition 5.5 but does satisfy

(5.24) and (5.25) or (5.26) and (5.27).

It is enough to consider the case where [σ̂i(r0), σ̂i+1(r0)] does not satisfy (1) of Definition 5.5 but does

satisfy (5.24) and (5.25). There are two cases:

• first case

−b− f ≤ Y(σ̂i+1(r0))−Y(σ̂i(r0)) ≤ −b, Y(y)−Y(x) ≤ b− f ∀x, y : x < y ∈ [σ̂i(r0), σ̂i+1(r0)] (5.57)
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Y(σ̂i+1(r0)) < Y(α) ≤ Y(σ̂i(r0)) ∀α : σ̂i(r0) < α ≤ σ̂i+1(r0) (5.58)

• second case

Y(σ̂i+1(r0))−Y(σ̂i(r0)) ≤ −b− f, ∃x0, y0, x0 < y0 ∈ [σ̂i(r0), σ̂i+1(r0)] : b ≥ Y(y0)−Y(x0) ≥ b− f, (5.59)

Y(σ̂i+1(r0)) < Y(α) ≤ Y(σ̂i(r0)) σ̂i(r0) < α ≤ σ̂i+1(r0). (5.60)

Let us denote

Y∗(α, α1, α2) ≡ max
α1≤α̃≤α2

α̃∑

α=α

χ(α) (5.61)

and

Y∗(α, α1, α2) ≡ min
α1≤α̃≤α2

α̃∑

α=α

χ(α) (5.62)

where ǫα = −Q. To estimate both the cases we follow an argument already used in the proof of Theorem

5.1 in [16]. Take ρ′ = (9f)1/(2+a), for some a > 0. Divide the interval [−Q, Q] into blocks of length ρ′ and

consider the event

D̃(Q, ρ′, ǫ) ≡
{
∃ℓ, ℓ′, −Q/ρ′ ≤ ℓ < ℓ′ ≤ (Q − 1)/ρ′; |Y∗(α, ρ′ℓ

ǫ , ρ′(ℓ+1)
ǫ ) − Y∗(α, ρ′ℓ′

ǫ , ρ′(ℓ′+1)
ǫ ) − b| ≤ 9f

}
.

Simple observations show that those ω that belong to {maxα∈[−Q/ǫ,Q/ǫ] |χ(α)| ≤ f} and are such that there

exists i, κ̂(−Q, r0) + 1 ≤ i ≤ κ̂(Q, r0) − 2 such that (5.57) and (5.58) hold, belong also to D̃(Q, ρ′, ǫ).

For the second case, we can assume that x0 is a local minimum and y0 a local maximum, therefore those ω

that belong to {maxα∈[−Q/ǫ,Q/ǫ] |χ(α)| ≤ f} and are such that there exists i, κ̂(−Q, r0)+1 ≤ i ≤ κ̂(Q, r0)−2

such that (5.59) and (5.60) hold, belong also to D̃(Q, ρ′, ǫ). Therefore we obtain that

Ω′ ∩ { max
α∈[−Q/ǫ,Q/ǫ]

|χ(α)| ≤ f} ⊂ D̃(Q, ρ′, ǫ).

The estimate of IP
[
D̃(Q, ρ′, ǫ) ∩ ΩL([−Q, +Q], f, b, r0)

]
is done in [16] where the same set D̃(Q, ρ′, ǫ), see

pag 834 there, was considered. It is based on Lemma 5.11 and Lemma 5.12 of [16]. Here we recall the final

estimate

IP
[
D̃(Q, ρ′, ǫ) ∩ ΩL([−Q, +Q], f, b, r0)

]
≤

8(2(Q + L) + 1)2
2
√

2π

V (β, θ)
(9f)a/(2+a) + (2(Q + L) + 1)

1296

V (β, θ)

9f + (2 + V (β, θ))
√

ǫ log C1

ǫ

(9f)3/(4+2a)

+
4(Q + L)

ǫ
e
− f

4ǫV 2(β,θ) .

(5.63)

Furthermore by Chebyshev inequality we obtain that

IP

[
{ max

α∈[−Q/ǫ,Q/ǫ]
|χ(α)| ≥ f}

]
≤ IE

[
{maxα∈[−Q/ǫ,Q/ǫ] |χ(α)|}

]

f
≤ 2

(
ǫV 2

+ log{2Q

ǫ
}
) 1

2

(1 +
1

log{ 2Q
ǫ }

)
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For the last inequality, see formula 5.38 in [16]. Choosing the parameters as in Subsection 2.5 we obtain the

thesis.

On Ω̃L([−Q, +Q], f, b, r0) = ΩL([−Q, +Q], f, b, r0)\Ω(f, r0), (5.43) and (5.52) hold: a point is a beginning

or an ending of an interval of maximal b–elongations with excess f if and only if it is a point of h–extremum.

Relabel the variables σ̂i(r0) in (5.52) as in Neveu and Pitman, that is define

Ŝi(r0) = σ̂ν(r0)+i−1(r0), ∀i ∈ ZZ : κ̂(−Q, r0) ≤ ν(r0) + i − 1 < κ̂(Q, r0). (5.64)

Therefore, on Ω̃L([−Q, +Q], f, b, r0), we have

Ŝi(r0) = α∗
i (r0), ∀i ∈ ZZ : −Q

ǫ
≤ Ŝi(r0) ≤

Q

ǫ
. (5.65)

Lemma 5.10 Take

b = 2F∗, h =
2F∗

V (β, θ)
,

all the remaining parameter as in Subsection 2.5, L = cte log(Q2g( δ∗

γ )) and f = 5
g( δ∗

γ )
.

Let ΩL([−Q, Q], f, b, 0) be the probability space defined in (5.39) with IP [ΩL([−Q, Q], f, b, 0)] ≥ 1−3ǫ
a

32(2+a)

for some a > 0. Let

−Q

ǫ
< α∗

κ∗(−Q)+1 < .... < α∗
−1 < α∗

0 < 0 < α∗
1 < ... < α∗

κ∗(Q)−1 <
Q

ǫ

be the maximal b–elongations with excess f , see (5.41), and {Si, i ∈ ZZ} the point process of h-extrema of

the BBM defined in Neveu-Pitman [32]. We have

lim
γ→0

ǫ(γ)α∗
i (ǫ(γ), f(γ))

Law
= Si i ∈ ZZ. (5.66)

Proof: This is an immediate consequence of (5.46), Lemma 5.9, (5.65), (3.54) and the continuous mapping

theorem.

Proof of Theorem 2.5 The (2.47) is proved in Lemma 5.10. The properties of Si are recalled in Subsection

5.2 and (2.48) is proved in [32]. To derive (2.50) let X = S2 − S1 be the interarrival times of the renewal

process {Si, i ∈ ZZ}. Then using ∫ ∞

0

λe−λz1I{x≥z} dz = 1 − e−λx,

one gets

IE[e−λS1 ] =
1

h2λ
[1 − IE[e−λX ]] =

1

h2λ
[1 − 1

cosh(h
√

2λ)
] for λ ≥ 0.

The distribution (2.51) has been obtained in [26], applying the Mittag-Leffler representation for (coshz)−1.

Since IP [S1 > z] = 1
h2

∫∞
z IP [X > x]dx, one obtains differentiating (2.51) the distribution in (2.49).

Proof of Corollary 2.6 Since we already proved the convergence of finite dimensional distributions see

(2.47), to get (2.52) it is enough to prove that for any subsequence {u∗
γ , 0 < γ < γ0} ∈ BVloc(IR, {mβ , Tmβ}),
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with γ ↓ 0, one can extract a subsequence {u∗
γn

, 0 < γn < γ0} that convergences in Law. In fact, since

BVloc(IR, {mβ, Tmβ}) is endowed with the topology induced by the metric d(·, ·) defined in (5.4), this

implies that the points of jumps of {u∗
γn

, 0 < γn < γ0} will converge in Law to some points that by (2.47)

are necessarily the (Si, i ∈ ZZ), this will imply (2.52).

So let γ ↓ 0 be any subsequence that goes to 0. We will prove that for any chosen ǫ1, it is possible to

extract a subsequence γn ↓ 0 and to construct a probability subset Kǫ ⊂ Ω with

IP [Kǫ1 ] ≥ 1 − ǫ1 (5.67)

so that on Kǫ1 , the subsequence {u∗
γn

, 0 < γn ≤ γ0} is a compact subset of BVloc(IR, {mβ , Tmβ}).
To construct Kǫ1 and the subsequence γn, we use the following probability estimates. Let b = 2F∗ and

ΩL([−Q, +Q], f, b, 0) the probability subspace defined in (5.39), IP [ΩL([−Q, +Q], f, b, 0)] ≥ 1−3ǫ
a

32(2+a) , see

(5.40). On ΩL([−Q, +Q], f, b, 0) u∗
γ(·) jumps at the points {ǫα∗

i , κ
∗(−Q)+1 ≤ i ≤ κ∗(Q)−1}. It was proved

in Proposition 5.3 of [16] that for i ∈ ZZ and for 0 ≤ x ≤ (F∗)2/(V 2(β, θ)18 log 2)

IP [ǫα∗
i+1 − ǫα∗

i < x] ≤ 2e
− (F∗)2

18xV 2(β,θ) . (5.68)

By Lemma 5.14, on the probability subspace Ωurt, with P [Ωurt] ≥ 1 − ( 5
g(δ∗/γ) )

a
8(2+a) for some a > 0, the

number of jumps within [−Q, +Q] is smaller than 4 +
8V 2

+

(F∗)2 Q log
[
Q2g(δ∗/γ)

]
. Therefore, calling

ΩQ(x, γ) ≡
{
ω ∈ Ωurt; ∀i : ǫα∗

i ∈ [−Q, +Q], ǫα∗
i+1 − ǫα∗

i > x
}

one has

IP [ΩQ(x, γ)] ≥ 1 − 4(
5

g(δ∗/γ)
)

a
32(2+a) −

(
4 +

8V 2
+

(F∗)2
Q log

[
Q2g(δ∗/γ)

])
2e

− (F∗)2

18xV 2(β,θ) . (5.69)

For any subsequence γ ↓ 0, one can pick up a subsequence {γn} such that

∑

n≥1

(
5

g(δ∗(γn)/γn)

) a
32(2+a)

< ∞ (5.70)

and recalling that Q = Q(γ) ↑ ∞ when γ ↓ 0, one can take x = x(γn) > 0 such that

∑

n≥1

(
4 +

8V 2
+

(F∗)2
Q(γn) log

[
Q2(γn)g(δ∗(γn)/γn)

])
2e

− (F∗)2

18x(γn)V 2(β,θ) < ∞. (5.71)

Now using (5.69), (5.70) and (5.71), given ǫ1 > 0, one can choose n0 = n0(ǫ1) such that

IP [
⋂

n≥n0

ΩQ(γn)(x(γn), γn)] ≥ 1 − ǫ1. (5.72)

Denote Kǫ1 ≡ ⋂n≥n0
ΩQ(γn)(x(γn), γn) and we have proven (5.67).

Let ω ∈ Kǫ and {u∗
γn

= u∗
γn

(ω), n ≥ n0} the above constructed subsequence. Sufficient and necessary

conditions for the compactness of {u∗
γn

, n ≥ n0} is to exhibit for all ǫ̃ say, ǫ̃ < 1/2 and for some numerical

constant c a finite cǫ̃–net for {u∗
γn

, n ≥ n0(ǫ)}, see [7] pg. 217. One can also assume that n0 = n0(ǫ, ǫ̃) is

such that

e
−Q(

δ∗(γn0 )

γn0
) ≤ ǫ̃ (5.73)
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Set y2 ≡ y2
γn

= ǫ̃x(γn)
4(1+ǫ̃) , let kQ ∈ ZZ and k−Q ∈ ZZ so that kQy2

n ≤ Q < (kQ + 1)y2 and respectively

k−Qy2 ≤ −Q < (k−Q + 1)y2. Denote B(y2, Q) ⊂ BVloc the finite subset

B(y2, Q) =

{
u0 ∈ BVloc : u0 constant on [ky2, (k + 1)y2), k ∈ [k−Q, kQ] ∩ ZZ,

∀r ≥ Q, u0(r) = u0(kQ); ∀r ≤ −Q, u0(r) = u0(k−Q)

}

Let ω ∈ Kǫ and k∗
i ≡ k∗

i (ω, γn) ∈ ZZ such that k∗
i y2 ≤ ǫ(γn)α∗

i (ω, γn) < (k∗
i + 1)y2, for all i such that

ǫα∗
i−1 ∈ [−Q, +Q]. Let u0 ∈ B(y2, Q) such that u0(k

∗
i y2) = u∗

γn
(ǫα∗

i ). It remains to check that d(u∗
γn

, u0) ≤ cǫ̃

for some numerical constant c, where d(·, ·) is defined in (5.4). Let us define the following λγn(.) ∈ ΛLip by

λγn(k∗
i y2) = ǫα∗

i and linear between k∗
i y2 and (k∗

i + 1)y2 for r > Q take λγn(r) = λγn(Q) + t − Q and for

r ≤ −Q take λγn(r) = λγn(−Q) + t + Q. For all i such that ǫα∗
i−1 ∈ [−Q, +Q], one has

∣∣λγn(k∗
i y2) − λγn(k∗

i−1) − (k∗
i − k∗

i−1)y
2
∣∣ =

∣∣ǫα∗
ℓ+1 − ǫα∗

ℓ − (k∗
i − k∗

i−1)y
2
∣∣ ≤ 2y2. (5.74)

On the other hand on Kǫ one has ǫα∗
i − ǫα∗

i−1 ≥ x(γn) and therefore (k∗
i − k∗

i−1)y
2 > x(γn) − 2y2. Using

2y2 ≤ ǫ̃(x(γn) − 2y2) and (5.74), one gets

∣∣λγn(k∗
i y2) − λγn(k∗

i−1) − (k∗
i − k∗

i−1)y
2
∣∣ ≤ 2y2 ≤ ǫ̃(x(γn) − 2y2) ≤ ǫ̃(k∗

i y2 − k∗
i−1y

2). (5.75)

Since λ is piecewise linear one has also, for s < t ∈ [k∗
i−1y

2, k∗
i y2)

|λγn(t) − λγn(s) − (t − s)| ≤ ǫ̃(t − s). (5.76)

Since λγn has a slope 1 outside [−Q, +Q], one gets for all s < t ∈ IR

log(1 − ǫ̃) ≤ log
λγn(t) − λγn(s)

t − s
≤ log(1 + ǫ̃). (5.77)

Therefore, recalling (5.2), (5.77) entails ‖λγn‖ ≤ 4 ǫ̃
3 and using (5.73) to control

∫∞
Q

e−T dT in (5.4) , one

gets after an easy computation d(u∗
γn

, u0) ≤ 3ǫ̃.

5.5. Probability estimates

We recall the already mentioned device constantly used in [16]. Lemma 5.13, stated below, gives lower

and upper bound on the α∗
i , i ∈ ZZ, in term of suitable stopping times. We set T̂0 = 0, and define, for k ≥ 1:

T̂k = inf{t > T̂k−1: |
t∑

α=T̂k−1+1

χ(α)| ≥ F∗ +
f

2
},

T̂−k = sup{t < T̂−(k−1): |
T̂−(k−1)∑

α=t+1

χ(α)| ≥ F∗ +
f

2
}.

(5.78)

Clearly, the random variables ∆T̂k+1 := T̂k+1 − T̂k, k ∈ ZZ, are independent and identically distributed.

(Note that, by definition, ∆T̂1 = T̂1.)

Remark: Note that (T̂i, i ∈ ZZ) was called (τi, i ∈ ZZ) in [16], we change their names to avoid ambiguities

with the τ defined in (5.11) and the ones defined after (5.12).
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We define,

S̃k = sgn
( T̂k∑

j=T̂k−1+1

χ(j)
)
; S̃−k = sgn

( T̂−k+1∑

j=T̂−k+1

χ(j)
)

for k ≥ 1. (5.79)

The following lemma estimates the probability to detect at least one b = 2F∗ elongation, with excess f , not

necessarily maximal. The proof is done in [16], Lemma 5.9 there.

Lemma 5.11 There exists an ǫ0 such that for all 0 < ǫ < ǫ0, all integer k ≥ 1, and all s > 0 we have

IP

[
T̂k ≤ k(s + log 2)C1

ǫ
; ∃i ∈ {1, . . . , k − 1}, S̃i = S̃i+1

]
≥
(
1 − e−sk

)
(1 − 1

2k−1
). (5.80)

for some C1 = C1(β, θ).

To detect elongations with alternating sign, we introduce on the right of the origin

i∗1 ≡ inf
{
i ≥ 1 : S̃i = S̃i+1

}

i∗j+1 ≡ inf
{
i ≥ (i∗j + 2) : S̃i = S̃i+1 = −S̃i∗

j

}
j ≥ 1,

(5.81)

and on the left

i∗−1 ≡
{
−1 if S̃−1 = S̃1 = −S̃i∗1

,

sup
{
i ≤ −2 : S̃i = S̃i+1 = −S̃i∗1

}
if S̃−1 6= S̃1 or S̃1 = −S̃i∗1

,

i∗−j−1 ≡ sup
{
i ≤ i∗j − 2 : S̃i = S̃i+1 = −S̃i∗

j

}
j ≥ 1. (5.82)

The corresponding estimates are given by the following Lemma which was proved in [16], see Lemma 5.9

there.

Lemma 5.12 There exists an ǫ0 such that for all 0 < ǫ < ǫ0, all k and L positive integers, L even, (just

for simplicity of writing) and all s > 0 we have:

IP

[
T̂kL−1 ≤ (kL − 1)(s + log 2)C1

ǫ
, ∀1≤j≤k i∗j < jL

]
≥
(
1 − e−s(kL−1)

) (
1 − 1

2L−1

) (
1 −

(
3
4

)L/2
)k−1

(5.83)

and

IP

[
T̂−kL ≥ −kL(s + log 2)C1

ǫ
, T̂L−1 ≤ (L − 1)(s + log 2)C1

ǫ
, i∗1 < L, ∀1≤j≤k i∗−j > −jL

]

≥
(
1 − e−s(kL−1)

) (
1 − 1

2L−1

) (
1 −

(
3
4

)L/2
)k

.

(5.84)

where C1 = C1(β, θ) is a constant.

Applying Lemma 5.12 with L = cte log(Q2g( δ∗

γ )), taking the parameters as in Subsection 2.5, one gets (5.38)

by a short computation. The basic fact that was used constantly in [16] even if it was not formulated in its

whole generality is the following.
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Lemma 5.13 On ΩL([−Q, +Q], f, b, 0), see (5.39), we have

T̂i ≤ α∗
i+1, ∀i : 1 ≤ i < κ∗(Q) (5.85)

and

α∗
i ≤ T̂i∗

i+1
, ∀i : 1 ≤ i < κ∗(Q), (5.86)

where κ∗(Q) is defined in (2.40).

Proof: Recall that on ΩL([−Q, +Q], f, b, 0) we have assumed that α∗
0 ≤ 0 < α∗

1. To prove (5.85) we start

proving that T̂1 ≤ α∗
2. Suppose that α∗

2 < T̂1. Then, from (5.78), since α∗
1 < α∗

2 < T̂1 we have

|Y(α∗
1)| < F∗ +

f

2
and |Y(α∗

2)| < F∗ +
f

2
(5.87)

which is a contradiction since by assumption [ǫα∗
1, ǫα

∗
2] is a maximal 2F∗ elongation with excess f , see

Definition 5.5. Similar arguments apply for i ≥ 2. Now we prove (5.86). Assume that [α∗
0, α

∗
1] gives rise to a

positive elongation. The case of a negative elongation is similar. Let us check that α∗
1 ≤ T̂i∗2

. By definition

of i∗1, i
∗
2 we have that [T̂i∗1−1, T̂i∗1+1] is within an elongation with a sign, say Ŝi∗1

and [T̂i∗2−1, T̂i∗2+1] is within

an elongation with opposite sign, Ŝi∗
2

= −Ŝi∗
1
. Therefore, either Ŝi∗

1
or Ŝi∗

2
is negative, which implies that

α∗
1 ≤ T̂i∗

2
. The general case is clearly the same.

Given an integer R > 0, we denote as in (2.40) κ∗(R) = inf{i ≥ 1 : ǫα∗
i ≥ R}. We define the stopping

time k̃(R) = inf{i ≥ 0 : ǫT̂i ≥ R}. By definition

ǫT̂k̃(R)−1 < R ≤ ǫT̂k̃(R) (5.88)

Using (5.85), we get that

R ≤ ǫT̂k̃(R) ≤ ǫα∗
k̃(R)+1

(5.89)

therefore

κ∗(R) ≤ k̃(R) + 1. (5.90)

Lemma 5.14 There exists Ωurt, IP [Ωurt] ≥ 1 − ( 5
g(δ∗/γ) )

a
8(2+a) , where a > 0, so that for all R > 1

κ∗(R) ≤ 1 + k̃(R) ≤ 2 +
4V 2

+

(F∗)2
R log

[
R2g(δ∗/γ)

]
(5.91)

and

ǫα∗
κ∗(R)+1 ≤ 24C1V

2
+ log 2

(F∗)2 log(4/3)
R
[
log(R2g(δ∗/γ))

]2
, (5.92)

where V+ = V (β, θ)
[
1 + (γ/δ∗)

1
5

]
and C1 = C1(β, θ) is a positive constant .

Remark: It is well known that, almost surely, limR↑∞ k̃(R)/R = (IE[T̂1])
−1, see [5] Proposition 4.1.4. The

estimate (5.91) allows us to have an upper bound valid uniformly with respect to R ≥ 1 with an explicit

bound on the probability. This is the main reason to have a log[R2g(d∗/γ)] in the right hand side of (5.91).

Proof: We can assume that we are on ΩL([−Q, +Q], f, b, 0). Suppose first that k̃(R) > 1. Since (5.88), we

get

ǫT̂k̃(R)−1

k̃(R) − 1
<

R

k̃(R) − 1
≤

ǫT̂k̃(R)

k̃(R) − 1
. (5.93)
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Applying Lemma 5.7 of [16], setting b = F∗ + (f/2) and V+ = V (β, θ)
[
1 + (γ/δ∗)

1
5

]
, we obtain that for all

s with 0 < s < (F∗ + (f/2))2[4(log 2)V 2
+]−1, for all positive integer n

IP
[
ǫT̂n ≤ ns

]
≤ e

−n
(F∗)2

4sV 2
+ . (5.94)

Therefore

IP

[
∃n ≥ 1 :

ǫT̂n

n
≤ s

]
≤ e

− (F∗)2

4sV 2
+

1 − e
− (F∗)2

4sV 2
+

. (5.95)

Applying (5.93), we get that for k̃(R) > 1

IP

[
k̃(R) ≤ 1 +

R

s

]
≥ 1 − 2e

− (F∗)2

4sV 2
+

1 − e
− (F∗)2

4sV 2
+

. (5.96)

When k̃(R) = 0 or k̃(R) = 1, (5.96) is certainly true, therefore (5.96) holds for all k̃(R) ≥ 0. Choosing in

(5.96)

s−1
0 =

4V 2
+

(F∗)2
[
log R2g(δ∗/γ)

]
(5.97)

we get

IP

[
∀R ≥ 1, k̃(R) ≤ 1 +

R

s0

]
≥ 1 −

∑

R≥1

2
g(δ∗/γ)R2

1 − 2
g(δ∗/γ)R2

≥ 1 − 3

g(δ∗/γ)
. (5.98)

Recalling (5.90), for all R ≥ 1,

κ∗(R) ≤ 1 + k̃(R) ≤ 2 +
4V 2

+

(F∗)2
R
[
log R2g(δ∗/γ)

]
(5.99)

which is (5.91). Next we prove (5.92). Applying (5.86) and (5.90) we have

ǫα∗
k(L)+1 ≤ ǫT̂i∗

k̃(L)+2
. (5.100)

Using (5.83) with

L = L0 = 1 + 3
log(R2g(δ∗/γ))

log(4/3)

k = k0 = 2 +
4V 2

+

(F∗)2
R log[R2g(δ∗/γ)].

(5.101)

After an easy computation, given R ≥ 1 with a IP–probability greater than 1− c(β, θ) log(R2g(δ∗/γ))
g(δ∗/γ)3/2R2 we have

ǫT̂(2+k0)L0
≤ 24C1V

2
+ log 2

(F∗)2 log(4/3)
R
[
log(R2g(δ∗/γ))

]2
, ∀j : 1 ≤ j ≤ k0, i∗j < jL0. (5.102)

Therefore, with a IP–probability greater than

1 − c(β, θ)
log g(δ∗/γ)

g(δ∗/γ)3/2
≥ 1 − 1

g(δ∗/γ)
(5.103)
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for all R ≥ 1, (5.102) holds. Using (5.99) we have, for all R ≥ 1,

1 + κ∗(R) < k̃(R) + 2 ≤ 3 +
4V 2

+

(F∗)2
R
[
log R2g(δ∗/γ)

]
. (5.104)

Therefore collecting (5.102) and (5.104) we obtain that for all R ≥ 1

i∗
k̃(R)+2

≤ (2 + k0)L0. (5.105)

From which using again (5.102) and recalling (5.100), we get that for all R ≥ 1

ǫα∗
κ∗(R)+1 ≤ ǫT̂i∗

k̃(R)+2
≤ ǫT̂(2+k0)L−0

≤ 24C1V
2
+ log 2

(F∗)2 log(4/3)
R
[
log(R2g(δ∗/γ))

]2 (5.106)

which is (5.92). Denote by Ωurt the intersection of ΩL([−Q, +Q], f, b, 0) with the probability subsets in

(5.98) and (5.103). Recalling (5.38) and the choice of ǫ, see (2.65), we get the Lemma.

Proof of Theorem 2.3:

We need to estimate the Gibbs probability of the set Pρ
δ,γ,ζ,[−Q,+Q](u

∗
γ(ω)), see (2.37). According to the

definition (2.33) we need to prove that on Ω1 the minimal distance between two points of jump of u∗
γ is

larger than 8ρ + 8δ. Define

Ω1,1 =
{
ω ∈ Ωurt : ∀i, −Q ≤ ǫα∗

i ≤ Q; ǫα∗
i+1 − ǫα∗

i ≥ 8ρ + 8δ
}

. (5.107)

where Ωurt is the probability subspace that occurs in Lemma 5.14. On Ωurt, see Lemma 5.14, the total

number of jumps of u∗
γ within [−Q, +Q] is bounded by 2K(Q) + 1 with K(Q) given in (2.35). Since the

points of jumps of u∗
γ are the ǫα∗

i , i ∈ ZZ, from Proposition 5.3 in [16] we have that for all i ∈ ZZ, for all

0 ≤ x ≤ (F∗)2/(V 2(β, θ)18 log 2)

IP [ǫα∗
i+1 − ǫα∗

i < x] ≤ 2e
− (F∗)2

18xV 2(β,θ) . (5.108)

Then one gets

IP [Ω1,1] ≥ 1 −
(

5

g(δ∗/γ)

) a
8(2+a)

− 2K(Q)e
− (F∗)2

18(3ρ+3δ)V 2(β,θ) . (5.109)

Recalling (2.64), (2.67) and (2.63) one gets

IP [Ω1,1] ≥ 1 −
(

5

g(δ∗/γ)

) a
10(2+a)

. (5.110)

Denote by

Ω1 = Ωγ,K(Q) ∩ Ω1,1 (5.111)

where Ωγ,K(Q) is the probability subspace in Theorem 2.2 of [16] and K(Q) is given in (2.35). From the

results stated in Theorem 2.1, 2.2 and 2.4 of [16] we obtain (2.34) and (2.37).
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6 Proof of Theorem 2.4 and 2.9

6.1. Proof of Theorem 2.4

Let {W (r), r ∈ IR} be a realization of the Bilateral Brownian motion. Let u∗(r) ≡ u∗(r, W ), r ∈ IR, be

the function defined in (2.43) and (2.44). As consequence that P a.s the number of renewals in any finite

interval is finite, we have that P a.s u∗ ∈ BVloc . To prove the theorem we need to show that for v ∈ BVloc, P
a.s. Γ(v|u∗, W ) ≥ 0, the equality holding only when v = u∗. Let S0 be a point of h− minimum, h = 2F∗

V (β,θ) .

This, by definition, implies that in the interval [S0, S1)

W (S1) − W (S0) ≥
2F∗

V (β, θ)
, W (y) − W (x) > − 2F∗

V (β, θ)
, ∀x < y ∈ [S0, S1) (6.1)

W (S0) ≤ W (x) ≤ W (S1) S0 ≤ x ≤ S1. (6.2)

Suppose first that v differs from u∗(W ) only in intervals contained in [S0, S1). Since u∗(r) = mβ , for

r ∈ [S0, S1), see (2.43), set v(r) = Tmβ1I[r1,r2) for [r1, r2) ⊂ [S0, S1) and v(r) = u∗(r) for r /∈ [r1, r2). When

the interval [r1, r2) is strictly contained in [S0, S1) the function v has two jumps more than u∗. Then the

value of Γ(v|u∗, W ), see (2.42), is

Γ(v|u∗, W ) = Γ[S0,S1)(v|u∗, W ) = 2F∗ + V (β, θ)[W (r2) − W (r1)] > 0, (6.3)

which is strictly positive using the second property in (6.1). When [r1, r2) ≡ [S0, S1) then the function v has

two jumps less than u∗. Namely u∗ jumps in S0 and in S1 and u does not. The value of Γ(v|u∗, W ) in such

case is

Γ(v|u∗, W ) = Γ[S0,S1)(v|u∗, W ) + Γ[S1,S2)(v|u∗, W ) = −2F∗ + V (β, θ)[W (S1) − W (S0)] ≥ 0. (6.4)

The last inequality holds since the first property in (6.1). In the case in which [r1, r2) ⊂ [S0, S1), r1 = S0,

r2 < S1 then the function v has the same number of jumps as u∗. The value of Γ(v|u∗, W ) is

Γ(v|u∗, W ) = Γ[S0,S1)(v|u∗, W ) = V (β, θ)[W (r2) − W (S0)] ≥ 0 (6.5)

which is still positive because of (6.2). When [r1, r2) ⊂ [S0, S1), r1 > S0, r2 = S1 then, as in the previous

case, the function v has the same number of jumps as u∗ and again by (6.2),

Γ(v|u∗, W ) = Γ[S0,S1)(v|u∗, W ) + Γ[S1,S2)(v|u∗, W ) = V (β, θ)[W (S1) − W (r1)] ≥ 0. (6.6)

The case when v differs from u∗, still only in [S0, S1), but in more than one interval can be reduced to the

previous cases. For simplicity, suppose that v(r) = Tmβ1I[r1,r2)∪[r3,r4) for [r1, r2) and [r3, r4) both subsets of

[S0, S1) and v(r) = u∗(r) for r /∈ [r1, r2) ∪ [r3, r4). We have that

Γ(v|u∗, W ) = Γ(v1|u∗, W ) + Γ(v2|u∗, W ) (6.7)

where v1(r) = Tmβ1I[r1,r2) + u∗1I[r1,r2)c and v2(r) = Tmβ1I[r3,r4) + u∗1I[r3,r4)c . Equality (6.7) is an obvious

consequence of the linearity of the integral and the observation that Γ(u∗|u∗, W ) = 0. Each term in (6.7)

can then be treated as in the previous cases. By assumption v ∈ BVloc and then the number of intervals in

[Si, Si+1) where v might differ from u∗ is P a.s finite. The conclusion is therefore that if v 6= u∗ in [S0, S1)

Γ(v|u∗, W ) ≥ 0. (6.8)
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When v differs from u∗ in [S1, S2) and S1 is an h− maximum one repeats the previous arguments recalling

that by definition in [S1, S2)

W (S2) − W (S1) ≤ −h W (y) − W (x) ≤ h ∀x < y ∈ [S1, S2) (6.9)

W (S2) ≤ W (x) < W (S1) S1 ≤ x < S2 (6.10)

and u∗(r) = Tmβ, for r ∈ [S1, S2), see (2.44). Then repeating step by step the previous scheme one concludes

that P a.s.

Γ(v|u∗, W ) ≥ 0.

In the general case

Γ(v|u∗, W ) =
∑

i∈ZZ

Γ[Si,Si+1)(v|u∗, W ) ≥ 0. (6.11)

To prove that u∗ is IP a.s. the unique minimizer of Γ(·|u∗, W ) it is enough to show that each term among

(6.4), (6.5) and (6.6) is strictly positive, so that we get a strict inequality in (6.11). Since, see [34], page 108,

exercise (3.26),

P [∃r ∈ [S0, S1] : [W (r) − W (S1)] = 0] = 0,

we obtain that (6.6), (6.4) and by a simple argument (6.5) are strictly positive.

6.2. Proof of Theorem 2.9 The proof of (2.57) is an immediate consequence of Proposition 4.2 and

Theorem 2.5.
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