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Abstract. A popular Bayesian nonparametric approach to survival
analysis consists in modeling hazard rates as kernel mixtures driven by
a completely random measure. In this paper we derive asymptotic re-
sults for linear and quadratic functionals of such random hazard rates.
In particular, we prove central limit theorems for the cumulative haz-
ard function and for the path—second moment and path—variance of the
hazard rate. Our techniques are based on recently established criteria
for the weak convergence of single and double stochastic integrals with
respect to Poisson random measures. We illustrate our results by consid-
ering specific models involving kernels and random measures commonly

exploited in practice.
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1 Introduction

hal-00115565, version 2 - 21 Nov 2006

Survival analysis has been the focus of many contributions to Bayesian nonparamet-
ric theory and practice. Indeed, many statistical problems arising in the framework

of survival analysis require function estimation and, hence, they are ideally suited



for a nonparametric treatment. Essentially, two closely related lines of research
have been pursued: the first is represented by the introduction of models for the
random cumulative distribution function whereas the second deals with models for
the random hazard rate and the random cumulative hazard. As for the former most
proposals fall within the class of neutral to the right processes due to Doksum (1974):
among others, we mention Ferguson (1974), Ferguson and Phadia (1979), Walker
and Muliere (1997), Walker and Damien (1998), Epifani, Lijoi and Prinster (2003),
James (2006). As for the latter, one can distinguish models leading to a cumula-
tive hazard which is almost surely discrete and models for which it is almost surely
absolutely continuous. The famous beta process derived in Hjort (1990) belongs to
the first class along the contributions of, e.g., Kalbfleisch (1978), Kim (1999), Kim
and Lee (2003), De Blasi and Hjort (2006). The second class focuses on the hazard
rate which is modeled as a mixture and has recently received much attention due
to a relatively simple implementation in applications. After the seminal papers of
Dykstra and Laud (1981) and Lo and Weng (1989), important developments deal-
ing also with more general multiplicative intensity models can be found in, Laud,
Smith and Damien (1996), Ibrahim, Chen and Mac Eachern (1999), James (2003),
Ishwaran and James (2004), Nieto—Barajas and Walker (2004, 2005), James (2005),
Ho (2006), among others. Passing from a hazard rate function to the corresponding
model for the cumulative distribution function is straightforward if the hazard rate
is almost surely absolutely continuous, but quite subtle otherwise. See Hjort (1990)
and James (2006), who establishes a nice link via the notion of spatial neutral to
the right process. It is also worth noting that all models share a common feature,
namely, that their basic building block is represented by an increasing additive pro-
cess (see Sato, 1999) or more generally by a completely random measure, a notion

introduced in Kingman (1967).

Let us focus attention on hazard rates that are modeled as mixtures. Denote
by U a positive absolutely continuous random variable representing the lifetime and

assume that its random hazard rate is of the form

h(t) = /X K(t,2)i(dz), 1)

where k is a kernel and i a completely random measure on some space X. The cu-

mulative hazard is then given by H(t) = fg fl(s)ds. Note that, given fi, h represents



the hazard rate of U, that is
h(t) dt = P(t <U < t+dt|U > t, fa).

From ([ll), provided H(t) — oo for t — oo almost surely, one can define a random

density function f as

f(t) = h(t) exp(—H(1))

where S(t) := exp(—H (t)) is the so-called survival function providing the probability
that U > t. Consequently the random cumulative distribution function of U is of the
form F(t) = 1 — exp(—H(t)). Such models, often referred to as life-testing models,
have been considered in Dykstra and Laud (1981) and Lo and Weng (1989) with
being an extended gamma process, also known as weighted gamma process. Nieto—
Barajas and Walker (2004), instead, used a weighted version of a gamma compound
Poisson process. Analysis beyond gamma-like choices of i was not possible due
to the lack of a suitable and implementable posterior characterization: however,
in James (2005) this goal has been achieved and many choices for ji can now be
explored. See also Ho (2006) for a posterior characterization via S—paths.

In this paper, we provide asymptotic results for random hazard rates constructed
via a mixture approach as in ([l). In particular, for i = 1,2,3, we will be interested
in establishing the existence of two positive functions 7; (T7) and 7; (T) such that the

following Central Limit Theorems (CLTs in the sequel) take place as T — +o00:

m (T) ‘gm - ()] = X4 (1) (2)
T law

n2 (T) X T /0 h )2dt — 7 (T)] — X5 (09) (3)

n3 (T') x E / )/T] dt — 73 (T)] = Xy (03) (4)

where, for i = 1,2,3, X; (0;) is a centered Gaussian random variable, with variance
o; depending on the analytic structures of i and k. For a fixed T" > 0, the random
objects T—1 fo (t)2dt and T—! fo { — H(T)/ T} ’ dt are called, respectively, the
(realized) path—second moment and the (realized) path-variance associated with h.
As we will point out in the subsequent sections, weak convergence results such as
@), (B and (f) give a description of the overall variability of the hazard rate h(t), by
providing a synthetic answer to the following crucial questions: (i) “How fast does

the cumulative hazard rate diverge from its long-term trend 7 (7")?”, (ii) “How fast



increases the magnitude of the fluctuations of A(t) above zero?”, and (iii) “How big
are the oscillations of iL(t) around its average value?”. To the authors knowledge,
this represents a completely new line of research. Indeed, by now, many results have
been obtained in terms of consistency of posterior distributions. See Ghosh and
Ramamoorthi (2003) for an exhaustive account. However, little is known about the
distributional behavior of the prior ingredients of a Bayesian nonparametric model
such as ([l[), in particular with reference to functionals of statistical relevance. In
the more conventional setup of random probability measures, instead of the one
concerning hazard rates considered here, the first results on linear functionals of the
Dirichlet process were achieved in the pioneering paper of Cifarelli and Regazzini
(1990), whereas the variance functional is studied in Cifarelli and Melilli (2000) and
Regazzini, Guglielmi and Di Nunno (2002). One may try to adopt the approach of
Regazzini, Lijoi and Priinster (2003) based on Gurland’s inversion formula to derive
expressions for the distribution of linear functionals of general random hazards as
in (), but to tackle quadratic functionals seems impossible to date. In light of
these considerations, it seems important to remark that, despite the theoretical
relevance of our asymptotic results, they also turn out to be helpful in terms of prior
specification: on one hand they can serve as a guide for deciding on which particular
completely random measure i basing the model (f]) and on the other hand, once
[t is chosen, provide hints for selecting the parameters of fi. Indeed, up to now
these two steps were carried out in a conventional way, leaving aside the problem
of properly incorporating prior knowledge, in particular with respect to the choice
of fi. A first contribution highlighting the different clustering behaviors induced
by alternative random measures in the context of mixtures for Bayesian density
estimation is provided in Lijoi, Mena and Priinster (2005). See also Ishwaran and
James (2001).

The paper is structured as follows. In Section 2 we introduce some basic concepts
and notations. In Section 3 we state the main results concerning linear and quadratic
functionals of random hazard rates. In particular, we derive CLT's for the cumulative
hazard function and for the path—-second moment and path—variance of the hazard
rate. Moreover, we provide a useful comparison theorem which allows to bypass
the verification of the most delicate conditions thus leading to obtain CLTs for
hazard rates based on complex kernels or random measures. Section 4 is devoted

to applications: we consider specific models involving kernels and random measures



commonly exploited in practice and analyze their asymptotic behavior in detail. In
Section 5 the proofs of our results are provided and the techniques used to establish
them are illustrated. Section 5 contains some concluding remarks together with

possible extensions and an outline of future work.

2 Basic concepts and notations

We start by introducing the main concepts and notations employed throughout the
paper. Consider a measure space (X, 2"), where X is a complete and separable metric
space and 2 is the usual Borel o—field. Introduce a Poisson random measure N,
defined on some probability space (£2,.%,P) and taking values in the set of non—
negative counting measures on (R* x X, Z(R*) ® 27), with non-atomic intensity
measure v, i.e.

E [N(dv,dx)} = v(dv,dz)

and, for any A € Z(R*) ® 2 such that v(A) < oo, N(A) is a Poisson random
variable of parameter v (A). Moreover, given any finite collection of pairwise dis-
joint sets, Ai,..., Ay, in B(R1) ® 2, the random variables N(A;),..., N(A) are
mutually independent. Throughout the paper, E[-] will denote expectation with

respect to IP. Moreover, the intensity measure v must satisfy

/ (v A v(dv,X) < co
R+

where aAb = min{a,b}. See Daley and Vere—Jones (1988) for an exhaustive account
on Poisson random measures.

Recall that, according e.g. to Daley and Vere-Jones (1988), a Borel measure p on
some Polish space endowed with the Borel o—algebra is said to be boundedly finite if
u(A) < 400 for every bounded measurable set A. Let now (M, Z(M)) be the space
of boundedly finite measures on (X, #(X)). We suppose that M is equipped with
the topology of weak convergence and that (M) is the corresponding Borel o—field.
Let fi be a random element, defined on (£2,.%#,P) and with values in (M, Z(M)),
which can be represented as a linear functional of the Poisson random measure N

(with intensity v) as follows

ii(B) = /R+XBSN(ds,dm) VB € B(X).



It can be easily deduced from the properties of N that [t is, in the terminology of
Kingman (1967), a completely random measure (CRM) on X i.e.

(i) p(0) =0 as.-P

(ii) for any collection of disjoint sets in A(X), By, Ba,..., the random variables
f(B1), ii(Bz), ... are mutually independent and i(Uj>1B;) = > ;5 fi(B;)
holds true a.s.-IP.

Now let %, be the space of functions g : X — R™ such that [p. [1— e59(@)]
v(ds,dx) < co. Then, the law of i is uniquely characterized by its Laplace functional
which, for any g in ¢, is given by

E o= fo@ ﬂ(d:v)] — exp{_ / [1—e 59 y(ds,dx)} (5)
R+xX

For details and further references on CRMs see Kingman (1993). From (f) it is
apparent that the law of the CRM [ is completely determined by the corresponding
intensity measure v. This suggests a simple and useful distinction of the random
measures we deal with, according to the decomposition of v. Letting A be a non-—

atomic and o—finite measure on X, we have:

(a) if v(dv,dx) = p(dv) A(dz), for some measure p on RT, we say that the corre-

sponding N and /i are homogeneous;

(b) if v(dv,dz) = p(dv|z) A(dz), where p : BZ(RT) x X — R* is a kernel (i.e.
x — p(Clz) is B(X)-measurable for any C € Z(R™1) and p(-|z) is a o-finite
measure on B(RT) for any z in X), we say that the corresponding random

measures N and i are non-homogeneous.

In the sequel we consider CRM i whose intensity measures satisfy

/ p(dv|z) AMdz) = +00 (H1)
R+ xX

In the homogeneous case, (HI]) reduces to max{ p(R*); A(X) } = +o0, which is
tantamount of requiring either infinite activity of f i.e. fi jumping infinitely often
on any bounded A € % or to consider i with unbounded support S such that
A(S) = +oo. In the non-homogeneous case, for (HI) to hold it is enough that ji

jumps infinitely often on some bounded set of positive A-measure. It is clear that



(H1) is met by the CRM usually considered in the literature. In the subsequent

sections, as illustrations of our general results, we will consider the following CRMs:

1. Generalized gamma CRM: its intensity measure is homogeneous and given by

1 e v
v(dv,dz) = T —o) oi° dv \(dx) (6)
where o € (0,1) and v > 0. This class, studied in Brix (1999), can be charac-
terized as the tilted exponential family generated by the positive stable laws.
It includes the inverse Gaussian CRM for ¢ = 1/2 and the gamma CRM as

o— 0.

2. Extended gamma CRM: its non—homogeneous intensity measure is of the form

e_ﬁ($)v

v

v(dv,dx) =

dv \(dz) (7)

where [ is a strictly positive function on X. This class dates back to Dykstra
and Laud (1981) and Lo and Weng (1989). The gamma CRM arises if 3 is

constant.

3. Beta CRM: its non—homogeneous intensity measure is given by

(1 _ v)c(x)—l

v(dv,dx) = g 1y(v) c() ”

dv A(dx) (8)

where c is some strictly positive function on X and I 4 stands for the indicator
function of set A. Note that the class of beta CRM, which is due to Hjort
(1990), has the particularity of allowing only jumps of sizes less than 1.

Having settled the basics regarding the background driving CRM in ([l), we now
have to define the kernel: k is a jointly measurable application from R™ x X to R™,
such that [y k(¢, 2)A(dz) < +oo and [ k(t|z)dt is a o-finite measure on B(R™) for
any = in X. Given these two ingredients the random hazard rate in (|l)) is properly
defined.

A further technical assumption we will make throughout the paper is represented

by the following conditions

/ k(t,x) o) p(do|z) A(dz) < 400 VE, j=1,2,4; (H2)
Rt xX

7



/ / k(t,z) o) p(dv|z) AM(dz)dt < +00 VT >0, j=1,2,4.
0,7] JR+xX

If, for j = 1,2,4, the application = — [, v/ p(dv|z) is bounded by some finite
constant (which is typically the case), then the first condition in (2) reduces to
requiring that the function x — k (¢, x)j is integrable with respect to A for every t,
whereas the second line of (HJ) boils down to the assumption that the application
(t,x) — k(t,z) is an element of Nj—124L7([0,T] x X, dt A (dz)) for every T > 0.
Hence, in the uniformly bounded case (HZ) is a condition not involving the CRM,
but just the kernel. Moreover, it is easy to see that the quantity [;. v p(dv|z),
j = 1,2,4, is bounded in x whenever p(dv|z) is associated to one of the three
classes of CRMs defined above (see (), () and (§)). We shall also note that, in the
homogencous case, ([HJ) implies that Jr+ v p(dv) < +oo, j = 1,2,4. An example
of a homogeneous CRM, which does not meet (H2) is the stable CRM for which
p(dv) = v™179dv and o € (0,1). Note that the stable CRM can be recovered
from the generalized gamma class by allowing v = 0 in (f): we have excluded this

possibility since it does not meet (HJ).

2.1 Further notation

For ¢,p > 1, we note
LP (v?) = LP(RT x X)7, (B(RT) @ 2)%,19)

the Banach space of real-valued functions f on (Rt x X)?, such that |f|” is integrable
with respect to v? := v®%. We will systematically write L? (v') = L? (v) for p > 1.
The symbol L? (1/2) is used to denote the subspace of L? (1/2) composed of symmetric
functions on (R* x X)Q. By symmetric, we mean that every f € L2 (1/2) is such that
f(s,x;t,y) = f(t,y;s,2) for every (s,z),(t,y) € RT x X. We also write Lio (VQ)
to indicate the subset of L2 (1/2) composed of symmetric functions vanishing on
diagonals, i.e. such that their support is contained in the purely non-diagonal set
D2 = {(s,z:t,y) : (5,2) # ()}

We now turn to the definition of three basic auxiliary kernels which are associated
to a given f € L, (v?): (i) the kernel f Y f is defined on (R* x X)? and is given by

Y f(t, w1 te, 2osts, w3) = f (t1, 215 t2, 2) f (t2, 223 t3, 23) ; (9)



(ii) f*} f is defined on (R* x X)2 and is actually a contraction equal to
ol it = [ fnmisy) fs e rdsd) 1)
R+ xX
(iii) f 4 f is defined on (RT x X) and is given by
) = [ fas gty dsd). (1)
R+ xX
Note that, by the Cauchy-Schwarz inequality and by the symmetry and square-
integrability of f, the kernel f 1 f is necessarily an element of L2 (1/2). The three
kernels defined above are the fundamental building blocks to obtain explicit expres-
sions for the moments and the cumulants of the linear and quadratic functionals
associated with random hazard rates (when they exist). Such expressions enter
implicitly in the statements of the subsequent results, and are mainly of a combina-
torial nature. We refer the reader to Rota and Wallstrom (1997) for an exhaustive
analysis of the combinatorial machinery underlying the construction of stochastic
integrals with respect to completely random measures.
In the subsequent sections it will be often convenient to work with the com-
pensated Poisson random measure canonically associated to N. Such an object is

indicated by

Ne = {N@ (A): Aec BRY) 3&”} , (12)
and is formally defined as the unique CRM on (R* x X, Z(R*) ® 27) such that
N¢(A) =N (A) —v(A) (13)
for every set A of finite v-measure. For every g € L? (v), we denote by

N¢(g) = /]R+Xxg(s,x) N¢ (ds, dx)

the Wiener-It6 integral of ¢ with respect to N¢. We recall that, for every g € L2 (v),
Ne¢ (g) is a centered and square integrable random variable with an infinitely divisible

law, such that, for every A € R,
E [ eiANc(g)} = exp {/ {ei)‘g(s’x) —1—1dXg (s, CE)] v (ds, d:v)} (14)
Rt xX
(compare with (f])). Moreover, for every f,g € L? (v), one has the isometric property

B8 (0 W] = [ Fensn)rdsds) = (o, 09

9



Note that (f]), ([4) and the isometric property ([[) imply that, for every g € L? (v)N
L (v),

E[N(g)} - /}mxg(s,x)u(ds,dx) (16)

Var{]v(g)} = Var[Nc (g)} :/]R+Xxg(s,x)2y(ds,dx). (17)

3 Main results: CLTSs for linear and quadratic function-

als

In what follows, we shall develop several techniques, allowing to study the asymptotic
behavior of linear and quadratic functionals associated to the random hazard rate
h(t) appearing in (fll). Concerning quadratic functionals, we will be mainly interested
in the path-variance and the path second moment of h(t). As will be clarified
in Section [], our approach exploits the fact that any quadratic functional of h
can be (uniquely) represented as a linear combination of its expectation and of
the following two random elements: (i) the stochastic integral of a deterministic
kernel with respect to N¢, and (ii) the double Wiener-It6 integral of a deterministic
bivariate kernel with respect to the stochastic product measure associated to N€.
According to the results proved in Peccati and Taqqu (2006b) (see Section p.1)), the
joint (weak) convergence of single and double Poisson integrals can be characterized
in terms of the asymptotic negligibility of deterministic contraction kernels. We will
show that such contractions are indeed explicit functionals of the kernel k defining
h. We shall first state the main general results of the paper, and then describe in

detail several applications. The proofs are deferred to Section fj.

Consider the random hazard rate h defined in formula (), and assume that

the intensity of the underlying Poisson CRM N verifies (H1), and that the positive
kernel k satisfies (). Moreover, for every T > 0 define the kernel

T
k:%)) (s,x) = s/ k(t,r)dt, (s,r)€RT xX. (18)
0

Our first result concerns the asymptotic behavior of the cumulative hazard rate

H(T) = [T h(t)dt.

10



Theorem 1 Suppose that: (i) kzgg) € L3 (v) for every T, and (ii) there exists a
strictly positive function T — Cy (k,T), such that, as T — +o0,

C2 (k, T) x /R . £2 (s,x)]2l/(ds,dx) — o2(k) >0, (19)
C3(k,T) x /R+xX [krfpo) (s,m)]gu(ds,dx) — 0. (20)

Then,
Co (k, T) % [ﬁ(T) - IE)[FI(T)]} law, x (21)

where X ~ A (0,03 (k))

Note that conditions ([[9)-(R0) only involve the analytic form of the kernel k,
and do not make any use the of the asymptotic properties of the law of the process
B(t), such as e.g. mixing. We now focus on the limiting behavior of the quadratic
functionals associated to the random hazard rate h. To this end, we associate to

k(-,-), and to each T > 0, the three auxiliary kernels:

T
BV (ssty) = 5 [ kGna)k(wy)du, (22)
0
@ 2 [T ,
ky’ (s,z) = —/ k (u,x)” du, (23)
T Jo
kg’)(s,x) = / kgpl)(s,x;u,w)y(du,dw). (24)
R+ xX

The kernel kg,?) can be obtained by restricting kzé}) to the diagonal set {(s,z;t,y) :

(s,z) = (t,y)}. We will see in Section [| that the kernels k:é;) are intimately related
to the objects defined in formulae (§)-(L]). Note that, due to assumption (H2)
and the Jensen and Cauchy-Schwarz inequalities, krfpl ) ¢ L? (y2) NnL (1/2), and also
ké? ) e 12 (v). The following theorem provides a CLT for the path—-second moment

of random hazard rates.

Theorem 2 Suppose that k:éi?') € L?(v)Nn L (v), kg) € L3 (v) and that there exists
a strictly positive function Cy (k,T) such that the following asymptotic conditions

are satisfied as T — 400:

2

1. 202 (k,T) Hk(;" oy~ OL () >0
2. Ck,T) Hk(;)( ;(ﬂ) —0;

11



2
3. Ok T) ||KY < ké})‘ﬂ(u?)_)o;
2
4. CHET)||BY < k(Tl)(L2()_>o;
5. C2(k,T) k()+2k(3)‘ oy~ OB (B) > 0;
6. C}kT) k()+2k(3)‘ oy~
Then,
1 T 2 1 T 7 2 law
CLlk,T)x 4= | ht)2dt—— [ E[ht)?des =% x (25)
T Jo T Jo

where X ~ A (0,01 (k) + o3 (k)).

Note that
Hk:g’)‘ = / / k(Tl) (s, z;u,w) v (du,dw) v (ds,dz)
L (v) R+xX JR+xX

_ %/OT </}R+Xxsk:(t,x)y(ds,dx))th.

Also, by applying formulae (1) and ([7) (for every ¢ > 0) in the case h(s,z) =
sk (t,x), one obtains that

! /OTEWtﬁdt _ ! / ([ st dx)) at (26)
—/ /R+XX (t,x)" v (ds, dx)dt.

The next theorem combines Theorem [] and Theorem [ to deal with path-

variances of random hazard rates.

Theorem 3 Suppose that h is such that assumptions [D)-(0) are verified, and
conditions 1.-6. of Theorem | are satisfied. If there exists a constant & (k) > 0 such
that, as T — +o0,

1. Cy(k,T)/(TCy(k,T))* - 0;
2. 20 (k, T)BH(T)]/ (T*Co (k,T)) — & (k);

| () (12 + 269) — 6 (k) o (k) k<0>‘

— o2 (k) >0,

2(1/

12



then,

TT. } F 2

€y ()< o /0 h(,ﬁ)_@ L / 2t +]E[HT(2T)] o
i K 7 - 2

—Cy (k. T) % %/OT iy - 20 dt__/ BT,

lav
Jaw, X,

where X ~ A (0,01 (k) + 03 (k)).

In view of ([[7), one also has that

1 /T Var (ﬁ(t)) dt = 1 /T/ $%k (t,x)? v (ds, dz) dt
T Jo T Jo Jrtxx 7 ’ .

To conclude this subsection, we state a useful comparison theorem for random hazard
rates. To this end, consider two completely random Poisson measures (on Rt x X)
N and ﬁ, as well as positive kernels k and %. The o-finite and non-atomic intensity
measures of N and N are denoted by 7 and 7, respectively. We assume that 7 and 7
both verify (1)), and that & and k satisfy (JI2). Finally, we suppose that, for every
Be (BR") o 2),

v(B) <7 (B),

and, for every (t,z) € R x X,

E(t,z) <k(tz).
Throughout the paper, for strictly positive sequences {a,} and {b,}, we write a,, ~

b, if there exists ¢ € (0,+00) such that a, /b, — ¢, as n — 0.

Theorem 4 Suppose that the pair (v, k) entering the definition of the random haz-
ard h in (1) is such that, for every B € (B(RT)® 2, 7(B) < v(B) <7 (B) and,
for every (t,r) € RT x X, k(t,z) < k(t,z) < Z(t,x). Then, the following three
comparison criteria hold.

(A) Assume that the two kernels k and ? with U and U substituting v, satisfy the
conditions ([[9)—(R0) for some appropriate positive functions Co(k,T) and Co(k: T)
and constants o3(k) and Uo(k‘). Suppose also that Co(k, T) ~ C’o(kz T), and consider
a positive function Co(k,T) such that Co(k,T) ~ Co(k,T). Then, for every diverging

13



sequence T,, — +00, there exists a subsequence T, such that the CLT (1)) holds as
n' — 400, with T, substituting T, where X is a centered Gaussian random variable

whose variance depends on the choice of Co (k,T) and on n'.

(B) Assume that k and ?, with U and U substituting v, satisfy conditions 1.-6. of
Theorem [ for some positive functions C1(k,T) and Cl(?, T) and constants UJZ(E)
and 0]2»(%), j = 1,2. Assume, moreover, that C1(k,T) ~ Ci(k,T), and select a
positive function Cy (k,T) such that Cy (k,T) ~ Cy(k,T). Then, for every sequence
T, — 400, there exists a subsequence T,y such that the CLT (RY) is verified (for
n' — +oo and with T, substituting T ) where X is a centered Gaussian random

variable whose variance depends on Cy (k,T) and n’.

(C) Suppose that k, k, C;(k,T), C;j(k,T) and Cj(k,T) (j = 0,1) satisfy the
assumptions pinpointed in Parts (A) and (B), and suppose that they also meet the
Conditions 1.-3. of Theorem [. Then, for every sequence T,, — oo, there exists a
subsequence Ty, such that the CLT (RR) holds, forn’ — 400 and with T, substituting
T.

REMARK. The conclusions of Theorem { are less precise than those of Theorems
[ B, in the sense that they only apply to subsequences T,/. Of course, this is due to
the fact that, in the statement of Theorem [], we do not make any assumption on the
analytic properties of k and v, besides the conditions k < k < k and 7 <v<U. As
will become clear in the subsequent sections, more exact information can be deduced

by adding some specific requirements to the structure of k£ and v.

4 Applications

We will now consider noteworthy examples of random hazard rates by specifying
suitable kernels and the form of the background driving CRM. In the following
we will always consider CRMs with \ being the Lebesgue measure on R, which
appears a natural choice in our context. This implies that Assumption (H1) is met.
Paragraph [I.1 is devoted to the study of the asymptotic behavior of the cumulative
hazard H, whereas in Paragraph B.d we deal with quadratical functionals of the

hazard rate.
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4.1 Asymptotics for the cumulative hazard

As an illustration of Theorem [, we consider different kernels and show how they
are responsible for the rate of divergence of the cumulative hazard and how they
influence the variance of the limiting Gaussian random variable in the CLT (R1)).
We first consider general homogeneous CRM such that f[LOO) v*p(dv) < oo, which is
tantamount of requiring the part of condition (H2) involving the jump component
of the Poisson intensity to be satisfied. Moreover, set, for notational convenience,
K,(,i) = [;7s%0(ds), i = 1,2, and I; = L;(T) = [g+.x [kzg)) (s,x)}zy(ds,dx) for
i =1,2,3. Note that I (T) = E[H(T)].

(i) Rectangular kernel. The kernel k(t,x) = I;_y/<,) where 7 > 0 represents
a bandwidth, is known as uniform rectangular kernel. Such a kernel represents a
sensible choice when no prior information on the shape of the hazard rate is available.

See, e.g., Ishwaran and James (2004). In this setup (H2) is clearly met,

s(x+1) O<z<T
k(o)( ) §2T Tl <T—1
s,x) =
T s[T+71— 1z T-17<z<T+rT
0 elsewhere

and kég)(s,x) € L3) for all T > 0. We also have, as T — +oo, I (T) =
KM {277 — 172} = 27 KV + 0 (TV2), I (T) ~ 4KSP72T and I3(T) ~ T for
some ¢ > 0. Hence, ([J) and (RQ) are satisfied with Co(k,T) = T—/2 and, by

Theorem [l], we obtain

1 - law

—lam - QTK(l)T] law, y 28
= A1) — 27K} (28)
where X ~ A <0,4K,(,2)7'2).

(ii) Dykstra-Laud kernel. If k(t,2) = I(g<z<4), then the random hazard rate is
monotone increasing. Such a kernel, which is widely exploited in practice, was first
proposed in Dykstra and Laud (1981). It is easy to see that (H2) is satisfied and
that k:gf])(s,x) = 5(T — 2)[p<y<1) € L*(v) for all T > 0. Moreover, one obtains

(1) (2) (2)

L = KS T2, Iy = Kg T3 and I3 = KZ T4, so that (1) and (RQ) are met with
Co(k,T) = T—3/2. Hence, by Theorem [], we have

1
KD,
2

1

law
— X, (29)
T

H(T) ~

N

15



K
3

where X ~ A4 (0, . Note that the Dykstra-Laud cumulative hazard has a

quadratic asymptotic trend, whereas the trend obtained from a rectangular kernel is
linear. Moreover, the speed at which the Dykstra-Laud cumulative hazard diverges
from its trend is significantly faster than in the rectangular case. The reason may
be that the former produces monotone increasing hazard rates whereas the latter
not. This phenomenon, well exemplified by our result, should be taken into account

when deciding which kernel to adopt.

(iii) Ornstein-Uhlenbeck kernel. If k (t, ) = v/2k exp (—k (t — x)) [(o<az<t), then the
random hazard rate is an Ornstein—Uhlenbeck—type process. Such models for the
hazard rate are employed in Nieto—Barajas and Walker (2004, 2005). In this case,
(H2) is met, k:ég])(s,x) =sy2/k (1 - e_“(T_x))H(OSJCST) € L3(v) for all T > 0, and
we have that, as T diverges to infinity, I; (T) = Kﬁl)\/Q/—n {T—eT/k+r71} =
Kf(,l)\/2/—/<T +o (Tl/Z), I, (T) ~ 2[2’52)T and I3 (T") ~ ¢T for some constant ¢ > 0.

Hence, ([[9) and (R0) are satisfied with Cy(k, T') = T~/2. From Theorem [l it follows
that

1

VT

H(T) — KV %T

law

— X, (30)

2K
K

where X ~ 4| 0, . One may note that the trend and the rate of divergence

from the trend associated with the Ornstein—Uhlenbeck kernel coincide with those
arising from the rectangular kernel. Moreover, given the same background driving

CRM, the variances of the limiting Gaussian random variables appearing in (R§)

and (B{) coincide if the parameters are chosen in such a way that k = 1/(272).
(iv) U-shaped or bath-tube kernel. 1If k(t,r) = I(;_g/>,) With 3 > 0, then the
corresponding hazard rates are U-shaped with minimum at 5. Such a kernel is

suggested by Lo and Wong (1989). See also James (2003) and Ishwaran and James
(2004). It is easy to check that (H2) is met,

s(T — 2x) O<z<p
k:g])(s,x): s[T — (B + )] B<x<T-[
0 elsewhere

and k‘gpo)(s,x) € L3(v) for all T > 0. Moreover, as T — +oo, I1 (T) = %K,(,UT2 +

(2)
0 (T‘?‘/Q)7 Iy ~ K§ T3 and I3 ~ ¢T* for some constant ¢ > 0. Choosing Cy(k,T) =
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T—3/2, ([9) and (R0) are satisfied and from Theorem [l we deduce

1 s 1 law
pec [H(T) - 5Kgl)T? X, (31)
2

(2)
where X ~ A (0, K§ > . Note that the bath—tube kernel produces the same asymp-

totic behaviour of the Dykstra and Laud kernel: this fact is not surprising since after
reaching its minimum in (3, also the bath—tube kernel is monotone increasing. Of
course, one can regard the Dykstra and Laud kernel as a degenerate bath—tube
kernel, corresponding to the case 3 = 0.

As apparent from the statement of Theorem [l| and from the discussion provided
above, the variances of the limiting Gaussian random variables appearing in (1)),
(9), 9), (BO) and (BI)), always depend on the jump part of the Poisson intensity.
For instance, if i is the generalized gamma CRM with intensity (f), then KﬁZ) =
(;2_—_?. This confirms the empirical finding, used in tuning the prior parameters, that
a small v induces a large variance. To avoid confusion, note that in the setting of
e.g. Ishwaran and James (2004) 8 = 1/v and, hence, their claim that a large (3
induces a non—informative prior is coherent with our result. As for o, the variance
is maximal in o = 0 if v < e, whereas it is maximized in o = (log(y) — 1)/log(7) if
v =e.

Let us now turn attention to hazards based on non—homogeneous CRM, specif-
ically the extended gamma and beta CRMs presented in Section 2. From () and
(B) one can see that their non-homogeneity is due to the strictly positive functions
B and ¢, respectively. According to their structure we distinguish three cases: (a)
if B(z) = B in () and c¢(z) = ¢ in (§), the CRMs become homogeneous and the
previous results hold with K| ,SQ) equal to 1/3% and 1/(1 + ¢), respectively. (b) If 3
(or ¢) are bounded by some finite constant M, then one can apply Theorem 4 to
conclude that Cy(k,T") has the same order as in the examples above, thus depend-
ing on the choice of the kernel. Moreover, if 3 (or ¢) are eventually non—decreasing
(non—increasing) the convergence holds for any diverging sequence T,, with the vari-
ance of the limiting Gaussian random variable depending on the choice of 3 (or ¢)
taking value in the range [03(k), 03 (Z)] (c) If B (or ¢) diverge to +00 as © — +00,
quite interesting phenomena appear, which shed some light on the possible use of the
factor of non-homogeneity represented by the functions 3 (or c). Set, for i = 1,2, 3,
K,()i)(:v) = ;7 s'p(ds|z), so that I; becomes [y K,()i)(:v) [fOT k(t,x)dt]ldx. For both

17



CRMs, a diverging (8 (or ¢) implies that K/g2)(:n) — 0: this, indeed, affects the
asymptotic behavior of the cumulative hazard H. To be more specific, consider
the Dykstra and Laud kernel combined with an extended gamma CRM such that
B(z) ~ /T as x — oo: it follows that Iy ~ log(T)T? and I3 ~ dT for some constant
d > 0. Hence, ([9) and (R0) are satisfied with Co(k,T) = (1/log(T)T)~! and, by
Theorem [l, we have

—— () - BED)] ™ X, (32)

log(T) T

where X ~ .4 (0,1). Comparing (BJ) with () one notes that the rate of di-
vergence from the trend E[H(T)] is reduced from T%?2 to \/log(T)T. As for
E[H(T)], it is important to remark that the overall growth (though not the dom-
inating term which is 4/37%2) depends on the particular form of 3. Still as-
suming B(x) ~ /x and letting b be a positive constant, we obtain, for instance,
E[H(T)] = 4/3T7%% + o(T+/1og(T)) when ((z) = Lo,5(z) + x1/2ﬂ(b7oo)(x), and
E[H(T)] = 4/3T%? —1og(T)T + o(T+/1og(T)) if f(x) = (14 x'/?). Again, compar-
ing these findings with (R9) it is apparent that the trend has been reduced from T2
to T%/2 + o(T?/?). On the other hand, with the beta CRM, we have Kﬁl)(x) =1
and, consequently, I1(T) = E[H(T)] = 1/2T? whatever the choice of c. Selecting
c(x) ~ /T as x — oo, we obtain Iy ~ 16/15T°/2 and I3 ~ dlog(T)T*® for some
constant d > 0. Thus, with Co(k,T) = T-°/4, (I9) and Q) are met and Theorem

yields
1

5
Tz
where X ~ .4 (0,16/15). Hence, compared with the homogeneous case in (R9), the

() — 22| v x
2 )

beta CRM does not affect the trend but still decreases the rate of divergence from
T? to T5/4,

If, instead, we consider the rectangular kernel with 7 = 1 combined with an extended
gamma CRM such that again f(z) ~ /x as © — oo, it follows that Iy ~ 4log(T")
and I3 — d for some constant d > 0. Hence, ([9) and (R0) are satisfied with
Co(k,T) = (y/log(T))~! and, by Theorem [, we have

1 o nd aw
o (D) B = X,

where X ~ .47(0,4). Hence, we see that the rate of divergence from E[H(T")] has

been reduced with respect to the homogeneous case in (B§) decreasing from 71/
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to /log(T). As before, I;(T) = E[H(T)] depends on the particular form of 8.
With () ~ v/, b being a positive constant, we have I1(T) = 4T/2 + o(+/log(T))
if B(z) = Ty (x) + xl/z]l(bm)(m) and I;(T) = 4T% — 21log(T) + o(;/log(T)) if
B(x) = (14+x'/?). By comparing these trends with the one in (B§) one can appreciate
its reduction from T to T2 + o(T"/?).

Replacing the extended gamma CRM with a beta process we have I1(T) =
2T — 1/2 whatever the choice of ¢. Moreover, if ¢(x) ~ \/z as x — oo we obtain
Iy ~8T"Y? and I3 ~ dlog(T) for some d > 0. By setting Co(k,T) = T~'/* ([9) and
(B0) are met and Theorem [] leads to

1 [FI(T) - 2T} Jaw, ¥

T4

where X ~ 4 (0,8). Hence, with respect to (), the trend is unchanged and the
rate of divergence halved.

By means of the previous examples the impact of a non—-homogeneous CRM be-
comes apparent: a non—-homogeneous CRM allows to reduce both the trend of the
cumulative hazard and the rate at which it diverges from its trend. An extended
gamma CRM is able to reduce both, whereas a beta CRM affects only the rate of
divergence from the trend. Overall, by studying also other examples, not reported
here, of functions § and ¢ with the 4 different kernels considered above, some in-
teresting indications can be drawn. For instance, denote by 71" the rate at which
the cumulative hazard based on the homogeneous version of an extended gamma
(or beta) CRM diverges from its trend (e.g. 7 = 3/2 in the Dykstra-Laud case).
Then, by choosing a suitable diverging (3 (or ¢) the rate can be tuned at any order
in the range [T~ /2, T7]. Analogous conclusions can be derived for the trend when
using a hazard based on an extended gamma CRM: the trend corresponding to the
homogeneous case T (e.g. « = 2 for the Dykstra—Laud kernel) can be tuned by
the choice of 8 at any rate in the range [T*~!, T].

4.2 Asymptotics for quadratic functionals

In this paragraph we consider quadratic functionals of the random hazard rate. We
derive central limit theorems for the path-second moments and the path—variances
of hazard rates with specific kernels and driving CRM. Our results will be mainly

based on Theorems f] and fJ. As in the previous paragraph, we first deal with general
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homogeneous CRM such that f[l 00) v*p(dv) < oo; this requirement combined with
the structure of kernels we consider ensures that (H2) is satisfied. Finally set, as

before, K = Jy s ), for i = 1,2,3,4.

(i) Rectangular kernel. We start by considering the rectangular kernel and derive
CLTs for the path—second moment and for the path—variance of hazard rates. Some

simple calculations lead to write, for x > y and T > 27,

(y+71) y<r<t,0<y<rt
(y+2r—z) (Vy) <z<@y+27),0<y<T -7

k(Tl)(s,x;t,y):
T+71—2 y<ae<T+71,T-7<y<T+r

S Nz N§g N8R

elsewhere

Moreover, kzg)(s,x) = sT_lkg))(s,x) and for T' > 27, one has

(1)
—Slgf(’) [%124-7'1'] O<I’<T
1
o SKT() [—%x2+27x] T<x <21
3
kr'(s,x) = ¢ e 972 2r<z<T-r7
(1)
SI;’ 3724+ T(x + 1)+ 37 —72—32] T—-r<a<T+r1
0 elsewhere

\

In order to apply Theorem P let us first consider Condition 1., which allows to

determine the rate function: it turns out that Cy (k, T') = /T since

S T e LLalC v )

L2(v?) 3

The verification of Conditions 2.—6. can be achieved by simple though quite lengthy

calculations.
Indeed, letting, for ¢ = 1,...,4, d; be a positive constant, one obtains
2. T2 k(l)‘ LA
Aw?y T

5. 72 ||k « 1k(1>‘ N@Ho

’ 2wy T
4. 72 ||KY k(l)‘ ~ B

L2(v) T

L2(v

(@
2 3 K 2
5. THk(T)JFQk(T)H o 3R =167 [ ~ + rKOKD + KD (KW) ]
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3 dy

3
6. T° ~—
L3(v) T1/2

— 0

[k + 25|

Since

1T 2 _
T/o E(h()?)dt = 2r K + 477 (K;U) +0<T 1/2),

(34)

we deduce from Theorem | the following asymptotic result, concerning the path-

second moment of h(t):

e f1 [T e @) 2 (M) | law
T [ R (2 KD+ 4 <Kp ) lav,
where X ~ A4 (0,01(k) 4+ o3 (k)) with

(4)

K T <Kf()2)>2 2
ot (k) + o3 (k) = 167 | =5+ rKPKD + ——— + K (K;U)

Now we concentrate on a CLT involving the path-variance of A(t), that we shall

obtain as an application of Theorem . In particular, we must verify that Conditions

1, 2 and 3 in the statement of such result are verified, for some appropriate positive

constants § (k) and o3 (k). Indeed, one has that, as T — +o0,

_G®T) 1
(TCy (k,T))?
2D i) = 2 {27 KT +o(1)} — 4rK(D = (4

and also

| €1 (1) (K + 20 = 5 (k) Co (kT | ;@)
(1)

2
16,2 [KZ - — 7KK 4 2K <K,§1)> ] = o3 (k).

The fact that B[H(T)] = K" {2T'r — 12} combined with (B4) yields

2
dt = 27'K£2) +o(T~1/?),

Hence, by using (B5)—(B7), we deduce from Theorem [J that

VT x {% /T[B(t) - %]:I(T)]zdt - 27-K£2)} law %
0
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where X ~ A (0,07 (k) + 03 (k)), and o7 (k) and o3 (k) are given by (BJ) and (B7),
respectively.

(ii) Ornstein—Uhlenbeck kernel. Let us now derive the CLT for the path-second
moment and the path—variance of hazards based on the Ornstein—Uhlenbeck kernel.

For this case we easily obtain
1 st _ _
k(T)(S,ﬂf;tay) = 7eﬁ(x+y) (e e —e ZHT) To<y<a<r)

(2) 82 2kx [ \—2KT —2xrT
Ry (s, 2) = e (€72 — e ™) Tocacry

3) SK[()l) —25T —2Kx KT 2KT
kp' (s, @) = T (e —¢ ) (e —e )H(OSmST)

and some tedious algebra allows to derive also krfpl ) *1 krfpl ) and k:(Tl ) *5 krfpl ). Condition
1. in Theorem J is verified by choosing C (k,T) = VT indeed,

2 K(2)2
oty = Bl

L2(v2) K

2T Hk(;"

(38)

Standard calculations allow to verify the validity of the other conditions in the
statement of Theorem [ In particular, by letting d; (i = 1,...,4) be a positive

constant, one obtains

4 d
9. T2 k(l)‘ e
Ty T
2 |1 1. d
3. 7% ||k« K ‘LW)NT—M
2 |1 1. ds
TR ol ey HLQ(V)N?—N)

(2) 32 2 _ 4 4. 3) - 4 )2
5. THk:T + 2k HLQ(V)HUQ(/g)_K},MEK,g >K,§>+§K,§><Kg>>

3 dy

3
6. T°* ~—
L3(v) T1/2

— 0

B+ 24|

Since, as T" — 400,

2 <K§1)>2

K

% / B0t = K® +o (T2, (39)
0

we deduce from Theorem [ the following result for the path-second moment:

v (7)),
T'/? T/ h(t)?dt — | KP) + =X
0

)
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(2) 2
where X ~ A (0,K,§4) + %K,(,B)K,(,l) + @ + ,f—gK,(,Q) (K,E”) . As far as the

path—variance is concerned, one verifies easily that the conditions of Theorem |3 are

verified, with ¢ (k) = %K};l) and

4 4 2
03 (k) i= K = = K KV + = K <K<1>) (40)

Using (BY), it is straightforward to see that

| T
_/E
T Jo

As a consequence, we deduce from Theorem P that

Ba(T)]

h(t) — — | dt= K +o(T71/?).

T T P

VT x {i /OT[iL(t) ~ L aaypa - K<2>} Taw, 5

with X ~ .4 (0,07 (k) + o3 (k)), where o} (k) and o3 (k) are given by (B§) and ([0},
respectively.

Before considering the Dykstra and Laud kernel and the U-shaped kernel, let us
make the previous results completely explicit by specifying the background driving
CRM. For both the rectangular and the Ornstein—Uhlenbeck kernel the rate function
is the same and the CRM affects the variance of the limiting Gaussian random
variable for both path-second moment and path-variance of the hazard rate. Take,
as before the generalized gamma CRM with Poisson intensity (f) and denote the
Pochhammer symbol by (a), := I'(a + n)/I'(a). For this choice we have K,EC) =
[(1 = 0)e_1](v¢77)~! for any ¢ > 0. For the Ornstein—Uhlenbeck kernel the variance
is then given by
(1—0) (467'9% + (9 = 50)77 + k(2 — 0)2)

o

ot (k) + o3 (k) = (41)

which decreases as k and + increase for any given (v,0) and (k,0), respectively.
Moreover, it is maximized by ¢ = 0 for low values of xk and v, whereas, for moderately
large values of k and -, the maximizing ¢ increases as k and « increase. For instance,
if Kk = 0.5 and v = 2, the maximizing o is approximately equal to 0.22 and the overall
variance is 2.56. To highlight the incidence of the prior parameters note that with
k =1 and v = 3, the maximizing ¢ and the variance are approximately equal to 0.52
and 0.29, respectively. Using the asymptotic variance as a guideline for fixing the

prior parameters seems a sensible and straightforward choice since it summarizes
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in a single expression the various effects of the parameters. Turning to the path—

variance a hazard based on a generalized gamma CRM with Ornstein—Uhlenbeck

kernel will have variance given by

(1—0) (46719% — (7= 30)77 + k(2 — 0)2)
rydo

which behaves in the same way as ([]) but, obviously, leads to smaller values.

ot (k) + o3 (k) =

(42)

Considering the same set of parameters as above we have: if kK = 0.5 and v = 2,
o ~ 0.61 maximizes () and its value is 0.92; if K = 1 and v = 3, () is maximized
by o = 0.76 leading to a variance of 0.09. Similar considerations hold also for the
asymptotic variance of a hazard based on the rectangular kernel combined with a
generalized gamma CRM.

Turning attention to quadratic functionals of hazards based on non—homogeneous
CRM the importance of our Theorem ] becomes apparent: the verification of the
conditions of Theorem [ and B become extremely difficult if not impossible. Hence,
when it is possible to bound above and below the Poisson intensity of a non-—
homogeneous CRM so to meet the conditions of Theorem [, we are still able to
state that the rate function is Cy (k,T) = T'/? for hazards based on rectangular and
Ornstein—Uhlenbeck kernels. Moreover, we can deduce the convergence, along some
subsequence T, of every diverging sequence T,,, of the path-second moment and

of the path-variance to a Gaussian random variable with variance taking value in

the range [02(k) + 03 (k), 0% (k) + o2(k)] and [0?(k) + 03(k), 02 (k) + o2(k)], respec-

tively. In order to deduce convergence for every diverging sequence, the structure

of the Poisson intensity has to be specified as well. Thus, let us consider again the
extended gamma and beta CRMs. As noted in Section 4.1, supposing 3(z) = 3
in () and c(z) = ¢ in (§), the CRMs become homogeneous and the previous re-
sults hold with the same rate functions. Note that, for a > 0, K éa) = I'(a) 7@
in the extended gamma case and Kéa) = TI'(a)[(1 + €)q_1]7" in the beta case.
Hence, with an Ornstein—Uhlenbeck kernel the asymptotic variance of the path—
second moment is equal to (31k%)~! (6x% + 9k + 4) for the former and equal to
[K2(1 + &) (1 + @)3]71 (9xe? + 37ke + 30k + 6K%(1 + €) + 30k(1 + ¢) + 4(1 + &)3)
for the latter. For the path-variance similar expressions are obtained. If 3 (or c)
are functions bounded by some finite constant M, then we are in the genuinely
non-homogeneous case and, as mentioned above, by Theorem 4 CLTs along sub-

sequences of diverging sequences are granted. To achieve convergence along any
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sequence, it is enough to suppose that § (or ¢) are eventually non—decreasing (or
non-increasing), which represents a sensible choice in any application. For in-
stance, considering an extended gamma CRM with non—decreasing § taking values
in [L, M] combined with an Ornstein—Uhlenbeck kernel the path-second moment
will converge, along any sequence, to a Gaussian random variable with variance
o?(k) + o3(k) = (M*k?)~! (6K + 9k + 4). Analogous considerations hold for the
path—variance.

(iii) Dykstra—Laud and U-shaped kernels. Our results for quadratic functionals
do not apply when choosing the kernel k£ to be the Dykstra—Laud or U-shaped
kernel. Indeed, for both kernels Conditions 3., 5. and 6. in Theorem P are not
met. Moreover, also the additional conditions 1.-3. in Theorem [] are not satisfied.
Note that Condition 3. represents the most delicate since it involves a contraction.

Consider first the Dykstra—Laud kernel. It is easy to see that kzé}) (s,m;t,y) = sTt(T—

] —x —y)2 —x)?
x)H(OSnyST) and that ké}) *% kjé}) (S’x; t,y) = tKPQSQT ) |:(T 2y) -z 5 ) } H(OSySJ})'
As for Condition 1. we obtain with the choice C; = T—1

2 |12 K,
T2 HkT ‘LQ(VQ) 6

This, however implies that the quantity in Condition 3. converges to a positive con-
stant and the ones in Condition 5 and 6. diverge. In Theorem [| we obtain that the
quantity in Condition 1. is equal to 1 and the one in Condition 2. diverges. Finally,
Condition 3. cannot be satisfied since Condition 5. in Theorem [ is violated. For
the U-shaped kernel we obtain again Cy(k,T) = T~! and the asymptotic behaviour
of the various quantities involved in the conditions is the same as the one of the
Dykstra and Laud kernel. We have also tried with non-homegeneous CRM: indeed,
it seems possible to obtain Cy(k,T) = T~" with any n € (0,1], but the conditions
are nonetheless violated.

The fact that our results do not work for the Dykstra—Laud and U-shaped kernels
seem to suggest that kernels yielding monotone increasing hazards (at least from
some point onwards as it is the case for the U-shaped kernel) exhibit a too strong
growth to be compatible with our conditions. Future research will focus, on one
side, on the translation of the conditions into simple and intuitive sufficient ones
regarding the behaviour of the hazard rate induced by different classes of kernels
and, on the other side, to relax the conditions in order to cover models for monotone

increasing hazards.
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5 Proofs and further techniques

In this section we collect the proofs of the main results of the paper. As antic-
ipated, we shall make a substantial use of the CLTs, for sequences of single and
double Poisson integrals, recently established by Peccati and Taqqu (2006b). In the
next subsection we present some preliminary results concerning double Wiener-Ito
integrals, with special attention devoted to weak convergence and central limit the-
orems. Virtually all of the needed background material, about stochastic integrals
of any order with respect to Poisson measures, can be found in Surgailis (1984) and
in Chapter 10 of Kwapieni and Woyczyniski (1992). A different approach, based on
Hilbert space techniques, is described in Nualart and Vives (1990). The reader is

also referred to Surgailis (2000) for an updated review of related convergence results.

5.1 Double integrals and CLT's

Throughout this section we consider a Poisson CRM N such that (H1) is verified.
Recall that N¢ is the compensated Poisson measure defined in formulae ([J) and
([3). For every f € Lio (1/2), we denote by I2~c (f) the double Wiener-It6 integral of
f with respect to N¢. The reader is referred to Surgailis (1984) for precise definitions.
Here, we shall recall that, if f € Lio (1/2) is a piecewise constant function with
support contained in a product set S x S C (RT x X)2 such that v (S) < +o0, then
the variable Iév °(f) is a genuine (“pathwise”) double integral with respect to the
restriction to S x S of the (signed) product measure N¢ (ds, dz) N¢ (dt, dy). The very
nature of f implies that the integration is performed on the intersection between
S x S and the non-diagonal set D3. For a general f € Lio (1/2), Iévc (f) is simply the
limit in L? (P) of random variables of the kind Iévc (fx) where each fj € Lg,o (v?) is
a piecewise constant function with support in a product set S; x Si with v2-finite

measure. The following isometric relation is well-known: Vf1, fo € Lio (1/2)

I {Iévc (f1) x IV (f2)}

- / / f1 (5,258,9) fo (5,258, y) v (ds, dz) v (dt, dy) . (43)
Rt xX JR*TxX

When f € L?(v?) (hence f does not necessarily vanish on diagonals), we set
.72~c (f) = I;C <f ]ID3>, and we observe that the isometry property (f) still holds.

Indeed, v is non-atomic, and therefore v? does not charge diagonals (even though
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N¢(ds,dz) N° (dt,dy) does). We also recall the product formula

N¢(g) N (h)

= (9:h) 2 +/

g(s,2) h(s,0) N°(ds, de) + 13 (R g), (44)
RTxX

where h®g (s, z;t,y) = h(s,z) g (t,y) € L? (1/2) and (7) stands for a symmetrization,
which holds for every f,g € L? (v) such that g (s,z) h(s,z) € L? (v).
Finally, we state the main results proved in Peccati and Taqqu (2006b). We

consider a sequence of double integrals
Fo=1(fa), n>1, (45)

where f, € LiO (VQ). We will suppose that the following technical assumptions are

satisfied: the sequence f,, n > 1, in (§5) is such that, for every n > 1,
[fallpzgey >0 and fush fu € L2 (), (N1)
1
2
{[ ttsmtvasanf’ erio). (N2)
R+ xX
where we use the notation introduced in (§)-([]), and moreover, as n — +oo,

/ / fu (s, yst,2)* v (ds, dy) v (dt, dz) — 0. (N3)
RTxX JR*TxX

Note that (N3) implies, in particular, that f,, € L4 (1/2) for every n. See Peccati and
Taqqu (2006b) for a discussion of the role of (N1))-(NJ). In the subsequent sections,
we will see how such assumptions restrict the set of the random hazard rates that
can be studied by our techniques. The next result is a CLT involving sequences of

double integrals.

Theorem 5 (Peccati and Taqqu, 2006b, Th.7) Define the sequence F,, = I;C(fn)
and fn € Lio(VQ); n > 1, as in ([{5), and suppose (N1)-(N3J) hold. Then, f,+" fn €

L2(v3) for every n > 1, and moreover:
1 if

an“ig(,ﬂ) X (fn *% fn) — 01n L2(V2) and (46)
||fn||z22(y2) X (fn *% fn) — 01in L2(y)
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then
_ _ 1
271/ an”L’zl(ﬂ) x Fy = X, (47)

where X ~ A (0,1) is a standard Gaussian random variable;

2. if F, € L*(P) for every n, then a sufficient condition to have (£6) is that

-2
(205l02) B (B =3 (48)

-2
3. if the sequence {(2 ||fn||%2(l/2)) Fi:n> 1} s uniformly integrable, then
conditions (B4), (1) and () are equivalent.

Theorem [ is proved by using a decoupling technique, known as the principle
of conditioning, which has been adapted to the framework of CRM by means of
the general theory of stable convergence developed in Peccati and Taqgqu (2006a).
The next result gives sufficient conditions to have that the law of a random vector,
composed of a single and of a double integral, converges weakly to a bivariate Gaus-
sian law. The proof is essentially based on an appropriate version of the product

formulae for multiple stochastic integrals, proved e.g. in Surgailis (1984).

Theorem 6 (Peccati and Taqqu, 2006b, Th. 8)

(A) Consider a sequence

Gpn=N(gn), n=1,

where g, € L?(v) N L3(v) and l9nl 2,y > 0, and suppose that, as n — +oo,

lonlidy [ lon (sl (ds.dg) . (19)
X

law

Then, HgnHZ%(V) X G, — X, where X ~ A (0,1) is a centered standard Gaussian
random variable.

(B) Consider a sequence F, = Iévc(fn), n > 1, with f, € Lgyo(VQ) as in ([5),
and a sequence G,, = N¢ (gn), m > 1, as at Point (A). Suppose moreover that

(i) The sequence (f,) verifies assumptions (N1)~(N3), and satisfies condition (§4);
(ii) The sequence (gn,) satisfies (£9).
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Then, as n — +oo,
_ _ — law
(2 V2| fall Ay X Fus lgallzh X Gn> B (x, X7), (50)

where X, X' ~ A4 (0,1) are two independent, centered standard Gaussian random

variables.

Part B of Theorem [ implies in particular that, whenever conditions ([If) and
(BQ) are met, the (componentwise) convergence of || f, ||~ x F, and |[g,|| " % Gy,
towards a Gaussian distribution, implies necessarily the joint convergence of the
vector (H Fall 7 Fos llgnll Gn>. This conclusion echoes results already established
in the framework of Gaussian CRM (see Peccati and Tudor (2005)).

Now consider the positive kernel k, which defines h via (), and suppose (here
and for the remainder of the Section) that k satisfies assumption (HZ). In the next
two Lemmas we collect some straightforward facts which will be used throughout

the sequel.

Lemma 1 The two processes h (t),t >0, and
he(0)i= MO (O (6) + [ sbltn)v(ds,da), ¢ 0
R+ xX

where

Ne((MHEk(t,")) = / sk (t,x) N¢(ds,dz) , (51)
R+xX
have the same law.
Proor. Use () and ([l4) to compute the two transforms
E [ez‘zg‘:l /\jﬁ(tj)] and [eizz’:l /\jﬁ*(tj)] :
for every n > 1, every (A1,..., An) € R™ and every tq,...,t, > 0. O

Lemma 2 For every T > 0,

T
/ / sk (t,x) N¢(ds,dz)dt = N¢ (l#))), (52)
0 JRrRtxx
T
l/ / st(t,x)ZNc (ds,dz)dt = N¢ (/ﬂg)>7 (53)
T Jo Jr+xx
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where kgpo) and k:g) are given, respectively, by (I§) and RJ). If kgp?’) € L?(v) NL! (v)

1T -
—/ Ne((k (,-)) (/ sk (t,x)u(ds,dx)) dt = N¢ (k§§)> (54)
T Jo R+ xX

Analogously, for every T >0,

T -
%A.QWMkmﬂ®mﬂw»Dwzgc@9) (55)

where [() k (t,)] @ [(-) k (¢, )] (u, z;0,y) = wvk (t,2) k (t,y), and k:(Tl) is defined ac-
cording to (£2).

The proof of Lemma [ is trivial when the map (¢,z) — k(t,z) is piecewise
constant: indeed, in this case (59), (BJ), (f4) and (53) follow immediately from the
application of a standard Fubini theorem. The general statement is obtained by a
density argument; we omit the details here (one can e.g. mimic the proof of Lemma
13 in Peccati, 2001).

Finally note that, given two sequences of random variables {A,} and {B,} such

that A, — B, — 0 in probability, we will sometimes write

A, ~B,.

5.2 Proof of Theorem [I]
Use Lemma [ and relations (51) and (52) to write
H(T) ¥ / hy (t) dt
0
T T
= / Ne((1)k (¢, -))dt+/ / sk (t,z) v (ds,dz)dt
0 0 JR+xx

T T
:/ / sk (t,xz) N¢(ds, dx) dt—l—/ / sk (t,z) v (ds,dz)dt
0 JR+xX 0 JR+xX

T
= N° <kgpo)> + / / sk (t,x) v (ds,dx)dt,
0 JRtxX
which yields, via the relation E(H (T)) = fOT Jr+ s sk (t,z) v (ds, dz) dt,
5 s law ¢
Co (k, T) x [H(T) - IE)(H(T))} N (co (k, T) x k<T°>>.
Since the isometry property ([[5) and the assumption ([1g) yield

MW%wﬂx#W:%wﬂ/

2
[k:éf)) (s,x)] v(ds,dz) — 03 (k),
RtxX
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we deduce from Part A of Theorem [ (in the case g, = (Cq (k,T},) /oo (k)) x k(T‘?,
where T, is any positive sequence diverging to infinity) that, since (BQ) holds, the
CLT (P1) must also take place. O

5.3 Proof of Theorem

Use Lemma [[ to write (we adopt once again the notation (p1))

/ 1 / Ne(( )2 dt + —/ (/thzk (t,z)v (ds,dm))zdt
+ ?/0 Ne(()k (t,) </R+Xxsk (t,:c)u(ds,dx)) dt.

Now recall that, thanks to (§4),

%/OT Ne (Vk(t,-) (/]R+XX sk (t,x) y(ds,dx)) dt = N¢ <2k§§)) ,
so that, by using (R€]),
(kT x {%/OT F(1)2dt — %/OT]E[B(t)Q]dt}
1 1T
ey (k,T) x {T/o Ne(()k(t,-)*dt

+ N°© 2k(3) / / k(t,2)% v (ds, dx)}dt(56)
R+XX

By applying the product formula ([4) in the case g (s,z) = h(s,z) = sk (t,z), for

every t > 0 we obtain
Ne((Vk (t,)? = /IR+XXs2k(t,x)2y(ds,dx)
+/ s2k (t,2)” N©(ds, do) + I ([() k()] @ [() k (£,9)]),
R+ xX

from which we deduce that, thanks to formulae (53) and (53), the expression in (56)

is indeed equal to
Cy (e, T) x {N° (kP + 2620 + 15 (k) ],
for every T' > 0. It follows that Theorem [ is proved, once it is shown that
(e (e, x (6 + 26 ) 15 (€1 (,T) x KD ) ) 225 (2, X)
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where X and X’ are independent and such that X ~ .4 (0,03 (k)) and X' ~
N (O,a% (k)) To this end, we apply Part B of Theorem f: according to such a
result, it is sufficient to check that, for every positive sequence T, — +oo, the two
sequences

6’1 (k,Ty)

Cy(k,Tn) , (1)
n ——k
g o (k)

(2) 2() _
(k) +2k;) and  fy o () T

n>1

)

satisfy, respectively, condition (#J) and conditions (NI))-(NJ) and (§d). It is im-
mediately seen that Assumptions 5 and 6 in the statement imply (f), and we are
therefore left with the sequence {f,}. Conditions (N1) and (NZ) can be checked by
standard iterations of the Jensen and Cauchy-Schwarz inequalities (see e.g. Section
5.1 in Peccati and Tagqu (2006b) for several analogous computations). Finally, (N3)
is given by Assumption 2 in the statement, whereas Assumptions 3 and 4 give, re-

spectively, the first and the second line in (). This concludes the proof of Theorem

g 0
5.4 Proof of Theorem
Write first
1 (T 1o o 1 (T 1o\
7 [0 - pampa= 1 [Chera- (pE@) 60
and observe that
1=\ Cy (k,T) - 2
crtht) (7A0) = i (et [ - v}
e <k Dwi) (58)
5 C1 (k? T)

E(A(T)) | H(T) - B(H(T))| .
From Assumption 1 in the statement, and since ([9) and (BQ) are in order, we deduce

C1 (k,T)
T2Cy (k,T)?

Moreover, Assumption 2 in the statement yields that, as T — +o0,

[Co (k. 1) [A1(T) ~ B(H(T))] }2 2. (59)

2 0 Dpary) () - BE@)
~ 5 (k) Co (k,T) [BL(T) — BH(T))|  (60)
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In view of Lemma [[, and by reasoning as in the proof of Theorem [] and Theorem

f, we infer from relations (57)-(60) that

C1(kaT)X{%/OT[ﬁ()——H dt——/ dtﬂ[ﬁg»?}
law e ((11 (k, T) (k(ﬁ) + 2k§”>) —7201}’;’T)E(ﬁ(T))k$)>+12 (cl (k, T) k! >)

XN (01 (k,T) (k;@ + 2k§?>) — 6 (k) Co (k,T) /#”) + I (01 (k,T) k(T”) :

The conclusion is deduced from Assumption 3 in the statement, by applying Theo-

rem f] in the case

C1 (k. T) (k(ﬁ) + 21@52) — 6 (k) Co (k, T) kY

gn = o3 (k)
Cy(k,T) o,
n = ———~%kp’, n>1,
y 71 (R
where T,, — +o0. O

5.5 Proof of Theorem [

To prove Part (A), observe that the assumptions imply the existence of two constants

0 < Dy < Dy < +00, such that, for T sufficiently large,
2 (0) 2
Dy < Cy (k,T) x [k:T (s,x)} v(ds,dz) < Ds.
R+ xX

Standard arguments yield therefore that, for every sequence T}, — 400, there exists

a subsequence T, such that, as n’ — +o0,

n

2
C2 (k, Tyy) x/ [kﬁ”/ (s,x)] v (ds,dz) — o2 (k) > 0,
R+ xX
where o2 (k) is some well chosen positive constant. Moreover,

3
C3 (k, Tyr) % / [kég)/ (s,x)] v (ds,dz)
R+ xX

n

n

< C3(k,T) / [Eﬁ”, (s,:c)ru(ds,dx)

R+

— —(0 3
~ (3 (an>/ i) (s.2)| v (ds,dz) —
R+ L "

The proofs of Parts (B) and (C) are based on analogous computations, and are

omitted. O
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6 Conclusions and future work

(I) Future research will focus on the generalization of our asymptotic results to gen-
eral multiplicative intensity models (Aalen, 1978), which include a wide variety of
popular models such as Cox proportional hazards regression models, multiple decre-
ment models, birth and death processes and non—-homogeneous Poisson processes.
To fix ideas consider the Cox proportional hazards regression model, in which Z;
is an m—dimensional vector of covariates recorded for the i—th individual and 6 is
a m—dimensional vector of unknown regression coefficients. Then the proportional

hazards model is specified in terms of the hazard function relationship as
hi(t) = ho(t) exp(0' Z;),

where hg represents the so—called baseline hazard function. A Bayesian treatment
leads to considering hg and 6 to be random and, hence, by choosing ho to be a

mixture as in (f[) and 7 to be a prior for 6, one obtains a semi-parametric random

hazard rate function for the i-th individual of the form

hi(t) = expl@ 20) [ kit 2)i(d), (61)
Bayesian analysis of the Cox model within this setup has been pursued in Ibrahim,
Chen and Mac Eachern (1999), James (2003), Ishwaran and James (2004), Nieto—
Barajas and Walker (2005). Since ([l}) still represents the basic building block of
(b1]) and, indeed, also of other multiplicative intensity models, we aim at extending
our results to random objects such as (fI]) and expect to obtain CLTs for which the
limiting random variable is a suitable mixture of Gaussian distributions.

(IT) The techniques exploited in Section [, for deriving the main results of this
paper, can be further generalized. As already mentioned, they are indeed based
on a very general decoupling criterion, known as the principle of conditioning. As
shown in Peccati and Taqqu (2006a,b), this principle can be applied to a wide
class of stochastic integrals with respect to completely random measures, including
multiple Wiener-I1t6 integrals of any order n > 2. In particular, we expect that the
results of the present paper can be suitably extended to accommodate the asymptotic
analysis of non-linear and non-quadratic functionals, such as e.g. path-moments of
order greater than two. Note that results of this type are already available in the

Gaussian case. See, e.g., Peccati and Tudor (2005).
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