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Comparison of Expressiveness for Timed
Automata and Time Petri Nets

B. Bérard∗, F. Cassez†, S. Haddad∗, D. Lime‡, O.H. Roux†

Abstract

In this paper we consider the model of Time Petri Nets (TPN) “à la Merlin”
where a time interval is associated with the firing of a transition, but we extend it
with open intervals. We also consider Timed Automata (TA) as defined by Alur
& Dill. We investigate some questions related to expressiveness for these models :
we study the impact of slight variations of semantics for TPN and we compare the
expressive power of TA and TPN, with respect to both time language acceptance and
weak time bisimilarity. We prove that TA and bounded TPNs (enlarged with strict
constraints) are equivalent w.r.t. timed language equivalence, providing an efficient
construction of a TPN equivalent to a TA. We then exhibit a TAA such that no TPN
(even unbounded) is weakly bisimilar toA. Because of this last result, it is natural
to try and identify the (strict) subclass of TA that is equivalent to TPN w.r.t. weak
timed bisimilarity. Thus we give some further results: 1) we characterize the subclass
TA− of TA that is equivalent to the original model of TPN as defined by Merlin,i.e.
restricted to closed intervals, 2) we show that the associated membership problem
for TA− is PSPACE-complete and 3) we prove that the reachability problem for
TA− is alsoPSPACE-complete.

Key words : Time Petri Nets, Timed Automata, Timed Languages, Timed Bisimilar-
ity, Expressiveness.

1 Introduction

Petri Nets with Time. The two main extensions of Petri Nets with time are Time Petri
Nets (TPNs) [15] and Timed Petri Nets [17]. For TPNs a transition can fire within a time
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interval whereas for Timed Petri Nets it fires as soon as possible. Among Timed Petri
Nets, time can be considered relative to places or transitions [18, 16]. The two corre-
sponding subclasses namely P-Timed Petri Nets and T-Timed Petri Nets are expressively
equivalent [18, 16]. The same classes are defined for TPNs i.e. T-TPNs and P-TPNs, but
both classes of Timed Petri Nets are included in both P-TPNs and T-TPNs [16]. P-TPNs
and T-TPNs are proved to be incomparable in [13]. Finally TPNs form a subclass of Time
Stream Petri Nets [10] which were introduced to model multimedia applications. Timed
Arc Petri Nets are also studied in more recent work [1, 9].

Timed Automata. Timed Automata (TA) were introduced by Alur & Dill [3] and have
since been extensively studied. This model is an extension of finite automata with (dense
time) clocks and enables one to specify real-time systems. Theoretical properties of var-
ious classes of TA have been considered in the last decade. For instance, a class of de-
terminizable TA such asEvent Clock Automata are investigated in [4] and form a strict
subclass of TA. More general models of TA likeRectangular Automata or Linear Hybrid
Automata have also been considered and their expressive power compared.

However, not much is known about the expressive power of TPN compared to TA.

Related Work. In a previous work [8] we have proved that TPN forms a subclass of TA
in the sense that every TPN can be simulated by a TA (weak timed bisimilarity). A similar
result can be found in [14] with a completely different approach.

In another line of work [12], Haar, Kaiser, Simonot & Toussaint compare Timed State
Machines and Time Petri Nets. They give a translation from one model to another that
preserves timed languages. Nevertheless, in the translation from TSM to TPN they use
a weak semantics for TPN and consider only the constraints with bounded and closed
intervals.

Our Contribution. In this article, we compare precisely the expressive power of TA vs.
TPN using the notions ofTimed Language Acceptance andTimed Bisimilarity. This ex-
tends previous results in this area in the following directions:i) we consider general types
of constraints (strict, large, bounded, unbounded);ii) we then show that there is a TAA
s.t. no TPN is (even weakly) timed bisimilar toA; iii) this leads us to consider weaker
notions of equivalence and we focus on Timed Language Acceptance. We prove that TA
(with general types of constraints) and TPN are equally expressive w.r.t. Timed Language
Acceptance;iv) to conclude we characterize the subclass of TA that is equally expressive
to TPN without strict constraints w.r.t. Timed Bisimilarity, and show that the membership
problem for this class isPSPACE-complete as well the reachability problem. The re-
sults of the paper are summarized in Table 1: all the results are new except the one on the
first line obtained in [8]. We use the following notations: B-T PN ε for the set of bounded
TPNs withε-transitions;1-B-T PN ε for the subset of B-T PN ε with at most one token in
each place (one safe TPN); B-T PN (≤,≥) for the subset of B-T PN ε where only closed
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Timed Language Acceptance Timed Bisimilarity

≤L T Aε ([8]) ≤W T Aε ([8])
B-T PN ε =L 1-B-T PN ε =L T Aε <W T Aε

B-T PN (≤,≥) — ≈W T A−

Emptyness Problem Universal Problem
B-T PN ε Decidable Undecidable

Membership Problem Reachability Problem
T A− PSPACE-complete

Table 1: Summary of the Results

intervals are used;T Aε for TA with ε-transitions;T A− for the class of TA (to be defined
precisely in section 6) that is equivalent to B-T PN (≤,≥).

Outline of the paper. Section 2 introduces the semantics of TPNs and TA, Timed Lan-
guages and Timed Bisimilarity and section 3 is devoted to the comparison between various
semantics for TPNs. In section 4, we prove negative results: we exhibit some timed au-
tomata for which there exist no (weakly) timed bisimilar TPN. In section 5 we focus on
Timed Language Acceptance and prove that TA and TPNs are equally expressive w.r.t.
this equivalence. Section 6 is devoted to a characterization of the subclass of TA that is
equivalent to TPN w.r.t. Timed Bisimilarity. Finally we give some hints on further work
in section 7.

2 Time Petri Nets and Timed Automata

Notations. Let Σ be a set (or alphabet).Σ∗ (resp. Σω) denotes the set of finite (resp.
infinite) sequences of elements (or words) ofΣ andΣ∞ = Σ∗ ∪ Σω. By convention if
w ∈ Σω then thelength of w denoted|w| is ω; otherwise ifw = a1 · · · an, |w| = n. We
also useΣε = Σ ∪ {ε} with ε �∈ Σ, whereε is the empty word.BA stands for the set of
mappings fromA to B. If A is finite and|A| = n, an element ofBA is also a vector in
Bn. The usual operators+,−, < and= are used on vectors ofAn with A = N, Q, R and
are the point-wise extensions of their counterparts inA. The setB denotes the boolean
values{tt, ff} and R≥0 denotes the set of positive reals. Avaluation ν over a set of
variablesX is an element ofRX

≥0. Forν ∈ RX
≥0 andd ∈ R≥0, ν + d denotes the valuation

defined by(ν + d)(x) = ν(x) + d, and forX ′ ⊆ X, ν[X ′ 	→ 0] denotes the valuation
ν ′ with ν ′(x) = 0 for x ∈ X ′ andν ′(x) = ν(x) otherwise.0 denotes the valuation s.t.
∀x ∈ X, ν(x) = 0. An atomic constraint is a formula of the formx �� c for x ∈ X,
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c ∈ Q≥0 and��∈ {<,≤,≥, >}. We denoteC(X) the set ofconstraints over a set of
variablesX which consists of the conjunctions of atomic constraints. Given a constraint
ϕ ∈ C(X) and a valuationν ∈ RX

≥0, we denoteϕ(ν) ∈ B the truth value obtained by
substituting each occurrence ofx in ϕ by ν(x). Accordingly each constraintϕ ∈ C(X)
defines a set of valuations[[ϕ]] defined by[[ϕ]]= {ν ∈ RX

≥0 | ϕ(ν) = tt}.

A set I is aQ≥0-interval of R≥0 if there is a constraintϕ of the forma ≺1 x ≺2 b
with a ∈ Q≥0, b ∈ Q≥0 ∪ {∞} and≺1,≺2∈ {<,≤ }, such thatI =[[ ϕ ]]. We let
I↓ =[[0 ≤ x ≺2 b]] be thedownward closure of I andI↑ =[[a ≺1 x]] be theupward closure
of I. We denote byI(Q≥0) the set ofQ≥0-intervals ofR≥0. Let g ∈ N>0, we write
Ng = { i

g
| i ∈ N}. A vectorv ∈ Qn belongs to theg-grid if v(k) ∈ Ng for all 1 ≤ k ≤ n.

2.1 Timed Transition Systems and Equivalence Relations

Let Σ be a fixed finite alphabet s.t.ε �∈ Σ.

Definition 1 (Timed Words) A timed wordw over Σε is a finite or infinite sequence
w = (a0, d0)(a1, d1) · · · (an, dn) · · · s.t. for each i ≥ 0, ai ∈ Σε, di ∈ R≥0 and di+1 ≥ di.

A timed wordw over Σε can be viewed as a pair(v, τ) ∈ Σ∞
ε × R∞

≥0 s.t. |v| = |τ |.
The valuedk gives the absolute time (from the initial instant0) of actionak. We write
Untimed(w) = v for the untimed part ofw, andDuration(w) = supdk∈τ dk for the dura-
tion of the timed wordw. For a timed word(ai, di)i≥0 we define therelative time stamp
Rstamp(ai) of ai asRstamp(ai) = di − di−1 with the convention thatd−1 = 0 and extend
this notion to timed words by definingRstamp(w) = (ai, Rstamp(ai))i≥0. Note that, con-
versely, from such a sequence, we can retrieve a timed word withabsolute time stamps
by cumulating the successive delays.

Sinceε-transitions correspond to the empty word and are not visible, we can remove
from each timed wordw ∈ Σ∞

ε × R∞
≥0 all the ε-actions and obtain a timed word in

Σ∞ × R∞
≥0.

Definition 2 (Timed Languages) We denote by T W∗(Σ) (resp. T Wω(Σ)) the set of
finite (resp. infinite) timed words over Σ and T W∞(Σ) = T W∗(Σ)∪T Wω(Σ). A timed
languageL over Σ is any subset of T W∞(Σ).

Timed transition systems describe systems which combine discrete and continuous
evolutions.

Definition 3 (Timed Transition Systems) A timed transition system (TTS)over the set
of actions Σε is a tuple S = (Q,Q0, Σε,−→, F,R) where Q is a set of states, Q0 ⊆ Q is
the set of initial states, Σε is a finite set of actions disjoint from R≥0 and −→⊆ Q× (Σε ∪
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R≥0) × Q is a set of edges. If (q, e, q′) ∈−→, we also write q
e−→ q′. For a transition

q
d−→ q′ with d ∈ R≥0, the value d represents a relative time stamp. The sets F ⊆ Q and

R ⊆ Q are respectively the sets of final and repeatedstates.

We make the following common assumptions about TTS:

• 0-DELAY: q
0−→ q′ if and only if q = q′,

• ADDITIVITY : if q
d−→ q′ andq′ d′−−→ q′′ with d, d′ ∈ R≥0, thenq

d+d′−−−→ q′′,

• CONTINUITY: if q
d−→ q′, then for everyd′ andd′′ in R≥0 such thatd = d′ + d′′,

there existsq′′ such thatq
d′−−→ q′′ d′′−−→ q′,

• TIME-DETERMINISM: if q
d−→ q′ andq

d−→ q′′ with d ∈ R≥0, thenq′ = q′′.

A run ρ of lengthn ≥ 0 is is a finite or infinite (n = ω) sequence of transitions of the
form

ρ = q0
d0−−→ q′0

a0−−→ q1
d1−−→ q′1

a1−−→ · · · qn
dn−−→ q′n . . .

where discrete actions alternate with durations. We writefirst(ρ) = q0 and if ρ is finite,
we assume that it ends with an action transition and we setlast(ρ) = qn. We writeq

∗−→ q′

if there is a runρ s.t.first(ρ) = q, last(ρ) = q′.

A run is initial if first(ρ) ∈ Q0. A run ρ is accepting if i) either ρ is a finite initial run
andlast(ρ) ∈ F or ii) ρ is infinite and there is a stateq ∈ R that appears infinitely often
onρ. From the sequence(a0, d0)(a1, d1) . . . associated withρ, we obtain a timed wordw
by considering the absolute time stamps of actions :w = (a0, d0)(a1, d0 + d1) . . .. This
word isaccepted by S if ρ is an accepting run.

Thetimed language L(S) accepted byS is the set of timed words accepted byS.

Definition 4 (Strong Timed Similarity) Let S1 = (Q1, Q
1
0, Σε,−→1, F1, R1) and S2 =

(Q2, Q
2
0, Σε,−→2, F2, R2) be two TTS and � be a binary relation over Q1×Q2. We write

s � s′ for (s, s′) ∈�. The relation � is a strong (timed) simulation relationof S1 by S2

if:

1. if s1 ∈ F1 (resp. s1 ∈ R1) and s1 � s2 then s2 ∈ F2 (resp. s2 ∈ R2),

2. if s1 ∈ Q1
0 there is some s2 ∈ Q2

0 s.t. s1 � s2;

3. if s1
d−→1 s′1 with d ∈ R≥0 and s1 � s2 then s2

d−→2 s′2 for some s′2, and s′1 � s′2;

4. if s1
a−→1 s′1 with a ∈ Σε and s1 � s2 then s2

a−→2 s′2 and s′1 � s′2;
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A TTS S2 strongly simulatesS1 if there is a strong (timed) simulation relation of S1 by S2.
We write S1 �S S2 in this case.

When there is a strong simulation relation� of S1 by S2 and�−1 is also a strong
simulation relation1 of S2 by S1, we say that� is a strong (timed) bisimultion relation
betweenS1 andS2 and use≈ instead of�. Two TTS S1 andS2 are strongly (timed)
bisimilar if there exists a strong (timed) bisimulation relation betweenS1 andS2. We
write S1 ≈S S2 in this case.

LetS = (Q,Q0, Σε,−→, F,R) be a TTS. We define theε-abstract TTSSε = (Q,Qε
0, Σ,

−→ε, F,R) (with no ε-transitions) by:

• s
d−→ε s′ iff there is a runρ = s

∗−→ s′ with Untimed(ρ) = ε andDuration(ρ) = d,

• s
a−→ε s′ with a ∈ Σ iff there is a runρs

∗−→ s′ with Untimed(ρ) = a and
Duration(ρ) = 0,

• Qε
0 = {s | ∃s′ ∈ Q0 | s′ w−→ s and Duration(w) = 0 ∧ Untimed(w) = ε}.

Definition 5 (Weak Time Similarity) Let S1 = (Q1, Q
1
0, Σε,−→1, F1, R1) and S2 =

(Q2, Q
2
0, Σε,−→2, F2, R2) be two TTS and � be a binary relation over Q1 × Q2. �

is a weak (timed) simulation relationof S1 by S2 if it is a strong timed simulation relation
of Sε

1 by Sε
2. A TTS S2 weakly simulatesS1 if there is a weak (timed) simulation relation

of S1 by S2. We write S1 �W S2 in this case.

When there is a weak simulation relation� of S1 by S2 and�−1 is also a weak
simulation relation ofS2 by S1, we say that� is a weak (timed) bisimulation relation
betweenS1 andS2 and use≈ instead of�. Two TTS S1 andS2 are weakly (timed)
bisimilar if there exists a weak (timed) bisimulation relation betweenS1 andS2. We
write S1 ≈W S2 in this case.

Note that if S1 �S S2 then S1 �W S2 and if S1 �W S2 thenL(S1) ⊆ L(S2).
Moreover, proving thatS1 �W S2 usually amounts to proving that ifq1 � q2, then each
moveq1

e−→1 q′1 can be simulated by a set of movesq2
e−→2,ε q′2 s.t. q2 � q′2.

Let S = (Q,Q0, Σε,−→, F,R) be a TTS. We define thetime-abstract TTS S∆ =
(Q,Q0, Σε ∪ {δ} −→∆, F,R) with δ �∈ Σε by:

• s
δ−→∆ s′ iff s

d−→ s′ for somed ∈ R≥0,

• s
a−→∆ s′ with a ∈ Σ iff s

a−→ s′ for somea ∈ Σε.

Notice thatS∆ has no transitions
d−→ s′ with d ∈ R≥0.

1s2 �−1 s1 ⇐⇒ s1 � s2.
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2.2 Time Petri Nets

Time Petri Nets (TPN) were introduced in [15] and extend Petri Nets with timing con-
straints on the firings of transitions. In TPN, a time interval is associated with each tran-
sition. An implicit clock can then be associated with each enabled transition, and gives
the elapsed time since it was last enabled. An enabled transition can be fired if its clock
value belongs to the interval of the transition. Furthermore, time cannot progress beyond
any upper bound of an interval associated with a transition. The following definitions for-
malize these principles. We consider here a generalized version2 of TPN with accepting
and repeated markings and prove our results for this general model.

Definition 6 (Labeled Time Petri Net) A Labeled Time Petri NetN is a tuple (P, T, Σε,
•(.), (.)•,M0, Λ, I, F,R) where: P is a finite set of placesand T is a finite set of transi-
tionswith P ∩ T = ∅; Σε = Σ ∪ {ε} is a finite set of actionsand ε the empty word i.e.
the silentaction; •(.) ∈ (NP )T is the backwardincidence mapping; (.)• ∈ (NP )T is the
forward incidence mapping; M0 ∈ NP is the initial marking; Λ : T → Σε is the labeling
function; I : T → I(Q≥0) associates with each transition a firing interval; R ⊆ NP is
the set of final markingsand F ⊆ NP is the set of repeated markings. An unlabeledTPN
is a TPN s.t. Σ = T and Λ(t) = t for all t ∈ T .

A TPN N is a g-TPN if for all t ∈ T , I(t) is an interval with bounds inNg. We also
use•t (resp. t•) to denote the set of places•t = {p ∈ P | •t(p) > 0} (resp. t• = {p ∈
P | t•(p) > 0}) as it is common is the literature3.

Semantics of Time Petri Nets. The semantics of TPNs is given in terms of Timed Tran-
sition Systems. Amarking M of a TPN is a mapping inNP andM(p) is the number of
tokens in placep. A transitiont is enabled in a markingM iff M ≥ •t. We denote by
En(M) the set of enabled transitions inM . To decide whether a transitiont can be fired,
we need to know for how long it has been enabled: if this amount of time lies within
the intervalI(t), t can actually be fired, otherwise it cannot. On the other hand time can
progress only if the enabling duration still belongs to the downward closure of the interval
associated with an enabled transition. Letν ∈ (R≥0)

En(M) be avaluation such that each
valueν(t) is the time elapsed since transitiont was last enabled. Aconfiguration of the
TPNN is a pair(M, ν). An admissible configuration of a TPN is a configuration(M, ν)
s.t.∀t ∈ En(M), ν(t) ∈ I(t)↓. We letADM(N ) be the set of admissible markings.

When defining the semantics of a TPN, three kinds of policies must be fixed.

2This is required to be able to define Büchi timed languages, which is not possible in the original version
of TPN of [15].

3Whether•t (resp.t•) stands for a vector of(NP )T or a subset ofP will be unambiguously defined by
the context.
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The choice policy concerns the choice of the next event to be fired (scheduled). For
TPNs (and also timed automata), this choice is non deterministic (possible alterna-
tives use priorities, probabilities, etc.).

The service policy concerns the possibility of simultaneous instances of a same event
to occur. In the context of Petri nets, this is formalized by the enablingdegree
of a transition. Here we adopt thesingle-server policy (at most one instance of
a firing per transition in every state). The results presented are also valid for the
other standard policies (multiple or infinite server) at least for the important case
of bounded Petri nets. However taking them explicitely into account would lead to
intricate notations.

The memory policy concerns the updating of timing informations when a discrete step
occurs. The key issue4 in the semantics is to define when we reset the clock mea-
suring the time since a transition was last enabled. This can only happen when we
fire a transition. We let↑enabled(t′,M, t) ∈ B be true ift′ is newly enabled by the
firing of transitiont from markingM , and false otherwise.

Let M be a marking andt ∈ En(M). The firing of t leads to a new marking
M ′ = M − •t + t•. Three semantics are possible:

I: The intermediate semantics (I) considers that the firing of a transition is per-
formed in two steps: consuming the input tokens in•t, and then producing
output tokens int•. The fact that a transitiont′ is newly enabled on the firing of
a transitiont �= t′ is determined w.r.t. the intermediate markingM − •t. When
a transitiont is fired it is newly enabled whatever the intermediate marking.
We denote by↑enabledI(t

′,M, t) the newly enabled predicate in this case.
This mapping is defined by:

↑enabledI(t
′,M, t) = (t′ ∈ En(M − •t + t•)

∧ (
t′ �∈ En(M − •t) ∨ (t = t′)

) (1)

A: Theatomic semantics considers that the firing of a transition is obtained by an
atomic step. The corresponding mapping↑enabledA(t′,M, t) is defined by:

↑enabledA(t′,M, t) = (t′ ∈ En(M − •t+ t•))∧ (
t′ �∈ En(M)∨ (t = t′)

)
(2)

PA: Thepersistent atomic semantics considers that the firing of a transition is also
obtained by an atomic step. The difference with theA semantics in only on
the value of↑enabledA(t′,M, t) whent = t′. The transition begin fired is not
always newly enabled:

↑enabledPA(t′,M, t) = t′ ∈ En(M − •t + t•) ∧ (t′ �∈ En(M)) (3)

4The new marking obtained after firing a transitiont from a markingM is given by the untimed seman-
tics of Petri Netsi.e. M ′ = M − •t + t•.
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Note that we have the relation:

↑enabledPA(t,M, t′) ⇒ ↑enabledA(t,M, t′) ⇒ ↑enabledI(t,M, t′)

The intermediate semanticsI, based on [6, 5] is the most common one. However, de-
pending on the systems to be modeled, another semantics may be more appropriate. The
relative expressive power of the three semantics has not been investigated so far: we ad-
dress this problem in section 3.

We now define the semantics of a TPN: this is a parameterized semantics that depends
on the choice of the semantics for the↑enabled predicate.

Definition 7 (Semantics of TPN) Let s ∈ {I, A, PA}. The s-semantics of a TPN N =
(P, T, Σε,

•(.), (.)•,M0, Λ, I, F,R) is a timed transition system SN = (Q, {q0}, T,→
, F ′, R′) where: Q = ADM(N ), q0 = (M0,0), F ′ = {(M, ν) | M ∈ F} and R′ =
{(M, ν) | M ∈ R}, and −→∈ Q× (T ∪R≥0)×Q consists of the discrete and continuous
transition relations:

• the discrete transition relation is defined ∀t ∈ T by:

(M, ν)
Λ(t)−−→ (M ′, ν ′) iff




t ∈ En(M) ∧ M ′ = M − •t + t•

ν(t) ∈ I(t),

∀t ∈ R
En(M ′)
≥0 , ν ′(t) =

{
0 if ↑enableds(t

′,M, t),

ν(t) otherwise.

• the continuous transition relation is defined ∀d ∈ R≥0:

(M, ν)
d−→ (M, ν ′) iff

{
ν ′ = ν + d

∀t ∈ En(M), ν ′(t) ∈ I(t)↓

A run ρ of N is an initial run of SN . The timed language accepted by N is L(T ) =
L(SN ). An unlabelled TPN accepts a timed language in (T × R≥0)

∞.

We simply write(M, ν)
w−→ to emphasize that a sequence of transitionsw can be fired in

SN from (M, ν). If Duration(w) = 0 we say thatw is aninstantaneous firing sequence.
The set ofreachable markings of N is Reach(N ) = {M ∈ NP | ∃(M, ν) | (M0,0)

w−→
(M, ν)}.

2.3 Timed Automata

Definition 8 (Timed Automaton) A Timed AutomatonA is a tuple (L, 
0, X, Σε, E,
Inv, F,R) where: L is a finite set of locations; 
0 ∈ L is the initial location; X is a finite
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set of non negative real-valued clocks; Σε = Σ∪ {ε} is a finite set of actionsand ε is the
silentaction; E ⊆ L×C(X)×Σε×2X×L is a finite set of edges, e = 〈
, γ, a, R, 
′〉 ∈ E
represents an edge from the location 
 to the location 
′ with the guard γ, the label a and
the reset set R ⊆ X; Inv ∈ C(X)L assigns an invariantto any location. We restrict the
invariants to conjuncts of terms of the form x � r for x ∈ X and r ∈ N and �∈ {<,≤}.
F ⊆ L is the set of final locationsand R ⊆ L is the set of repeated locations.

Definition 9 (Semantics of a Timed Automaton) The semantics of a timed automaton
A = (L, 
0, X, Σε, E, Inv, F,R) is a timed transition system SA = (Q, q0, Σε,→, F ′, R′)
with Q = L × (R≤0)

X , q0 = (
0,0) is the initial state, F ′ = {(
, v) | 
 ∈ F} and
R′ = {(
, v) | 
 ∈ R}, and → is defined by:

(
, v)
a−→ (
′, v′) iff ∃ (
, γ, a, R, 
′) ∈ E s.t.




γ(v) = tt,

v′ = v[R 	→ 0]

Inv(
′)(v′) = tt

(
, v)
d−→ (
′, v′) iff

{

 = 
′ v′ = v + d and

∀ 0 ≤ d′ ≤ d, Inv(
)(v + d′) = tt

A run ρ of A is an initial run of SA. The timed language accepted by A is L(A) = L(SA).

Recall [3] that, ifm is the maximal constant appearing in atomic formulasx �� c of
A, an equivalence relation with finite index can be defined on clock valuations, leading
to a partition of(R≥0)

X , with the following property: two equivalent valuations have
the same behaviour under progress of time and reset operations, with respect to the con-
straints. Note that a partition using anyK ≥ m would have the same property. Also, the
construction can be extended to ag-grid, by taking all constants of the formi

g
, 0 ≤ i ≤ K·g

instead of{0, 1, . . . , K}. Finally, takingK = +∞ (as depicted in Figure 1 on the left)
leads to a similar structure except for the fact that the partition is infinite. When it is pos-
sible, we will sometimes use such a partition in order to simplify some proofs. Indeed,
with this partition, the extremal case wherex is greater thanK has not to be distinguished
from the standard case.

In this paper, the elements of the partition are calledelementary zones and we consider
a slight variation for the definition of elementary zones: we take the constantK = m + 1
and with each clockx ∈ X, we associate an interval in the set{{0}, ]0, 1[, {1}, . . . , {K −
1}, ]K − 1, K[, [K, +∞[}, instead of keeping{K} separately. As usual, we also specify
the ordering on the fractional parts for all clocksx such thatx < K. Such a partition is
represented in Figure 1 (on the right) for the set of two clocksX = {x, y} andK = 3.
For this example, elementary zonesZ1 andZ2 are described by the constraints:Z1 : (2 <
x < 3) ∧ (1 < y < 2) ∧ (0 < frac(y) < frac(x)) andZ2 : (x ≥ 3) ∧ (1 < y < 2).
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When considering diagonal constraints (also with constants up toK), another partition
(Figure 1 in the middle, withK = 2) must be considered.

x

y

x

y

x

y

Z1 Z2

Figure 1: Partitions of(R+)2 with K = +∞, K = 2 (with diagonal constraints) and
K = 3 (no diagonal constraints)

The future of a zoneZ is defined byfut(Z) = {v + d | v ∈ Z, d ∈ R≥0}. If Z
andZ ′ are elementary zones,Z ′ is a time successor ofZ, written Z ≤ Z ′, if for each
valuationv ∈ Z, there is somed ∈ R≥0 such thatv + d ∈ Z ′. For each elementary zone
Z, there is at most one elementary zone such that(i) Z ′ is a time successor ofZ, (ii)
Z �= Z ′ and(iii) there is no time successorZ ′′ such thatZ ≤ Z ′′ ≤ Z ′. When it exists,
this elementary zone is called the immediate successor ofZ and is denoted bysucc(Z).
Note thatfut(Z) ⊆ ∪Z≤Z

′Z ′, with a strict inclusion when no diagonal constraints are
permitted.

Finally recall that a finite automatonR(A), called theregion automaton, can be built
fromA. This automaton is time abstract bisimilar to the original automatonA. Its states,
called hereregions, are of the form(
, Z), where
 is a location ofA andZ an elementary
zone of(R≥0)

X . They are built from the initial region(
0,0) by transitions of the form

(
, Z)
δ−→ (
, Z ′) for a time successorZ ′ of Z, if Inv(
)(Z) = tt or (
, Z)

a−→ (
′, Z ′) if
there is a transition(
, γ, a, R, 
′) ∈ E such thatγ(Z) = tt andZ ′ = Z[R 	→ 0], with
Inv(
′)(Z ′) = tt. A region (
, Z) is said to be maximal inR(A) with respect to
 if
no δ-transition is possible from(l, Z). The automatonR(A) is restricted to the regions
reachable from the initial region(
0,0), and accepts the language

Untime(L(A)) = {a1a2 . . . | (a1, d1)(a2, d2) . . . ∈ L(A) for somed1, d2, . . . ∈ R≥0}.

We also consider another automaton, calledclass automaton, in which the states,
called classes, are of the form(l, fut(Z) ∩ Inv(
)), whereZ is a zone. In this case,
the second component is not an elementary zone anymore (but a general zone) and the
automaton is build from the initial class(
0, fut(0) ∩ Inv(
0)) by the following transi-
tions: (
, Z1)

a−→ (
′, Z2) if there exists(l, γ, a, R, l′) ∈ E such thatZ1∩ [[γ ]]�= ∅, and
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Z2 = fut((Z1∩ [[γ]])[R 	→ 0]) ∩ Inv(
′).
Note that the class automaton also acceptsUntime(L(A)). Moreover, since a class can
be represented by a Difference Bounded Matrix [11], its size is at most(4K + 2)(|X|+1)2 ,
which is exponential in the size ofA, as for the region automaton.

2.4 Expressiveness and Equivalence Problems

If B,B′ are either TPN or TA, we writeB ≈S B′ (resp.B ≈W B′) for SB ≈S SB′ (resp.
SB ≈W SB′). Let C andC′ be two classes of TPNs or TA.

Definition 10 (Expressiveness w.r.t. Timed Language Acceptance) The class C is more
expressivethan C′ w.r.t. timed language acceptance if for all B′ ∈ C′ there is a B ∈ C
s.t. L(B) = L(B′). We write C′ ≤L C in this case. If moreover there is some B ∈ C s.t.
there is no B′ ∈ C′ with L(B) = L(B′), then C′ <L C (read “strictly more expressive”).
If both C′ ≤L C and C ≤L C′ then C and C′ are equally expressive w.r.t. timed language
acceptance, and we write C =L C′.

Definition 11 (Expressiveness w.r.t. Timed Bisimilarity) The class C is more expres-
sivethan C′ w.r.t. strong (resp. weak) timed bisimilarity if for all B′ ∈ C′ there is a B ∈ C
s.t. B ≈S B′ (resp. B ≈W B′). We write C′ ≤S C (resp. C′ ≤W C) in this case. If
moreover there is a B ∈ C s.t. there is no B′ ∈ C′ with B ≈S B′ (resp. B ≈W B′),
then C′ <S C (resp. C′ <W C). If both C′ <S C and C <S C′ (resp. <W) then C and C′

are equally expressive w.r.t. strong (resp. weak) timed bisimilarity, and we write C ≈S C′

(resp. C ≈W C′).

In the sequel we will compare various subclasses of TPNs and TA. We denoteT PN
the class of TPNs andT A the class of TA, according to definitions 6 and 8. We recall the
following theorem adapted from [8]:

Theorem 1 ([8]) For any N ∈ B-T PN ε there is a TA A s.t. N ≈W A, hence B-T PN ε ≤W
T Aε.

3 Comparison of semantics I , A and PA

In the first paragraph, we establish two relations between these semantics for TPN, which
hold in the general case. In the second paragraph, we complete these results with a third
one, restricted to bounded time Petri nets, with only closed intervals for transitions. Since
we prove results concerning weak timed bisimulation, we consider unlabeled TPN, where
all states are final and repeated states. For all figures in this section, a transition is filled
in black when its firing interval is[0, 0].
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3.1 A first comparison between the different semantics of TPNs

Proposition 1 Let N be a time Petri net with intermediate semantics. There exists a TPN
N with atomic semantics which is (weakly timed) bisimilar to N .

Proof. The construction is quite easy. The set of places ofN is obtained by adding to
the set of places ofN a new place for each transitiont from N : P = P ∪ {pt, t ∈ T}.
The transitionsT of N are duplicated inN : T = T+ ∪ T− and the construction follows
Figure 2, from left to right.

t, I(t)

t−, I(t)

pt

t+

Figure 2: From I to A

We consider the equivalence relationR which contains all pairs((M, ν), (M, ν)) such
that:

• for all p ∈ P , M(p) = M(p) + Σt∈T t•(p).M(pt)

• for all t ∈ En(M), ν(t) = ν(t−) if t− is enabled inM and0 otherwise. The latter
case corresponds inN to a newly enabled transition.

To prove thatR is a bisimulation, we first note that, with the definition above for mark-
ings, from any configuration(M, ν), we can reach instantaneously a configuration(M1, ν1)
such thatM1(pt) = 0 for all t, with the firing of a (possibly empty) sequence of transitions
in T+. Moreover, the relation between valuations implies that(M1, ν1) is still equivalent
to (M, ν).

Consider now a pair((M, ν), (M, ν)) ∈ R.

• if (M, ν)
t−→ (M ′, ν ′), then from the remark above, we first fire a sequence fromM

to empty all placespt, leading instantaneously to(M1, ν1), which is equivalent to
(M, ν). Then transitiont− can be fired from(M1, ν1), immediately followed byt+,
leading to(M

′
, ν ′), where all placespt are empty again. Moreover, the transitions
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•
t, I(t) t, I(t)

En+
t

En−
t

bt

Figure 3: From A to PA

newly enabled byt+ in N are exactly those which were newly enabled byt in N ,
so that(M ′, ν ′)R(M

′
, ν ′).

• Conversely, suppose that a transition is fired from(M, ν) in N . If the transition
is somet+, then the new configuration(M1, ν1) is still equivalent to(M, ν) (as
above), thus no move at all is necessary inN .

If (M, ν)
t−−→ (M

′
, ν ′), thent can be fired from(M, ν) and the resulting marking

is, (M ′, ν ′), equivalent to(M
′
, ν ′).

• if (M, ν)
d−→ (M, ν+d), for some delayd, then again we have to apply the emptying

sequence from(M, ν), to reach a configuration(M1, ν1) still equivalent to(M, ν),
where time can elapse. The relation betweenν andν1 implies that this is possible,
leading to(M1, ν1 + d).

• Conversely, if(M, ν)
d−→ (M, ν + d), then all placespt are empty inM , so that the

move(M, ν)
d−→ (M, ν + d) is also possible inN .

ThusR is a bisimulation.

Proposition 2 Let N be a time Petri net with atomic semantics. There exists a TPN N
with persistent atomic semantics which is (weakly timed) bisimilar to N .

Proof. Here again, the construction is simple. Note that the only difference between the
two semantics concerns the question wether a transitiont can newly enable itself. With
atomic semantics, this is the case as soon ast is enabled in the new marking while with
persistent atomic semantics, this is never possible. In order to ensure that a transitiont
will be newly enabled if it is enabled in the new marking, we add an input placeEn+

t and
an output placeEn−

t to the transition, with an instantaneous loopbt leading back toEn+
t ,

once the transition has been fired. The construction is represented in Figure 3, again from
left to right.

We consider the equivalence relationR which contains all pairs((M, ν), (M, ν)) such
that:
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•
startt [a, a]

lt

int [b − a, b − a]

ut

endt

ft

true[a,b]

Figure 4: Time subnet for transitiont with interval [a, b]

• M(p) = M(p) for all placesp in P , and

• for a transitiont ∈ En(M), ν(t) = ν(t) if t is enabled inM and0 otherwise. Again
the latter case corresponds inN to a newly enabled transition.

Like in the previous proposition, the proof is mostly based on the fact that from any
configuration(M, ν), we can reach instantaneously a configuration(M1, ν1) such that
M1(En+

t ) = 1 for all t, with the firing of a (possibly empty) sequence of transitionsbt,
with again(M1, ν1) still equivalent to(M, ν).

3.2 A second comparison for standard bounded TPN

We now restrict to bounded TPNs, with the standard definition,i.e. with closed intervals
([a, b] or [a,∞[) for the transitions. Thus, this third result holds only for the subclass
B-T PN (≤,≥).

Proposition 3 Let N be a TPN in B-T PN (≤,≥) with persistent atomic semantics.
There exists a TPN N with intermediate semantics which is (weakly timed) bisimilar
to N .

In this case, the construction ofN is more involved. Like above, we show how to sim-
ulate a transitiont equipped with interval[a, b], for a ≤ b, or [a, +∞[. We first build a
time subnet fort (Figure 4 below), to simulate time elapsing since a reset operation until
reaching (and staying inside) interval[a, b]. The token is in placestartt if the transition
is enabled in the initial marking. The double arrow at the end indicates that the place
termt is both an input and an output place for the corresponding transition: time cannot
progress. Of course, the time subnet for a transition with interval[a, +∞[ is reduced by
removingut, endt andft.

Now, using the fact that the TPN is bounded, we consider its upper boundB and we
associate with each placep a complementary placep such that for any reachable marking
M , M(p) = B−M(p). Figure 5 represents a part of the subnet (on the right) for transition
t (on the left), wheretest1 is the beginning of the test step for what timing updates are
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• · · ·· · ·

p1 p2

t [a, b] t, [0, +∞[

p1

p2 p2
p1

true[a,b]

Mutex
test1

Figure 5: From PA to I

required by the firing oft, andMutex ensures that the updates are done (instantaneously)
before anything else, as explained further.

The remaining part ofN is devoted to the test of the other transitions from the original
TPN, includingt itself. Consider a given transition (sayti), with again two input places
pi

1 andpi
2. The corresponding subnet consists of4 modules, one for each case, depending

on wetherti can be fired or not before and aftert. For this, two additional places are
associated withti: Eti, which contains a token ifti was enabled before the firing oft
andNEti its complementary place. Ifti is initially enabled thenEti is initially marked
otherwiseNEti is marked. This group of4 modules has a common input placetesti and
a common output placetesti+1, which means that the tests are to be executed sequentially
(and instantaneously), except for the last one where all outgoing transitions are linked to
Mutex. These places are not shown in the following figures.

Case 1: transitionti is enabled both before and aftert. To test this case, we use the simple
module on the left of Figure 6, whereEti (test beforet) andpi

1 andpi
2 (test aftert) are

input and output places.
Case 2: ti is not enabled before but enabled aftert. The module is very similar to the
previous one and is on the right of Figure 6. Note that, in this case only, because of the
PA semantics, there must be a reset on the valuation of the transition, which explains why
the initial placestartti of the time module forti is an output place.

Case 3: ti is enabled neither before nor aftert. To test this, we must find an input place of
ti, where the current number of tokens disableti. Here is the point where the boundedness
hypothesis is required. In order to perform this test, we check whetherB − •ti(p) + 1
tokens can be removed from a complementary placep.

Case 4: ti is enabled before but not aftert. In this case, we have a module (see Figure 8)
similar to the one above, except that we must also test for all the different configurations
of the time subnet corresponding toti, to disable the transitions by removing the tokens.
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pi
1

pi
2Eti

pi
1

pi
2NEti

Eti startti

Figure 6: Testing transitionti: cases 1 and 2

pi
1

NEti

pi
2

B − •ti(pi
1) + 1B − •ti(pi

2) + 1

Figure 7: Testing transitionti: case 3

· · ·

· · ·

NEti

Eti

startti

pi
1

inti

true[ai,bi]

endti

pi
2

Figure 8: Testing transitionti: case 4
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It can be seen in Figure 8 that there is a transition for each pair(p, state), where
p is an input place ofti and state may be either the placestartti, the pair of places
(inti , true[ai,bi]) or the pair(endti , true[ai,bi]). Like above, an edge fromp to a transition
must be labeled withB − •ti(p) + 1 (which is omitted in the figure).

We consider the equivalence relationR containing all pairs((M, ν), (M, ν)) such that

• M in N is obtained by projection:M(p) = M(p) for each placep ∈ P ,

• for a transitiont in T enabled byM : ν(t) = 0 if the time subnet oft is empty,
ν(t) = ν(lt) if the placestartt contains a token,ν(t) = a + ν(ut) if the placeint

contains a token andν(t) = b if the placeendt contains a token. Note that in both
latter cases,true[a,b] also contains a token and the transitiont can be fired inN .

Also note that ifM(startt) = 1 andν(ut) = a, then with instantaneously firingut, tran-
sition t can also be fired. By a development similar to the previous ones, we can show that
R is a bisimulation relation. More precisely, the proof is mainly based on emptying se-
quences from a configuration(M, ν) of N : it is always possible to reach instantaneously a
configuration(M1, ν1) such that the testing subnet is empty, with(M1, ν1) still equivalent
to (M, ν). The details are omitted.

We can conclude this section with:

Corollary 1 For the class B-T PN (≤,≥), the three semantics I , A and PA are equally
expressive w.r.t. weak time bisimulation.

4 Strict Ordering Results

In this section, we establish results proving thatT PN are strictly less expressive w.r.t.
weak timed bisimilarity than various classes of TA. For this, we consider the two automata
A0 ∈ T A(<) andA1 ∈ T A(≤) in Figure 9.


0 
1

a, x < 1
A0


0 
1

a, x ≤ 1
A1

Figure 9: Timed automataA0 andA1

We will prove that no TPN can be weakly timed bisimilar to eitherA0 or A1. The
proof relies on the following lemma, which states that in a TPN, waiting in some marking
cannot disable transitions. The proof is easy and is thus omitted. Note that the results
holds without modification for any semantics of↑enableds(t

′,M, t).

72



Annales du LAMSADE n˚4-5

Lemma 1 (Waiting Cannot Disable Transitions) Let (M, ν) be an admissible configu-
ration of a TPN, d ∈ R≥0 and let w = t1t2 · · · tk be an instantaneous firing sequence. If
(M, ν)

w−→ then (M, ν + d)
w−→.

Theorem 2 There is no TPN weakly timed bisimilar to A0.

Proof. Assume there is a TPNN that is weakly timed bisimilar toA0 and let≈ be a
weak timed bisimulation betweenSN andSA0. Let (M0,0) be the initial state ofSN
and(
0, v(x) = 0) the initial state ofSA0. In SA0 there is a run of duration1 leading to

configuration(
0, 1) and thus there is a run(M0,0)
εi0d1εi1d2εi2 ···dnεin−−−−−−−−−−−−→ (M1, ν1) in N ,

with ik ≥ 1 for 1 ≤ k ≤ n − 1, i0 ≥ 0, in ≥ 0 and
∑

1≤k≤n dk = 1. We can further
assumedk > 0 for all k, and alsoin = 0 because the configuration reached afterdn is

also bisimilar to(
0, 1). Then(M0,0)
εi0d1εi1d2εi2 ···dn−1εin−1−−−−−−−−−−−−−−−→ (M ′, ν ′), where(M ′, ν ′) is

bisimilar to a configuration(
0, d
′) with d′ = 1 − dn < 1. This entails that(M ′, ν ′) ε∗a−−→.

Since(M ′, ν ′) dn−−→ (M1, ν1), if follows from lemma 1 that(M1, ν1)
ε∗a−−→ contradicting

the fact that(M1, ν1) ≈ (
0, 1) from which noa can be fired.

The result is also true with large constraints:

Theorem 3 There is no TPN weakly timed bisimilar to A1.

Proof. Again assume there is a TPNN that is weakly timed bisimilar toA1. Since

(
0, 0)
1−→ (
0, 1), we have(M0,0)

1−→ε (M1, ν1), where(
0, 1) and(M1, ν1) are weakly
timed bisimilar. Sincea can be fired from(
0, 1), a transition labeleda can also be
fired from all the configurations(M ′

1, ν
′
1) reachable from(M1, ν1) in null duration (ε

transitions). Also there must be one such configuration(M ′, ν ′) s.t. some durationd > 0
can elapse from(M ′, ν ′) reaching(M ′′, ν ′′). By lemma 1, somea can be fired from
(M ′′, ν ′′). But (M ′′, ν ′′) is weakly timed bisimilar to the configuration(
0, 1 + d) which
preventsa to be fired. Hence a contradiction.

From Theorems 1, 2 and 3, we immediately obtain:

Corollary 2 T PN <W T A(<) and T PN <W T A(≤).

The next proposition shows that the expressive power of TPNs depends on the chosen
semantic even in the bounded case.

Theorem 4 There exists a bounded TPN N with persistent atomic semantics such that
no TPN (even unbounded) with atomic semantics is bisimilar to N .

Proof. Consider the following (Zeno) timed automatonA3: 
0, x < 1
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It is bisimilar to the TPN with PA semantics composed by a single transitiont labeled
by ε with firing interval[0, 1[ (or any interval]a, 1[ or [a, 1[).

Suppose that there is a TPNN with atomic semantics bisimilar toA3 and letdmin be
the minimum of the non null upper bounds occuring in the intervals associated with the
transitions ofN and0.5 (in fact any value less than1 would be convenient).

There must be a sequence(M0, ν0)
d0t1...tkdk−−−−−−→ (M, ν) with Σk

i=0di = 1 − dmin/2 and
(M, ν) bisimilar to(
0, 1 − dmin/2).
From(M, ν), we fire or disable the transitions enabled at this configuration, which leads
to a new configuration(M ′, ν ′) bisimilar to some(
0, 1− δ′) with 0 < δ′ ≤ dmin/2. Now

since(M ′, ν ′) is bimilar to(
0, 1−δ′) there must be a sequence(M ′, ν ′)
d′0t′1...t′

k′d
′
k′−−−−−−−→ with

0 < Σk′
i=0d

′
i < δ′.

Choose the firstd′
i > 0 and let(M∗, ν∗) be the state reached before the durationd′

i. Since
time may elapse in this state, all enabled transitions have non null upper bound for their
interval, hence these bounds are greater than or equal todmin. Since the transitions have
been enabled at or after configuration(M ′, ν ′), we have∀t, ν∗(t) ≤ dmin/2−δ′ < dmin/2,

thus(M∗, ν∗)
dmin/2−−−−→. But (M∗, ν∗) is bisimilar to(
0, 1−δ′) which cannot let time elapse

for a duration ofdmin/2. This is a contradiction.

Following this negative results, we compare the expressiveness of TPNs and TA w.r.t. to
Timed Language Acceptance and exhibit a subclass of TA that admits bisimilar TPNs.

5 Equivalence w.r.t. Timed Language Acceptance

In this section, we prove that TA and labeled TPNs are equally expressive w.r.t. timed
languages acceptance, and give an effective syntactical translation from TA to TPNs.

Let A = (L, l0, X, Σε, E, Inv, F,R) be a TA. Since we are concerned in this section
with the langage accepted byA we assume the invariant function is uniformly true. Let
Cx be the set of atomic constraints on clockx that are used inA. The Time Petri Net
resulting from our translation will be built from “elementary blocks” modeling the truth
value of the constraints inCx. We next link them with blocks for resetting clocks. In the
next subsection we show how to encode atomic constraints into TPNs.

As a consequence of corollary 1, the semanticsI, A andPA for TPNs are equivalent
w.r.t. language acceptance. In this section, we use theI semantics.
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Px

γtt

rb

re

tx(ε, [a, a])

t′(ε, ]0,∞[)

r(ε, [0, 0])

•

(a) WidgetTx>a

Pxrb

γttre

tx(ε, [a, a])r(ε, [0, 0])

•

(b) WidgetTx≥a (assumea > 0)

Figure 10: Widgets forTx>a andTx≥a
Px

γtt

rb

Pu

re

Pi

tx(ε, [0, a[)
(resp.[0, a])

r(ε, [0, 0])
u(ε, [0, 0])

Only fromPi

•

•

Figure 11: WidgetTx<a (resp.Tx≤a)

5.1 Encoding Atomic Constraints

Let ϕ ∈ Cx be an atomic constraint onx. Fromϕ, we define the TPNNϕ, given by the
widgets of Fig. 10 ((a) and (b)) and Fig. 11. In the figures, a transition is writtent(
, I)
wheret is the name of the transition,
 ∈ Σε andI ∈ I(Q≥0).

To avoid drawing too many arcs, we have adopted the following semantics: the grey
box is seen as a macro place; an arc from this grey box means that there are as many
copies of the transition as places in the grey box. For instance the TPN of Fig. 10.(b) has
2 copies of the target transitionr: one with input placesPx andrb and output placesre and
Px and another fresh copy ofr with input placesrb andγtt and output placesre andPx.
Note that in the widgets of Fig. 11 we put a token inγtt when firingr only on the copy of
r with input placePi (otherwise the number of tokens in placeγtt could be unbounded).
Also we assume that the automatonA has no constraintx ≥ 0 (as it evaluates to true they
can be safely removed) and thus that the widget of Fig. 10.(b) only appears witha > 0.

Each of these TPNs basically consists of a “constraint” subpart (in the grey boxes
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TϕnTϕ2Tϕ1

r1
b r1

e r2
b r2

e rn
b rn

e

r1
b (R) r2

b (R) r3
b (R) rn−1

b (R) rn
b (R)

• • •

• • •

r r r

(ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0])

Figure 12: WidgetNReset(R) to reset the widgetsNϕi
, 1 ≤ i ≤ n

for Fig. 10 and in the dashed box for Fig. 11) that models the truth value of the atomic
constraint, and another “reset” subpart that will be used to update the truth value of the
constraint when the clockx is reset. The “constraint” subpart features the placeγtt: the
intended meaning is that when a token is available in this place, the corresponding atomic
constraintϕ is true.

When a clockx is reset, all the grey blocks modeling anx-constraint must be set to
their initial marking with has one token inPx for Fig. 10 and one token inPx andγtt

for Fig. 11. Our strategy to reset a block modeling a constraint is to put a token in therb

place (rb stands for “reset begin”). Time cannot elapse from there on (strong semantics for
TPNs), as there will be a token in one of the places of the grey block and thus transitionr
will be enabled.

We first prove three useful lemmas, the first one providing a structural invariant for
the grey boxes of the widgets:

Lemma 2 For each widget of Fig. 10, each reachable configuration (M, ν) (from the
initial marking) has exactly one token in one of the places of the grey box.

Lemma 3 For the widgets of Fig. 11, each reachable configuration (M, ν) (from the ini-
tial marking) satisfies either i) M(Px) = 1, M(γtt) = 1 and M(Pi) = 0 or ii) M(Pu) = 1
and M(γtt) = 1 or iii) M(Px) = 0, M(γtt) = 0 and M(Pi) = 1.

Proof. The proof is easy for the widgets of Fig. 10. For the widgets of Fig. 11, just notice
that as soon astx is fired, the output transitionu is enabled (there must be a token inγtt as
it can only be removed by the firing ofu). Later on, either the token remains inPi forever,
or if the copy ofr from Pi is fired a token is put inγtt andPx. From lemmas 2 and 3 we
obtain the following:

Lemma 4 If there is a token in rb, exactly one (instance of a) copy of r is firable and due
to the time constraint [0, 0], time cannot progress until it is fired.
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5.2 Resetting Clocks

AssumeR ⊆ X is a non empty subset of clocks. LetD(R) be the set of atomic
constraints that are in the scope ofR (the clock of the constraint is inR). We write
D(R) = {ϕ1, ϕ1, · · · , ϕn}. To update all the widgetsNϕi

, we connect the placesrb and
re of each widgetNϕ as described on Fig. 12. The picture inside the dashed box denotes
the widgetNReset(R). We denote byr1

b (R) the first place of this widget andrn
b (R) the last

one. To update the (truth value of the) widgetsNϕi
it then suffices to put a token inr1

b (R).
In null duration it will go torn

b (R) and have the effect of updating each widgetNϕi
on its

way.

5.3 The Complete Construction

First we create fresh placesP� for each
 ∈ L, and another placeFiring just for conve-
nience: it will allow us to define a simulation relation more succintly. Then we build the
widgetsNϕ, for each atomic constraintϕ that appears inA. Finally for eachR ⊆ X s.t.
there is an edgee = (
, γ, a, R, 
′) ∈ E we build a reset widgetNReset(R).

Then for each edge(
, γ, a, R, 
′) ∈ E with γ = ∧i=1,nϕi andn ≥ 0 we proceed as
follows:

1. assumeγ = ∧i=1,nϕi andn ≥ 0,

2. create a transitionf(a, [0,∞[) and ifn ≥ 1 another oner(ε, [0, 0]),

3. connect them to the places of the widgetsNϕi
andNReset(R) as described on Fig. 13.

In caseγ = tt (or n = 0) there is only one input place tof(a, [0,∞[) which isP�.
In caseR = ∅ there is no transitionr(ε, [0, 0]) and the output place off(a, [0,∞[)
is P�′ instead ofFiring.

The placeFiring is just added for convenience: it has a token only during the re-
set phase of the TPNNe and thus means “we are firing transitions in the reset widget
NReset(R)”.

To complete the construction we just need to put a token in the placeP�0 if 
0 is the
initial location of the automaton, and set each widgetTϕ to its initial marking, for each
atomic constraintϕ that appears inA, and this defines the initial markingM0. The set of
final markings is defined by the set of markingsM s.t. M(P�) = 1 for 
 ∈ F and the
set of repeated markings by by the set of markingsM s.t. M(P�) = 1 for 
 ∈ R. We
denote by∆(A) the TPN obtained as described previously. Notice that by construction 1)
∆(A) is 1-safe and moreover 2) in each reachable markingM of ∆(A)

(∑
�∈L M(P�)

)
+

M(Firing) = 1.
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NReset(R)

Nϕn

Nϕ2

Nϕ1

γ1
tt

γ2
tt

γn
tt

. ..

P�

Firing

r1
b (R) rn

b (R) P�′

f(a, [0,∞[)

r(ε, [0, 0])

Figure 13: WidgetNe of an edgee = (
, γ, a, R, 
′)

5.4 ∆(A) and A accepts the same timed language

We now prove the following proposition:

Proposition 4 If ∆(A) is defined as above, then L(A) = L(∆(A)).

Proof. The proof works as follows: we first show that∆(A) weakly simulatesA which
impliesL(A) ⊆ L(∆(A)). Then we show that we can define a TAA′ s.t.L(A) = L(A′)
andA′ weakly simulates∆(A) which entailsL(∆(A)) ⊆ L(A′) = L(A). It is sufficient
to give the proof for the case whereA has noε transitions. In caseA hasε transitions we
rename them with a fresh letterµ �∈ Σε and obtain an automatonAµ with noε transitions.
We apply our construction toAµ and obtain a TPN in which we replace every labelµ by
ε.

Recall thatA = (L, 
0, X, Σε, E, Inv, F,R) and∆(A) = (P, T, Σε,
•(.), (.)•, M0, Λ,

I, F∆, R∆) and writeX = {x1, · · · , xk}, P = {p1, · · · , pm} andT = {t1, · · · , tn}. We
assume that the set of atomic constraints ofA is CA. The placeγtt of a widgetNx��c (for
x �� c an atomic constraint ofA) is writtenγx��c

tt .

Proof that ∆(A) simulates A. We define the relation� ⊆ (L × Rn
≥0) × (Np × Rm

≥0)
by:

(
, v) � (M, ν) ⇐⇒




(1) M(P�) = 1 ∨ M(Firing) = 1

(2) for each ϕ = x �� c, ��∈ {<,≤}, M(Pu) = 0

(3) for each ϕ ∈ CA, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1

(I)

Now we prove that� is a weak simulation relation ofA by ∆(A), and this by checking
the 4 conditions of Def. 4:
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1. final and repeated states: by definition of∆(A) and lemmas 2 and 3 and the defini-
tion of�;

2. initial states: it is clear that(l0,0) � (M0,0);

3. continuous transitions: let(
, v)
d−→ (
, v + d). Take(M, ν) s.t. (
, v) � (M, ν).

As the widgetsNϕi
are non-blocking, timed can elapse from(M, ν), and there is a

run (M, ν)
ρ−→ (M ′, ν ′) with Duration(trace(ρ)) = d andUntimed(trace(ρ)) = ε.

We can chooseρ without any transitionsf(a, [0,∞[) so that a token remains inP�

andM ′(P�) = 1. Thus to prove(
, v + t) � (M ′, ν ′) it remains to prove items (2)
and (3) of equation (I).

Let ϕ = x �� c with ��∈ {<,≤}.

• if ϕ(v) = tt andϕ(v + d) = ff, then there is somed′ ≤ d s.t. transitiontx of
widgetNϕ is enabled and it must be fired beforeϕ becomes false. Thustx is
fired atd′ (which is possible as there is no token inPu and thus the token is in
Px) and subsequentlyu in the same widget, thus transfering the tokens from
Px, γ

ϕ
tt to Pi.

• if ϕ(v) = tt andϕ(v + d) = tt, it is possible to do nothing in widgetNϕ and
let the token inPx andγϕ

tt.

• if ϕ(v) = ff thenϕ(v + d) = ff, then there must be a token inPi and we let
time elapse without firing any transition.

Let ϕ = x �� c with ��∈ {>,≥}.

• if ϕ(v) = tt thenϕ(v +d) = tt andM(γϕ
tt) = 1. We just let time elapse inNϕ.

• if ϕ(v) = ff andϕ(v + d) = tt, there ist′ ≤ t s.t. transitionstx must be fired
(andt′ can be fired atd′ + ξ with ξ > 0 for Nx>c). We fire those transitions at
d′ and letd − d′ elapse.

• if ϕ(v) = ff andϕ(v + d) = ff we also let time elapse and leave a token inPx.

This way for each cosntraintϕ = x �� c, there is a runρϕ = (M, ν)
d−→ε (Mϕ, νϕ)

s.t. (Mϕ, νϕ) satisfies requirements (2) and (3) of equation (I). Taken separately we
have for each constraint(
, v) � (Mϕ, νϕ). It is not difficult5 to build a runρ with

an interleaving of the previous runsρϕ s.t. ρ = (M, ν)
t−→ε (M ′, ν ′) and(M ′, ν ′)

satisfies requirements (2) and (3) of equation (I) for each constraintϕ, and thus
(
, v) � (M ′, ν ′).

5Just find an ordering for all the dated′ at which a transition must be fired and fire those transitions in
this order with time elapsing between them.
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′

γ ∧ ψ, a,R

(a) Edge(�, γ ∧ ψ, a,R, �′) in A


 
′

(
∧

ϕ∈K� ϕ) ∧ (γ ∧ ψ), a, R, Ω(R)

bx	c = tt, ε
bx	c := ff

by	c = tt, ε
by	c := ff

(b) Extended edge inA′.

Figure 14: FromA toA′.

4. discrete transitions: Let(
, v)
a−→ (
′, v′) and(
, v) � (M, ν). Then there is an edge

e = (
, γ, a, R, 
′) ∈ E s.t. γ = ∧i=1,nϕi, n ≥ 0 andϕi is an atomic constraint.
By definition 9,v ∈[[ϕi ]] for 1 ≤ i ≤ n. This impliesM(γϕi

tt ) = 1 (definition of
�). Thus the transitionf(a, [0,∞[) is fireable in the widgetNe leading to(M ′, ν ′).
From there on we do not change the marking of widgetsNϕi

for the constraintsϕi

that do not need to be reset (the clock ofϕi is not inR). We also use the widgetTe

to reset the constraintsϕi with a clock inR and finally put a token inP�′ . The new
state(M ′′, ν ′′) obtained this way satisfies(
′, v′) � (M ′′, ν ′′).

This completes the proof that∆(A) simulatesA and thusL(A) ⊆ L(∆(A)).

Proof of L(∆(A)) ⊆ L(A). To prove this, we cannot easily exhibit a simulation of
∆(A) byA. Indeed,∆(A), because of the widgetsNx��c with ��∈ {<,≤}, has to make a
decision at some point to fire transitiontx and immedialty afteru, i.e. it is as if it decides
thatx �� c is now false and the transitions with this guard cannot be fired anymore (until
they are reset). To use the simulation framework, we build first a TAA′ that accepts the
same language asA but has the capability to sometimes (non deterministically) decide it
will not use a transition with a guardx �� c until it is reset. It is then possible to build a
simulation relation of∆(A) by A′.

We denote� for either{<,≤} and� for {>,≥}. Let K	 be the set of contraints
x � c in A. For eachx � c ∈ K	 we introduce a boolean variablebx	c. Eachbx	c is
initially true.

We start withA′ = A. The construction of the new features ofA′ is depicted on
Fig. 14. Let(
, γ ∧ ψ, a,R, 
′) be an edge ofA′ with γ = ∧x	c∈K�x � c andψ =
∧x
c∈K�x � c. For such an edge we strengthen6 the guardγ ∧ ψ to obtainγ′ as follows:
γ′ = γ ∧ ψ ∧ ∧

x	c∈K� bx	c. This way the transition(
, γ ∧ ψ, a,R, 
′) can be fired inA′

only if the corresponding guard inA and the conjunction of thebx	c is true as well. We

6We need an extended type of TA with boolean variables; this does not add any expressive power to the
model.
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also reset to true all the variablesbx	c s.t. x ∈ R on a transition(
, γ ∧ ψ, a,R, 
′) and
Ω(R) corresponds to the reset of allbx	c s.t.x ∈ R, Ω(R) = ∧x∈Rbx	c := tt.

Now let 
 be location ofA′. For each variablebx	c we add a loop edge(
, bx	c =
tt, ε, bx	c := ff, 
) in A′, i.e. the automatonA′ can decide non deterministically7 to set
bx	c to false if it is true (see Fig. 14). There are as many loops on each location as the
number of variablesbx	c. The new non deterministic TAA′ accepts exactly the same
language asA i.e. L(A′) = L(A).

We can now build a simulation relation of∆(A) byA′. We denote(
, v, b) a configu-
ration ofA′ with b the vector ofbϕ variables. We define the relation� ⊆ (Np × Rm

≥0) ×
(L × Rn

≥0 × Bk) by:

(M, ν) � (
, v, b) ⇐⇒




(1) M(P�) = 1 ∨ M(Firing) = 1

(2)∀ϕ = x > c ∈ K>, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1

(3)∀ϕ = x ≥ c ∈ K≥, v ∈[[ϕ]] ⇐⇒ M(γϕ
tt) = 1∨

(M(Pϕ
x ) = 1 ∧ ν(tϕx) = c)

(4)∀ϕ ∈ K	,M(Pϕ
i ) = 1 ⇐⇒ (bϕ = ff ∨ v �∈[[ϕ]])

(II)

Now we prove that� is a weak simulation relation of∆(A) byA.

• property on final and repeated states is satisfied by definition ofA′,

• for the initial configuration, it is clear that(M0,0) � (l0,0, b0) (in b0 all the vari-
ablesb are true),

• continuous time transitions: let(M, ν)
d−→ (M ′, ν ′) with d ≥ 0. Let (M, ν) �

(
, v, b). As there are no invariant inA′ timed can elapse from(
, v, b). If no ε tran-
sition fires in the TPN, then all the truth values of the constraints stay unchanged.

Thus(
, v, b)
d−→ (
, v + d, b) and inA′ s.t. (M ′, ν ′) � (
, v + d, b).

• discrete transitions: let(M, ν)
a−→ (M ′, ν ′). We distinguish the casesa = ε and

a ∈ Σ.
If a ∈ Σ then we must fire a transitionf(a, [0,∞[) of some widgetNe for e =
(
, γ, a, R, 
′). After firing f we end up inFiring and have left the input placesγtt

unchanged. By equation II and the definition ofA′ we can fire a matching transition
in A′ leading to a state(
′, v′, b′) and(M ′, ν ′) � (
′, v′, b′).
If a = ε then we are either updating some widgetsNϕ or doing a reset.
Assume we fire aε transition that is not a reset transition (M(P�) = 1). We split
the cases according to the different types of widgets:

7This means we addε transitions toA′; nevertheless the restriction we made at the beginning thatA has
no ε transitions is useful when proving that∆(A) simulatesA and not required to prove thatA′ weakly
simulates∆(A).
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– update of a widgetNx>c: either tx or t′ is fired. If tx is fired then the time
elapsed since thex was last reset is equal toa. ThusM(γtt) = 0 andv(x) ≤ c
andv �∈[[x > c]]. This implies(M ′, ν ′) � (
, v).
If t′ is fired on the contrary,v′(x) > c but again(M ′, ν ′) � (
, v, b).

– update of a widgetNx≥c: the same reasoning as before can be used and leads
to (M ′, ν ′) � (
, v, b).

– update of a widgetNx<c: In this case eithertx or u is fired. Assumetx is fired.
ThusM ′(Pi) = 0. The time elapsed sincex was last reset is strictly less than
c andv ∈[[ϕ]]. bϕ is true in(
, v, b) asM(Pi) = 0. Thus(M ′, ν ′) � (
, v, b).
Now assumeu is fired. AgainM(Pi) = 0 and thusv(x) < c andbϕ is true.
This timeM ′(Pi) = 1. In the automatonA′ we fire the transition settingbϕ

to false and we end up in a state(
, v, b′) s.t. (M ′, ν ′) � (
, v, b′). The same
reasoning applies forNx≥c.

For the reset transitions and the last transition putting a token inP�′ we can proceed
similarly.

This completes the proof thatA′ simulates∆(A) and thusL(∆(A)) ⊆ L(A′) and
L(∆(A)) ⊆ L(A).

We can thus conclude thatL(∆(A)) = L(A), which ends the proof of Proposition 4.

5.5 Consequences of the Previous Results

Let k-T PN be the set ofk-bounded TPNs (Note that boundedness is not decidable for
TPNs). LetB-T PN = {T | ∃k ≥ 0 |T ∈ k-T PN}, i.e. the set of bounded TPNs. From
the previous proposition we can state the following corollaries:

Corollary 3 The classes B-T PN and T A are equally expressive w.r.t. timed language
acceptance, i.e. B-T PN =L T A.

Proof. From Theorem 1, we know thatB-T PN ≤L T A. Proposition 4 proves that
T A ≤L T PN and henceB-T PN =L T A.

Corollary 4 k-T PN =L 1-T PN .

Proof. Let T ∈ k-T PN . We use Theorem 1 and thus there is a TAAT s.t. L(T ) =
L(AT ). FromAT we use Proposition 4 and obtain∆(AT ) which is a1-safe TPN.
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6 Bisimulation of TA by TPNs

We now focus on the expressiveness of the models w.r.t. weak time bisimilarity. In the
sequel, we often abbreviate weak timed bisimilarity by bisimilarity.

First, we recall two related results:

• There are unbounded TPNs which do not admit a bisimilar TA. This is a direct
consequence of the following observation: the untimed language of a TA is regular
which is not necessarily the case for PNs (and thus for TPNs).

• For any bounded TPN, there is a TA which is bisimilar to it (see Theorem 1 from [8]).

This last result was proved by the construction of a synchronized product of automata
enlarged with a vector of bounded integers (a model equivalent to standard automata).
The proposed construction is structural and linear w.r.t. to the size of the PN. It has the
additional advantage that the available tools exploit the product in order to reduce the
complexity of verification. Here we are mainly concerned with expressivity. So we can
also give a straightforward construction based on the reachability space:

• With each transitiont, we associate a clockxt.

• With each reachable markingM , we associate a location
M . The invariant of
M

is given by
∧

t∈En(M) xt ∈ I(t)↓, (recall thatI(t) is the interval associated witht).

• With each firingM
t−→ M ′ (in the untimed PN), we associate an edgee = (
M , γ, t,

R, 
M ′) with γ = xt ∈ I(t) andR defined according to the chosen semantic. For
instance, ifPA semantics is chosen then

R = {xt′ | t′ /∈ En(M) ∧ t′ ∈ En(M ′)}.

In this section, we consider the TPNs originally defined by Merlin (i.e. without strict
constraints) and labeled-free TA (i.e. where two different edges have different labels
and no label isε) and we develop the main result of the paper: a characterization of
the subclass of TA which admit a bisimilar TPN. From this characterization, we will
deduce that given a TA, the problem of deciding whether there is a TPN bisimilar to it, is
PSPACE-complete. Furthermore, we will provide two effective constructions for such
a TPN: the first one with rational constants has a size linear w.r.t. the TA, while the other,
which uses only integer constants has an exponential size.
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6.1 Regions of a timed automaton

Since our proofs are based on the regions of a timed automaton, we detail their definition.
Recall that aregion is a pair composed by a location and anelementary time zone of the
grid defined by the clocks and the granularityg. In the sequel, the topology of the regions
is implicitely derived from the one of its associated zone. We now formally define the
particular case of regions for a maximal constantK = ∞. Obviously it may lead to an
infinite region automaton but will be a helpful tool for proving our characterization. Note
also that the following definition is equivalent to the original one but is more appropriate
for our theoretical developments.

Definition 12 (Regions of an automaton w.r.t. the g-grid and constant K = ∞) A time-
closed region r is given by:

• 
r the location of r,

• minr ∈ NX
g the minimal vector of the topological closure of r,

• The number sizer of different fractional parts of clock values in the grid NX
g , with

1 ≤ sizer ≤ |X| and the onto mapping ordr : X 	→ {1, . . . , sizer} which gives the
relative positions of these fractional parts,

The region is then r = {(
r,minr + δ) | δ ∈ RX
≥0 ∧ ∀x, y ∈ X[ordr(x) = 1 ⇔ δ(x) =

0] ∧ δ(x) < 1/g ∧ [ordr(x) < ordr(y) ⇔ δ(x) < δ(y)]}.

A time-open region r is defined with the same attributes as the time-closed region by:
r = {(
r,minr + δ + d) | d ∈ R>0 ∧ ∀x ∈ X, δ(x) + d < 1/g}.

The set [X]r is the set of equivalence classes of clocks w.r.t. their fractional parts, i.e. x
and y are equivalent iff ordr(x) = ordr(y).

This definition needs to be slightly modified when dealing with a constantK < ∞,
by introducing a subset ofrelevant clocks, for which the value is less thanK (recall that
K > m wherem is the maximal constant in the constraints of the timed automaton).

Definition 13 (Regions of an automaton w.r.t. the g-grid and finite constant K) A time-
closed region r is given by:

• 
r the location of r,

• minr ∈ NX
g with ∀x, minr(x) ≤ K the minimal vector of the topological closure

of r,
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• ActXr = {x ∈ X |minr(x) < K} the subset of relevant clocks,

• the number sizer of different fractionnal parts for the values of relevant clocks in
the NActXr

g grid, with 1 ≤ sizer ≤ Max(|ActXr|, 1) and the onto mapping ordr :
X 	→ {1, . . . , sizer} giving the ordering of the fractionnal parts. By convention,
∀x ∈ X \ ActXr, ordr(x) = 1.

Then r = {(
r,minr + δ) | δ ∈ RX
≥0 ∧ ∀x, y ∈ ActXr[ordr(x) = 1 ⇔ δ(x) =

0] ∧ δ(x) < 1/g ∧ [ordr(x) < ordr(y) ⇔ δ(x) < δ(y)]}

A time-open (description of) a region r is given by the same attributes (and conditions) as
a time-closed region with:
r = {(
r,minr + δ + d) | d ∈ R>0 ∧ ∀x ∈ ActXr, δ(x) + d < 1/g}.

Note that letting time elapse leads to an alternation of time-open regions (where time
can elapse) and time-closed ones (where no time can elapse). We also remark thatminr /∈
r except if there is a single class of clocks relative tor (for instance ifr is a singleton).
More generally, whatever be the grid and the maximal constant, we noter, the topological
closure ofr: it is a finite union of regions and from the definition,minr is the minimum
vector ofr.

Reachability. Recall that a region isreachable if it belongs to the region automaton.
However it does not mean that all the configurations of the region are reachable. Nev-
ertheless, by induction on the reachability relation inside the region automaton it can be
shown that every configuration is “quasi-reachable” in the following sense:
For each reachable regionr, there is a regionreach(r) w.r.t. the 1-grid and the constant
∞ such that:

• reach(r) ⊂ r;

• each configuration ofreach(r) is reachable;

• if reach(r) is a time-open region thenr admits a time-open description elser ad-
mits a time-closed description.

Note that consequently∀x ∈ ActXr,minreach(r)(x) = minr(x) and ∀x ∈ X \
ActXr,minreach(r)(x) ≥ K and thatordr restricted toActXr is identical toordreach(r).

Let us defineR by (l, v)R(l, v′) iff ∀x ∈ X, v′(x) = v(x)∨ (v(x) ≥ K∧v′(x) ≥ K).
ThenR is a strong time bisimulation relation. From the previous observations, we note
that each configuration of a reachable region is strongly time bisimilar to a reachable
configuration of this region. Thus speaking about reachability of regions is a slight abuse
of notations.
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6.2 From bisimulation to uniform bisimulation

As a first step toward our characterization, we prove that when a TPN and a TA are
bisimilar, the condition can in fact be strengthened in what we call uniform bisimulation.

We first prove a lemma which is also a strengthened version of lemma 1. It points
out the effect of time granularity on the behaviour of TPN when strict constraints are
excluded.

Lemma 5 Let (M, ν) and (M, ν + δ) be two admissible configurations of a g-TPN with
ν, δ ∈ R

En(M)
≥0 . Let w be an instantaneous firing sequence, then:

(a) (M, ν)
w−→⇒ (M, ν + δ)

w−→
(b) If ν ∈ Ng

En(M) and δ ∈ [0, 1/g[En(M) then (M, ν + δ)
w−→⇒ (M, ν)

w−→

Proof. There are two kinds of transitions firing inw: those corresponding to a firing
of a transition (sayt) still enabled from the beginning of the firing sequence and those
corresponding to a newly enabled transition (sayt′).
Proof of (a) Sincet is firable from(M, ν), ν(t) ∈ I(t) ⊂ I(t)↑, soν(t) + δ(t) ≥ ν(t)
also belongs toI(t)↑. Sincet ∈ En(M) and(M, ν +δ) is reachable,ν(t)+δ(t) ∈ I(t)↓.
Thusν(t) + δ(t) ∈ I(t) andt is also firable from(M, ν + δ). Sincet′ is newly enabled,
0 ∈ I(t′) andt′ is also firable when it occurs starting from(M, ν + δ).
Proof of (b) The case of newly enabled transitions inw is handled as before. Now let
t be firable in(M, ν + δ). Sincet ∈ En(M) and (M, ν) is reachable,ν(t) ∈ I(t)↓.
Sinceν(t) + δ(t) ∈ I(t)↑, (denoting byeft(t) the minimum ofI(t)↑), we haveeft(t) ≤
ν(t) + δ(t) but eft(t) belongs to theg-grid, thuseft(t) ≤ ν(t) ⇔ ν(t) ∈ I(t)↑. Sot is
firable from(M, ν).

Lemma 6 (From bisimulation to uniform bisimulation) Consider a timed automaton
A bisimilar to some g-TPN N via some relation R. The semantics considered for N is
PA as it gives the maximal expressivity. We consider the region automaton of A w.r.t. the
grid NX

g and the constant K = ∞. Then:

• if a region r belongs to R(A) then r also belongs to R(A);

• with each reachable region r is associated a configuration of the net (Mr, νr) with
νr ∈ N

En(Mr)
g and a mapping φr : En(Mr) → [X]r which fulfill:

– If r is time-closed, then ∀(
r,minr + δ) ∈ r,

(
r,minr + δ)R(Mr, νr + projr(δ))

where projr(δ)(t) = δ(φr(t)).

– If r is time-open, then ∀(
r,minr + δ + d) ∈ r,

(
r,minr + δ + d)R(Mr, νr + projr(δ) + d)
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Proof. We prove this uniform version of the bisimulation by induction on the reachability
relation between regions. First note that the choice of a particular clockx in the class
φr(t) is irrelevant when considering the valueδ(x). Thus the definition ofprojr is sound.

We prove our assertion by induction on the transition relation in the region automaton.
The basis case is straightforward with{(l0,0)} and{(M0,0)}. For the induction part, we
consider4 cases, according to the incoming or target region and to the nature of the step.

1. A time step from a time-closed region Let r be a time-closed region which is not max-
imal and let us denoter′ = succ(r) the immediate time successor ofr. Let (
r,minr+δ0)

be some item ofr. (
r,minr + δ0)
d−→ for somed > 0. Thus (by induction hypothesis) in

N there is a step sequence of(Mr, νr + projr(δ0))
d0t1...tndn−−−−−−→ with all transitions labelled

by ε and
∑

dk = d. Let dk be the first non zero elapsing of time. By application of
lemma 5-b, the firing sequencet1 . . . tk is firable from(Mr, νr).

Let us choose(Mr′ , νr′) the configuration reached by this sequence. By application of
lemma 5-a, this firing sequence is also fireable from any(Mr, νr + projr(δ)) bisimilar to
(
r,minr + δ) ∈ r and it leads to(Mr′ , νr′ + projr′(δ)) (still bisimilar to (
r,minr + δ))
whereφr′ (resp. νr′) is equal toφr (resp. νr) for transitions always enabled during the
firing sequence andφr′ (resp. νr′) is obtained by associating the class of index 1 (resp.
by associating the value 0) to the transitions newly enabled. Since(Mr′ , νr′) let the time
elapse and sinceN is a g-TPN, we note that∀t ∈ En(Mr′), νr′(t) + 1/g ∈ I(t)↓.
Now let (
r,minr + δ + d) ∈ r′, one has∀x ∈ X, δ(x) + d ≤ 1/g. Thus∀t ∈
En(Mr′), projr′(δ(x)) + d ≤ 1/g, which implies(Mr′ , νr′ + projr′(δ))

d−→ (Mr′ , νr′ +
projr′(δ) + d), this last configuration being necessarily bisimilar to(
r,minr + δ + d).

2. A time step from a time-open region. Let r be an time-open region and let us denote
r′ = succ(r). Let us defineXmax

r the class[x]r with maximal index. We remark that
minr′ = minr + δ0 where ifx ∈ Xmax

r thenδ0(x) = 1/g elseδ0(x) = 0. We choose
(Mr′ , νr′) = (Mr, νr + projr(δ0)). Let t ∈ En(Mr) andx ∈ φr(t) thenφr′(t) = [x]r′
(letting time elapse does not split the classes). Soprojr andprojr′ are identical.

Now let (lr′ ,minr′ + δ) ∈ r′. (lr′ ,minr′ + δ) = (
r,minr + δ0 + δ).

Now letd = δ(x) for x belonging the class of index 1 in[Xr]. Then(
r,minr + δ0 +
δ) = (
r,minr +δ′ +d) where ifx ∈ Xmax

r thenδ′(x) = 1/g−d elseδ′(x) = δ(x)−d.
(
r,minr +δ′ +d) is bisimilar to(Mr, νr + projr(δ

′)+d) = (Mr, νr + projr(δ
′ +d)) =

(Mr, νr + projr(δ1 + δ)) = (Mr, νr + projr(δ1) + projr(δ)) = (Mr′ , νr′ + projr′(δ))).

For this step, we have not used the characteristics of time Petri nets.

3. A discrete step into a time-closed region.

Case a. We first consider the case wherer is a time-closed region.
Let (
r, minr +δ0) be some element ofr. Suppose that(
r, minr +δ0)

e−→ (l′, v′ +
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δ′
0) with ∀x ∈ R(e), v′(x) = δ′

0(x) = 0, ∀x /∈ R(e), v′(x) = minr(x) ∧ δ′
0(x) =

δ0(x). Then inN there is a firing sequence(Mr, νr + projr(δ0))
w−→ labelled

by e. Due to lemma 5, this firing sequence is also fireable from any(Mr, νr +
projr(δ)) bisimilar to(
r,minr +δ) ∈ r. By bisimilarity, (
r, minr +δ)

e−→ for any
(
r,minr+δ) ∈ r. Letr′ be the region including(
′, v′+δ′

0), then any configuration
of r′ is reachable by this discrete step. Note that
r′ = l′ andminr′ = v′.

From (Mr, νr + projr(δ)), the sequencew leads to some(M ′, ν ′) bisimilar to
(
r′ ,minr′ + δ′)). We now show how to defineMr′ , νr′ andφr′. FirstMr′ = M ′.
Second,νr′(t) = νr(t) for transitionst always enabled during the firing sequence
andνr′ = 0 otherwise. At last,φr′ is obtained fromφr as follows. Lett be a transi-
tion newly enabled during the firing sequence, thenφr′(t) is associated to the class
of index 1. Lett be a transition always enabled during the firing sequence. There
are three cases to consider forφr′(t): either there is ax ∈ φr(t) not reset, then
φr′(t) = |x]r′ otherwiseφr′(t) is the class of maximal index which preceedesφr(t)
and contains a clock not reset or else the class of index 1. The two last affectations
are sound since it means that whatever the value ofδ(t) fulfilling the order between
classes, the firing sequencew leads to bisimilar configurations (as being bisimilar
to the same configuration of the automaton).

Case b. The case wherer is a time-open region is handled in a similar way. Let(
r,
minr +δ0 +d0) be some element ofr. Suppose that(
r, minr +δ0 +d0)

e−→ (
′, v′+
δ′
0) with ∀x ∈ R(e), v′(x) = δ′

0(x) = 0, ∀x /∈ R(e), v′(x) = minr(x) ∧ δ′
0(x) =

δ0(x) + d0. Then inN there is a firing sequence(Mr, νr + projr(δ0) + d0)
w−→

labelled bye. Due to lemma 5, this firing sequence is also fireable from any
(Mr, νr + projr(δ) + d) bisimilar to (
r,minr + δ + d) ∈ r. By bisimilarity,
(
r, minr +δ + d)

e−→ for any(
r,minr + δ + d) ∈ r. Let r′ be the region including
(l′, v′ +δ′

0), then any configuration ofr′ is reachable by this discrete step. Note that
lr′ = l′ andminr′ = v′.

From(Mr, νr + projr(δ) + d), the sequencew leads to some(M ′, ν ′) bisimilar to
(lr′ ,minr′ + δ′)). We now show how to defineMr′ , νr′ andφr′. FirstMr′ = M ′.
Second,νr′(t) = νr(t) for transitionst always enabled during the firing sequence
and νr′ = 0 otherwise. At last,φr′ is obtained fromφr as follows. Lett be a
transition newly enabled during the firing sequence, thenφr′(t) is associated to
the class of index 1. There are three cases to consider forφr′(t): either there is a
x ∈ φr(t) not reset, thenφr′(t) = |x]r′ otherwiseφr′(t) is the class of maximal
index which preceedesφr(t) and contains a clock not reset or else the class of index
1. The two last affectations are sound since it means that whatever the value of
δ(t) fulfilling the order between classes, the firing sequencew leads to bisimilar
configurations (as being bisimilar to the same configuration of the automaton).

4. A discrete step into a time-open region. In order to reach a time-open region by a
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0

x ≤ 1

1

x ≤ 1
l2

x ≤ 1, a, ∅

x = 1, b, {y}
x ≥ 1 ∧ y ≤ 0, c, ∅

B0 :


0

x ≤ 1

1

x ≤ 1
l2

x ≤ 1, a, {y} x ≥ 1 ∧ y ≤ 0, c, ∅
B1 :

Figure 15: Two automata with different behavior w.r.t bisimulation with a TPN

discrete step, the corresponding transition must start from a time-open region and must
not reset any clock. Let(
r,minr+δ+d) ∈ r and(
r,minr+δ+d)

e−→ (l′,minr+δ+d).
Here we have used the hypothesis that no clock is reset. Then there is a firing sequence
(Mr, νr + projr(δ) + d)

w−→ labelled bye. Due to the lemma 5,(Mr, νr + projr(δ))
w−→.

(
r, vr + δ) is bisimilar to(Mr, νr + projr(δ)). Thus(
r,minr + δ)
e−→ (l′,minr + δ)

d−→
(l′,minr + δ + d). Then this region can be reached via a discrete step into a time-closed
region followed by a time step. So we do not need to examine this case.

6.3 A characterization of bisimilarity

The characterization of TA bisimilar to some TPN is closely related to the topological
closure of reachable regions: it states that any region intersecting the topological closure
of a reachable region is also reachable and that a discrete step either from a region or from
the minimal vector of its topological closure is possible in the whole topological closure.
The two automataB0 andB1 in Figure 6.3 will illustrate our results: the automatonB0

admits a bisimilar TPN whereasB1 does not.In the sequel, we suppose that any atomic
constraint related to a clockx occurring in the invariant of a location is added to the guard
of each incoming transition which does not resetx.

Theorem 5 (Characterization of TA bisimilar to some TPN) Let A be a (label-free) ti-
med automaton, let R(A) its region automaton w.r.t. the 1-grid and a constant K strictly
greater than any constant occurring in the automaton, then A is weakly timed bisimilar
to a time Petri net iff:
∀r ∈ R(A), ∀e an edge of A,
(a) Every region r′ s.t. r′ ∩ r �= ∅ is reachable
(b) ∀(
r, v) ∈ r, (
r, v)

e−→⇒ (
r,minr)
e−→

(c) ∀(
r, v) ∈ r, (
r,minr)
e−→⇒ (
r, v)

e−→
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Furthermore, if these conditions are satisfied then we can build a 1-bounded 2-TPN
bisimilar to A whose size is linear w.r.t. the size of A and a 1-bounded 1-TPN bisimilar
to A whose size is exponential w.r.t. the size of A.

We noteT A− this class of automata. Using the theorem, we justify why the automaton
B1 does not admit a bisimilar TPN. The regionr = {(
1, x = 1∧0 < y < 1} is reachable.
The guard of edgec is true inminr = (
1, (1, 0)) whereas it is false inr.

We prove Theorem 5 in three steps in the next paragraphs.

6.4 Proof of Necessity

Proof.[of Necessity] The fact that conditions(a), (b), and(c) are satisfied with respect to
theg-grid and the constantK = ∞ is straightforward:

• (a) This assertion is included in the inductive assertions.

• (b) Let r be a reachable region, let(
r,minr + δ) ∈ r be a configuration with
δ ∈ [0, 1/g[X , then∃(M, ν) ν ∈ N

En(M)
g bisimilar to (
r,minr) and(M, ν + δ′)

with δ′ ∈ [0, 1/g[En(M) bisimilar to (
r, v + δ). Suppose that(
r,minr + δ)
e−→,

then(M, ν + δ′)
w−→ with w an instantaneous firing sequence andlabel(w) = e.

Now by lemma 5-b,(M, ν)
w−→, thus(
r,minr)

e−→.

• (c) Let r be a region, and(
r,minr +δ) ∈ r with δ ∈ [0, 1/g]X thus∃(M, ν) bisim-
ilar to (
r,minr) and(M, ν+δ′) with δ′ ∈ [0, 1/g]En(M) bisimilar to(
r,minr+δ).
Suppose that(
r,minr)

e−→, then(M, ν)
w−→ with w an instantaneous firing sequence

andlabel(w) = e. Now by lemma 5-a,(M, ν + δ′)
w−→, thus(
r,minr + δ)

e−→.

In order to complete the proof, we successively show that if the conditions are satisfied
w.r.t. theg-grid and infinite constant, they are satisfied w.r.t. the1-grid and infinite con-
stant and when satisfied w.r.t the1-grid and infinite constant, they are satisfied w.r.t the
1-grid and the usual finite constant. This is done by the next two lemmas.

Lemma 7 (about the conditions and the grid) Let A be a timed automaton, and g ∈
N>0. If the conditions (a),(b),(c) are satisfied by the region automaton associated with the
g-grid, then they are satisfied by the region automaton associated with the 1-grid (where
in both cases the constant K = ∞).

Proof. Let us denoteR(A)g the region automaton ofA w.r.t. theg-grid. By definition
of regions, we remark thatr a region ofR(A) is a finite union of regions ofR(A)g (say
r =

⋃
i=1..k ri). Thusr =

⋃
i=1..k ri which proves the implication for(a).

90



Annales du LAMSADE n˚4-5

Assume that(b) is satisfied byR(A)g. Let (
r,minr + δ + d) ∈ r be a region ofR(A)
and assume(
r,minr + δ + d)

e−→. We defineδ′ by δ′(x) = δ(x)/g . Then sinceA has
integer constraints(
r,minr + δ′ + d/g)

e−→. Moreover this configuration belongs tor
and then to a regionr′ ∈ R(A)g whose minimal vector isminr. Then applying(b), we
obtain(
r,minr)

e−→.

Assume that(c) is satisfied byR(A)g. Let (
r, v) ∈ r wherer is a region ofR(A) and
assume(
r,minr)

e−→. Then there is an increasing path among the minimum vectors of
regions ofR(A)g all included inr. This path is such that any two consecutive elements
belong to the closure of some region; it starts at(
r,minr) and finishes at(
r,minr∗)
such that(
r, v) ∈ r∗ (with r∗ a region ofR(A)g). Thus applying iteratively(c) yields
(
r, v)

e−→.

Lemma 8 (about the conditions and the constant K) Let A be a timed automaton. If
the conditions (a),(b),(c) are satisfied by the region automaton associated with the 1-grid
and constant K = ∞, then they are satisfied by the region automaton associated to the
1-grid and a finite constant.

Proof. Let us denoteR(A)∞ the region automaton ofA w.r.t. K = ∞. Let r be a reach-
able region inR(A) andreach(r) the associated region ofR(A)∞. Note that
reach(r) =

r and that∀x ∈ ActXr,minreach(r) = minr and∀x ∈ X,minreach(r) ≥ minr. Sup-
pose thatreach(r) is time-closed (resp. time-open) thenr admits a time-closed (resp.
time-open) description where theordr andordreach(r) mappings are identical for clocks
in ActXr. Thus∀(
r, v) ∈ r,∃(
r, v

′) ∈ reach(r) such that∀x ∈ ActXr, v
′(x) = v(x).

Now take a convergent sequencelimi→∞(
r, vi) = (
r, v) with (
r, vi) ∈ r so that
(
r, v) ∈ r. Then the corresponding sequence{(
r, v

′
i)} being bounded admits an accu-

mulation point(
r, v
′) ∈ r. It is routine to show that(
r, v) and (
r, v

′) belong to the
same region inR(A). This proves that condition(a) for R(A)∞ implies condition(a) for
R(A).

Assume that(b) is satisfied byR(A)∞. Let (
r, v) ∈ r be a reachable region ofR(A) and
(
r, v)

e−→. Let reach(r) be the associated reachable region ofR(A)∞ then∃(
r, v
′) ∈

reach(r) strongly time bisimilar to(
r, v), thus (
r, v
′) e−→. Using condition(b), (
r,

minreach(r))
e−→. Since(
r,minreach(r)) is strongly time bisimilar to(
r,minr), we have

(
r,minr)
e−→.

Assume that(c) is satisfied byR(A)∞ and consider(
r, v) ∈ r wherer is a region of
R(A) and(
r,minr)

e−→. Letreach(r) be the associated reachable region ofR(A)∞, then
∃(
r, v

′) ∈ reach(r) strongly time bisimilar to(
r, v). Since(
r,minreach(r)) is strongly
time bisimilar to(
r,minr), (
r,minreach(r))

e−→. Thus using condition(c), (
r, v
′) e−→.

By bisimilarity, we obtain(
r, v)
e−→.
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Fx≥aRtodox
i

Tx≥aRtodox
i+1

changex≥a

[a, a]
resetx≥a

•

(a) Widget for conditionx ≥ a (assume
a > 0)

Fx>aRtodox
i

Tx>aRtodox
i+1

changex>a

[a + 1, a + 1]
resetx>a

•

(b) Widget for conditionx > a

Figure 16: Widgets for conditionsx ≥ a andx > a

Tx≤aRtodox
i

Fx≤aRtodox
i+1

changex≤a

[a + 1
2
, a + 1

2
]

resetx≤a

•

(a) Widget for conditionx ≤ a

Fx<aRtodox
i

Tx<aRtodox
i+1

changex<a

[a − 1
2
, a − 1

2
]

resetx<a

•

(b) Widget for conditionx < a (as-
sumea > 0)

Figure 17: Widgets for conditionsx ≤ a andx < a

We now give the proof that the condition is sufficient. The proof is split into two
parts, corresponding respectively to the construction of a2-TPN and the construction of a
1-TPN.

6.5 First construction

Proof.[for the first construction of sufficiency] We first describe the construction of a
2-TPN N bisimilar toA. The principles of this construction are similar to those used
for the language equivalence. We build a subnet per elementary condition (including
the part associated with the clock resetting). However except for the conditionsx ≥ c
and the resetting part, all the constructions are different. We first remark thatx < a
occurring in an invariant may be safely omitted. Indeed (see the assumptions on timed
automata), it never forbids to enter the state. If it would forbid the progress of time in
some configuration, then the associated region would be a maximal time-open regionr.
Due to condition(a), r is reachable but sincer is time-open,r ∩ succ(r) �= ∅, so that
succ(r) is reachable which contradicts the maximality ofr.

All edges ofN are weighted by1. Unless explicitely stated, the transitions are labelled
by ε.
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FReachx≤a 
Rtodox
i

TReachx≤aRtodox
i+1

reachx≤a
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•

Figure 18: Widget for invariantx ≤ a
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Figure 19: Widget of an edge(l, γ = {c1, . . . , cm(e)}, e, R = {x1, . . . , xn(e)}, l′)
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• With each location
 of the automaton, we associate an eponymous place
. The
place
 is initially marked iff the location
 is the initial one.

• The conditions associated with a clockx are arbitrarily numbered from1 to n(x)
wheren(x) is the number of such conditions. We consider that whenx ≤ a (a �= 0)
occurs in at least one transition and in at least one invariant it is associated to two
different conditions. Then we add places{Rtodox

i }i≤n(x)+1 for the management of
the resets.

• With each conditionx ≥ a (a �= 0) occurring in a transition of the automaton,
we associate a widget (see Figure 16 (a)) composed by two placesTx≥a, Fx≥a

and three transitionschangex≥a, reset
1
x≥a, reset

2
x≥a. The placeFx≥a is initially

marked whileTx≥a is unmarked. The interval associated tochangex≥a is [a, a];
•changex≥a = {Fx≥a} and changex≥a

• = {Tx≥a}. The interval associated to
reset1x≥a and reset2x≥a is [0, 0]. Let i be the number of the conditionx ≥ a.
•reset1x≥a = {Fx≥a, Rtodox

i } andreset1x≥a
•

= {Fx≥a, Rtodox
i+1}. •reset2x≥a =

{Tx≥a, Rtodox
i } andreset2x≥a

•
= {Fx≥a, Rtodox

i+1}.

• With each conditionx > a occurring in a transition of the automaton, we associate
a widget (Figure 16 (b)) composed by two placesTx>a, Fx>a and three transitions
changex>a, reset

1
x>a, reset

2
x>a. The placeFx>a is initially marked whileTx>a is

unmarked. The interval associated tochangex>a is [a + 1, a + 1]; •changex>a =
{Fx>a} andchangex>a

• = {Tx>a}. The interval associated toreset1x>a andreset2x>a

is [0, 0]. Let i be the number of the conditionx > a. •reset1x>a = {Fx>a, Rtodox
i }

andreset1x>a
•

= {Fx>a, Rtodox
i+1}. •reset2x>a = {Tx>a, Rtodox

i } andreset2x>a
•

=
{Fx>a, Rtodox

i+1}.

• With each conditionx ≤ a occurring in a transition of the automaton, we asso-
ciate a widget (Figure 17 (a)) composed by two placesTx≤a, Fx≤a and three tran-
sitions changex≤a, reset

1
x≤a, reset

2
x≤a. The placeTx≤a is initially marked while

Fx≤a is unmarked. The interval associated tochangex≤a is [a + 1/2, a + 1/2];
•changex≤a = {Tx≤a} and changex≤a

• = {Fx≤a}. The interval associated to
reset1x≤a and reset2x≤a is [0, 0]. Let i be the number of the conditionx ≤ a.
•reset1x≤a = {Tx≤a, Rtodox

i } and reset1x≤a
•

= {Tx≤a, Rtodox
i+1}. •reset2x≤a =

{Fx≤a, Rtodox
i } andreset2x≤a

•
= {Tx≤a, Rtodox

i+1}.

• With each conditionx < a (a �= 0) occurring in a transition of the automaton,
we associate a widget (Figure 17 (b)) composed by two placesTx<a, Fx<a and
three transitionschangex<a, reset

1
x<a, reset

2
x<a. The placeTx<a is initially marked

while Fx<a is unmarked. The interval associated tochangex<a is [a − 1/2, a −
1/2]; •changex<a = {Tx<a} andchangex<a

• = {Fx<a}. The interval associated
to reset1x<a andreset2x<a is [0, 0]. Let i be the number of the conditionx < a.
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•reset1x<a = {Tx<a, Rtodox
i } and reset1x<a

•
= {Tx<a, Rtodox

i+1}. •reset2x<a =
{Fx<a, Rtodox

i } andreset2x<a
•

= {Tx<a, Rtodox
i+1}.

• With each conditionx ≤ a (a �= 0) in a invariant, we associate a widget (Fig-
ure 18) composed by two placesTReachx≤a, FReachx≤a and three transitions
reachx≤a, resetR

1
x≤a, resetR

2
x≤a. The placeFReachx≤a is initially marked while

TReachx≤a is unmarked. The interval associated toreachx≤a is [a, a]; •changex≤a =
{FReachx≤a} andchangex≤a

• = {TReachx≤a}. The intervals associated tore-
setR1

x≤a and resetR2
x≤a is [0, 0]. Let i be the number of the conditionx ≤ a.

•resetR1
x≤a = {FReachx≤a, Rtodox

i } andresetR1
x≤a

•
= {FReachx≤a, Rtodox

i+1}.
•resetR2

x≤a = {TReachx≤a, Rtodox
i } andresetR2

x≤a
•

= {FReachx≤a, Rtodox
i+1}.

• With each edge(l, γ = {c1, . . . , cm(e)}, e, R = {x1, . . . , xn(e)}, l′), we associate a
widget (Figure 19) composed by places{W i

e}i≤n(e) and transitionsfiree, {nextie}i≤n(e).
The transitionfiree has labele; its interval is[0,∞[; •firee = {l, Tc1 , . . . , Tcm(e)

}
and firee

• = {W 1
e , Rtodox1

1 , Tc1 , . . . , Tcm(e)
}. The interval associated to transi-

tions nextie is [0, 0]. ∀i < n(e), •nextie = {W i
e , Rtodoxi

n(xi)+1} and nextie
•

=

{W i+1
e , Rtodo

xi+1

1 }. •next
n(e)
e = {W n(e)

e , Rtodo
xn(e)

n(xn(e))+1} andnext
n(e)
e

•
= {
′}.

WhenR = ∅, the widget reduces to the transitionfiree with •firee = {
, Tc1 , . . . ,
Tcm(e)

} andfiree
• = {
′, Tc1 , . . . , Tcm(e)

}.

• If a conditionx ≤ 0 occurs in the invariant ofl, then one adds a transitionstop�

with interval [0, 0], •stop� = stop�
• = {
}. If a conditionx ≤ a (a �= 0) occurs in

the invariant ofl, then one adds a transitionstopx≤a
� with interval[0, 0], •stopx≤a

� =

stopx≤a
�

•
= {
, TReachx≤a}.

We decompose the reachable configurations (and markings) intointermediate ones
(someW i

e is marked) andpermanent ones (some
 is marked). An easy induction shows
that in permanent configurations(M, ν) the enabled timed transitions relative to a clock
are “synchronized”:ν(changec) = ν(changec′) = ν(reachc′′) as soon asc, c′, c′′ relates
to the same clockx. We defineν(x) as this common value if at least one such transition
is enabled and otherwiseν(x) = K(x) whereK(x) is the maximal value relative to
clockx occuring in the netN . Furthermore from any intermediate configuration(M, ν),
the behaviour of the net is quasi-deterministic until it reaches a permanent configuration:
there are only firing sequences (i.e. no time step) and some of them lead to permanent
configurations. Furthermore these permanent configurations (say(Mnext, νnext)) have the
same marked place
 and the same valuesνnext(x).

It is also obvious that once somefiree is fired, the construction ensures the existence
of a “resetting” sequence which reinitializes the widgets associated to the clocks to be
reset.
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Bisimulation relation. We now define the relationR between reachable configurations
of the automatonA and the netN . Let us define(
, v)R(M, ν) iff:

• eitherM is a permanent marking andM(
) is marked and ifν(x) < K(x) then
v(x) = ν(x) elsev(x) ≥ K(x).

• or M is an intermediate marking leading to some permanent(Mnext, νnext) and
(
, v)R(Mnext, νnext). This definition is sound due to the common features of the
different(Mnext, νnext).

It remains to prove thatR is a bisimulation, which is done in the next lemma.

Lemma 9 The relation R defined above is a weak timed bisimulation.

Proof. We first consider moves fromA.
Case 1: (
, v)

e−→ (
′, v′) First, let us prove that(M, ν)
σ−→ with σ labelled bye. At first, σ

begins byσ′ which consists to fire all thechangec fireable leading to some(M ′, ν ′) (with

(
, v)R(M ′, ν ′)). Now we prove that(M ′, ν ′)
firee−−−→. By definition ofR, M(
) is marked.

Let c be a condition occuring in the guard ofe.
If c = [x ≥ a] thenv(x) ≥ a which implies

ν(x) ≥ a and thatTx≥a is marked (eventually with the help ofσ′).
If c = [x > a] then letr be the region to which(
, v) belongs.minr(x) = �v(x)�. Using
condition(b), (l,minr)

e−→. Thusv(x) ≥ minr(x) ≥ a + 1 which impliesν(x) ≥ a + 1
and thatTx>a is marked (eventually with the help ofσ′).
If c = [x ≤ a] thenv(x) ≤ a which impliesν(x) ≤ a and thatTx≤a is marked (remember
thatchangex≤a fires whenν(x) = a + 1/2).
If c = [x < a] then letr be the region to which(
, v) belongs. Then there exists(
, v1) ∈ r
with v1(x) = �v(x)�. Using condition(b) and then(c), (l, v1)

e−→. Thusv(x) ≤ v1(x) ≤
a − 1 which impliesν(x) ≤ a − 1 and thatTx<a is marked (remember thatchangex<a

fires whenν(x) = a − 1/2).
Thusfiree is fireable from(M ′, ν ′). We completeσ by the “resetting” sequence leading
to a configuration bisimilar to(
′, v′)

If M is an intermediate marking, one fires a sequence leading to some(Mnext, νnext)
and performs the previous simulation.

Case 2: (
, v)
d−→ (
, v + d)

Suppose thatx ≤ a belongs to the invariant of
. This means thatv(x) + d ≤ a. Thus
from (M, ν), we let a timed elapse interleaved with possible firings ofchange transitions.
Thestop transitions associated to
 will be possibly firable but only at the end of this step
sequence.
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If M is an intermediate marking, one fires a sequence leading to some(Mnext, νnext)
and performs the previous simulation.

Conversely, we consider moves fromN .
Case 3: (M, ν)

t−→ (M ′, ν ′)

If t is labelled byε, then by construction(
, v)R(M ′, ν ′).

Thus we only to need to examine the case offiree (M is then a permanent marking).
Let r be the region to which(
, v) belongs. We will show that(
,minr)

e−→. Then by
condition(c), we will obtain that(
, v)

e−→.

Let c be a condition occuring in the guard ofe.
If c = [x ≥ a] thenTx≥a is marked which implies thatν(x) ≥ a and thenv(x) ≥ a, thus
minr(x) = �v(x)� ≥ a.
If c = [x > a] then thenTx>a is marked which implies thatν(x) ≥ a + 1 and then
v(x) ≥ a + 1 thusminr(x) = �v(x)� ≥ a + 1 > a
If c = [x ≤ a] thenTx≤a is marked which implies thatν(x) ≤ a + 1/2 and thenv(x) ≤
a + 1/2 thusminr(x) = �v(x)� ≤ a
If c = [x < a] thenTx<a is marked which implies thatν(x) ≤ a − 1/2 and thenv(x) ≤
a − 1/2 thusminr(x) = �v(x)� ≤ a − 1 < a

So (
, v)
e−→ (
′, v′) for some(
′, v′). By construction ofN and definition ofR,

(
′, v′)R(M ′, ν ′).

Case 4: (M, ν)
d−→ (M, ν + d)

An intermediate marking cannot let elapse time. ThusM is a permanent marking. Let
x ≤ a belonging to the invariant of

l. a �= 0 otherwise from(M, ν), stopl must be fired and time may not elapse. Similarly
sincestopx≤a

l is only possibly fireable from(M, ν + d), it follows thatν(x)+ d ≤ a, thus
v(x) + d ≤ a.

Consequently(
, v)
d−→ (
, v + d) and obviously(
, v + d)R(M, ν + d). We fi-

nally illustrate this construction on the timed automatonB0 from Figure 6.3 above and
its translation given below (with some simplifications related to this particularTA). For
readability, immediate transitions (where interval[0, 0] is represented in black andε labels
are not shown).

First, note that the subnet associated to the constrainty ≤ 0 switches the condition
to false (firing oftoFy≤0) when the implicit value ofy maintained in the net reaches1/2.
Seemingly, this translation appears to be less constrained than the original condition. We
explain how we prove that this translation is nevertheless sound. Letr be the region cor-
responding to the current configuration(
, v) of the automaton simulated by the net, if the
net is able to simulate a discrete step of the automaton, we prove that in the configuration
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•

•

•

•

[1/2, 1/2] toFy≤0

Ty≤0

c, [0, +∞[ l2
1


0

a, [0, +∞[

b, [0, +∞[

Tx≥1[1, 1]

inv0

Figure 20: The TPN bisimilar tob0

(
,minr) of the automaton this step is also possible. Thus by condition(c), the step is
also possible from(
, v). On the other hand, if a discrete step is possible for(
, v) in the
automaton, we show that this step is also simulatable in the net using both conditions(b)
and(c) and the following fact:∀x ∈ X,∃(
r, v

′), (
r, v
′′) ∈ r such thatv′(x) = �v(x)�

andv′′(x) = �v(x)�. We also need to handle the invariants. First it is straightforward
to observe that due to condition(a), an atomic constraintx < c occuring in an invariant
may be safely deleted since its effectiveness leads to the existence of a regionr whose
time-successor (which intersectsr) would not be reachable. The subnet associated to the
atomic constraintx ≤ 1 occuring in the invariant of
0 leads to transitioninv0 (not modi-
fying the marking) which is fireable as soon as the simulated value ofx reaches1 and the
place
0 is marked. Thus time cannot progress except if the location is left.

6.6 Second construction

Proof.[for the second construction of sufficiency] When the conditions on the unlabeled
timed automatonA are satisfied, we build a1-TPN N with atomic semantics which is
weakly timed bisimilar toA. We suppose that all invariant conditions of a location are
added to the guard of each ingoing transition. Recall thatK = m + 1, wherem is the
maximal constant forA. The construction of the TPN is a partial replication of both the
region automaton ofA and the class automaton, as explained later. There is first a subnet
for each clockx, in which only the integral parts ofx appear in the places (but with a
fractional part that can reach1).
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• . . .

hx
0 hx

1tx0

[1, 1]

tx1

[1, 1]

txK−1

[1, 1]

hx
K

Then we add one placeC for each classC = (
, Z) of the class automaton, with
the initial class marked. Now lete = (
, g, a, R, 
′) be a transition ofA. For each pair
(v, v′) of clock valuations inNX , with v, v′ ≤ −→

K , we build a subnet which simulates the
transition(
, v)

e−→ (
′, v′), where we havev′(x) = 0 if x ∈ R andv′(x) = v(x) otherwise.
Let C1 = (
, Z1), . . . , Ck = (
, Zk) be the subset of classes such that∃v′′ ∈ Zi ∧ ∀x ∈
X, v′′(x) = v(x) ∨ (v′′(x) ≥ K ∧ v(x) = K)) for 1 ≤ i ≤ k, andC ′

1, . . . , C
′
k the classes

obtained by applying transitione to C1, . . . , Ck respectively. We have a transition with
labele for eachCi (with k = 2 in the figure below), all with interval[0, +∞[. Note that all
reset operations for clocks inR are executed successively with instantaneous transitions.
Moreover, the upper part of the net ensures that the invariant conditions of locationl are
satisfied (this part has been omitted for
′).

. . .

l

hz
c , z ≤ c ∈ Inv(
)

[0, +∞[

e

hx
v(x), x ∈ R

hx
v(x), x /∈ R resetxe

hx
0 , x ∈ R

resetye

l′

C1

C2

e

C ′
1

C ′
2

Figure 21: Simulation of a transition

Like in the previous proof, we say that a configuration (and the corresponding mark-
ing) (M, ν) of the TPN is permanent ifM(
) = 1 for somel. Otherwise, it is an interme-
diate configuration (and marking), whereM(resetxe) = 1 for some (exactly one of each)
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x ande, meaning that some reset operations are in progress. Here again, a permanent
configuration is reached instantaneously from such an intermediate configuration, with
only firing sequences completing the reset operations for transitione (interleaved with
possibly transitions firings of sometxc ).

Furthermore, for a configuration(M, ν), there is exactly one non empty placehx
c for

each clockx. Writing cx for the constant such thatM(hx
cx

) = 1, we have eithercx = K or
0 ≤ ν(txcx

) ≤ 1, whereν(txc ) is the time elapsed since arrival of the token in the placehx
cx

.
This means that the value of clockx is eitherv(x) ≥ K or v(x) = cx +ν(txcx

) with �v(x)�
equal to eithercx or cx + 1. In the latter case, transitiontxcx

can be fired instantaneously,
leading to the configuration(M ′, ν ′) with one token in placehx

cx+1 and eithercx + 1 = K
or ν ′(txcx+1) = 0. We can thus reach a configuration wherec = (cx)x∈X is maximal.

Bisimulation relation. The relationR is defined as the set of pairs((M, ν), (
, v)) such
that:

• either(M, ν) is a permanent configuration withM(
) = 1, the relation betweenv
andν is the one described above, and there exists exactly one classC = (
, Z) such
thatM(C) = 1 andv ∈ Z;

• or (M, ν) is an intermediate configuration leading to some permanent configuration
(M ′, ν ′) such that((M ′, ν ′), (
, v)) ∈ R.

We end the proof with an auxiliary lemma and the fact thatR is a weak time bisimula-
tion.

The following lemma which relates regions and classes, shows how the class automa-
ton will be used to control the firing of a transition when the minimal pointc is in not in
the same region thanv.

Lemma 10 Let A be an automaton satisfying the conditions of theorem 5, let C = (
, Z)
be a class of the class automaton and (
, v) ∈ C. Let (
, v) ∈ r where r is a region
w.r.t. to the choice K = ∞ (which means that there is a infinite number of regions). Then
∀(
, v′) ∈ r, (
, v′) ∈ C. In particular, (
, �v�) ∈ C.

Proof. The proof is by induction on the reachability relation between regions. The case
of a discrete step follows from conditions(b) and(c) of theorem 5. The case of a time
step follows from the choice ofK = ∞ which implies that given a regionr, every item
of succ(r) is reached by a time step from an item ofr.

Lemma 11 The relation R defined above is a weak time bisimulation.
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Proof. Assume that(M, ν)R(
, v) and consider a move inA.

Case 1: (
, v)
d−→ (
, v+d) (with d �= 0). In this case, we must consider different subcases,

according to the regions that can be reached by elapsing time. We consider only moves
in which at most one different region is reached, the general case would be a combination
of those elementary moves. First note that sincev′ = v + d can be reached, no invariant
condition needs to be activated inN . Moreover, if(M, ν) is an intermediate configura-
tion, we first apply the sequence described above and reach the equivalent configuration
(M1, ν1). Also in this case, since classes are unchanged by elapsing time, if we prove
that a delay move is possible from(M1, ν1), we immediately obtain that the class is the
same in the resulting configuration. Thus, the resulting configuration will be equivalent
to (
, v + d).

• If v belongs to a time-open region, the case wherev′ belongs to the same time-
open region is easy, it simply corresponds to a delay transition from(M1, ν1) in N ,
each clock being in somehx

c and staying inside (no token move), with(M1, ν1 + d)
equivalent to(
, v + d).
If v′ has reached an integer value, we consider a clockx with greatest integral part,
so thatv′(x) = �v(x)� + 1 = v(x) + d with v(y) + d ≤ �v(y)� + 1 for all other
clocks. In this case also, we obtain a delay move inN from (M1, ν1).

• If there are some clocksx for which v(x) has an integer value, then elapsing
time leads to the successor region, which is time-open. From(M1, ν1), it is pos-
sible to reach with instantaneous transitions a configuration(M2, ν2) where for
all clocks with integer values,M2(h

x
c ) = 1 with c maximal, and(M2, ν2) still

equivalent to(
, v). Now from (M2, ν2), a delay move can be applied so that

(M, ν)
∗−→ (M1, ν1)

∗−→ (M2, ν2)
d−→ (M2, ν2 + d), with (M2, ν2 + d)R(
, v + d).

Case 2: If (
, v)
e−→ (
′, v′) for somee = (
, g, a, R, l′) then condition(b) implies that a

transition(
, �v�) e−→ (
′, �v′�) is also possible inA. Here again we may have to apply
from (M, ν) a sequence of instantaneous transitions, leading to(M1, ν1) where placel
is marked, and from there we can reach an equivalent configuration(M2, ν2) with c =
(cx)x∈X maximal. LetC = (
, Z) be the class for whichM(C) = 1, with v ∈ Z. From
lemma 10,(
, �v�) also belongs toC, and∀x ∈ X, �v�(x) = cx∨(�v�(x) ≥ K∧cx = K)
so that the transitione (corresponding to this vector and this class) can be fired inN ,
immediately followed by the corresponding reset sequence, leading to(M ′, ν ′). Since
exactly one classC ′ is marked aftere, we have(M ′, ν ′)R(
′, v′) by the definition ofR.

For the converse, we consider a move inN .
Case 3: (M, ν)

d−→ (M, ν +d) (with d �= 0). Then, neither reset transitions nor transitions
of the formtxc can be fired inN . Thus, the placeshx

c which contain a token are such that
ν(txc ) < 1 andν(txc )+d ≤ 1. For the state(
, v), we haveM(
) = 1 andv(x) = c+ν(txc ).
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The move(
, v)
d−→ (
, v + d) is possible inA since(
, v + d) belongs either to the

region of(
, v) or to its time successor which is reachable by condition(a). Therefore

(
, v)
d−→ (
, v + d) in A with (M, ν + d)R(
, v + d).

Case 4: (M, ν)
t−→ (M ′, ν ′). For any transition ofN which is not associated with some

transitione = (
, g, a, R, l′) in A, no time can elapse so there is no need for a move inA
because(M ′, ν ′) is still equivalent to(
, v). Suppose now thatt is associated to an edge
e, we haveM(
) = 1, M(C) = 1 for some classC = (
, Z) with v ∈ Z. Sincet is
fireable, considering the valuationc = (cx)x∈X the construction implies that∃v′′ ∈ Z s.t.
∀x ∈ X, v′′(x) = cx∨(v′′(x) ≥ K∧cx = K), which implies that the segment[v′′, v] ⊆ Z,
from the convexity ofZ, with 0 ≤ v(x)− v′′(x) = v(x)− cx ≤ 1 for eachx s.t. cx < K.
Thus, [(
, v′′), (
, v)] is contained in the topological closurer of some reachable region
such thatminr = c and l = lr. Since(
, c)

e−→ (
′, c′) is possible inA, and(
, v′′) is
strongly time bisimilar to(
, c), one has(
, v′′) e−→ (
′, v′′′). Now condition(c) implies
that a move(
, v)

e−→ (
′, v′) is also possible inA. From the definition,(M ′, ν ′)R(
′, v′).

For instance, for the automatonB0 from Figure 6.3, we have four classes:C0 =
{l0, 0 ≤ x = y ≤ 1}, C1 = {l1, 0 ≤ x = y ≤ 1}, C ′

1 = {l1, x = 1 ∧ y = 0} and
C2 = {l2, 0 ≤ y = x− 1}. We show below the subnet corresponding to the transitionc at
point (l1, (1, 0)) and classC ′

1.

l1 l2

[0, +∞[

c

hx
1

hy
0

C ′
1 C2

Consider the following run inB0: (l0, (0, 0))
a−→ (l1, (0, 0))

1−→ (l1, (1, 1)). The sim-
ulation of this run byN may lead to the following configuration:l1, hx

0 , h
y
0 andC1 are

marked andtx0 andty0 have been enabled for1 t.u. Suppose that the sequencetx0t
′x
0 is fired,

marking the placetx1 , then without the input placeC ′
1 the transition labelledc could be

erroneously fired. SinceC ′
1 is unmarked this firing is disabled.

6.7 Complexity results

This characterization leads to the the following complexity results.

Proposition 5 (Complexity results) Given a (label-free) timed automaton A, deciding
whether there is a TPN weakly timed bisimilar to A is PSPACE-complete. The reacha-
bility problem for the class T A− is PSPACE-complete.
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Proof. The reachability problem for regions is inPSPACE. In order to check whether
the condition(a) is false wenon deterministically pick a regionr and a regionr′ which
intersectsr and check whetherr is reachable andr′ is not reachable. In order to check
whether the condition(b) is false wenon deterministically pick a regionr and a edgee
and check whetherr is reachable ande is firable fromr and not fireable from(lr,minr).
In order to check whether the condition(c) is false wenon deterministically pick a region
r, a regionr′ which intersectsr and a edgee and check whetherr is reachable ande is
not firable fromr or r′ and fireable from(lr,minr). By Savitch construction, we obtain a
deterministic algorithm inPSPACE.

In order to show thePSPACE-hardness, we use the construction given in [2] (in ap-
pendix D) which reduces the acceptation problem for linear bounded Turing machine
(LBTM) to the reachability problem for TA with restricted guards. The computed TA
(calledAM,w0) satisfies the conditions(a) and(b) but does not satisfy the condition(c).
However it can be safely transformed in order to satisfy this condition by adding the
invariant t ≤ 1 to any state(q, i) and the invariantt ≤ 0 to any state(i, θ, j). This
intermediate automaton is now bisimilar to a TPN.

Then we transform the edges entering theend state by resettingt and at last we add
an edge(end, t = 0, e, ∅, end).

If the LBTM M does not accept the wordw0, then the stateend is not reachable and
AM,w0 satisfies the conditions(a),(b),(c).

If the LBTM M accepts the wordw0, then the stateend is reachable andAM,w0 does
not satisfy the condition(c) (the additional edge is fireable when enteringend but not
after letting the time elapse). The fact that the reachability problem for the classT A− is
PSPACE-complete was proved implicitely within the proof above.

At last, we complete these results by adapting them to other models ofTA. The
previous characterization holds forTA with diagonal constraints and when satisfied a
bisimilar 1-bounded 1-TPN whose size is exponential w.r.t. theTA may be built. A sim-
pler characterization holds forTA without strict (and diagonal) constraints. Nevertheless,
for these two models, the complexity of the membership and reachability problems is still
PSPACE-complete.

Proposition 6 (TAs with diagonal constraints) Let A be an unlabelled timed automa-
ton with diagonal constraints, let R(A) its region w.r.t. the 1-grid, then A is weakly timed
bisimilar to a time Petri net iff:
∀r ∈ R(A), ∀e an edge of A,

(a) Every region r′ s.t. r′ ∩ r �= ∅ is reachable

(b) ∀(
r, v) ∈ r, (
r, v)
e−→⇒ (
r,minr)

e−→
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(c) ∀(
r, v) ∈ r, (
r,minr)
e−→⇒ (
r, v)

e−→

Furthermore, if these conditions are satisfied then one can build a 1-bounded 1-TPN
bisimilar to A whose size is exponential w.r.t. the size of A.

At last, deciding whether there is a TPN weakly time bisimilar to A is PSPACE-
complete.

Proof. The proof of necessity and the second construction of the TPN bisimilar toA
need to be slightly adaptated to take into account the nature of the regions of an automa-
ton with diagonal constraints since they are based on properties of the region automaton
whereas the construction of the class automaton is still valid for automata with diagonal
constraints.

ThePSPACE-hardness is obviously true while the membership toPSPACE de-
duced from implicit explorations of the region automaton is still valid.

Despite the fact that excluding strict constraints simplifies the characterization, the
complexity of the membership problem remains the same.

Proposition 7 (TA without strict constraints) Let A be an unlabelled timed automaton
without strict constraints, let R(A) its region w.r.t. the 1-grid, then A is weakly timed
bisimilar to a time Petri net iff:
∀r ∈ R(A), ∀e an edge of A, ∀(
r, v) ∈ r, (
r,minr)

e−→⇒ (
r, v)
e−→

Furthermore, deciding whether there is a TPN weakly time bisimilar to A is PSPACE-
complete.

Proof. It is straightforward to show that conditions(a) and (b) are satisfied by an au-
tomaton without strict constraints. Similarly the condition(c) is easily deduced from the
current condition when the automaton does not include strict constraints.

ThePSPACE membership is obviously true. We remark that although the net of [2]
(in appendix D) contains contraintsxi > 1, they can be safely changed toxi ≥ 2. Thus
thePSPACE hardness follows.

7 Conclusion

In this paper, we have investigated different questions relative to the expressiveness of
TPNs. At first, we have shown that TAs and bounded TPNs (enlarged with strict con-
straints) are equivalent w.r.t. the timed language equivalence. We have also provided a
more general and efficient construction of a TPN equivalent to a TA than the previous
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ones. Then we have focused on the weak time bisimilarity equivalence and we have de-
veloped our main contribution: a characterization of TAs time bisimulateable by a TPN.
From this characterization, we have proved that deciding whether a TA admits a time
bisimilar TPN is aPSPACE-complete problem. Furthermore the reachability problem
is still PSPACE-complete for this subclass of TAs. Finally we have proved that for
bounded TPNs the different semantics lead to equivalent models w.r.t. the time bisimilar-
ity but that this is no more true with strict constraints.

We are now looking for similar (multiple) characterizations for TPNs enlarged with
strict constraints since in this context the choice of the semantics is relevant. We will also
try to apply the same techniques to compare the different models of Petri nets with time.
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