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In this paper a new estimator for the transition density π of an homogeneous Markov chain is considered. We introduce an original contrast derived from regression framework and we use a model selection method to estimate π under mild conditions. The resulting estimate is adaptive with an optimal rate of convergence over a large range of anisotropic Besov spaces

. Some applications and simulations are also presented.

Résumé

Dans cet article, on considère un nouvel estimateur de la densité de transition π d'une cha îne de Markov homogène. Pour cela, on introduit un contraste original issu de la théorie de la régression et on utilise une méthode de sélection de modèles pour estimer π sous des conditions peu restrictives. L'estimateur obtenu est adaptatif et la vitesse de convergence est optimale pour une importante classe d'espaces de Besov anisotropes B (α 1 ,α 2 ) 2,∞ . On présente également des applications et des simulations.

Introduction

We consider (X i ) a homogeneous Markov chain. The purpose of this paper is to estimate the transition density of such a chain. This quantity allows to comprehend the form of dependence between variables and is defined by π(x, y)dy = P (X i+1 ∈ dy|X i = x). It enables also to compute other quantities, like E[F (X i+1 )|X i = x] for example. As many authors, we choose for Preprint submitted to Elsevier Science 22 November 2006 this a nonparametric approach. Roussas [START_REF] Roussas | Nonparametric estimation in Markov processes[END_REF] first studies an estimator of the transition density of a Markov chain. He proves the consistency and the asymptotic normality of a kernel estimator for chains satisfying a strong condition known as Doeblin's hypothesis. In Bosq [START_REF] Bosq | Sur l'estimation de la densité d'un processus stationnaire et mélangeant[END_REF], an estimator by projection is studied in a mixing framework and the consistence is also proved. Basu and Sahoo [START_REF] Basu | On Berry-Esseen theorem for nonparametric density estimation in Markov sequences[END_REF] establish a Berry-Essen inequality for a kernel estimator under an assumption introduced by Rosenblatt, weaker than the Doeblin's hypothesis. Athreya and Atuncar [START_REF] Athreya | Kernel estimation for real-valued Markov chains[END_REF] improve the result of Roussas since they only need the Harris recurrence of the Markov chain. Other authors are interested in the estimation of the transition density in the non-stationary case: Doukhan and Ghindès [START_REF] Doukhan | Estimation de la transition de probabilité d'une chaîne de Markov Doëblin-récurrente. Étude du cas du processus autorégressif général d'ordre 1[END_REF] bound the integrated risk for any initial distribution. In [START_REF] Hernández-Lerma | Recursive nonparametric estimation of nonstationary Markov processes[END_REF], recursive estimators for a non-stationary Markov chain are described. More recently, Clemençon [START_REF] Clémençon | Adaptive estimation of the transition density of a regular Markov chain[END_REF] computes the lower bound of the minimax L p risk and describes a quotient estimator using wavelets. Lacour [START_REF] Lacour | Nonparametric estimation of the stationary density and the transition density of a Markov chain[END_REF] finds an estimator by projection with model selection that reaches the optimal rate of convergence.

All these authors have estimated π by observing that π = g/f where g is the density of (X i , X i+1 ) and f the stationary density. If ĝ and f are estimators of g and f , then an estimator of π can be obtained by writing π = ĝ/ f . But this method has the drawback that the resulting rate of convergence depends on the regularity of f . And the stationary density f can be less regular than the transition density.

The aim here is to find an estimator π of π from the observations X 1 , . . . , X n+1 such that the order of the L 2 risk depends only on the regularity of π and is optimal.

Clémençon [START_REF] Clémençon | Adaptive estimation of the transition density of a regular Markov chain[END_REF] introduces an estimation procedure based on an analogy with the regression framework using the thresholding of wavelets coefficients for regular Markov chains. We propose in this paper an other method based on regression, which improves the rate and has the advantage to be really computable. Indeed, this method allows to reach the optimal rate of convergence, without the logarithmic loss obtained by Clémençon [START_REF] Clémençon | Adaptive estimation of the transition density of a regular Markov chain[END_REF] and can be applied to β-mixing Markov chains (the notion of "regular" Markov chains in [START_REF] Clémençon | Adaptive estimation of the transition density of a regular Markov chain[END_REF] is equivalent to Φ-mixing and is then a stronger assumption). We use model selection via penalization as described in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] with a new contrast inspired by the classical regression contrast. To deal with the dependence we use auxiliary variables X * i as in [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF]. But contrary to most cases in such estimation procedure, our penalty does not contain any mixing term and is entirely computable.

In addition, we consider transition densities belonging to anisotropic Besov spaces, i.e. with different regularities with respect to the two directions. Our projection spaces (piecewise polynomials, trigonometric polynomials or wavelets) have different dimensions in the two directions and the procedure selects automatically both well fitted dimensions. A lower bound for the rate of con-vergence on anisotropic Besov balls is proved, which shows that our estimation procedure is optimal in a minimax sense.

The paper is organized as follows. First, we present the assumptions on the Markov chain and on the collections of models. We also give examples of chains and models. Section 3 is devoted to estimation procedure and the link with classical regression. The bound on the empirical risk is established in Section 4 and the L 2 control is studied in Section 5. We compute both upper bound and lower bound for the mean integrated squared error. In Section 6, some simulation results are given. The proofs are gathered in the last section.

Assumptions

Assumptions on the Markov chain

We consider an irreducible Markov chain (X n ) taking its values in the real line R. We suppose that (X n ) is positive recurrent, i.e. it admits a stationary probability measure µ (for more details, we refer to [START_REF] Meyn | Markov chains and stochastic stability[END_REF]). We assume that the distribution µ has a density f with respect to the Lebesgue measure and that the transition kernel P (x, A) = P (X i+1 ∈ A|X i = x) has also a density, denoted by π. Since the number of observations is finite, π is estimated on a compact set A = A 1 ×A 2 only. More precisely, the Markov process is supposed to satisfy the following assumptions: A1. (X n ) is irreducible and positive recurrent. A2. The distribution of X 0 is equal to µ , thus the chain is (strictly) stationary. A3. The transition density π is bounded on A, i.e.

π ∞ := sup (x,y)∈A |π(x, y)| < ∞ A4. The stationary density f verifies f ∞ := sup x∈A 1 |f (x)| < ∞ and there exists a positive real f 0 such that, for all x in A 1 , f (x) ≥ f 0 . A5. The chain is geometrically β-mixing (β q ≤ e -γq ), or arithmetically βmixing (β q ≤ q -γ ).

Since (X i ) is a stationary Markov chain, the β-mixing is very explicit, the mixing coefficients can be written:

β q = P q (x, .) -µ T V f (x)dx (1) 
where . T V is the total variation norm (see [START_REF] Doukhan | Mixing. Properties and examples[END_REF]).

Notice that we distinguish the sets A 1 and A 2 in this work because the two directions x and y in π(x, y) do not play the same role, but in practice A 1 and A 2 will be equal and identical or close to the value domain of the chain.

Examples of chains

A lot of processes verify the previous assumptions, as (classical or more general) autoregressive processes, or diffusions. Here we give a nonexhaustive list of such chains.

Diffusion processes

We consider the process (X i∆ ) 1≤i≤n where ∆ > 0 is the observation step and (X t ) t≥0 is defined by dX t = b(X t )dt + σ(X t )dW t where W is the standard Brownian motion, b is a locally bounded Borel function and σ an uniformly continuous function. We suppose that the drift function b and the diffusion coefficient σ satisfy the following conditions, given in [START_REF] Pardoux | On the Poisson equation and diffusion approximation[END_REF](Proposition 1):

(1) there exists λ -, λ + such that ∀x = 0, 0 < λ -< σ 2 (x) < λ + , (2) there exists M 0 ≥ 0, α > -1 and r > 0 such that

∀|x| ≥ M 0 , xb(x) ≤ -r|x| α+1 .
Then, if X 0 follows the stationary distribution, the discretized process (X i∆ ) 1≤i≤n satisfies Assumptions A1-A5. Note that the mixing is geometrical as soon as α ≥ 0. The continuity of the transition density ensures that Assumption A3 holds. Moreover, we can write

f (x) = 1 Mσ 2 (x) exp 2 x 0 b(u) σ 2 (u) du with M such that f = 1. Consequently Assumption A4 is verified with f ∞ ≤ 1 M λ -exp 2 λ -sup x∈A 1 x 0 b(u)du and f 0 ≥ 1 M λ + exp 2 λ + inf x∈A 1 x 0 b(u)du .

Nonlinear AR(1) processes

Let us consider the following process

X n = ϕ(X n-1 ) + ε X n-1 ,n
where ε x,n has a positive density l x with respect to the Lebesgue measure, which does not depend on n. We suppose that the following conditions are verified:

(1) There exist M > 0 and ρ < 1 such that, for all |x| > M, |ϕ(x)| < ρ|x| and sup |x|≤M |ϕ(x)| < ∞. (2) There exist l 0 > 0, l 1 > 0 such that ∀x, y l 0 ≤ l x (y) ≤ l 1 .

Then Mokkadem [START_REF] Mokkadem | Sur un modèle autorégressif non linéaire: ergodicité et ergodicité géométrique[END_REF] proves that the chain is Harris recurrent and geometrically ergodic. It implies that Assumptions A1 and A5 are satisfied. Moreover π(x, y) = l x (yϕ(x)) and f (y) = f (x)π(x, y)dx and then Assumptions A3-A4 hold with f 0 ≥ l 0 and f ∞ ≤ π ∞ ≤ l 1 .

ARX(1,1) models

The nonlinear process ARX(1,1) is defined by

X n = F (X n-1 , Z n ) + ξ n
where F is bounded and (ξ n ), (Z n ) are independent sequences of i.i.d. random variables with E|ξ n | < ∞. We suppose that the distribution of Z n has a positive density l with respect to the Lebesgue mesure. Assume that there exist ρ < 1, a locally bounded and mesurable function h : R → R + such that Eh(Z n ) < ∞ and positive constants M, c such that

∀|(u, v)| > M |F (u, v)| < ρ|u| + h(v) -c and sup |x|≤M |F (x)| < ∞.
Then Doukhan [START_REF] Doukhan | Mixing. Properties and examples[END_REF] proves (p.102) that (X n ) is a geometrically β-mixing process. We can write π(x, y) = l(z)f ξ (y -F (x, z))dz where f ξ is the density of ξ n . So, if we assume furthermore that there exist a 0 , a 1 > 0 such that a 0 ≤ f ξ ≤ a 1 , then Assumptions A3-A4 are verified with

f 0 ≥ a 0 and f ∞ ≤ π ∞ ≤ a 1 .

ARCH processes

The model is

X n+1 = F (X n ) + G(X n )ε n+1
where F and G are continuous functions and for all x, G(x) = 0. We suppose that the distribution of ε n has a positive density l with respect to the Lebesgue measure and that there exists s ≥ 1 such that E|ε n | s < ∞. The chain (X n ) satisfies Assumptions A1 and A5 if (see [START_REF] Nzé | Critères d'ergodicité de quelques modèles à représentation markovienne[END_REF]):

lim sup |x|→∞ |F (x)| + |G(x)|(E|ε n | s ) 1/s |x| < 1. (2) 
In addition, we assume that ∀x

l 0 ≤ l(x) ≤ l 1 . Then Assumption A3 is verified with π ∞ ≤ l 1 / inf x∈A 1 G(x). And Assumption A4 holds with f 0 ≥ l 0 f G -1 and f ∞ ≤ l 1 f G -1 .

Assumptions on the models

In order to estimate π, we need to introduce a collection {S m , m ∈ M n } of spaces, that we call models. For each m = (m 1 , m 2 ), S m is a space of functions with support in A defined from two spaces:

F m 1 and H m 2 . F m 1 is a subspace of (L 2 ∩ L ∞ )(R) spanned by an orthonormal basis (ϕ m j ) j∈Jm with |J m | = D m 1 such that, for all j, the support of ϕ m j is included in A 1 . In the same way H m 2 is a subspace of (L 2 ∩ L ∞ )(R) spanned by an orthonormal basis (ψ m k ) k∈Km with |K m | = D m 2 such that, for all k, the support of ψ m k is included in A 2 .
Here j and k are not necessarily integers, it can be couples of integers as in the case of a piecewise polynomial space. Then, we define

S m = F m 1 ⊗ H m 2 = {t, t(x, y) = j∈Jm k∈Km a m j,k ϕ m j (x)ψ m k (y)}
The assumptions on the models are the following:

M1. For all m 2 , D m 2 ≤ n 1/3 and D n := max m∈Mn D m 1 ≤ n 1/3 M2. There exist positive reals φ 1 , φ 2 such that, for all

u in F m 1 , u 2 ∞ ≤ φ 1 D m 1 u 2 , and for all v in H m 2 , sup x∈A 2 |v(x)| 2 ≤ φ 2 D m 2 v 2 . By letting φ 0 = √ φ 1 φ 2 , that leads to ∀t ∈ S m t ∞ ≤ φ 0 D m 1 D m 2 t (3) 
where

t 2 = R 2 t 2 (x, y)dxdy. M3. D m 1 ≤ D m ′ 1 ⇒ F m 1 ⊂ F m ′ 1 and D m 2 ≤ D m ′ 2 ⇒ H m 2 ⊂ H m ′ 2
The first assumption guarantees that dim

S m = D m 1 D m 2 ≤ n 2/3
≤ n where n is the number of observations. The condition M2 implies a useful link between the L 2 norm and the infinite norm. The third assumption ensures that, for m and

m ′ in M n , S m + S m ′ is included in a model (since S m + S m ′ ⊂ S m ′′ with D m ′′ 1 = max(D m 1 , D m ′ 1 ) and D m ′′ 2 = max(D m 2 , D m ′ 2 )
). We denote by S the space with maximal dimension among the (S m ) m∈Mn . Thus for all m in M n , S m ⊂ S.

Examples of models

We show here that Assumptions M1-M3 are not too restrictive. Indeed, they are verified for the spaces F m 1 (and H m 2 ) spanned by the following bases (see [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]):

• Trigonometric basis: for A = [0, 1], < ϕ 0 , . . . , ϕ m 1 -1 > with ϕ 0 = ½ [0,1] , ϕ 2j (x) = √ 2 cos(2πjx) ½ [0,1] (x), ϕ 2j-1 (x) = √ 2 sin(2πjx)½ [0,1] (x) for j ≥ 1.
For this model D m 1 = m 1 and φ 1 = 2 hold.

• Histogram basis: for

A = [0, 1], < ϕ 1 , . . . , ϕ 2 m 1 > with ϕ j = 2 m 1 /2 ½ [(j-1)/2 m 1 ,j/2 m 1 [ for j = 1, . . . , 2 m 1 . Here D m 1 = 2 m 1 , φ 1 = 1.
• Regular piecewise polynomial basis: for A = [0, 1], polynomials of degree 0, . . . , r (where

r is fixed) on each interval [(l -1)/2 D , l/2 D [, l = 1, . . . , 2 D . In this case, m 1 = (D, r), J m = {j = (l, d), 1 ≤ l ≤ 2 D , 0 ≤ d ≤ r}, D m 1 = (r + 1)2 D . We can put φ 1 = √ r + 1. • Regular wavelet basis: < Ψ lk , l = -1, . . . , m 1 , k ∈ Λ(l) > where Ψ -1,k points
out the translates of the father wavelet and Ψ lk (x) = 2 l/2 Ψ(2 l xk) where Ψ is the mother wavelet. We assume that the support of the wavelets is included in A 1 and that Ψ -1 belongs to the Sobolev space W r 2 .

3 Estimation procedure

Definition of the contrast

To estimate the function π, we define the contrast

γ n (t) = 1 n n i=1 [ R t 2 (X i , y)dy -2t(X i , X i+1 )]. (4) 
We choose this contrast because

Eγ n (t) = t -π 2 f -π 2 f where t 2 f = R 2 t 2 (x, y)f (x)dxdy.
Therefore γ n (t) is the empirical counterpart of the . f -distance between t and f and the minimization of this contrast comes down to minimize tπ f . This contrast is new but is actually connected with the one used in regression problems, as we will see in the next subsection.

We want to estimate π by minimizing this contrast on S m . Let t(x, y) = j∈Jm k∈Km a j,k ϕ m j (x)ψ m k (y) a function in S m . Then, if A m denotes the matrix (a j,k ) j∈Jm,k∈Km ,

∀j 0 ∀k 0 ∂γ n (t) ∂a j 0 ,k 0 = 0 ⇔ G m A m = Z m ,
where

             G m = 1 n n i=1 ϕ m j (X i )ϕ m l (X i ) j,l∈Jm Z m = 1 n n i=1 ϕ m j (X i )ψ m k (X i+1 ) j∈Jm,k∈Km
Indeed,

∂γ n (t) ∂a j 0 ,k 0 = 0 ⇔ j∈Jm a j,k 0 1 n n i=1 ϕ m j (X i )ϕ m j 0 (X i ) = 1 n n i=1 ϕ m j 0 (X i )ψ m k 0 (X i+1 ). ( 5 
)
We can not define a unique minimizer of the contrast γ n (t), since G m is not necessarily invertible. For example, G m is not invertible if there exists j 0 in J m such that there is no observation in the support of ϕ j 0 (G m has a null column). This phenomenon happens when localized bases (as histogram bases or piecewise polynomial bases) are used. However, the following proposition will enable us to define an estimator:

Proposition 1 ∀j 0 ∀k 0 ∂γ n (t) ∂a j 0 ,k 0 = 0 ⇔ ∀y (t(X i , y)) 1≤i≤n = P W   k ψ m k (X i+1 )ψ m k (y) 1≤i≤n  
where P W denotes the orthogonal projection on W = {(t(X i , y)) 1≤i≤n , t ∈ S m }.

Thus the minimization of γ n (t) leads to a unique vector (π m (X i , y)) 1≤i≤n defined as the projection of ( k ψ k (X i+1 )ψ k (y)) 1≤i≤n on W . The associated function πm (., .) is not defined uniquely but we can choose a function πm in S m whose values at (X i , y) are fixed according to Proposition 1. For the sake of simplicity, we denote πm = arg min

t∈Sm γ n (t).
This underlying function is more a theoretical tool and the estimator is actually the vector (π m (X i , y)) 1≤i≤n . This remark leads to consider the risk defined with the empirical norm

t n = 1 n n i=1 R t 2 (X i , y)dy 1/2 . ( 6 
)
This norm is the natural distance in this problem and we can notice that if t is deterministic with support included in

A 1 × R f 0 t 2 ≤ E t 2 n = t 2 f ≤ f ∞ t 2
and then the mean of this empirical norm is equivalent to the L 2 norm . .

Link with classical regression

Let us fix k in K m and let

Y i,k = ψ m k (X i+1 ) for i ∈ {1, . . . , n} t k (x) = t(x, y)ψ m k (y)dy for all t in L 2 (R 2 ).
Actually, Y i,k and t k depend on m but we do not mention this for the sake of simplicity. For the same reason, we denote in this subsection ψ m k by ψ k and ϕ m j by ϕ j . Then, if t belongs to S m ,

t(x, y) = j∈Jm k∈Km t(x ′ , y ′ )ϕ j (x ′ )ψ k (y ′ )dx ′ dy ′ ϕ j (x)ψ k (y) = k∈Km j∈Jm t k (x ′ )ϕ j (x ′ )dx ′ ϕ j (x)ψ k (y) = k∈Km t k (x)ψ k (y)
and then, by replacing this expression of t in γ n (t), we obtain

γ n (t) = 1 n n i=1 [ k,k ′ t k (X i )t k ′ (X i )ψ k (y)ψ k ′ (y)dy -2 k t k (X i )ψ k (X i+1 )] = 1 n n i=1 k∈Km [t 2 k (X i ) -2t k (X i )Y i,k ] = 1 n n i=1 k∈Km [t k (X i ) -Y i,k ] 2 -Y 2 i,k . Consequently min t∈Sm γ n (t) = k∈Km min t k ∈Fm 1 1 n n i=1 [t k (X i ) -Y i,k ] 2 -Y 2 i,k .
We recognize, for all k, the least squares contrast, which is used in regression problems. Here the regression function is π k = π(., y)ψ k (y)dy which verifies

Y i,k = π k (X i ) + ε i,k (7) 
where

ε i,k = ψ k (X i+1 ) -E[ψ k (X i+1 )|X i ]. (8) 
The estimator πm can be written as k∈Km πk (x)ψ k (y) where πk is the classical least squares estimator for the regression model ( 7) (as previously, only the vector (π k (X i )) 1≤i≤n is uniquely defined).

This regression model is used in Clémençon [START_REF] Clémençon | Adaptive estimation of the transition density of a regular Markov chain[END_REF] to estimate the transition density. In the same manner, we could use here the contrast γ (k) 2 to take advantage of analogy with regression. This method allows to have a good estimation of the projection of π on some S m by estimating first each π k , but does not provide an adaptive method. Model selection requires a more global contrast, as described in (4).

n (t) = 1 n n i=1 [ψ k (X i+1 )- t(X i )]

Definition of the estimator

We have then an estimator of π for all S m . Let now m = arg min

m∈Mn {γ n (π m ) + pen(m)}
where pen is a penalty function to be specified later. Then we can define π = π m and compute the empirical mean integrated squared error E ππ 2 n where . n is the empirical norm defined in [START_REF] Hernández-Lerma | Recursive nonparametric estimation of nonstationary Markov processes[END_REF].

Calculation of the risk

For a function h and a subspace S, let

d(h, S) = inf g∈S h -g = inf g∈S |h(x, y) -g(x, y)| 2 dxdy 1/2 .
With an inequality of Talagrand [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], we can prove the following result.

Theorem 2 We consider a Markov chain satisfying Assumptions A1-A5 (with γ > 14 in the case of an arithmetical mixing). We consider π the estimator of the transition density π described in Section 3 with models verifying Assumptions M1-M3 and the following penalty:

pen(m) = K 0 π ∞ D m 1 D m 2 n ( 9 
)
where K 0 is a numerical constant. Then

E π½ A -π 2 n ≤ C inf m∈Mn {d 2 (π½ A , S m ) + pen(m)} + C ′ n where C = max(5 f ∞ , 6) and C ′ is a constant depending on φ 1 , φ 2 , π ∞ , f 0 , f ∞ , γ.
The constant K 0 in the penalty is purely numerical (we can choose K 0 = 45). We observe that the term π ∞ appears in the penalty although it is unknown. Nevertheless it can be replaced by any bound of π ∞ . Moreover, it is possible to use π ∞ where π is some estimator of π. This method of random penalty (specifically with infinite norm) is successfully used in [START_REF] Birgé | From model selection to adaptive estimation[END_REF] and [START_REF] Comte | Adaptive estimation of the spectrum of a stationary Gaussian sequence[END_REF] for example, and can be applied here even if it means considering π regular enough. This is proved in appendix.

It is relevant to notice that the penalty term does not contain any mixing term and is then entirely computable. It is in fact related to martingale properties of the underlying empirical processes. The constant K 0 is a fixed universal numerical constant; for practical purposes, it is adjusted by simulations.

We are now interested in the rate of convergence of the risk. We consider that π restricted to A belongs to the anisotropic Besov space on A with regularity

α = (α 1 , α 2 ). Note that if π belongs to B α 2,∞ (R 2 ), then π restricted to A belongs to B α 2,∞ (A). Let us recall the definition of B α 2,∞ (A)
. Let e 1 and e 2 be the canonical basis vectors in R 2 and for i

= 1, 2, A r h,i = {x ∈ R 2 ; x, x + he i , . . . , x + rhe i ∈ A}. Next, for x in A r h,i , let ∆ r h,i g(x) = r k=0 (-1) r-k r k g(x + khe i )
the rth difference operator with step h. For t > 0, the directional moduli of smoothness are given by

ω r i ,i (g, t) = sup |h|≤t A r i h,i |∆ r i h,i g(x)| 2 dx 1/2 .
We say that g is in the Besov space

B α 2,∞ (A) if sup t>0 2 i=1 t -α i ω r i ,i (g, t) < ∞
for r i integers larger than α i . The transition density π can thus have different smoothness properties with respect to different directions. The procedure described here allows an adaptation of the approximation space to each directional regularity. More precisely, if α 2 > α 1 for example, the estimator chooses a space of dimension

D m 2 = D α 1 /α 2 m 1
< D m 1 for the second direction, where π is more regular. We can thus write the following corollary.

Corollary 3

We suppose that π restricted to A belongs to the anisotropic Besov space B α 2,∞ (A) with regularity α = (α 1 , α 2 ) such that α 1 -2α 2 +2α 1 α 2 > 0 and α 2 -2α 1 +2α 1 α 2 > 0. We consider the spaces described in Subsection 2.4 (with the regularity r of the polynomials and the wavelets larger than α i -1).

Then, under the assumptions of Theorem 2,

E π½ A -π 2 n = O(n -2 ᾱ 2 ᾱ+2 ).
where ᾱ is the harmonic mean of α 1 and α 2 .

The harmonic mean of α 1 and α 2 is the real ᾱ such that 2/ ᾱ = 1/α 1 + 1/α 2 .

Note that the condition α 1 -2α 2 + 2α 1 α 2 > 0 is ensured as soon as α 1 ≥ 1 and the condition α 2 -2α 1 + 2α 1 α 2 > 0 as soon as α 2 ≥ 1.

Thus we obtain the rate of convergence n -2 ᾱ 2 ᾱ+2 , which is optimal in the minimax sense (see Section 5.3 for the lower bound).

5 L 2 control

Estimation procedure

Although the empirical norm is the more natural in this problem, we are interested in a L 2 control of the risk. For this, the estimation procedure must be modified. We truncate the previous estimator in the following way : [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] with k n = n 2/3 .

π * =    π if π ≤ k n 0 else

Calculation of the L 2 risk

We obtain in this framework a result similar to Theorem 2.

Theorem 4 We consider a Markov chain satisfying Assumptions A1-A5 (with γ > 20 in the case of an arithmetical mixing). We consider π * the estimator of the transition density π described in Section 5.1. Then

E π * -π½ A 2 ≤ C inf m∈Mn {d 2 (π½ A , S m ) + pen(m)} + C ′ n .
where

C = max(36f -1 0 f ∞ + 2, 36f -1 0 ) and C ′ is a constant depending on φ 1 , φ 2 , π ∞ , π , f 0 , f ∞ , γ.
If π is regular, we can state the following corollary:

Corollary 5 We suppose that the restriction of π to A belongs to the anisotropic Besov space B α 2,∞ (A) with regularity α = (α 1 , α 2 ) such that α 1 -2α 2 + 2α 1 α 2 > 0 and α 2 -2α 1 + 2α 1 α 2 > 0. We consider the spaces described in Subsection 2.4 (with the regularity r of the polynomials and the wavelets larger than α i -1). Then, under the assumptions of Theorem 4,

E π½ A -π * 2 = O(n -2 ᾱ 2 ᾱ+2 ).
where ᾱ is the harmonic mean of α 1 and α 2 .

The same rate of convergence is then achieved with the L 2 norm instead of the empirical norm. And the procedure allows to adapt automatically the two dimensions of the projection spaces to the regularities α 1 and α 2 of the transition density π. If α 1 = 1 we recognize the rate n

- α 2 
3α 2 +1 established by Birgé [START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF] with metrical arguments. The optimality is proved in the following subsection.

If α 1 = α 2 = α ("classical" Besov space), then ᾱ = α and our result is thus an improvement of the one of Clémençon [START_REF] Clémençon | Adaptive estimation of the transition density of a regular Markov chain[END_REF], whose procedure achieves only the rate (log(n)/n) 2α 2α+2 and allows to use only wavelets. We can observe that in this case, the condition α 1 -2α 2 + 2α 1 α 2 > 0 is equivalent to α > 1/2 and so is verified if the function π is regular enough. Actually, in the case α 1 = α 2 , an estimation with isotropic spaces (D m 1 = D m 2 ) is preferable. Indeed, in this framework, the models are nested and so we can consider spaces with larger dimension (D 2 m ≤ n instead of D 2 m ≤ n 2/3 ). Then Corollary 3 is valid whatever α > 0. Moreover, for the arithmetic mixing, assumption γ > 6 is sufficient.

Lower bound

We denote by . A the norm in L 2 (A), i.e. g A = ( A |g| 2 ) 1/2 . We set

B = {π transition density on R of a positive recurrent Markov chain such that π B α 2,∞ (A) ≤ L}
and E π the expectation corresponding to the distribution of X 1 , . . . , X n if the true transition density of the Markov chain is π and the initial distribution is the stationary distribution.

Theorem 6 There exists a positive constant C such that, if n is large enough,

inf πn sup π∈B E π πn -π 2 A ≥ Cn -2 ᾱ 2 ᾱ+2
where the infimum is taken over all estimators πn of π based on the observations X 1 , . . . , X n+1 .

So the lower bound in [START_REF] Clémençon | Adaptive estimation of the transition density of a regular Markov chain[END_REF] is generalized for the case α 1 = α 2 . It shows that our procedure reaches the optimal minimax rate, whatever the regularity of π, without needing to know α.

Simulations

To evaluate the performance of our method, we simulate a Markov chain with a known transition density and then we estimate this density and compare the two functions for different values of n. The estimation procedure is easy, we can decompose it in some steps:

• find the coefficients matrix A m for each m = (m 1 , m 2 ) • compute γ n (π m ) = Tr( t A m G m A m -2 t Z m A m ) • find m such that γ n (π m ) + pen(m) is minimum • compute π m
For the first step, we use two different kinds of bases : the histogram bases and the trigonometric bases, as described in subsection 2.4. We renormalize these bases so that they are defined on the estimation domain A instead of [0, 1] 2 . For the third step, we choose pen(m) = 0.5

D m 1 D m 2 n .
We consider three Markov chains:

• An autoregressive process defined by X n+1 = aX n + b + ε n+1 , where the ε n are i.i.d. centered Gaussian random variables with variance σ 2 . The stationary distribution of this process is a Gaussian with mean b/(1-a) and with variance

σ 2 /(1 -a 2 ). The transition density is π(x, y) = ϕ(y -ax -b) where ϕ(z) = 1/(σ √ 2π). exp(-z 2 /2σ 2 )
is the density of a standard Gaussian. Here we choose a = 0.5, b = 3, σ = 1 and we note this process AR [START_REF] Roussas | Nonparametric estimation in Markov processes[END_REF]. It is estimated on [START_REF] Athreya | Kernel estimation for real-valued Markov chains[END_REF][START_REF] Lacour | Nonparametric estimation of the stationary density and the transition density of a Markov chain[END_REF] 2 .

• A discrete radial Ornstein-Uhlenbeck process, i.e. the Euclidean norm of a vector (ξ 1 , ξ 2 , ξ 3 ) whose components are i.i.d. processes satisfying, for j = 1, 2, 3, ξ j n+1 = aξ j n + βε j n where ε j n are i.i.d. standard Gaussian. This process is studied in detail in [START_REF] Chaleyat-Maurel | Computable infinite dimensional filters with applications to discretized diffusion processes[END_REF]. Its transition density is π(x, y) = ½ y>0 exp(-

y 2 + a 2 x 2 2β 2 )I 1/2 ( axy β 2 ) y β 2 y ax
where I 1/2 is the Bessel function with index 1/2. The stationary density of

this chain is f (x) = ½ x>0 exp{-x 2 /2ρ 2 }2x 2 /(ρ 3 √ 2π) with ρ 2 = β 2 /(1 -a 2
). We choose a = 0.5, β = 3 and we denote this process by √ CIR since it is the square root of a Cox-Ingersoll-Ross process. The estimation domain is [2, 10] 2 .

• An ARCH process defined by X n+1 = sin(X n ) + (cos(X n ) + 3)ε n+1 where the ε n+1 are i.i.d. standard Gaussian. We verify that the condition ( 2 We can illustrate the results by some figures. Figure 1 shows the surface z = π(x, y) and the estimated surface z = π(x, y). We use a histogram basis and we see that the procedure chooses different dimensions on the abscissa and on the ordinate since the estimator is constant on rectangles instead of squares. Figure 2 presents sections of this kind of surfaces for the AR(1) process estimated with trigonometric bases. We can see the curves z = π(4.6, y) versus z = π(4.6, y) and the curves z = π(x, 5) versus z = π(x, 5). The second section shows that it may exist some edge effects due to the mixed control of the two directions.

For more precise results, empirical risk and L 2 risk are given respectively in Table 1 andTable 2 We observe that the results are better when we consider the empirical norm. It was expectable, given that this norm is adapted to the studied problem. Actually the better norm to evaluate the distance between π and its estimator is the norm . f . Table 3 shows that the errors in this case are very satisfactory.

So the results are roughly good but we can not pretend that a basis among the others gives better results. We can then imagine a mixed strategy, i.e. a procedure which uses several kinds of bases and which can choose the best basis. These techniques are successfully used in a regression framework by Comte and Rozenholc [START_REF] Comte | Adaptive estimation of mean and volatility functions in (auto-)regressive models[END_REF], [START_REF] Comte | A new algorithm for fixed design regression and denoising[END_REF].

Proofs

Proof of Proposition 1

Equality (5) yields, by multiplying by ψ m k 0 (y),

j∈Jm a j,k 0 n i=1 ϕ m j (X i )ψ m k 0 (y)ϕ m j 0 (X i ) = n i=1 ϕ m j 0 (X i )ψ m k 0 (X i+1 )ψ m k 0 (y).
Then, we sum over k 0 in K m :

n i=1 t(X i , y)ϕ m j 0 (X i ) = n i=1 k 0 ∈Km ψ m k 0 (X i+1 )ψ m k 0 (y)ϕ m j 0 (X i ).
If we multiply this equality by a ′ j 0 ,k ψ m k (y) and if we sum over k ∈ K m and j 0 ∈ J m , we obtain 

i=1 [t(X i , y) - k 0 ∈Km ψ m k 0 (X i+1 )ψ m k 0 (y)] k∈Km j 0 ∈Jm a ′ j 0 ,k ϕ m j 0 (X i )ψ m k (y) = 0 i.e. n i=1 [t(X i , y) - k 0 ∈Km ψ m k 0 (X i+1 )ψ m k 0 (y)]u(X i , y) = 0
for all u in S m . So the vector (t(X i , y) -k∈Km ψ m k (X i+1 )ψ m k (y)) 1≤i≤n is orthogonal to each vector in W . Since t(X i , y) belongs to W , the proposition is proved.

Proof of Theorem 2

For ρ a real larger than 1, let

Ω ρ = {∀t ∈ S t 2 f ≤ ρ t 2 n }
In the case of an arithmetical mixing, since γ > 14, there exists a real c such that

         0 < c < 1 6 γc > 7 3
We set in this case q n = 1 2 ⌊n c ⌋. In the case of a geometrical mixing, we set q n = 1 2 ⌊c ln(n)⌋ where c is a real larger than 7/3γ.

For the sake of simplicity, we suppose that n = 4p n q n , with p n an integer. Let for i = 1, . . . , n/2, U i = (X 2i-1 , X 2i ).

Let   

A l = (U 2lqn+1 , ..., U (2l+1)qn ) l = 0, . . . , p n -1, B l = (U (2l+1)qn+1 , ..., U (2l+2)qn ) l = 0, . . . , p n -1. We use now the mixing assumption A5. As in Viennet [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] we can build a sequence (A * l ) such that

       A l and A * l have the same distribution, A * l and A * l ′ are independent if l = l ′ , P (A l = A * l ) ≤ β 2qn .
In the same way, we build (B * l ) and we define for any l ∈ {0, . . . , p n -1}, A * l = (U * 2lqn+1 , ..., U * (2l+1)qn ), B * l = (U * (2l+1)qn+1 , ..., U * (2l+2)qn ) so that the sequence (U * 1 , . . . , U * n/2 ) and then the sequence (X * 1 , . . . , X * n ) are well defined. Let now V i = (X 2i , X 2i+1 ) for i = 1, . . . , n/2 and

   C l = (V 2lqn+1 , ..., V (2l+1)qn ) l = 0, . . . , p n -1, D l = (V (2l+1)qn+1 , ..., V (2l+2)qn ) l = 0, . . . , p n -1.
We can build (V * * 1 , . . . , V * * n/2 ) and then (X * * 2 , . . . , X * * n+1 ) such that

       C l and C * * l have the same distribution, C * * l and C * * l ′ are independent if l = l ′ , P (C l = C * * l ) ≤ β 2qn .
We put X * n+1 = X n+1 and X * * 1 = X 1 . Now let

Ω * = {∀i X i = X * i = X * * i } and Ω * ρ = Ω ρ ∩ Ω *
We denote by π m the orthogonal projection of π on S m . Now,

E π -π½ A 2 n = E π -π½ A 2 n ½ Ω * ρ + E π -π½ A 2 n ½ Ω * c ρ (11) 
To bound the first term, we observe that for all s, t

γ n (t) -γ n (s) = t -π 2 n -s -π 2 n -2Z n (t -s)
where

Z n (t) = 1 n n i=1 t(X i , X i+1 ) - R t(X i , y)π(X i , y)dy . Since t -π 2 n = t -π½ A 2 n + π½ A c 2 n , we can write γ n (t) -γ n (s) = t -π½ A 2 n -s -π½ A 2 n -2Z n (t -s).
The definition of m gives, for some fixed m ∈ M n ,

γ n (π) + pen( m) ≤ γ n (π m ) + pen(m) And then π -π½ A 2 n ≤ π m -π½ A 2 n + 2Z n (π -π m ) + pen(m) -pen( m) ≤ π m -π½ A 2 n + 2 π -π m f sup t∈B f ( m) Z n (t) + pen(m) -pen( m)
where, for all m ′ , B f (m ′ ) = {t ∈ S m + S m ′ , t f = 1}. Let θ a real larger than 2ρ and p(., .) a function such that θp(m, m ′ ) ≤ pen(m) + pen(m ′ ). Then

π -π½ A 2 n ½ Ω * ρ ≤ π m -π½ A 2 n + 1 θ π -π m 2 f ½ Ω * ρ + 2pen(m) +θ m ′ ∈Mn sup t∈B f (m ′ ) Z 2 n (t) -p(m, m ′ ) + ½ Ω * ρ (12) But π -π m 2 f ½ Ω * ρ ≤ ρ π -π m 2 n ½ Ω * ρ ≤ 2ρ π -π½ A 2 n ½ Ω * ρ + 2ρ π½ A -π m 2 n .
Then, inequality (12) becomes

π -π½ A 2 n ½ Ω * ρ 1 - 2ρ θ ≤ 1 + 2ρ θ π m -π½ A 2 n + 2pen(m) +θ m ′ ∈Mn sup t∈B f (m ′ ) Z 2 n (t) -p(m, m ′ ) + ½ Ω * ρ so E π -π½ A 2 n ½ Ω * ρ ≤ θ + 2ρ θ -2ρ E π½ A -π m 2 n + 2θ θ -2ρ pen(m) + θ 2 θ -2ρ m ′ ∈Mn E   sup t∈B f (m ′ ) Z 2 n (t) -p(m, m ′ ) + ½ Ω * ρ   ( 13 
)
We now use the following proposition:

Proposition 7 Let p(m, m ′ ) = 10 π ∞ D(m, m ′ ) n
where D(m, m ′ ) denotes the dimension of S m +S m ′ . Then, under the assumptions of Theorem 2, there exists a constant C 1 such that

m ′ ∈Mn E   sup t∈B f (m ′ ) Z 2 n (t) -p(m, m ′ ) + ½ Ω *   ≤ C 1 n . (14) 
Then, with θ = 3ρ, inequalities ( 13) and ( 14) yield

E π -π½ A 2 n ½ Ω * ρ ≤ 5 f ∞ π m -π½ A 2 + 6pen(m) + 9ρC 1 n (15) 
The penalty term pen(m) has to verify pen(m)+pen(m

′ ) ≥ 30ρ π ∞ D(m, m ′ ) n i.e. 30ρ π ∞ dim(S m + S m ′ ) ≤ pen(m) + pen(m ′ ) We choose ρ = 3/2 and so pen(m) = 45 π ∞ D m 1 D m 2 n .
To bound the second term in [START_REF] Meyn | Markov chains and stochastic stability[END_REF], we recall (see Section 3) that (π m(X i , y)) 1≤i≤n is the orthogonal projection of ( k ψ k (X i+1 )ψ k (y)) 1≤i≤n on

W = {(t(X i , y)) 1≤i≤n , t ∈ S m}
where ψ k = ψ m k . Thus, since P W denotes the orthogonal projection on W , using ( 7)-( 8)

(π m(X i , y)) 1≤i≤n = P W (( k ψ k (X i+1 )ψ k (y)) 1≤i≤n ) = P W (( k π k (X i )ψ k (y)) 1≤i≤n ) + P W (( k ε i,k ψ k (y)) 1≤i≤n ) = P W (π½ A (X i , y)) 1≤i≤n ) + P W (( k ε i,k ψ k (y)) 1≤i≤n )
We denote by . R n the Euclidean norm in R n , by X the vector (X i ) 1≤i≤n and by ε k the vector (ε i,k ) 1≤i≤n . Thus

π½ A -π m 2 n = 1 n π½ A (X, y) -P W (π½ A (X, y)) -P W ( k ε k ψ k (y)) 2 R n dy = 1 n π½ A (X, y) -P W (π½ A (X, y)) 2 R n dy + 1 n P W ( k ε k ψ k (y)) 2 R n dy ≤ 1 n π½ A (X, y) 2 R n dy + 1 n k ε k ψ k (y) 2 R n dy ≤ 1 n n i=1 π ∞ π(X i , y)dy + 1 n n i=1 [ k ε i,k ψ k (y)] 2 dy ≤ π ∞ + 1 n n i=1 k ε 2 i,k . But Assumption M2 implies k∈K m ψ 2 k ∞ ≤ φ 2 D m2 . So, using (8) 
,

ε 2 i,k ≤ 2ψ 2 k (X i+1 ) + 2E[ψ k (X i+1 )|X i ] 2 and k ε 2 i,k ≤ 2 k ψ 2 k (X i+1 ) + 2E[ k ψ 2 k (X i+1 )|X i ] ≤ 4φ 2 D m2
Thus we obtain

π½ A -π m 2 n ≤ π ∞ + 4φ 2 D m2 ≤ π ∞ + 4φ 2 n 1/3 (16)
and, by taking the expectation,

E π½ A -π m 2 n ½ Ω * c ρ ≤ ( π ∞ +4φ 2 n 1/3 )P (Ω * c ρ ).
We now remark that P (Ω * c ρ ) = P (Ω * c ) + P (Ω c ρ ∩ Ω * ). In the geometric case β 2qn ≤ e -γc ln(n) ≤ n -γc and in the other case β 2qn ≤ (2q n ) -γ ≤ n -γc . Then

P (Ω * c ) ≤ 4p n β 2qn ≤ n 1-cγ .
But we have choosed c such that cγ > 7/3 and so P (Ω * c ) ≤ n -4/3 . Now we will use the following proposition: 

This proposition implies that

E π½ A -π m 2 n ½ Ω * c ρ ≤ C 3 n .
Now we use [START_REF] Nzé | Critères d'ergodicité de quelques modèles à représentation markovienne[END_REF] and we observe that this inequality holds for all m in M n , so

E π -π½ A 2 n ≤ C inf m∈Mn ( π½ A -π m 2 + pen(m)) + C 4 n with C = max(5 f ∞ , 6).

Proof of Corollary 3

To control the bias term, we use the following lemma Lemma 9 Let π A belong to B α 2,∞ (A). We consider that S ′ m is one of the following spaces on A:

• a space of piecewise polynomials of degrees bounded by

s i > α i -1 (i = 1, 2)
based on a partition with rectangles of vertices 1/D m 1 and

1/D m 2 , • a linear span of {φ λ ψ µ , λ ∈ ∪ m 1 0 Λ(j), µ ∈ ∪ m 2 0 M(k)}
where {φ λ } and {ψ µ } are orthonormal wavelet bases of respective regularities s 1 > α 1 -1 and

s 2 > α 2 -1 (here D m i = 2 m i , i = 1, 2),
• the space of trigonometric polynomials with degree smaller than D m 1 in the first direction and smaller than D m 2 in the second direction.

Let π ′ m be the orthogonal projection of π A on S ′ m . Then, there exists a positive constant C 0 such that

A |π A -π ′ m | 2 1/2 ≤ C 0 [D -α 1 m 1 + D -α 2 m 2 ].
Proof: It is proved in [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF] for S ′ m a space of wavelets or polynomials and in [START_REF] Nikol | Approximation of functions of several variables and imbedding theorems[END_REF] (p. 191 and 200) for a space of trigonometric polynomials that

A |π A -π ′ m | 2 1/2 ≤ C[ω s 1 +1,1 (π, D -1 m 1 ) + ω s 2 +1,2 (π, D -1 m 2 )]. The definition of B α 2,∞ (A) implies ( A |π A -π ′ m | 2 ) 1/2 ≤ C 0 [D -α 1 m 1 + D -α 2 m 2 ]. 2 
If we choose for S ′ m the set of the restrictions to A of the functions of S m and π A the restriction of π to A, we can apply Lemma 9. But π ′ m is also the restriction to A of π m so that

π½ A -π m ≤ C 0 [D -α 1 m 1 + D -α 2 m 2 ].
According to Theorem 2

E π -π½ A 2 n ≤ C ′′ inf m∈Mn D -2α 1 m 1 + D -2α 2 m 2 + D m 1 D m 2 n .
In particular, if m * is such that

D m * 1 = ⌊n α 2 α 1 +α 2 +2α 1 α 2 ⌋ and D m * 2 = ⌊(D m * 1 ) α 1 α 2 ⌋ then E π -π½ A 2 n ≤ C ′′′    D -2α 1 m * 1 + D 1+α 1 /α 2 m * 1 n    = O n - 2α 1 α 2 α 1 +α 2 +2α 1 α 2 .
But the harmonic mean of α 1 and

α 2 is ᾱ = 2α 1 α 2 /(α 1 + α 2 ). Then E π - π½ A 2 n = O(n -2 ᾱ 2 ᾱ+2
).

The condition D m 1 ≤ n 1/3 allows this choice of m only if

α 2 α 1 +α 2 +2α 1 α 2 < 1 3 i.e. if α 1 -2α 2 + 2α 1 α 2 > 0.
In the same manner, the condition α 2 -2α 1 + 2α 1 α 2 > 0 must be verified.

Proof of Theorem 4

We use the same notations as for the proof of Theorem 2. Let us write

E π * -π½ A 2 = B 1 + B 2 + B 3 with          B 1 = E π * -π½ A 2 ½ Ω * ρ ½ π ≤kn B 2 = E π * -π½ A 2 ½ Ω * ρ ½ π >kn B 3 = E π * -π½ A 2 ½ Ω * c ρ
To bound the first term, we observe that for all m ∈ M n , on

Ω * ρ , π -π m 2 ≤ f -1 0 ρ π -π m 2 n . Then π -π½ A 2 ½ Ω * ρ ≤ 2 π -π m 2 ½ Ω * ρ + 2 π m -π½ A 2 ≤ 2f -1 0 ρ π -π m 2 n ½ Ω * ρ + 2 π m -π½ A 2 ≤ 2f -1 0 ρ{2 π -π½ A 2 n ½ Ω * ρ + 2 π m -π½ A 2 n } + 2 π m -π½ A 2 Thus B 1 ≤ E π -π½ A 2 ½ Ω * ρ ≤ 4f -1 0 ρE π -π½ A 2 n ½ Ω * ρ +(4f -1 0 ρ f ∞ +2) π m -π½ A 2 .
But, using [START_REF] Nzé | Critères d'ergodicité de quelques modèles à représentation markovienne[END_REF], we obtain

B 1 ≤ (24f -1 0 ρ f ∞ + 2) π m -π½ A 2 + 24f -1 0 ρpen(m) + 36f -1 0 ρ 2 C 1 n . Since ρ = 3/2, by setting C = max(36f -1 0 f ∞ + 1, 36f -1 0 ), B 1 ≤ C{ π m -π½ A 2 + pen(m)} + 81f -1 0 C 1 n for all m ∈ M n .
Next, the definition of π * and the Markov inequality provide

B 2 ≤ E π½ A 2 ½ Ω * ρ ½ π >kn ≤ π 2 E( π 2 ½ Ω * ρ ) k 2 n . ( 17 
) But π 2 ½ Ω * ρ ≤ ρf -1 0 π 2 n ≤ 2ρf -1 0 ( π -π½ A 2 n + π½ A 2 n ). Now we use (16) to state π 2 ½ Ω * ρ ≤ 2ρf -1 0 ( π ∞ + 4φ 2 n 1/3 + π½ A 2 n ) ≤ 2ρf -1 0 ( π ∞ + 4φ 2 n 1/3 + 1 n n i=1 π ∞ π(X i , y)dy] ≤ 2ρf -1 0 (2 π ∞ + 4φ 2 n 1/3 ).
Then, since k n = n 2/3 , (17) becomes

B 2 ≤ π 2 2ρf -1 0 (2 π ∞ + 4φ 2 n 1/3 ) k 2 n ≤ 4ρf -1 0 π 2 π ∞ n 4/3 + 2φ 2 n .
Lastly

B 3 ≤ E 2( π * 2 + π½ A 2 )½ Ω * c ρ ≤ 2(k 2 n + π 2 )P (Ω * c ρ ).
We now remark that P (Ω * c ρ ) = P (Ω * c ) + P (Ω c ρ ∩ Ω * ). In the geometric case β 2qn ≤ e -γc ln(n) ≤ n -γc and in the other case

β 2qn ≤ (2q n ) -γ ≤ n -γc . Then P (Ω * c ) ≤ 4p n β 2qn ≤ n 1-cγ .
But, if γ > 20 in the arithmetic case, we can choose c such that cγ > 10 3 and so P (Ω * c ) ≤ n -7/3 . Then, using Proposition 8,

B 3 ≤ 2(n 4/3 + π 2 ) 1 + C 2 n 7/3 ≤ 2(C 2 + 1)(1 + π 2 ) n .

Proof of Theorem 6

Let ψ be a very regular wavelet with compact support. For J = (j 1 , j 2 ) ∈ Z 2 to be chosen below and K = (k 1 , k 2 ) ∈ Z 2 , we set

ψ JK (x, y) = 2 (j 1 +j 2 )/2 ψ(2 j 1 x -k 1 )ψ(2 j 2 y -k 2 ). Let π 0 (x, y) = c 0 ½ B (y) with B a compact set such that A ⊂ B × B and |B| ≥ 2|A| 1/2 /L, and c 0 = |B| -1 . So π 0 is a transition density with π 0 B α 2,∞ (A) ≤ L/2. Now we set R J the maximal subset of Z 2 such that Supp(ψ JK ) ⊂ A ∀K ∈ R J , Supp(ψ JK ) ∩ Supp(ψ JK ′ ) = ∅ if K = K ′ . The cardinal of R J is |R J | = c2 j 1 +j 2
, with c a positive constant which depends only on A and the support of ψ. Let, for all ε = (ε

K ) ∈ {-1, 1} |R J | , π ε = π 0 + 1 √ n K∈R J ε K ψ JK .
Let us denote by G the set of all such π ε . Since ψ = 0 and π 0 is a transition density, for all x in R,

π ε (x, y)dy = 1. Additionally π ε (x, y) = π 0 (x, y) ≥ 0 if (x, y) / ∈ A, and if (x, y) ∈ A: π ε ≥ c 0 -2 (j 1 +j 2 )/2 ψ 2 ∞ / √ n and then π ε (x, y) ≥ c 0 /2 > 0 as soon as 2 j 1 +j 2 n 1/2 ≤ c 0 2 ψ 2 ∞ . (18) 
Thus, if [START_REF] Comte | Adaptive estimation of the spectrum of a stationary Gaussian sequence[END_REF] holds, π ε (x, y) ≥ (c 0 /2)½ B (y) for all x, y. It implies that the underlying Markov chain is Doeblin recurrent and then positive recurrent. We verify that f = c 0 ½ B is the stationary density. To prove that π ε ∈ B, we still have to compute π ε B α 2,∞ (A) . Hochmuth [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF] proves that for ψ smooth enough

K∈R J ε K ψ JK B α 2,∞ (A) ≤ (2 j 1 α 1 + 2 j 2 α 2 ) K∈R J ε K ψ JK A . Since K∈R J ε K ψ JK 2 A = K∈R J |ε K | 2 = c2 j 1 +j 2 , then π ε B α 2,q (A) ≤ L 2 + 2 j 1 α 1 + 2 j 2 α 2 √ n c 1/2 2 (j 1 +j 2 )/2 .
From now on, we suppose that Condition C is verified where

Condition C: (2 j 1 α 1 + 2 j 2 α 2 )2 (j 1 +j 2 )/2 √ n ≤ L 2c 1/2 .
It entails in particular that (18) holds if j 1 and j 2 are great enough.Then for all ε, π ε ∈ B. We now use the Lemma 10.2 p.160 in Härdle et al. [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]. The likelihood ratio can be written

Λ n (π ε * K , π ε ) = n i=1 π ε * K (X i , X i+1 ) π ε (X i , X i+1 )
.

Note that π ε (X i , X i+1 ) > 0 P πε -and P πε * K -almost surely (actually the chain "lives" on B). Then

log(Λ n (π ε * K , π ε )) = n i=1 log 1 - 2 √ n ε K ψ JK (X i , X i+1 ) π ε (X i , X i+1 ) We set U JK (X i , X i+1 ) = -ε K ψ JK (X i , X i+1 )/π ε (X i , X i+1 ) so that log(Λ n (π ε * K , π ε )) = n i=1 log 1 + 2 √ n U JK (X i , X i+1 ) = n i=1 θ 2 √ n U JK (X i , X i+1 ) + 2 √ n U JK (X i , X i+1 ) - 2 n U 2 JK (X i , X i+1 ) = u n + v n -w n with θ the function defined by θ(u) = log(1 + u) -u + u 2 2
. Now we prove the three following assertions

1 • E πε (|u n |) = E πε n i=1 θ 2 √ n U JK (X i , X i+1 ) → n→∞ 0 2 • E πε (w n ) = E πε 2 n n i=1 U 2 JK (X i , X i+1 ) ≤ 4 3 • E πε (v 2 n ) = E πε 4 n | n i=1 U JK (X i , X i+1 )| 2 ≤ 8 1 • : First we observe that 2 √ n U JK ∞ ≤ 2 √ n 2 (j 1 +j 2 )/2 ψ 2 ∞ c 0 /2 = O 2 (j 1 +j 2 )/2
√ n and 2 (j 1 +j 2 ) n → 0 since Condition C holds. So there exists some integer n 0 such

that ∀n ≥ n 0 , ∀x, y, |θ(2U JK (x, y)/ √ n)| ≤ |2U JK (x, y)/ √ n| 3 . But 2U JK (x, y) √ n 3 f (x)π ε (x, y)dxdy = 8 n √ n |ψ JK (x, y)| 3 π ε (x, y) 2 f (x)dxdy ≤ 8 n √ n 2 (j 1 +j 2 )/2 ψ 2 ∞ c 0 (c 0 /2) 2 ψ JK (x, y) 2 dxdy ≤ 32 ψ 2 ∞ c 0 n 2 (j 1 +j 2 ) n 1/2
.

Then E πε |u n | ≤ n i=1 32 ψ 2 ∞ c 0 n 2 (j 1 +j 2 ) n 1/2 → n→∞ 0. 2 • : We bound the expectation of U JK (X i , X i+1 ) 2 : E πε (U JK (X i , X i+1 ) 2 ) = ψ 2 JK (x, y) π ε (x, y) f (x)dxdy ≤ c 0 A ψ 2 JK (x, y) c 0 /2 dxdy ≤ 2. (19) And then E πε (w n ) = E πε ((2/n) n i=1 U JK (X i , X i+1 ) 2 ) ≤ 4.
3 • : We observe that E πε (U JK (X i , X i+1 )|X 1 , . . . , X i ) = 0 and thus n i=1 U JK (X i , X i+1 ) is a martingale. A classic property of square integrable martingales involves

E πε   n i=1 U JK (X i , X i+1 ) 2   = n i=1 E πε U JK (X i , X i+1 ) 2 .
Thus, using [START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF],

E πε (v 2 N ) = (4/n) n i=1 E πε [U JK (X i , X i+1 ) 2 ] ≤ 8.
We deduce easily from the three previous assertions 1 • , 2 • and 3 • that there exists λ > 0 and p 0 such that P πε (Λ n (π ε * K , π ε ) > e -λ ) ≥ p 0 . Thus, according to Lemma 10.2 in [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF],

max πε∈G E πε πn -π ε 2 A ≥ |R J | 2 δ 2 e -λ p 0 where δ = inf ε =ε ′ π ε -π ε ′ A /2 = ε K ψ JK / √ n A = 1/ √ n.
Now for all n we choose J = J(n) = (j 1 (n), j 2 (n)) such that

c 1 /2 ≤ 2 j 1 n - α 2 α 1 +α 2 +2α 1 α 2 ≤ c 1 and c 2 /2 ≤ 2 j 2 n - α 1 α 1 +α 2 +2α 1 α 2 ≤ c 2
with c 1 and c 2 such that (c

α 1 1 + c α 2 2 ) √ c 1 c 2 ≤ L/(2c 1/2
) so that Condition C is satisfied. Moreover, we have

|R J |δ 2 ≥ cc 1 c 2 4 n α 2 +α 1 α 1 +α 2 +2α 1 α 2 -1 ≥ cc 1 c 2 4 n -2α 1 α 2 α 1 +α 2 +2α 1 α 2 Thus max πε∈G E πε πn -π ε 2 A ≥ ce -λ p 0 c 1 c 2 8 n -2α 1 α 2 α 1 +α 2 +2α 1 α 2 .
And then for all estimator

sup π∈B E π πn -π 2 A ≥ Cn -2 ᾱ 2 ᾱ+2
with C = ce -λ p 0 c 1 c 2 /8.

Proof of Proposition 7

Let

       Γ i (t) = t(X i , X i+1 ) -t(X i , y)π(X i , y)dy, Γ * i (t) = t(X * i , X * i+1 ) -t(X * i , y)π(X * i , y)dy, Γ * * i (t) = t(X * * i , X * * i+1 ) -t(X * * i , y)π(X * * i , y)dy.
We now define Z * n (t):

Z * n (t) = 1 n i odd Γ * i (t) + 1 n i even Γ * * i (t).
Let us remark that Z * n (t)½ Ω * = Z n (t)½ Ω * . Next we split each of these terms :

Z * n,1 (t) = 1 n pn-1 l=0 2(2l+1)qn-1 i=4lqn+1,i odd Γ * i (t), Z * n,2 (t) = 1 n pn-1 l=0 2(2l+2)qn-1 i=2(2l+1)qn+1,i odd Γ * i (t), Z * n,3 (t) = 1 n pn-1 l=0 2(2l+1)qn i=4lqn+2,i even Γ * * i (t), Z * n,4 (t) = 1 n pn-1 l=0 2(2l+2)qn i=2(2l+1)qn+2,i even Γ * * i (t).
We use the following lemma:

Lemma 10 (Talagrand [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF]) Let U 0 , . . . , U N -1 i.i.d. variables and (ζ t ) t∈B a set of functions.

Let

G(t) = 1 N N -1 l=0 ζ t (U l ). We suppose that (1) sup t∈B ζ t ∞ ≤ M 1 , (2) E(sup t∈B |G(t)|) ≤ H, (3) sup t∈B V ar[ζ t (U 0 )] ≤ v.
Then, there exists K > 0,

K 1 > 0, K 2 > 0 such that E sup t∈B G 2 (t) -10H 2 + ≤ K v N e -K 1 NH 2 v + M 2 1 N 2 e -K 2 NH M 1
Here N = p n , B = B f (m ′ ) and for l ∈ {0, . . . , p n -1}, U l = (X * 4lqn+1 , .., X * 2(2l+1)qn ),

ζ t (x 1 , . . . , x 2qn ) = 1 q n 2qn-1 i=1,i odd t(x i , x i+1 ) -t(x i , y)π(x i , y)dy.
Then

G(t) = 1 p n pn-1 l=0 1 q n 2(2l+1)qn-1 i=4lqn+1,i odd Γ * i (t) = 4Z * n,1 (t).
We now compute M 1 , H and v.

(1)We recall that

S m + S m ′ is included in the model S m ′′ with dimension max(D m 1 , D m ′ 1 ) max(D m 2 , D m ′ 2 ). sup t∈B ζ t ∞ ≤ sup t∈B t ∞ 1 q n 2qn-1 i=1,i odd 1 + π(x i , y)dy ≤ 2φ 0 max(D m 1 , D m ′ 1 ) max(D m 2 , D m ′ 2 ) t ≤ 2φ 0 f 0 n 1/3 .
Then we set

M 1 = 2φ 0 f 0 n 1/3 .
(2) Since A 0 and A * 0 have the same distribution,

ζ t (U 0 ) = 1 qn 2qn-1
i=1,i odd Γ * i (t) has the same distribution than 1 qn 2qn-1 i=1,i odd Γ i (t). We observe that E(Γ i (t)|X i ) = 0 and then for all set

I E   i∈I Γ i (t) 2   = E   i,j∈I Γ i (t)Γ j (t)   = 2E   j<i E[Γ i (t)Γ j (t)|X i ]   + i∈I E Γ 2 i (t) = 2E   j<i Γ j (t)E[Γ i (t)|X i ]   + i∈I E Γ 2 i (t) = i∈I E Γ 2 i (t) .
In particular

Var[ζ t (U 0 )] = E      1 q n 2qn-1 i=1,i odd Γ i (t)   2    = 1 q 2 n 2qn-1 i=1,i odd E Γ 2 i (t) ≤ 1 q 2 n 2qn-1 i=1,i odd E t 2 (X i , X i+1 ) ≤ 1 q n π ∞ t 2 f . Then v = π ∞ q n . (3) Let ( φj ⊗ ψ k ) (j,k)∈Λ(m,m ′ ) an orthonormal basis of (S m + S m ′ , . f ). E(sup t∈B |G 2 (t)|) ≤ j,k E(G 2 ( φj ⊗ ψ k )) ≤ j,k 1 p 2 n q 2 n E      pn-1 l=0 2(2l+1)qn-1 i=4lqn+1,i odd Γ * i ( φj ⊗ ψ k )   2    ≤ j,k 16 n 2 pn-1 l=0 E      2(2l+1)qn-1 i=4lqn+1,i odd Γ * i ( φj ⊗ ψ k )   2   
where we used the independence of the A * l . Now we can replace Γ * i by Γ i in the sum because A l and A * l have the same distribution and we use as previously the martingale property of the Γ i .

E(sup t∈B |G 2 (t)|) ≤ j,k 16 n 2 pn-1 l=0 E      2(2l+1)qn-1 i=4lqn+1,i odd Γ i ( φj ⊗ ψ k )   2    ≤ j,k 16 n 2 pn-1 l=0 2(2l+1)qn-1 i=4lqn+1,i odd E Γ 2 i ( φj ⊗ ψ k ) ≤ j,k 4 n π ∞ φj ⊗ ψ k 2 f ≤ 4 π ∞ D(m, m ′ ) n . Then E 2 (sup t∈B |G(t)|) ≤ 4 π ∞ D(m, m ′ ) n and H 2 = 4 π ∞ D(m, m ′ ) n .
According to Lemma 10, there exists

K ′ > 0, K 1 > 0, K ′ 2 > 0 such that E sup t∈B f (m ′ ) (4Z * n,1 ) 2 (t) -10H 2 + ≤ K ′ 1 n e -K 1 D(m,m ′ ) + n -4/3 q 2 n e -K ′ 2 n 1/6 √ D(m,m ′ )/qn . But q n ≤ n c with c < 1 6 . So m ′ ∈Mn E sup t∈B f (m ′ ) Z * 2 n,1 (t) - p(m, m ′ ) 4 + ≤ K ′ n   m ′ ∈Mn e -K 1 D(m,m ′ ) + n 2c-1/3 |M n |e -K ′ 2 n 1/6-c   ≤ A 1 n . (20) 
In the same way, m ′ ∈Mn E sup

t∈B f (m ′ ) Z * 2 n,r (t) -p(m, m ′ )/4 + ≤ A r /n for r = 2, 3, 4. And then m ′ ∈Mn E   sup t∈B f (m ′ ) Z 2 n (t) -p(m, m ′ ) + ½ Ω *   = m ′ ∈Mn E   sup t∈B f (m ′ ) Z * 2 n (t) -p(m, m ′ ) + ½ Ω *   ≤ C 1 n .

Proof of Proposition 8

First we observe that

P (Ω c ρ ∩ Ω * ) ≤ P sup t∈B |ν n (t 2 )| > 1 -1/ρ where ν n (t) = 1 n n i=1 [t(X * i , y) -E(t(X * i , y))]dy and B = {t ∈ S t f = 1}. But, if t(x, y) = j,k a j,k ϕ j (x)ψ k (y), then ν n (t 2 ) = j,j ′ k a j,k a j ′ ,k νn (ϕ j ϕ j ′ )
where

νn (u) = 1 n n i=1 [u(X * i ) -E(u(X * i ))]. ( 21 
) Let b j = ( k a 2 j,k ) 1/2 , then |ν n (t 2 )| ≤ j,j ′ b j b j ′ |ν n (ϕ j ϕ j ′ )| and, if t ∈ B, j b 2 j = j k a 2 j,k = t 2 ≤ f -1 0 . Thus sup t∈B |ν n (t 2 )| ≤ f -1 0 sup b 2 j =1 j,l b j b l |ν n (ϕ j ϕ l )|. Lemma 11 Let B j,l = ϕ j ϕ l ∞ and V j,l = ϕ j ϕ l 2 . Let, for any symmetric matrix (A j,l ) ρ(A) = sup a 2 j =1 j,l |a j a l |A j,l and L(ϕ) = max{ρ 2 (V ), ρ(B)}. Then, if M2 is satisfied, L(ϕ) ≤ φ 1 D 2 n .
This lemma is proved in Baraud et al. [START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF].

Let x = f 2 0 (1 -1/ρ) 2 40 f ∞ L(ϕ) and ∆ = ∀j∀l |ν n (ϕ j ϕ l )| ≤ 4 B j,l x + V j,l 2 f ∞ x . On ∆: sup t∈B |ν n (t 2 )| ≤ 4f -1 0 sup b 2 j =1 j,l b j b l B j,l x + V j,l 2 f ∞ x ≤ 4f -1 0 ρ(B)x + ρ(V ) 2 f ∞ x ≤ (1 -1/ρ)   f 0 (1 -1/ρ) 10 f ∞ ρ(B) L(ϕ) + 2 √ 5 ρ2 (V ) L(ϕ) 1/2   ≤ (1 -1/ρ) 1 10 + 2 √ 5 ≤ (1 -1/ρ). Then P sup t∈B |ν n (t 2 )| > 1 - 1 ρ ≤ P (∆ c ). But νn (u) = 2ν n,1 (u) + 2ν n,2 (u) with νn,r (u) = 1 p n pn-1 l=0 Y l,r (u) r = 1, 2 with          Y l,1 (u) = 1 2q n 2(2l+1)qn i=4lqn+1 [u(X * i ) -E(u(X * i ))], Y l,2 (u) = 1 2q n 2(2l+2)qn i=2(2l+1)qn+1 [u(X * i ) -E(u(X * i ))].
To bound P (ν n,1 (ϕ j ϕ l ) ≥ B j,l x + V j,l 2 f ∞ x), we will use the Bernstein inequality given in Birgé and Massart [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]. That is why we bound E|Y l,1 (u)| m :

E|Y l,1 (u)| m ≤ 1 4q 2 n (2 u ∞ ) m-2 E 2(2l+1)qn i=4lqn+1 [u(X * i ) -E(u(X * i ))] 2 ≤ (2 u ∞ ) m-2 1 4q 2 n E 2(2l+1)qn i=4lqn+1 [u(X i ) -E(u(X i ))] 2 ≤ (2 u ∞ ) m-2 1 4q 2 n E 2(2l+1)qn i=2lqn+1 [u(X 1 ) -E(u(X 1 ))] 2 since X * i = X i on Ω * and the X i have the same distribution than X 1 . Thus E|Y l,1 (u)| m ≤ (2 u ∞ ) m-2 E|u(X 1 ) -E(u(X 1 ))| 2 ≤ (2 u ∞ ) m-2 u 2 (x)f (x)dx ≤ 2 m-2 ( u ∞ ) m-2 ( f ∞ u ) 2 . ( 22 
) With u = ϕ j ϕ j ′ , E|Y l,1 (ϕ j ϕ j ′ )| m ≤ 2 m-2 (B j,j ′ ) m-2 ( f ∞ V j,j ′ ) 2 .
And then

P (|ν n,r (ϕ j ϕ l )| ≥ B j,l x + V j,l 2 f ∞ x) ≤ 2e -pnx . Given that P (Ω c ρ ∩Ω * ) ≤ P (∆ c ) = j,l P |ν n (ϕ j ϕ l )| > 4(B j,l x + V j,l 2 f ∞ x) , P (Ω c ρ ∩ Ω * ) ≤ 4D 2 n exp - p n f 2 0 (1 -1/ρ) 2 40 f ∞ L(ϕ) ≤ 4n 2/3 exp - f 2 0 (1 -1/ρ) 2 160 f ∞ n q n L(ϕ)
.

But L(ϕ) ≤ φ 1 D 2 n ≤ φ 1 n 2/3 and q n ≤ n 1/6 so P (Ω c ρ ∩ Ω * ) ≤ 4n 2/3 exp -

f 2 0 (1 -1/ρ) 2 160 f ∞ φ 1 n 1/6 ≤ C n 7/3 . ( 23 
)
Proof: We recall that π ∞ denotes actually π½ A ∞ and we introduce the following set:

Λ = π ∞ π½ A ∞ -1 < 1 2 .
As previously, we decompose the space:

E π-π½ A 2 n = E π -π½ A 2 n ½ Ω * ρ ∩Λ +E π -π½ A 2 n ½ Ω * ρ ∩Λ c +E π -π½ A 2 n ½ Ω * c ρ
We have already dealt with the third term. For the first term, we can proceed as in the proof of Theorem 2 as soon as θp(m, m ′ ) ≤ pen(m) + pen(m ′ ) with θ = 3ρ = 9/2 and p(m, m ′ ) = 10 π ∞ D(m, m ′ )/n. But on Λ, π ∞ < 2 π ∞ and so It remains to prove that P (Ω * ρ ∩ Λ c ) ≤ Cn -4/3 for some constant C. 

θp(m, m ′ ) = 10θ π ∞ D(m, m ′ ) n ≤ 20θ π ∞ D(m, m ′ ) n ≤ 20θ π ∞ D m 1 D m 2 n + 20θ π ∞ D m ′ 1 D m ′
P (Ω * ρ ∩ Λ c ) = P (| π ∞ -π½ A ∞ |½ Ω * ρ ≥ π ∞ /2) ≤ P ( π -π½ A ∞ ½ Ω * ρ ≥ π ∞ /2) ≤ P ( π -π m * ∞ ½ Ω * ρ ≥ π ∞ /4) + P ( π m * -π½ A ∞ ≥ π ∞ /4) ≤ P   π -π m * ½ Ω * ρ ≥ π ∞ 4φ 0 D m 1 * D m 2 *   + P ( π m * -π½ A ∞ ≥ π ∞ /4) since π -π m * ∞ ≤ φ 0 D m * 1 D m * 2 π -π m * .
+ P ( π m * -π½ A ∞ ≥ π ∞ 4 ) (24) 
with a = π 2 ∞ 32φ 2 0 1 18ρ 2 f -1 0 and b = π 2 ∞ 32φ 2 0 1 12ρf -1 0 |A 2 |
.

We will first study the two last terms in [START_REF] Nikol | Approximation of functions of several variables and imbedding theorems[END_REF]. Since the restriction π A of π belongs to B (α 1 ,α 2 ) 2,∞ (A), the imbedding theorem proved in Nikol ′ skiȋ [START_REF] Nikol | Approximation of functions of several variables and imbedding theorems[END_REF] p.236 implies that π A belongs to B (β 1 ,β 2 ) ∞,∞ (A) with β 1 = α 1 (1 -1/ ᾱ) and β 2 = α 2 (1 -1/ ᾱ). Then the approximation lemma 9 (which is still valid for the trigonometric polynomial spaces with the infinite norm instead of the L 2 norm) yields to

π m * -π½ A ∞ ≤ C(D -β 1 m 1 * + D -β 2 m 2 * ).
And then, since

D m 1 * = D m 2 * , D m 1 * D m 2 * π m * -π½ A 2 ∞ ≤ C ′ (D 2-2β 1 m 1 * + D 2-2β 2 m 1 * ) ≤ C ′ ((ln n) 2-2β 1 + (ln n) 2-2β 2 ) → 0 Indeed    2 -2β 1 < 0 ⇔ 2α 1 α 2 -3α 2 -α 1 > 0 2 -2β 2 < 0 ⇔ 2α 1 α 2 -3α 1 -α 2 > 0
and this double condition is ensured when α 1 > 3/2 and α 2 > max( α 1 2α 1 -3 , 3α 1 2α 1 -1 ). Consequently, for n large and then using (24), we will have P (Ω * ρ ∩ Λ c ) ≤ Cn -4/3 . We remark that, if (ϕ j ⊗ ψ k ) j,k is a base of (S m * , . 

Γ * i (t)| m ≤ (2 t ∞ q n ) m-2 (4q n ) m E 2qn-1 i=1,i odd [t(X * i , X * i+1 ) -t(X * i , y)π(X * i , y)dy] 2 ≤ t ∞ 2 m-2 1 16q 2 n E 2qn-1 i=1,i odd [t(X i , X i+1 ) -t(X i , y)π(X i , y)dy] 2 ≤ t ∞ 2 
m-2 1 16 t 2 (x, y)f (x)π(x, y)dxdy

≤ 1 2 m+2 ( t ∞ ) m-2 π ∞ t 2 f .
Then

Fig. 1 .

 1 Fig. 1. Estimator (light surface) and true fonction (dark surface) for a √ CIR process estimated with a histogram basis, n = 1000.

  .

5 Fig. 2 .

 52 Fig. 2. Sections for AR(1) process estimated with a trigonometric basis, n = 1000, dark line: true function, light line: estimator.

  n

Proposition 8

 8 Let ρ > 1. Then, under the assumptions of Theorem 2 or Theorem 4, there exists C 2 > 0 such that P (Ω c ρ ∩ Ω * ) ≤ C 2 n 7/3 .

2 n 2 n

 22 It is sufficient to set K 0 = 20θ. Now, inequality[START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] givesE π½ Aπ m ½ Ω * ρ ∩Λ c ≤ ( π ∞ + 4φ 2 n 1/3 )P (Ω * ρ ∩ Λ c ).

Furthermore the inequality γ 2 n ≤ π m * -π½ A 2 n + 1 θ ′ π -π m * 2 f 2 f 1 - 2 n≤ 12ρf - 1 0 2 ∞ + 18ρ 2 f - 1 0 2 ∞

 22122121212 n (π) ≤ γ n (π m * ) leads to π -π½ A + θ ′ sup t∈B f (m * ) Z 2 n (t)and then, onΩ ρ , ππ m * 2ρ θ ′ ≤ 4ρ π m * -π½ A + 2ρθ ′ sup t∈B f (m * ) |A 2 | π m * -π½ A sup t∈B f (m * ) Z 2 n (t)with θ ′ = 3ρ and by remarking that for t with support A, t2 n ≤ |A 2 | t 2 ∞ . Thus P (Ω * ρ ∩ Λ c ) ≤ P ( sup t∈B f (m * ) π m * -π½ A ∞ ≥ π ∞ /4) ≤ P ( sup t∈B f (m * ) Z 2 n (t)½ Ω * ≥ a n 1/3 ) + P (D m 1 * D m 2 * π m * -π½ A ≥ b)

P (D m 1 * 2 ∞ 4 )

 124 D m 2 * π m * -π½ A ≥ b) + P ( π m *π ∞ ≥ π ∞

2 n

 2 (ϕ j ⊗ ψ k )and we recall that, on Ω * , Z n (t) = 4 r=1 Z * n,r (t) (see the proof of Proposition 7). So we are interested inP Z * 2 n,1 (ϕ j ⊗ ψ k )½ Ω * ≥ a 4D m 1 * D m 2 * n 1/3 . Let x = Bn -2/3 with B such that 2f -2 0 B 2 + 4 π ∞ B ≤ a/4 (for example B = inf(1, a/8(f -2 0 + 2 π ∞ )). Then ( 2 π ∞ x + D m 1 * D m 2 * f -1 0 x) 2 ≤ a 4D m 1 * D m 2 * n 1/3 .So we will now boundP (Z * n,1 (ϕ j ⊗ψ k )½ Ω * ≥ 2 π ∞ x+ D m 1 * D m 2 * f -1 0 x) by using the Bernstein inequality given in[START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]. That is why we bound E| 1 4qn 2qn-1 i=1,i odd Γ * i (t)| m for all integer m ≥ 2,

Table 2 L

 2 Empirical risk E π-π 2 n for simulated data with pen(m) = 0.5D m 1 D m 2 /n, averaged over N = 200 samples. H: histogram basis, T: trigonometric basis. 2 risk E ππ * 2 for simulated data with pen(m) = 0.5D m 1 D m 2 /n, averaged over N = 200 samples. H: histogram basis, T: trigonometric basis.

	H H H H H H law n 50	100	250	500	1000 basis
	AR(1)	0.067 0.055 0.043 0.038 0.033	H
			0.096 0.081 0.063 0.054 0.045	T
	√	CIR	0.026 0.023 0.019 0.016 0.014	H
			0.019 0.015 0.009 0.007 0.006	T
	ARCH	0.031 0.027 0.016 0.015 0.014	H
			0.020 0.012 0.008 0.007 0.007	T
	Table 1				
	H H H H H H law n 50	100	250	500	1000 basis
	AR(1)	0.242 0.189 0.132 0.109 0.085	H
			0.438 0.357 0.253 0.213 0.180	T
	√	CIR	0.152 0.130 0.094 0.066 0.054	H
			0.152 0.123 0.072 0.052 0.046	T
	ARCH	0.367 0.303 0.168 0.156 0.144	H
			0.249 0.137 0.096 0.092 0.090	T

Table 3 L

 3 2 (f (x)dxdy) risk E ππ * 2 f for simulated data with pen(m) = 0.5D m 1 D m 2 /n, averaged over N = 200 samples. H: histogram basis, T: trigonometric basis.

	H H H H H H law n 50	100	250	500	1000 basis
	AR(1)	0.052 0.038 0.026 0.020 0.015	H
			0.081 0.069 0.046 0.037 0.031	T
	√	CIR	0.016 0.014 0.010 0.006 0.004	H
			0.018 0.012 0.008 0.006 0.004	T
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Appendix : random penalty

Here we prove that Theorem 2 is valid with a penalty which does not depend on π ∞ .

Theorem 12

We consider the following penalty :

where K 0 is a numerical constant and π = πm * with S m * a space of trigonometric polynomials such that

If the restriction of π to A belongs to

), then, under assumptions of Theorem 2, for n large enough,

Remark 13

The condition on the regularity of π is verified for example if

Thus the Bernstein inequality gives

Hence P ( sup

q n } ≤ Cn -4/3 since q n ≤ n 1/6 and so