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Comparison of Expressivenessfor Timed
Automata and Time Petri Nets

B. Bérard, F. Cassez S. Haddad, D. Limef, O.H. Roux

Abstract

In this paper we consider the model of Time Petri Nets (TPN) “a la Merlin”
where a time interval is associated with the firing of a transition, but we extend it
with open intervals. We also consider Timed Automata (TA) as defined by Alur
& Dill. We investigate some questions related to expressiveness for these models :
we study the impact of slight variations of semantics for TPN and we compare the
expressive power of TA and TPN, with respect to both time language acceptance and
weak time bisimilarity. We prove that TA and bounded TPNs (enlarged with strict
constraints) are equivalent w.r.t. timed language equivalence, providing an efficient
construction of a TPN equivalent to a TA. We then exhibit aAAuch that no TPN
(even unbounded) is weakly bisimilar #. Because of this last result, it is natural
to try and identify the (strict) subclass of TA that is equivalent to TPN w.r.t. weak
timed bisimilarity. Thus we give some further results: 1) we characterize the subclass
TA~ of TA that is equivalent to the original model of TPN as defined by Merla,
restricted to closed intervals, 2) we show that the associated membership problem
for TA= is PSPAC E-complete and 3) we prove that the reachability problem for
TA~ is alsoPSPAC E-complete.

Key words: Time Petri Nets, Timed Automata, Timed Languages, Timed Bisimilar-
ity, Expressiveness.

1 Introduction

Petri Netswith Time. The two main extensions of Petri Nets with time are Time Petri
Nets (TPNs) [15] and Timed Petri Nets [17]. For TPNs a transition can fire within a time

*LAMSADE, Paris, France{ beat ri ce. berard, ser ge. haddad} @ ansade. dauphi ne. fr
fIRCCyN, Nantes, Francé.Fr anck. Cassez, Qi vi er-h. Roux} @rccyn. ec-nantes. fr
tCISS, Aalbork, DenmarlkDi di er @s. aau. dk

55



Comparison of Expressiveness for Timed Automata and Time Petri Nets

interval whereas for Timed Petri Nets it fires as soon as possible. Among Timed Petri
Nets, time can be considered relative to places or transitions [18, 16]. The two corre-
sponding subclasses namely P-Timed Petri Nets and T-Timed Petri Nets are expressively
equivalent [18, 16]. The same classes are defined for TPNs i.e. T-TPNs and P-TPNs, but
both classes of Timed Petri Nets are included in both P-TPNs and T-TPNs [16]. P-TPNs
and T-TPNs are proved to be incomparable in [13]. Finally TPNs form a subclass of Time
Stream Petri Nets [10] which were introduced to model multimedia applications. Timed
Arc Petri Nets are also studied in more recent work [1, 9].

Timed Automata. Timed Automata (TA) were introduced by Alur & Dill [3] and have
since been extensively studied. This model is an extension of finite automata with (dense
time) clocks and enables one to specify real-time systems. Theoretical properties of var-
ious classes of TA have been considered in the last decade. For instance, a class of de-
terminizable TA such aEvent Clock Automata are investigated in [4] and form a strict
subclass of TA. More general models of TA liRectangular Automata or Linear Hybrid
Automata have also been considered and their expressive power compared.

However, not much is known about the expressive power of TPN compared to TA.

Related Work. In a previous work [8] we have proved that TPN forms a subclass of TA
in the sense that every TPN can be simulated by a TA (weak timed bisimilarity). A similar
result can be found in [14] with a completely different approach.

In another line of work [12], Haar, Kaiser, Simonot & Toussaint compare Timed State
Machines and Time Petri Nets. They give a translation from one model to another that
preserves timed languages. Nevertheless, in the translation from TSM to TPN they use
a weak semantics for TPN and consider only the constraints with bounded and closed
intervals.

Our Contribution. In this article, we compare precisely the expressive power of TA vs.
TPN using the notions dfimed Language Acceptance and Timed Bisimilarity. This ex-

tends previous results in this area in the following directionhare consider general types

of constraints (strict, large, bounded, unboundé&d)ve then show that there is a TA

s.t. no TPN is (even weakly) timed bisimilar #4; iii) this leads us to consider weaker
notions of equivalence and we focus on Timed Language Acceptance. We prove that TA
(with general types of constraints) and TPN are equally expressive w.r.t. Timed Language
Acceptanceiv) to conclude we characterize the subclass of TA that is equally expressive
to TPN without strict constraints w.r.t. Timed Bisimilarity, and show that the membership
problem for this class i$SPAC E-complete as well the reachability problem. The re-
sults of the paper are summarized in Table 1: all the results are new except the one on the
first line obtained in [8]. We use the following notations: 78R\ for the set of bounded
TPNSs withe-transitions:1-B-7 PN . for the subset of BEPAN . with at most one token in

each place (one safe TPN); BPN (<, >) for the subset of BEPA . where only closed
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[ | Timed Language Acceptance | Timed Bisimilarity ||

< TA.([8]) <w T A ([8])
B-TPNE =r 1-B-T7)N5 =r T.AE <y T.AE
B'TPN(S, Z) — ~w TA_
Emptyness Problem Universal Problem
B-7PN. Decidable Undecidable
Membership Problem || Reachability Problem
TA PSPACE-complete

Table 1: Summary of the Results

intervals are usedf A, for TA with e-transitions;7 . A~ for the class of TA (to be defined
precisely in section 6) that is equivalent ta/BPN (<, >).

Outline of the paper. Section 2 introduces the semantics of TPNs and TA, Timed Lan-
guages and Timed Bisimilarity and section 3 is devoted to the comparison between various
semantics for TPNs. In section 4, we prove negative results: we exhibit some timed au-
tomata for which there exist no (weakly) timed bisimilar TPN. In section 5 we focus on
Timed Language Acceptance and prove that TA and TPNs are equally expressive w.r.t.
this equivalence. Section 6 is devoted to a characterization of the subclass of TA that is
equivalent to TPN w.r.t. Timed Bisimilarity. Finally we give some hints on further work

in section 7.

2 TimePetri Netsand Timed Automata

Notations. Let > be a set (or alphabet)* (resp. ¥) denotes the set of finite (resp.
infinite) sequences of elements (or words)bandX> = ¥* U X¥. By convention if
w € X then thelength of w denotedw| is w; otherwise ifw = a; - - - a,, |w| = n. We
also uset. = Y U {e} with ¢ ¢ &, wheree is the empty word.B# stands for the set of
mappings fromA to B. If A is finite and|A| = n, an element of34 is also a vector in
B™. The usual operators, —, < and= are used on vectors of” with A = N, Q, R and
are the point-wise extensions of their counterpartglinThe setfB denotes the boolean
values{tt, ff} and R, denotes the set of positive reals. v@luation v over a set of
variablesX is an element oR<,. Forv € R andd € R, v + d denotes the valuation
defined by(v + d)(x) = v(x) + d, and forX’ C X, v[X’ — 0] denotes the valuation
v with v/(z) = 0 for z € X’ andv/'(z) = v(z) otherwise.0 denotes the valuation s.t.
Vz € X,v(xz) = 0. An atomic constraint is a formula of the forme: i ¢ for z € X,
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¢ € Qs ande {<,<,>,>}. We denotel(X) the set ofconstraints over a set of
variablesX which consists of the conjunctions of atomic constraints. Given a constraint
¢ € C(X) and a valuationr € R, we denotep(v) € B the truth value obtained by
substituting each occurrence ofin ¢ by v(z). Accordingly each constraingt € C(X)
defines a set of valuatiorjg] defined byjyo]= {v € RZ,| ¢(v) = tt}.

A set] is aQsp-interval of R, if there is a constrainp of the forma <; z <2 b
with a € Qx¢, b € Q5o U {oo} and <4, <€ {<,< }, such thatl =[¢]. We let
I =0 < 2 <, b] be thedownward closure of 7 and' =[a <, ] be theupward closure
of I. We denote byZ(Qs() the set ofQ-(-intervals of R>,. Letg € N.y, we write
Ny = {% | € N}. Avectorv € Q" belongs to the-grid if v(k) € N, forall 1 < k <n.

2.1 Timed Transition Systems and Equivalence Relations

Let X be a fixed finite alphabet s4.¢ 3.

Definition 1 (Timed Words) A timed wordw over ¥, is a finite or infinite sequence
w = (a(), do)(al, dl) ) (a,,,, dn) ... st. for each s >0,a; € X, d, S RZO and di+1 > dz

A timed wordw over . can be viewed as a pafp,7) € X° x R, s.t. |v] = |7].
The valued, gives the absolute time (from the initial instaitof actiona,. We write
Untimed(w) = v for the untimed part ofv, andDuration(w) = sup,, ., d for the dura-
tion of the timed wordw. For a timed word a;, d;);>o we define therelative time stamp
Rstamp(a;) of a; asRstamp(a;) = d; — d;_; with the convention thaf_; = 0 and extend
this notion to timed words by definir@stamp(w) = (a;, Rstamp(a;)):>o. Note that, con-
versely, from such a sequence, we can retrieve a timed wordalvithiute time stamps
by cumulating the successive delays.

Sincee-transitions correspond to the empty word and are not visible, we can remove
from each timed wordv € X2 x R all the e-actions and obtain a timed word in
2 x RE,,.

Definition 2 (Timed Languages) We denote by 7W*(X) (resp. 7W*(X)) the set of
finite (resp. infinite) timed wordsover X and 7 W™ (X) = 7W*(X) U7 W~ (X). Atimed
languagel. over ¥ isany subset of 7W>(%).

Timed transition systems describe systems which combine discrete and continuous
evolutions.

Definition 3 (Timed Transition Systems) A timed transition system (TTS)ver the set

of actions X isatuple S = (@, Qo, X, —, F, R) where ) isa set of states, Qy C Q is
the set of initial states, ¥ isafinite set of actions disjoint fromR-, and —C Q x (X, U
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R>g) x @ isa set of edges. If (¢,¢,¢') €—, we also write ¢ —— ¢'. For a transition

q 4, ¢’ with d € R, the value d represents a relative time stamp. The sets F' C ) and
R C (@ arerespectively the sets of final and repeatedtates.

We make the following common assumptions about TTS:

e 0-DELAY: ¢ — ¢ ifand only if¢ = ¢/,
. d pod ' d+d
e ADDITIVITY: if ¢ — ¢ andq¢’ — ¢” with d, d' € R>, theng —— ¢”,

e CONTINUITY: if ¢ N ¢, then for every!’ andd” in R, such thatd = d' + d”,
there existg/” such that &, q" LN q,

e TIME-DETERMINISM: if ¢ 4, ¢ andq 4, q" with d € R, thenq’ = ¢".

A run p of lengthn > 0 is is a finite or infinite { = w) sequence of transitions of the
form

ai dn

_ do ;a0 dy / /
P=0q —qy —— Q1 — 41 — " Qn —qy - --

where discrete actions alternate with durations. We wfiite(p) = ¢ and if p is finite,
we assume that it ends with an action transition and wéisé) = ¢,,. We writeq — ¢’
if there is a rurp s.t. first(p) = q, last(p) = ¢'.

Arunisinitial if first(p) € Qo. A run p is accepting if i) either p is a finite initial run
andlast(p) € F orii) pis infinite and there is a statec R that appears infinitely often
on p. From the sequendey, dy)(ay, d;) . . . associated with, we obtain a timed word
by considering the absolute time stamps of actions= (ay, dy)(ai,dy + dy) . ... This
word isaccepted by S if p is an accepting run.

Thetimed language £(.S) accepted by is the set of timed words accepted By
Definition 4 (Strong Timed Similarity) Let S; = (Q1,Q}, e, —1, F1, Ry) and Sy =
(Q2,Q3,3., —», Fy, Ry) betwo TTSand < bea binary relation over Q; x Q2. Wewrite
s X ¢ for (s,s') € <. Therelation < isa strong (timed) simulation relatioof S; by S,
if:

1 ifs; € Fy (resp. s; € Ry) and sy =< sy then s, € F (resp. s € Ry),

2. if sy € Q} thereissome sy € Q3 St. 51 < s9;

. d . d
3. ifs; —1 sy withd € Ryp and s; < s, then sy —o s, for some s, and s} =< s;

4, ifs; 5 s/ witha € ¥, and s; < s, then s, 5, s, and s} < s);
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ATTSS; strongly simulates) if thereisa strong (timed) simulation relation of .S; by .S;.
Wewrite S; <s S, inthiscase.

When there is a strong simulation relatishof S; by S, and<~! is also a strong
simulation relatioh of S, by S;, we say that< is astrong (timed) bisimultion relation
betweenS; and.S; and usex instead of<. Two TTS.S; and S, arestrongly (timed)
bisimilar if there exists a strong (timed) bisimulation relation betwégrand S,. We
write S, ~g5 S, in this case.

LetS = (Q, Qo, X, —, F, R) be a TTS. We define theabstract TTS* = (Q, @5, X,
—, F, R) (with noe-transitions) by:

o s L. iffthereisarunp = s = s with Untimed(p) = ¢ andDuration(p) = d,

e s 5. s with a € X iff there is a runps — s’ with Untimed(p) = a and
Duration(p) = 0,

e Q5 ={s]35 € Q| 5 sand Duration(w) = 0 A Untimed(w) = c}.

Definition 5 (Weak Time Similarity) Let S; = (Q1,Q4, X, —1, F1, Ry) and Sy =
(Qq, Q2, 3., —, Fy, Ry) be two TTS and < be a binary relation over Q; x Q,. =
isaweak (timed) simulation relatioof S; by S, if it isa strong timed simulation relation
of S5 by S5. ATTS S, weakly simulatess; if thereis a weak (timed) simulation relation
of S; by S5. Wewrite S; <y S5 inthis case.

When there is a weak simulation relatiehof S; by S, and <! is also a weak
simulation relation ofS; by S;, we say that< is aweak (timed) bisimulation relation
betweenS; and S; and usex instead of<. Two TTSS; and .S, areweakly (timed)
bisimilar if there exists a weak (timed) bisimulation relation betwegnand S,. We
write S; ~y Ss in this case.

Note that if S; =<s S3 thenS; =y, Sy and if 51 =Xy Sz then £(S;) C L(S,).
Moreover, proving thab; =y, S, usually amounts to proving thatdt < ¢», then each
moveq, — ¢, can be simulated by a set of movgs—, . ¢} S.t. ¢z < ¢b.

Let S = (Q,Qo,%.,—, F,R) be a TTS. We define théme-abstract TTS S* =
(Q,Q0,2-U{d} —na, F,R)withd ¢ X. by:

s : d
o s —a ¢ iff s — ¢ for somed € Ry,

e s 5a s witha e Xiff s = ¢ for somea € X..

Notice thatS2 has no transition % s’ with d € R>o.

182 j71 §1 <= 51 = So.
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2.2 TimePetri Nets

Time Petri Nets (TPN) were introduced in [15] and extend Petri Nets with timing con-
straints on the firings of transitions. In TPN, a time interval is associated with each tran-
sition. An implicit clock can then be associated with each enabled transition, and gives
the elapsed time since it was last enabled. An enabled transition can be fired if its clock
value belongs to the interval of the transition. Furthermore, time cannot progress beyond
any upper bound of an interval associated with a transition. The following definitions for-
malize these principles. We consider here a generalized vérmsiarPN with accepting

and repeated markings and prove our results for this general model.

Definition 6 (Labeled Time Petri Net) AlLabeled Time Petri NeV/ isatuple (P, T, Y.,
°(.),(.)*, Mo, A, I, F, R) where: P isafinite set of placesand T is a finite set of transi-
tionswith PNT = 0; . = ¥ U {e} isafinite set of actionsand ¢ the empty word i.e.
the silentaction; *(.) € (N”)7 is the backwardincidence mapping; (.)* € (N”)T isthe
forwardincidence mapping; M, € N istheinitial marking; A : T — . isthe labeling
function 7 : T — Z(Qs,) associates with each transition a firing interval R C N” is
the set of final markingsand £ C N” isthe set of repeated markingsAn unlabeledTPN
isaTPNst. X =T andA(t) =tforalteT.

ATPN N is ag-TPN if for all t € T, I(t) is an interval with bounds ilN,. We also
use*t (resp.t*) to denote the set of placés = {p € P|°t(p) > 0} (resp.t®* = {p €
Pt*(p) > 0}) as itis common is the literatute

Semantics of Time Petri Nets. The semantics of TPNs is given in terms of Timed Tran-
sition Systems. Anarking M of a TPN is a mapping itN” and M (p) is the number of
tokens in placev. A transitiont is enabled in a markingM iff M > °t. We denote by
En(M) the set of enabled transitions id. To decide whether a transitigrcan be fired,

we need to know for how long it has been enabled: if this amount of time lies within
the intervall(t), ¢ can actually be fired, otherwise it cannot. On the other hand time can
progress only if the enabling duration still belongs to the downward closure of the interval
associated with an enabled transition. et (R-,)™*) be avaluation such that each
valuer(t) is the time elapsed since transitibwas last enabled. Aonfiguration of the
TPN N is a pair(M, v). An admissible configuration of a TPN is a configuratio\/, v)
s.t.Vt € En(M),v(t) € I(t)'. We letADM(N) be the set of admissible markings.

When defining the semantics of a TPN, three kinds of policies must be fixed.

2This is required to be able to define Biichi timed languages, which is not possible in the original version
of TPN of [15].

SWhether*t (resp.t®) stands for a vector aiN”)T or a subset of will be unambiguously defined by
the context.
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The choice policy concerns the choice of the next event to be fired (scheduled). For
TPNs (and also timed automata), this choice is non deterministic (possible alterna-
tives use priorities, probabilities, etc.).

The service policy concerns the possibility of simultaneous instances of a same event
to occur. In the context of Petri nets, this is formalized by the enaludeggee
of a transition. Here we adopt ttsngle-server policy (at most one instance of
a firing per transition in every state). The results presented are also valid for the
other standard policies (multiple or infinite server) at least for the important case
of bounded Petri nets. However taking them explicitely into account would lead to
intricate notations.

Thememory policy concerns the updating of timing informations when a discrete step
occurs. The key issdén the semantics is to define when we reset the clock mea-
suring the time since a transition was last enabled. This can only happen when we
fire a transition. We letenabled(t', M, t) € B be true ift’ is newly enabled by the
firing of transitiont from marking/, and false otherwise.

Let M be a marking and € En(M). The firing of¢ leads to a new marking
M' = M —*t + t°. Three semantics are possible:

I: Theintermediate semantics {) considers that the firing of a transition is per-
formed in two steps: consuming the input tokenstinand then producing
output tokens in®. The fact that a transitioti is newly enabled on the firing of
atransitiory # t’ is determined w.r.t. the intermediate markihg— °t. When
a transitiont is fired it is newly enabled whatever the intermediate marking.
We denote byf enabled;(t', M,t) the newly enabled predicate in this case.
This mapping is defined by:

Tenabled; (', M,t) = (t' € En(M — *t +¢*) 1)

At En(M = t)V(t=1t))

A: Theatomic semantics considers that the firing of a transition is obtained by an
atomic step. The corresponding mappiegabled(t', M, t) is defined by:

Tenabled(t', M, t) = (' € En(M —*t+t*)) A (' ¢ En(M)V (t =) (2)
PA: Thepersistent atomic semantics considers that the firing of a transition is also
obtained by an atomic step. The difference with theemantics in only on

the value offenabled 4(t', M,t) whent = ¢'. The transition begin fired is not
always newly enabled:

Tenabledpa(t', M,t) =t € EN(M —*t+t*) A (t' € En(M))  (3)

4The new marking obtained after firing a transitioitom a marking) is given by the untimed seman-
tics of Petri Nets.e. M’ = M — °t 4 t°.
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Note that we have the relation:
Tenabledpa(t, M,t") = lenabled(t, M,t") = Tenabled(t, M,t')

The intermediate semantids based on [6, 5] is the most common one. However, de-
pending on the systems to be modeled, another semantics may be more appropriate. The
relative expressive power of the three semantics has not been investigated so far: we ad-
dress this problem in section 3.

We now define the semantics of a TPN: this is a parameterized semantics that depends
on the choice of the semantics for thewabled predicate.

Definition 7 (Semanticsof TPN) Let s € {I,A PA}. The s-semantics of a TPN A/ =
(P, T,%.,%(.), (1), Mo, A\, I, F, R) is a timed transition system Sy = (Q,{q},T,—
JF' R') where: @ = ADM(N), ¢o = (Mo,0), F" = {(M,v)| M € F}and R’ =
{(M,v)| M € R}, and —€ @ x (TTUR>() x @) consists of the discrete and continuous
transition relations:

o thediscrete transition relation is defined V¢ € T by:

tEEN(M)AM =M —*t+1°

AY) v(t) € I(t),

(M,v) —= (M',V/) iff 0 if bled,(t', M, t
’ | 1 s\t s U
v e BE, 1) = i
v(t) otherwise.

e the continuous transition relation is defined Vd € Rx.:

A
(M, v) -5 (it 47 = VT
vVt € En(M),V/(t) € I(t)!
Arun p of A/ isan initial run of Sy. The timed language accepted by N is L(7) =
L(Syr). An unlabelled TPN accepts a timed language in (7' x R)*.

We simply write(M, v) ~ to emphasize that a sequence of transitiorsan be fired in
Sy from (M, v). If Duration(w) = 0 we say thatw is aninstantaneous firing sequence.
The set ofreachable markings of A is Reach(NV) = {M € N”| 3(M,v)| (M,,0) =
(M, v)}.

2.3 Timed Automata

Definition 8 (Timed Automaton) A Timed AutomatonA is a tuple (L, ¢y, X, 3., E,
Inv, F, R) where: L isafinite set of locations ¢, € L istheinitial location, X isafinite
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set of non negative real-valued clocks . = X U {¢} isafinite set of actionsand ¢ isthe
silentaction; £ C LxC(X)x Y. x 2% x Lisafiniteset of edgese = (¢(,v,a, R, (') € E
represents an edge from the location ¢ to the location ¢’ with the guard ~, the label « and
thereset set R C X; Inv € C(X)L assigns an invariantto any location. e restrict the
invariants to conjuncts of terms of theformz < r for x € X andr € Nand <€ {<, <}.
F C Listheset of final locationsand R C L isthe set of repeated locations

Definition 9 (Semantics of a Timed Automaton) The semantics of a timed automaton
A= (L6, X, %, E, Inv, F, R) isatimed transition system S 4 = (@, qo, X, —, F', R)
with @ = L x (R<o)™, qo = (fo,0) is the initial state, " = {(¢,v)| ¢ € F} and
R ={({,v)| ¢ € R}, and — is defined by:

1(v) =tt,
(Lv) 5 (00)  iff 3(0,y,a,R,0) € Est. { v =v[R— 0]
Inv(0)(v') =tt

(E,U)L(g/,vl) iff =1 v =v+d and
Vo<d <d, Inv({)(v+d)=tt

Arunpof Aisaninitial runof S4. Thetimed language accepted by AisL(A) = L(S4).

Recall [3] that, ifm is the maximal constant appearing in atomic formutas: ¢ of
A, an equivalence relation with finite index can be defined on clock valuations, leading
to a partition of(R,)~*, with the following property: two equivalent valuations have
the same behaviour under progress of time and reset operations, with respect to the con-
straints. Note that a partition using ahy > m would have the same property. Also, the
construction can be extended tg-grid, by taking all constants of the forlgn 0<i< Ky
instead of{0,1,..., K}. Finally, takingk = +oo (as depicted in Figure 1 on the left)
leads to a similar structure except for the fact that the partition is infinite. When it is pos-
sible, we will sometimes use such a partition in order to simplify some proofs. Indeed,
with this partition, the extremal case wheres greater thark” has not to be distinguished
from the standard case.

In this paper, the elements of the partition are calethentary zonesand we consider
a slight variation for the definition of elementary zones: we take the conktanatn + 1
and with each clock € X, we associate an interval in the 460}, 10, 1[, {1},..., {K —
1}]K — 1, K[, [K, 4+o0[}, instead of keeping K } separately. As usual, we also specify
the ordering on the fractional parts for all clocksuch thatr < K. Such a partition is
represented in Figure 1 (on the right) for the set of two clakks= {z,y} and K = 3.
For this example, elementary zongsandZ, are described by the constrain; : (2 <
r<3HIAN(1 <y <2)A(0 < fracly) < frac(z))andZy : (z > 3) A (1 <y < 2).
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When considering diagonal constraints (also with constants up)t@nother partition
(Figure 1 in the middle, with' = 2) must be considered.

Figure 1: Partitions of R*)? with K = +o00, K = 2 (with diagonal constraints) and
K = 3 (no diagonal constraints)

The future of a zon€ is defined byfut(Z) = {v+d | v € Z,d € Rso}. If Z
and 7’ are elementary zoneg; is a time successor df, written Z < 7, if for each
valuationv € Z, there is somé € R, such that + d € Z'. For each elementary zone
Z, there is at most one elementary zone such that’ is a time successor df, (i)

Z # Z' and(iii) there is no time success@t’ such thatZ < Z” < Z’. When it exists,
this elementary zone is called the immediate successgrarfd is denoted byucc(Z).
Note thatfut(Z) C U,.,Z', with a strict inclusion when no diagonal constraints are
permitted. -

Finally recall that a finite automataR(.A), called theregion automaton, can be built
from A. This automaton is time abstract bisimilar to the original automatohs states,
called hereegions, are of the form(¢, Z), where/ is a location of4 andZ an elementary
zone of(Rxo)*. They are built from the initial regiof¥,, 0) by transitions of the form
(¢, 2) 2, (¢, 2') for a time successaf’ of Z, if Inv(0)(Z) =ttor (¢, 2) % (¢, Z") if
there is a transitioti?, v, a, R, ¢') € E such thaty(Z) = ttandZ’ = Z[R — 0], with
Inv(¢")(Z') = tt. A region (¢, 7) is said to be maximal irR(.A) with respect to/ if
no J-transition is possible fronil, Z). The automatorR(.A) is restricted to the regions
reachable from the initial regioft,, 0), and accepts the language

Untzme(L(.A)) = {alag R ‘ (al, dl)(az, dg) ... € L(A) for Somedl, dg, ... € Rzo}.

We also consider another automaton, calbkass automaton, in which the states,
called classes, are of the form(l, fut(Z) N Inv(¢)), whereZ is a zone. In this case,
the second component is not an elementary zone anymore (but a general zone) and the
automaton is build from the initial clagg,, fut(0) N Inv(¢)) by the following transi-
tions: (¢,7,) = (¢, Z,) if there exists(l,v,a, R,I') € E such thatZ,n [y]# 0, and
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Zy = fut((ZiN [H])[R + 0]) N Inv(¢').

Note that the class automaton also accéptsime(L(A)). Moreover, since a class can
be represented by a Difference Bounded Matrix [11], its size is at fadst+ 2)(X1+1)*
which is exponential in the size of, as for the region automaton.

2.4 Expressiveness and Equivalence Problems

If B, B’ are either TPN or TA, we writd ~s B’ (resp.B =~y B’) for Sg ~s Sp: (resp.
Sp ~y Spi). LetC andC’ be two classes of TPNs or TA.

Definition 10 (Expressivenessw.r.t. Timed L anguage Acceptance) TheclassC ismore
expressivahan C’ w.r.t. timed language acceptance if for all B’ € C’ thereisa B € C

st. L(B) = L(B'). WewriteC' <, C inthis case. If moreover thereissome B € C st.

thereisno B’ € C' with £L(B) = L(B'), thenC’ <. C (read “ strictly more expressive”).

If bothC" <, CandC <, C’'then C and C’ are equally expressive w.r.t. timed language

acceptance, and wewriteC =, C'.

Definition 11 (Expressivenessw.r.t. Timed Bisimilarity) The class C is more expres-
sivethan C’ wir.t. strong (resp. weak) timed bisimilarity if for all B’ € C’ thereisa B € C
st. B =g B’ (resp. B =~y B'). WewriteC’ <s C (resp. C' <)y C) inthiscase If
moreover thereisa B € C st. thereisno B’ € C' with B ~5 B’ (resp. B =~y B’),
thenC" <s C (resp. C' <y C). If bothC' <s Cand C <s C' (resp. <yy) then C and C’
are equally expressive w.r.t. strong (resp. weak) timed bisimilarity, and wewrite C ~s C’
(resp. C ~y, C).

In the sequel we will compare various subclasses of TPNs and TA. We d&ffoé
the class of TPNs and A the class of TA, according to definitions 6 and 8. We recall the
following theorem adapted from [8]:

Theorem 1 ([8]) Forany N € B-7TPA_ thereisaTAAst. N =y, A, henceB-7PN . <y
TA..

3 Comparison of semantics/, Aand PA

In the first paragraph, we establish two relations between these semantics for TPN, which
hold in the general case. In the second paragraph, we complete these results with a third
one, restricted to bounded time Petri nets, with only closed intervals for transitions. Since
we prove results concerning weak timed bisimulation, we consider unlabeled TPN, where
all states are final and repeated states. For all figures in this section, a transition is filled
in black when its firing interval i$0, 0].
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3.1 A first comparison between the different semantics of TPNs

Proposition 1 Let \V be atime Petri net with intermediate semantics. There existsa TPN
N with atomic semantics which is (weakly timed) bisimilar to V.

Proof. The construction is quite easy. The set of placed/ois obtained by adding to
the set of places of/ a new place for each transitigrfrom A: P = P U {p;,t € T}.
The transitiong” of A are duplicated inV: T = T+ U T~ and the construction follows
Figure 2, from left to right.

=, 1(t)
t, I(t) Dt
tt

Figure 2: From I to A

We consider the equivalence relati@which contains all pair§(M, v), (M, 7)) such
that:

o forallp € P, M(p) = M(p) + Spert*(p). M(p:)

e forallt € En(M), v(t) = v(t) if t~ is enabled inM and0 otherwise. The latter
case corresponds JK to a newly enabled transition.

To prove thatR is a bisimulation, we first note that, with the definition above for mark-
ings, from any configuratiof/, ), we can reach instantaneously a configuratiah , 7;)
such that\/, (p;) = 0 for all ¢, with the firing of a (possibly empty) sequence of transitions
in T+. Moreover, the relation between valuations implies thidt, 7, ) is still equivalent

to (M, v).

Consider now a paif(M, v), (M,7)) € R.
o if (M,v) 5 (M, /), then from the remark above, we first fire a sequence fiém
to empty all places,, leading instantaneously ta/,, 7;), which is equivalent to

(M, v). Then transitiort— can be fired fron{),, 7, ), immediately followed by,
leading to(ﬁ’, 7’), where all placeg, are empty again. Moreover, the transitions
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En;

En,

Figure 3: From A to PA

newly enabled by* /in N are exactly those which were newly enabledt iy )/,
so that(M', v )R(M , 7).

e Conversely, suppose that a transition is fired frahf, 7) in V. If the transition
is somet™, then the new configuratiof/,7;) is still equivalent to(M, v) (as
above), thus no move at all is necessanpin
If (M,v) > (M, %), thent can be fired from(M, v) and the resulting marking
is, (M, /), equivalent tq M, 7).

o if (M,v) 4, (M, v+d), for some delayl, then again we have to apply the emptying
sequence fromiM, ), to reach a configuratiof\/, 7,) still equivalent to(M, v),
where time can elapse. The relation betweendz; implies that this is possible,
leading to(M 1,7, + d).

e Conversely, if(M, D) 4, (M,7 + d), then all placeg, are empty inM/, so that the
move (M, v) 4, (M, v+ d) is also possible itV

ThusR is a bisimulationi

Proposition 2 Let A/ be a time Petri net with atomic semantics. There exists a TPN N/
with persistent atomic semantics which is (weakly timed) bisimilar to V.

Proof. Here again, the construction is simple. Note that the only difference between the
two semantics concerns the question wether a trangitcam newly enable itself. With
atomic semantics, this is the case as soohiggnabled in the new marking while with
persistent atomic semantics, this is never possible. In order to ensure that a transition
will be newly enabled if it is enabled in the new marking, we add an input plageand

an output placésn; to the transition, with an instantaneous ldgpeading back tdon;",

once the transition has been fired. The construction is represented in Figure 3, again from
left to right.

We consider the equivalence relatiBwhich contains all pair§(M, v), (M, 7)) such
that:
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endy

Figure 4: Time subnet for transitigrwith interval[a, b]

e M(p) = M(p) for all placesp in P, and

e foratransitiont € En(M), v(t) = p(t) if t is enabled in\/ and0 otherwise. Again
the latter case correspondsfinto a newly enabled transition.

Like in the previous proposition, the proof is mostly based on the fact that from any
configuration(M, ), we can reach instantaneously a configuratidfy, 7,) such that
M, (En;") = 1 for all t, with the firing of a (possibly empty) sequence of transitions
with again(M,, 7,) still equivalent to( M, v/). 1

3.2 A second comparison for standard bounded TPN

We now restrict to bounded TPNs, with the standard definifienwith closed intervals
([a,d] or [a,o0]) for the transitions. Thus, this third result holds only for the subclass
B-TPN(<,>).

Proposition 3 Let N_be a TPN in B-7PN (<, >) with persistent atomic semantics.
There exists a TPN N with intermediate semantics which is (weakly timed) bisimilar
toN.

In this case, the construction &f is more involved. Like above, we show how to sim-
ulate a transitiort equipped with intervala, b], for a < b, or [a, +oc[. We first build a

time subnet for (Figure 4 below), to simulate time elapsing since a reset operation until
reaching (and staying inside) interal b]. The token is in placetart; if the transition

is enabled in the initial marking. The double arrow at the end indicates that the place
term, is both an input and an output place for the corresponding transition: time cannot
progress. Of course, the time subnet for a transition with intéavatoo] is reduced by
removingu,, end; and f;.

Now, using the fact that the TPN is bounded, we consider its upper bBuart we
associate with each plapea complementary plagesuch that for any reachable marking
M, M(p) = B—M/(p). Figure 5 represents a part of the subnet (on the right) for transition
t (on the left), whereest; is the beginning of the test step for what timing updates are
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truepp

Figure 5: From PAto |

required by the firing of, and M utex ensures that the updates are done (instantaneously)
before anything else, as explained further.

The remaining part ol is devoted to the test of the other transitions from the original
TPN, includingt itself. Consider a given transition (s&y, with again two input places
p% andpi. The corresponding subnet consiststafiodules, one for each case, depending
on wethert; can be fired or not before and after For this, two additional places are
associated witht;: £y, which contains a token if; was enabled before the firing of
and N £, its complementary place. tf is initially enabled ther¥;, is initially marked
otherwiseN E;, is marked. This group of modules has a common input plaest; and
a common output placest;, 1, which means that the tests are to be executed sequentially
(and instantaneously), except for the last one where all outgoing transitions are linked to
Mutezx. These places are not shown in the following figures.

Case 1: transitiont; is enabled both before and aftefTo test this case, we use the simple
module on the left of Figure 6, whei,, (test beforet) andpi andpi, (test aftert) are

input and output places.

Case 2: t; is not enabled before but enabled afterThe module is very similar to the
previous one and is on the right of Figure 6. Note that, in this case only, because of the
PA semantics, there must be a reset on the valuation of the transition, which explains why
the initial placestart;, of the time module fot; is an output place.

Case 3: t; is enabled neither before nor aftefTo test this, we must find an input place of
t;, where the current number of tokens disablédere is the point where the boundedness
hypothesis is required. In order to perform this test, we check whether*t;(p) + 1
tokens can be removed from a complementary piace

Case 4. t; is enabled before but not afterln this case, we have a module (see Figure 8)
similar to the one above, except that we must also test for all the different configurations
of the time subnet correspondingitoto disable the transitions by removing the tokens.
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2 T
Ey, 2 NE,, 2

Figure 6: Testing transitiofy: cases 1 and 2

NE,

=i

]_71 2

B —*t;(ph) +1 B —*t;(pi) +1

Figure 7: Testing transitiof): case 3

NE,

Figure 8: Testing transitioty: case 4
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It can be seen in Figure 8 that there is a transition for each(paitate), where
p is an input place of; and state may be either the plac&art;,, the pair of places
(iny,, truep, ) or the pair(end,,, truey,, ;). Like above, an edge fromto a transition
must be labeled witl? — *¢;(p) + 1 (which is omitted in the figure).

We consider the equivalence relatiRrcontaining all pairg(M, v), (M, 7)) such that

e M in N is obtained by projectiond/(p) = M(p) for each place < P,

e for a transitiont in 7" enabled byM: v(t) = 0 if the time subnet of is empty,
v(t) = v(ly) if the placestart, contains a tokeny(t) = a + v(u;) if the placein,
contains a token and(¢) = b if the placeend, contains a token. Note that in both
latter casesirue, ) also contains a token and the transittazan be fired inVv.

Also note that ifM (start,) = 1 andv(u,) = a, then with instantaneously firing, tran-
sitiont can also be fired. By a development similar to the previous ones, we can show that
‘R is a bisimulation relation. More precisely, the proof is mainly based on emptying se-
quences from a configuratign/, 7) of N itis always possible to reach instantaneously a
configuration( M, 7;) such that the testing subnet is empty, willd,, 7, ) still equivalent

to (M, v). The details are omitted.

We can conclude this section with:

Corollary 1 For the class B-7 PN (<, >), the three semantics 7, A and PA are equally
expressive w.r.t. weak time bisimulation.

4 Strict Ordering Results

In this section, we establish results proving tda@ A\ are strictly less expressive w.r.t.
weak timed bisimilarity than various classes of TA. For this, we consider the two automata
Ay € TA(<)and A, € TA(<) in Figure 9.

Ao Al

. a, <1 . . a, <1 .

Figure 9: Timed automatd, and.A,

We will prove that no TPN can be weakly timed bisimilar to eitb&y or A;. The
proof relies on the following lemma, which states that in a TPN, waiting in some marking
cannot disable transitions. The proof is easy and is thus omitted. Note that the results
holds without modification for any semanticsfefiabled,(t', M, t).
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Lemma 1 (Waiting Cannot Disable Transitions) Let (M, v) be an admissible configu-
ration of a TPN, d € R>q and let w = ¢,t, - - - t;, be an instantaneous firing sequence. If
(M,v) % then (M, v +d) %.

Theorem 2 Thereisno TPN weakly timed bisimilar to Ay.

Proof. Assume there is a TPW that is weakly timed bisimilar to4, and let~ be a
weak timed bisimulation betwee$l, and.S4,. Let (M, 0) be the initial state of5y

and (¢, v(z) = 0) the initial state ofS4,. In S4, there is a run of duratiom leading to
configuration(/y, 1) and thus there is a ruf/y, 0) 2= 22 (An 4) in A,

withd, > 1for1 <k <n-—1,i > 0,4, > 0and)’ ., dx = 1. We can further
assumel;, > 0 for all &£, and alsai,, = 0 because the configuration reached aftgis

also bisimilar to((y, 1). Then(Mj, 0) 222 dnte™™ vy where(M, ') is

bisimilar to a configurationi/y, d') with ' = 1 — d,, < 1. This entails that)/’, ") =,

Since(M’, V") L, (Mjy,1n), if follows from lemma 1 thai{ M, v4) e, contradicting
the fact thai( M, v1) =~ (4, 1) from which noa can be firedl

The result is also true with large constraints:
Theorem 3 Thereisno TPN weakly timed bisimilar to A;.

Proof. Again assume there is a TPN that is weakly timed bisimilar to4,. Since
(Lo,0) = (£, 1), we have(M,, 0) . (M, 1), where(£o, 1) and (M, v;) are weakly
timed bisimilar. Sincen can be fired from({y, 1), a transition labeled. can also be
fired from all the configuration§)M;, v;) reachable from(Af;,14) in null duration €

transitions). Also there must be one such configuratiah, v') s.t. some duratiod > 0

can elapse fron{M’; ') reaching(M”,v"). By lemma 1, some: can be fired from
(M V"), But (M",v") is weakly timed bisimilar to the configuratigiy, 1 + d) which

prevents: to be fired. Hence a contradiction.

From Theorems 1, 2 and 3, we immediately obtain:
Corollary 2 TPN <y TA(<) and TPN <y TA(<).

The next proposition shows that the expressive power of TPNs depends on the chosen
semantic even in the bounded case.

Theorem 4 There exists a bounded TPN A with persistent atomic semantics such that
no TPN (even unbounded) with atomic semanticsis bisimilar to .

Proof. Consider the following (Zeno) timed automata:
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It is bisimilar to the TPN with PA semantics composed by a single tranditiaineled
by e with firing interval [0, 1[ (or any intervala, 1] or [a, 1).

Suppose that there is a TR with atomic semantics bisimilar td; and letd,,;,, be
the minimum of the non null upper bounds occuring in the intervals associated with the
transitions ofA/" and0.5 (in fact any value less thanwould be convenient).

There must be a sequen@¥y, vy) dotr-thdy (M, v)with ¥ d; =1 — dnin/2 and
(M, v) bisimilar to (¢o, 1 — dpin/2).
From (M, v), we fire or disable the transitions enabled at this configuration, which leads

to a new configuratiofM’, v’) bisimilar to some{,, 1 — 0") with 0 < §' < dpin /2. Now

Y gt

since(M’, ') is bimilar to (o, 1 — &') there must be a sequen@d’, ') "%, yith

0< K d <.

Choose the first; > 0 and let(M*, v*) be the state reached before the duratiprSince

time may elapse in this state, all enabled transitions have non null upper bound for their
interval, hence these bounds are greater than or equdal;to Since the transitions have

been enabled at or after configuratia’, v), we havevt, v*(t) < dpin/2—8 < dpin/2,

thus(M*,v*) 2% But(M*,v*) is bisimilar to(¢y, 1—4') which cannot let time elapse

for a duration ofd,,;,,/2. This is a contradictiors

Following this negative results, we compare the expressiveness of TPNs and TA w.r.t. to
Timed Language Acceptance and exhibit a subclass of TA that admits bisimilar TPNs.

5 Equivalencew.r.t. Timed Language Acceptance

In this section, we prove that TA and labeled TPNs are equally expressive w.r.t. timed
languages acceptance, and give an effective syntactical translation from TA to TPNs.

Let A= (L,ly, X,%., E, Inv, F, R) be a TA. Since we are concerned in this section
with the langage accepted by we assume the invariant function is uniformly true. Let
C, be the set of atomic constraints on clackhat are used itd. The Time Petri Net
resulting from our translation will be built from “elementary blocks” modeling the truth
value of the constraints ifi,. We next link them with blocks for resetting clocks. In the
next subsection we show how to encode atomic constraints into TPNs.

As a consequence of corollary 1, the semanticd andPA for TPNs are equivalent
w.r.t. language acceptance. In this section, we usé gammantics.
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rbo

(e, [0,0]) 4

TEO

(a) Widget7Z,~, (b) Widget7, >, (assume: > 0)

Figure 11: Widget, , (resp.7,<,)

5.1 Encoding Atomic Constraints

Let ¢ € C, be an atomic constraint on From¢, we define the TPNV,,, given by the
widgets of Fig. 10 ((a) and (b)) and Fig. 11. In the figures, a transition is writer)
wheret is the name of the transitiof,c ¥. and! € Z(Qx).

To avoid drawing too many arcs, we have adopted the following semantics: the grey
box is seen as a macro place; an arc from this grey box means that there are as many
copies of the transition as places in the grey box. For instance the TPN of Fig. 10.(b) has
2 copies of the target transition one with input place®, andr;, and output places, and
P, and another fresh copy efwith input places, and~; and output places, and P,.

Note that in the widgets of Fig. 11 we put a tokenyjnwhen firingr only on the copy of
r with input placeP; (otherwise the number of tokens in plage could be unbounded).
Also we assume that the automatdrhas no constraint > 0 (as it evaluates to true they
can be safely removed) and thus that the widget of Fig. 10.(b) only appears with

Each of these TPNs basically consists of a “constraint” subpart (in the grey boxes

75



Comparison of Expressiveness for Timed Automata and Time Petri Nets

Figure 12: WidgetVres(r) to reset the widgetd/,,, 1 <i <n

for Fig. 10 and in the dashed box for Fig. 11) that models the truth value of the atomic
constraint, and another “reset” subpart that will be used to update the truth value of the
constraint when the clock is reset. The “constraint” subpart features the plagethe
intended meaning is that when a token is available in this place, the corresponding atomic
constrainty is true.

When a clocker is reset, all the grey blocks modeling arconstraint must be set to
theirinitial marking with has one token iR, for Fig. 10 and one token i®, and~;;
for Fig. 11. Our strategy to reset a block modeling a constraint is to put a tokenp the
place (, stands for “reset begin”). Time cannot elapse from there on (strong semantics for
TPNSs), as there will be a token in one of the places of the grey block and thus transition
will be enabled.

We first prove three useful lemmas, the first one providing a structural invariant for
the grey boxes of the widgets:

Lemma 2 For each widget of Fig. 10, each reachable configuration (), v) (from the
initial marking) has exactly one token in one of the places of the grey box.

Lemma 3 For the widgets of Fig. 11, each reachable configuration (M, v) (fromthe ini-
tial marking) satisfieseither i) M (P,) = 1, M(y;) = land M(P,) = 0Oorii) M(P,) =1
and M (vy,) = 1oriiiy M(P,) =0, M(y,) =0and M(P;) = 1.

Proof. The proof is easy for the widgets of Fig. 10. For the widgets of Fig. 11, just notice
that as soon af is fired, the output transition is enabled (there must be a tokenyjpas

it can only be removed by the firing o). Later on, either the token remainsiihforever,

or if the copy ofr from P; is fired a token is put in,; and P,. From lemmas 2 and 3 we
obtain the following:

Lemma4 If thereisatoken in r;, exactly one (instance of &) copy of r isfirable and due
to the time constraint [0, 0], time cannot progress until it isfired.
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5.2 Resetting Clocks

AssumeR C X is a non empty subset of clocks. Lé&(R) be the set of atomic
constraints that are in the scope Bf(the clock of the constraint is ifk). We write

D(R) = {¢1,¢1, - ,n}. To update all the widgetd/,,, we connect the places and

r. of each widgetV,, as described on Fig. 12. The picture inside the dashed box denotes
the widgetVrest(r). We denote by (R) the first place of this widget an¢f (R) the last

one. To update the (truth value of the) widgéfs it then suffices to put a token it} (R).

In null duration it will go tor}’(R) and have the effect of updating each widgét on its

way.

5.3 TheComplete Construction

First we create fresh placds for each? € L, and another placEiring just for conve-
nience: it will allow us to define a simulation relation more succintly. Then we build the
widgets\,, for each atomic constraint that appears iod. Finally for eachR C X s.t.
there is an edge = (¢,7,a, R, ') € E we build a reset widgeVres(r)-

Then for each edg€/,v,a, R, ') € E with v = A,—1,,p; andn > 0 we proceed as
follows:

1. assume = A;—; ,; andn > 0,
2. create a transitioffi(a, [0, oo[) and ifn > 1 another one (e, [0, 0]),

3. connect them to the places of the widgkts andNrest(r) as described on Fig. 13.
In casey = tt (or n = 0) there is only one input place t&(a, [0, oc[) which is P;.
In caseR = {) there is no transition(e, [0, 0]) and the output place of(a, [0, >o|)
is Py instead ofFiring.

The placeFiring is just added for convenience: it has a token only during the re-
set phase of the TPW/, and thus means “we are firing transitions in the reset widget

Nreset(r)”-

To complete the construction we just need to put a token in the gtgdé ¢, is the
initial location of the automaton, and set each widggto its initial marking, for each
atomic constraing that appears i, and this defines the initial marking,. The set of
final markings is defined by the set of markingss.t. M(P,) = 1 for ¢ € F and the
set of repeated markings by by the set of markings.t. M(FP,) = 1for ¢ € R. We
denote byA(.A4) the TPN obtained as described previously. Notice that by construction 1)
A(A) is 1-safe and moreover 2) in each reachable marRingf A(A) (3,., M(P)) +
M (Firing) = 1.
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Figure 13: WidgetV, of an edge: = (¢,v,a, R, ()

54 A(A)and A acceptsthe sametimed language

We now prove the following proposition:
Proposition 4 If A(A) isdefined as above, then £(.A) = L(A(A)).

Proof. The proof works as follows: we first show that.4) weakly simulates4 which
implies£(A) C L(A(A)). Then we show that we can define a FAs.t. £(A) = L(A")
and.A’ weakly simulateg\(.A) which entailsC(A(A)) C L(A') = L(A). Itis sufficient
to give the proof for the case wherkehas no: transitions. In casel hase transitions we
rename them with a fresh lettgrg 3. and obtain an automato#, with noe transitions.
We apply our construction tel, and obtain a TPN in which we replace every lapdly
E.

Recall thatd = (L, ly, X, 3., E, Inv, F, R) andA(A) = (P, T,%.,°(.), (.)*, My, A,
I,Fa,Rpa) and writeX = {xy, - ,2x}, P = {p1, - ,pm} andT = {t1,--- ,t,}. We
assume that the set of atomic constraintsias C 4. The placey;; of a widgetV,,.. (for
x > ¢ an atomic constraint ofl) is written ;.

Proof that A(A) smulates A. We define the relatior C (L x R%;) x (N? x RZ)
by:
(1) M(P;) =1V M(Firing) =1
(l,v) 2 (M,v) < < (2)foreachp =z ¢, <€ {<, <}, M(P,) =0 0]
(3)foreachp € Ca, v €]y] <= M(7) =1

Now we prove thats is a weak simulation relation o by A(.A), and this by checking
the 4 conditions of Def. 4:
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1. final and repeated states: by definitionif4) and lemmas 2 and 3 and the defini-
tion of <;

2. initial states: itis clear thdty, 0) < (M, 0);

3. continuous transitions: 1€, v) <, (¢,v+d). Take(M,v) s.t. (¢,v) < (M,v).
As the widgets\V,,, are non-blocking, timé can elapse froni)/, v), and there is a
run (M, v) £ (M', /') with Duration(trace(p)) = d andUntimed(trace(p)) = .
We can choosg without any transitiong (a, [0, oo[) so that a token remains i
andM'(P,;) = 1. Thus to prove/,v +t) =< (M’ V') it remains to prove items (2)
and (3) of equation ().

Let o = z > ¢ with e {<, <}.

o if p(v) =ttandy(v + d) = ff, then there is somé& < d s.t. transitiory,. of
widget\V,, is enabled and it must be fired befarébecomes false. Thus is
fired atd’ (which is possible as there is no token/ip and thus the token is in
P,) and subsequently in the same widget, thus transfering the tokens from
P,, v to P;.

e if p(v) =ttandp(v + d) = tt, it is possible to do nothing in widget, and
let the token inP, and~};.

o if p(v) = fftheny(v + d) = ff, then there must be a token i and we let
time elapse without firing any transition.

Let o = x> c with e {>, >}.

o if o(v) =ttthenp(v+d) = ttandM (v}) = 1. We just let time elapse itV,.

e if o(v) =ffandp(v + d) = tt, there ist’ < ¢ s.t. transitiong, must be fired
(andt’ can be fired atl’ + ¢ with £ > 0 for N,~.). We fire those transitions at
d and letd — d’ elapse.

e if p(v) = ffandy(v + d) = ff we also let time elapse and leave a toke®jn

This way for each cosntraigt = z > ¢, there is a rup, = (M, v) LN (M, v,)

s.t. (M,, v,,) satisfies requirements (2) and (3) of equation (I). Taken separately we
have for each constraitt, v) < (M,,v,). Itis not difficult® to build a runp with

an interleaving of the previous rumpsg s.t. p = (M,v) e (M’ V") and(M', )
satisfies requirements (2) and (3) of equation (I) for each constgaiand thus
(L,0) =2 (M'V).

5Just find an ordering for all the dat at which a transition must be fired and fire those transitions in
this order with time elapsing between them.
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(/\‘/JEKi SD) /\ (’Y /\ Qp)/ (I, Ra Q(R)

YA, a, R @ @
) ¢

bxjc = tt, 9 byjc = tt, S
szc = ff byjc = ff

(a) Edge(t,y A, a, R, 0')in A (b) Extended edge inl’.

Figure 14: FromA to A'.

4. discrete transitions: Lét, v) % (¢',v") and(¢,v) < (M, v). Then there is an edge
e= ({,y,a,R, ') € ESt.v= ANic1,9i,n > 0andy; is an atomic constraint.
By definition 9,v €[;] for 1 < i < n. This impliesM (v;;) = 1 (definition of
<). Thus the transitiorf (a, [0, oc[) is fireable in the widged; leading to(A/’, /).
From there on we do not change the marking of widdétsfor the constraints;
that do not need to be reset (the clocksfis not in R). We also use the widgé&t
to reset the constraints; with a clock in ? and finally put a token iP,. The new

state()”, ") obtained this way satisfidg’, ") < (M",v").

This completes the proof that(.A) simulates4 and thusC(.A) C L(A(A)).

Proof of L(A(A)) C L(A). To prove this, we cannot easily exhibit a simulation of
A(A) by A. Indeed A(A), because of the widgefs, ... with e {<, <}, has to make a
decision at some point to fire transitionand immedialty after, i.e. it is as if it decides
thatz > ¢ is now false and the transitions with this guard cannot be fired anymore (until
they are reset). To use the simulation framework, we build first adT#hat accepts the
same language a$ but has the capability to sometimes (non deterministically) decide it
will not use a transition with a guard < ¢ until it is reset. It is then possible to build a
simulation relation ofA(.A) by A’

We denotex for either{<, <} and> for {>, >}. Let K< be the set of contraints
x =% cin A. For eacht < ¢ € K< we introduce a boolean variablg~.. Eachb, <. is
initially true.

We start with. A" = A. The construction of the new features .df is depicted on
Fig. 14. Let(¢,y A ¢,a, R, (') be an edge ofd’ with v = Ay<cex o < candy =
Awrcex.® = c. For such an edge we strengthdine guardy A ¢ to obtainy’ as follows:
Y =yAYA Ni=cerc. be=c- This way the transitio, v A ¢, a, R, ') can be fired in4’
only if the corresponding guard id and the conjunction of the, <. is true as well. We

5We need an extended type of TA with boolean variables; this does not add any expressive power to the
model.
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also reset to true all the variablés.. s.t. = € R on a transition ¢,y A ¢, a, R, (') and
Q(R) corresponds to the reset of 8. s.t.z € R, Q(R) = Ayerbr<c = tt.

Now let ¢ be location ofA’. For each variablé,~. we add a loop edg€/, b,<. =
tt, e, b=, := ff, () in A, i.e. the automatond’ can decide non deterministicallyo set
b.<. to false if it is true (see Fig. 14). There are as many loops on each location as the
number of variable$,~.. The new non deterministic TM' accepts exactly the same
language asli.e L(A") = L(A).

We can now build a simulation relation af(.A) by A’. We denot&/, v, b) a configu-

ration of A" with b the vector ofb,, variables. We define the relation C (N? x RZ,) x
(L x RZ, x B¥) by:

(1) M(Py) =1V M(Firing) =1
2Q)Vo=x>ce K.,veE[p] <= M) =1
(M,v) 2 (l,v,b) <= (B)Vp=x>ce K>, velp] = M) =1V ()
(M(P7) =1Av(t2) =)
(AVp e K, M(P7) =1 < (b, =ff Vv &[y])

Now we prove thak is a weak simulation relation @k (A) by A.

e property on final and repeated states is satisfied by definitiofi,of

e for the initial configuration, it is clear thdt\/,, 0) < (I, 0, o) (in by all the vari-
ablesh are true),

e continuous time transitions: 1€\, v/) LR (M',V) with d > 0. Let (M,v) <
(¢,v,b). As there are no invariant id’ time d can elapse fron, v, b). If no e tran-
sition fires in the TPN, then all the truth values of the constraints stay unchanged.

Thus(¢,v,b) 5 (£, v+ d,b) and inA’ s.t. (M, /) < (¢,v + d,b).

e discrete transitions: letM,v) = (M’,v'). We distinguish the cases= ¢ and
a €.
If « € ¥ then we must fire a transitiofi(a, [0, co[) of some widget\. for e =
(¢,7v,a, R, ). After firing f we end up inFiring and have left the input placesg,
unchanged. By equation Il and the definition4ifwe can fire a matching transition
in A’ leading to a state/’,v', b') and(M', V") < (¢, V).
If a = ¢ then we are either updating some widgéfs or doing a reset.
Assume we fire a transition that is not a reset transitioh/(7,) = 1). We split
the cases according to the different types of widgets:

"This means we addtransitions ta4’; nevertheless the restriction we made at the beginning4fiets
no ¢ transitions is useful when proving thai(.4) simulatesA and not required to prove that’ weakly
simulatesA(A).
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— update of a widgetV,..: eithert, or ¢ is fired. Ift, is fired then the time
elapsed since thewas last reset is equal to0 ThusM () = 0 andv(z) < ¢
andv €[z > d]. Thisimplies(M’,v") < (¢, v).

If ¢ is fired on the contrary’(x) > ¢ but again(M’, v") < (¢,v,b).

— update of a widged,.>.: the same reasoning as before can be used and leads
to (M', ") =< (€,v,b).

— update of a widgel,...: In this case eithet, or u is fired. Assume, is fired.
ThusM'(P;) = 0. The time elapsed sincewas last reset is strictly less than
candv €[¢]. b, is true in(¢,v,b) asM(P;) = 0. Thus(M', ") < (¢,v,b).

Now assumex is fired. AgainM/ (P;) = 0 and thusv(z) < c andb,, is true.
This time M'(P;) = 1. In the automatord’ we fire the transition setting,

to false and we end up in a state v, V') s.t. (M', ') < (¢,v,'). The same
reasoning applies fok>..

For the reset transitions and the last transition putting a tokéh iwe can proceed
similarly.

This completes the proof thad’ simulatesA(A) and thusL(A(A)) € L(A') and
L(A(A)) € L(A).

We can thus conclude th&{A(A)) = £(A), which ends the proof of Propositioni.

5.5 Consequences of the Previous Results
Let k-TPN be the set ok-bounded TPNs (Note that boundedness is not decidable for

TPNs). LetB-TPN = {T|3k > 0|T € k-TPN}, i.e. the set of bounded TPNs. From
the previous proposition we can state the following corollaries:

Corollary 3 The classes B-7 PN and 7 A are equally expressive w.r.t. timed language
acceptance, i.e. B-TPN =, T A.

Proof. From Theorem 1, we know tha-7 PN <, 7.A. Proposition 4 proves that
TA <, TPN and hencéB-TPN =, TA.1

Corollary 4 k-TPN =, 1-TPN.

Proof. LetT € k-TPN. We use Theorem 1 and thus there is aAA s.t. L(T) =
L(Ar). From A we use Proposition 4 and obtai( A;) which is al-safe TPNE
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6 Bisimulation of TA by TPNs

We now focus on the expressiveness of the models w.r.t. weak time bisimilarity. In the
sequel, we often abbreviate weak timed bisimilarity by bisimilarity.

First, we recall two related results:

e There are unbounded TPNs which do not admit a bisimilar TA. This is a direct
consequence of the following observation: the untimed language of a TA is regular
which is not necessarily the case for PNs (and thus for TPNSs).

e Forany bounded TPN, there is a TA which is bisimilar to it (see Theorem 1 from [8]).

This last result was proved by the construction of a synchronized product of automata
enlarged with a vector of bounded integers (a model equivalent to standard automata).
The proposed construction is structural and linear w.r.t. to the size of the PN. It has the
additional advantage that the available tools exploit the product in order to reduce the
complexity of verification. Here we are mainly concerned with expressivity. So we can
also give a straightforward construction based on the reachability space:

e With each transition, we associate a clock.

e With each reachable markiny/, we associate a locatigh,. The invariant of/,,
is given byA, .,y 2 € 1(t)", (recall that/ (¢) is the interval associated with.

e With each firingl/ - M’ (in the untimed PN), we associate an edge (Lary 7y, t,
R, () with v = x, € I(¢t) and R defined according to the chosen semantic. For
instance, ifP A semantics is chosen then

R={zy|t' ¢ En(M) At € En(M')}.

In this section, we consider the TPNs originally defined by Meilia (vithout strict
constraints) and labeled-free TAg where two different edges have different labels
and no label i) and we develop the main result of the paper: a characterization of
the subclass of TA which admit a bisimilar TPN. From this characterization, we will
deduce that given a TA, the problem of deciding whether there is a TPN bisimilar to it, is
PSPAC E-complete. Furthermore, we will provide two effective constructions for such
a TPN: the first one with rational constants has a size linear w.r.t. the TA, while the other,
which uses only integer constants has an exponential size.
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6.1 Regionsof atimed automaton

Since our proofs are based on the regions of a timed automaton, we detail their definition.
Recall that aegion is a pair composed by a location andekementary time zone of the

grid defined by the clocks and the granulagjtyin the sequel, the topology of the regions

is implicitely derived from the one of its associated zone. We now formally define the
particular case of regions for a maximal constant= co. Obviously it may lead to an
infinite region automaton but will be a helpful tool for proving our characterization. Note
also that the following definition is equivalent to the original one but is more appropriate
for our theoretical developments.

Definition 12 (Regions of an automaton w.r.t. the g-grid and constant K = oo) Atime-
closed region r is given by:

e /, thelocation of r,
e min, € N\ theminimal vector of the topological closure of ,

e The number size, of different fractional parts of clock valuesin the grid fo , with
1 < size, < |X|andtheonto mapping ord, : X — {1,..., size,} which givesthe
relative positions of these fractional parts,

Theregionisthenr = {(¢,,min, + &) |6 € RS, A Va,y € X[ord,(x) =1 & §(x) =

0)AS(z) <1/g A [ord.(x) < ord,.(y) < 6(z) < d(y)]}.

A time-open region r is defined with the same attributes as the time-closed region by:
r={,min,+d+d)|d€ Ry A Vz € X, §z)+d<1/g}.

The set [X], is the set of equivalence classes of clocks wir.t. their fractional parts, i.e.
and y are equivalent iff ord,.(x) = ord,(y).

This definition needs to be slightly modified when dealing with a congtant oo,
by introducing a subset olevant clocks, for which the value is less thdn (recall that
K > m wherem is the maximal constant in the constraints of the timed automaton).

Definition 13 (Regions of an automaton w.r.t. the g-grid and finite constant K) Atime-
closed region r is given by:

e /, thelocation of r,

e min, € Ngf with Va, min,(z) < K the minimal vector of the topological closure
of r,
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o ActX, = {x € X |min,(z) < K} the subset of relevant clocks,

e the number size, of different fractionnal parts for the values of relevant clocks in
the Ng‘ctXr grid, with 1 < size, < Max(]ActX,|,1) and the onto mapping ord, :

X +— {1,...,size,} giving the ordering of the fractionnal parts. By convention,
Vo e X\ ActX,,ord.(x) = 1.

Then r = {(¢,,min, + 8)|6 € RS, A Va,y € ActX,[ord.(z) = 1 & &(z) =

0] A d(x) <1/g A [ord,(z) < ord,(y) < 6(x) < d(y)]}

A time-open (description of) aregion r is given by the same attributes (and conditions) as
a time-closed region with:
r={(l,min, +0 +d)|d € Rog A Vx € ActX,, 6(x) +d < 1/g}.

Note that letting time elapse leads to an alternation of time-open regions (where time
can elapse) and time-closed ones (where no time can elapse). We also remarithat
r except if there is a single class of clocks relative t@or instance ifr is a singleton).
More generally, whatever be the grid and the maximal constant, wé nibte topological
closure ofr: it is a finite union of regions and from the definitian;n, is the minimum
vector of7.

Reachability. Recall that a region iseachable if it belongs to the region automaton.
However it does not mean that all the configurations of the region are reachable. Nev-
ertheless, by induction on the reachability relation inside the region automaton it can be
shown that every configuration is “quasi-reachable” in the following sense:

For each reachable regienthere is a regiomeach(r) w.r.t. the 1-grid and the constant

oo such that:

e reach(r) C r;
e each configuration ofeach(r) is reachable;

o if reach(r) is a time-open region thenadmits a time-open description elsad-
mits a time-closed description.

Note that consequentlyz € ActX,, min,coenry(z) = min,.(z) andVze € X\
ActX,, Minyeqeniy () > K and thaibord, restricted toAct X, is identical toord, cqch(r)-

Let us defineR by (1, v)R (I, v") iff Vo € X, v'(z) = v(z)V (v(z) > KAV (z) > K).
ThenR is a strong time bisimulation relation. From the previous observations, we note
that each configuration of a reachable region is strongly time bisimilar to a reachable
configuration of this region. Thus speaking about reachability of regions is a slight abuse
of notations.
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6.2 From bisimulation to uniform bisimulation

As a first step toward our characterization, we prove that when a TPN and a TA are
bisimilar, the condition can in fact be strengthened in what we call uniform bisimulation.

We first prove a lemma which is also a strengthened version of lemma 1. It points
out the effect of time granularity on the behaviour of TPN when strict constraints are
excluded.

Lemmab Let (M,v) and (M, v + §) be two admissible configurations of a g-TPN with
v, € RE;™. Let w be an instantaneous firing sequence, then:

(@ (M,v) L= (M,v+6) =

(b) If v € N,“") and § € [0,1/g[""™M) then (M, v + §) = (M,v) %

Proof. There are two kinds of transitions firing in: those corresponding to a firing
of a transition (say) still enabled from the beginning of the firing sequence and those
corresponding to a newly enabled transition (8ay

Proof of (a) Sincet is firable from (M, v), v(t) € 1(t) C I(t)!, sov(t) + (1) > v(1)
also belongs td(¢)". Sincet € En(M) and(M, v+ §) is reachabley(t) + §(t) € I(t)'.
Thusv(t) + 8(t) € I(t) andt is also firable from(M, v + §). Sincet’ is newly enabled,
0 € I(¢') andt’ is also firable when it occurs starting frofi/, v + §).

Proof of (b) The case of newly enabled transitionsuns handled as before. Now let
t be firable in(M,v + §). Sincet € En(M) and (M, v) is reachabley(t) € I(t)!.
Sincev(t) + &(t) € I(t)!, (denoting byeft(t) the minimum ofl(¢)'), we havee ft(t) <
v(t) + &(t) buteft(t) belongs to the-grid, thuseft(t) < v(t) < v(t) € I(t)!. Sot is
firable from(M, v). 1

Lemma 6 (From bisimulation to uniform bisimulation) Consider a timed automaton
A bisimilar to some ¢g-TPN N via some relation R. The semantics considered for A/ is
P A asit gives the maximal expressivity. e consider the region automaton of .4 w.r.t. the
grid N;¥ and the constant K = co. Then:

e if aregionr belongsto R(.A) then 7 also belongsto R(.A);

e with each reachable region r is associated a configuration of the net (M, v.) with
v, € NY"™) and a mapping ¢, : En(M,) — [X], which fulfill:
— If r istime-closed, then V(¢,., min, + §) € T,
(4., min,. + 8)R(M,, v, + proj,(d))
where proj.(0)(t) = 6(¢.(t)).
— If r istime-open, thenV(¢,, min, + § +d) € T,
(b, min, + 6 + A)R(M,, v, + proj.(8) + d)
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Proof. We prove this uniform version of the bisimulation by induction on the reachability
relation between regions. First note that the choice of a particular elankthe class
o.(t) is irrelevant when considering the valdier). Thus the definition ofroj, is sound.

We prove our assertion by induction on the transition relation in the region automaton.
The basis case is straightforward witfi,, 0) } and{(2/,, 0)}. For the induction part, we
consider cases, according to the incoming or target region and to the nature of the step.

1. Atimestep from atime-closed region Letr be a time-closed region which is not max-
imal and let us denoté = succ(r) the immediate time successornofLet (¢,., min,+do)

be some item of. (¢, min, + &) <, for somed > 0. Thus (by induction hypothesis) in

N there is a step sequence(f,., v, + proj, (&) <222, with all transitions labelled
by e and> d, = d. Letd; be the first non zero elapsing of time. By application of
lemma 5-b, the firing sequence. . . ¢, is firable from(M,., v,.).

Let us choosé)M,., v,+) the configuration reached by this sequence. By application of
lemma 5-a, this firing sequence is also fireable from@wy, v, + proj,.(9)) bisimilar to
(0., min, + 8) € 7 and it leads td M., v, + proj,.(d)) (still bisimilar to (¢,., min,. + 9))
whereg,. (resp. v,) is equal tog, (resp. v,) for transitions always enabled during the
firing sequence and,. (resp. v,) is obtained by associating the class of index 1 (resp.
by associating the value 0) to the transitions newly enabled. $itew, ) let the time
elapse and sincd/ is a g-TPN, we note thatt € En(M,), v.(t) + 1/g € I(t)".
Now let (¢,,min, + & + d) € 1/, one hasvr € X, §(z) +d < 1/g. ThusVt €
En(M,), proj.(8(z)) + d < 1/g, which implies(M,, v, + proj.(6)) 5 (M, v, +
proj.(8) + d), this last configuration being necessarily bisimilafta min, + § + d).

2. A time step from atime-open region. Let r be an time-open region and let us denote
" = suce(r). Let us defineX"** the clasgx], with maximal index. We remark that
min, = min, + 8o Where ifx € X thendy(z) = 1/g elsedy(z) = 0. We choose
(M, vp) = (M., v, + proj,.(do)). Lett € En(M,) andx € ¢.(t) theng,.(t) = [z]»
(letting time elapse does not split the classes)piSg, andproj,. are identical.

Now let (I,,, min, + &) € r'. (l,r, min, + &) = (£,, min, + dg + §).

Now letd = &(x) for « belonging the class of index 1 |iX,]. Then(¢,, min, + do +
d) = (¢r,min, + & +d) where ifx € X" thend’(z) = 1/g —d elsed’(z) = §(z) —d.
(¢,,min, + 6" +d) is bisimilar to(M,., v, + proj,(8’) +d) = (M,, v, +proj, (8’ +d)) =
(Al'm Vp +pr0jr(5l + 5)) = (A{rv Vy +pr0.7.r(61) +pr0jr(6)) = (Afr’a Uy +pr0jr’(6)))

For this step, we have not used the characteristics of time Petri nets.

3. A discrete step into atime-closed region.

Casea. We first consider the case wherés a time-closed region.
Let (¢,, min, +3y) be some element of Suppose that/,, min, +6&) — (I',v" +
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0p) With Vo € R(e),v'(x) = dg(x) = 0, Vo ¢ R(e),v'(z) = min,(z) A §g(x) =
do(z). Then in N there is a firing sequenc@\/,, v, + proj,(6)) — labelled
by e. Due to lemma 5, this firing sequence is also fireable from @dy, v, +
proj,(8)) bisimilar to(¢,, min, + &) € 7. By bisimilarity, (¢,, min, +4&) — for any
(€;, min,+0) € 7. Letr’ be the region including’’, v'+4;), then any configuration
of 1" is reachable by this discrete step. Note that I’ andmin,, = v'.

From (M., v, + proj.(d)), the sequence leads to soméM’, /) bisimilar to

(4, min, + 8")). We now show how to defing/,., v, and¢,.. First M,, = M.
Secondy,(t) = v,.(t) for transitionst always enabled during the firing sequence
andv,» = 0 otherwise. At lastg,. is obtained fromyp, as follows. Lett be a transi-

tion newly enabled during the firing sequence, theit) is associated to the class

of index 1. Lett be a transition always enabled during the firing sequence. There
are three cases to consider for(¢): either there is a € ¢,(t) not reset, then

¢ (t) = |z],» otherwisep,. (t) is the class of maximal index which preceede&)

and contains a clock not reset or else the class of index 1. The two last affectations
are sound since it means that whatever the valdgoffulfilling the order between
classes, the firing sequeneeleads to bisimilar configurations (as being bisimilar
to the same configuration of the automaton).

Caseb. The case where is a time-open region is handled in a similar way. L&t

min, +8o +dy) be some element of Suppose that/,., min, +68+dy) = (¢, v+

0p) With Vo € R(e),v'(z) = dg(x) = 0, Vo ¢ R(e),v'(z) = min,(x) A §g(x) =
do(x) + do. Then in\ there is a firing sequend@/,, v, + proj.(do) + do) =
labelled bye. Due to lemma 5, this firing sequence is also fireable from any
(M., v, + proj,(8) + d) bisimilar to (¢,,min, + & + d) € 7. By bisimilarity,

(¢,, min, +6 + d) = for any(¢,, min, + & + d) € 7. Lets’ be the region including
(I'.v'+68}), then any configuration of is reachable by this discrete step. Note that
I, = 1" andmin, = v'.

From (M,, v, + proj,(d) + d), the sequence leads to somé)M’, ') bisimilar to

(L7, min,, + 8")). We now show how to defin/,., v, ande,.. First M,, = M'.
Secondy,(t) = v,(t) for transitionst always enabled during the firing sequence
andv,, = 0 otherwise. At lastgp,. is obtained fromp, as follows. Lett be a
transition newly enabled during the firing sequence, the(t) is associated to
the class of index 1. There are three cases to considet,.fg): either there is a

x € ¢.(t) not reset, thew,. (t) = |z],» otherwises,.(t) is the class of maximal
index which preceedes.(¢) and contains a clock not reset or else the class of index
1. The two last affectations are sound since it means that whatever the value of
4(t) fulfilling the order between classes, the firing sequendeads to bisimilar
configurations (as being bisimilar to the same configuration of the automaton).

4. A discrete step into a time-open region. In order to reach a time-open region by a
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Figure 15: Two automata with different behavior w.r.t bisimulation with a TPN

discrete step, the corresponding transition must start from a time-open region and must
not reset any clock. L&Y, min,+38+d) € r and({,., min,+8+d) = (I', min,+8+d).

Here we have used the hypothesis that no clock is reset. Then there is a firing sequence
(M,, v, + proj.(8) + d) = labelled bye. Due to the lemma 5,M,, v, + proj.(8)) ~.

(€,, v, + &) is bisimilar to(M,, v, + proj,.(8)). Thus(f,, min, + 8) = (I, min, + &) 4,

(I',min, + & + d). Then this region can be reached via a discrete step into a time-closed
region followed by a time step. So we do not need to examine thisEase.

6.3 A characterization of bisimilarity

The characterization of TA bisimilar to some TPN is closely related to the topological
closure of reachable regions: it states that any region intersecting the topological closure
of areachable region is also reachable and that a discrete step either from a region or from
the minimal vector of its topological closure is possible in the whole topological closure.
The two automat#, and3; in Figure 6.3 will illustrate our results: the automatBg

admits a bisimilar TPN whered$, does not.In the sequel, we suppose that any atomic
constraint related to a clockoccurring in the invariant of a location is added to the guard

of each incoming transition which does not reset

Theorem 5 (Characterization of TA bisimilar to some TPN) Let A bea (label-free) ti-
med automaton, let R(.A) its region automaton w.r.t. the 1-grid and a constant K~ strictly
greater than any constant occurring in the automaton, then A is weakly timed bisimilar
to a time Petri net iff:

Vr € R(A), Ve an edge of A,

(a) Everyregion 7’ st. v’ N7 # () isreachable

(b) V(l,,v) €7, (b, v) == (£r, min,) =

© V., v) €T, (ly, min,) = (£,,v) =
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Furthermore, if these conditions are satisfied then we can build a 1-bounded 2-TPN
bisimilar to A whose sizeis linear w.r.t. the size of A and a 1-bounded 1-TPN bisimilar
to A whose size is exponential wir.t. the size of A.

We note7 A~ this class of automata. Using the theorem, we justify why the automaton
B, does not admit a bisimilar TPN. The regior= {(¢{;,z = 1A0 < y < 1} is reachable.
The guard of edgeis true inmin, = ({1, (1,0)) whereas it is false in.

We prove Theorem 5 in three steps in the next paragraphs.

6.4 Proof of Necessity

Proof.[of Necessity] The fact that conditiorfa), (b), and(c) are satisfied with respect to
the g-grid and the constarit” = oo is straightforward:

e (a) This assertion is included in the inductive assertions.

e (b) Let r be a reachable region, 1ét,, min, + ) € r be a configuration with
8 € [0,1/g[%, then3(M,v) v € Ny bisimilar to (¢,, min,) and (M, v + &)
with &’ € [0,1/g[¥"™) pisimilar to (¢,,v + §). Suppose that(,, min, + §) =,
then (M, v + §’) = with w an instantaneous firing sequence amigkl(w) = e.
Now by lemma 5-b(M, v) %, thus(¢,, min, ) <.

e (C) Letr be aregion, an/,, min,+4) € T with & € [0,1/g]* thus3(M, v) bisim-
ilar to (£,, min,.) and(M, v+4§") with &’ € [0, 1/g]*"D bisimilar to(¢,., min,+4).
Suppose that’,, min,.) =, then(M, v) = with w an instantaneous firing sequence
andlabel(w) = e. Now by lemma 5-a(M, v + §') =, thus(£,., min, + &§) .

In order to complete the proof, we successively show that if the conditions are satisfied
w.r.t. theg-grid and infinite constant, they are satisfied w.r.t. thgrid and infinite con-

stant and when satisfied w.r.t thegrid and infinite constant, they are satisfied w.r.t the
1-grid and the usual finite constant. This is done by the next two lemmas.

Lemma 7 (about the conditionsand the grid) Let .A be a timed automaton, and g €
N.,. If the conditions (a),(b),(c) are satisfied by the region automaton associated with the
g-grid, then they are satisfied by the region automaton associated with the 1-grid (where
in both cases the constant K = o).

Proof. Let us denoteR(.A)?¢ the region automaton of w.r.t. theg-grid. By definition
of regions, we remark thata region ofR(.A) is a finite union of regions oR(.A)? (say
r=U,_, x73)- Thus? = |J,_, , 7 which proves the implication fa).
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Assume thatb) is satisfied byR(A)¢. Let (¢,, min, + & + d) € r be a region ofR(A)

and assumé’,., min, + § + d) <. We defined’ by 6’(x) = §(x)/g . Then sinced has
integer constraint§/,., min, + &’ + d/g) <. Moreover this configuration belongs to
and then to a region’ € R(.A)Y whose minimal vector isnin,. Then applyingb), we
obtain(¢,, min,) <.

Assume thafc) is satisfied byR(.A)7. Let (¢{,,v) € T wherer is a region ofR(.4) and
assumg/,., min,) . Then there is an increasing path among the minimum vectors of
regions ofR(A)¢ all included in7. This path is such that any two consecutive elements
belong to the closure of some region; it startg@tmin,) and finishes até,, min,.,)

such that(¢,,v) € 7, (with r, a region of R(A)?). Thus applying iterativelyc) yields
(p,v) =1

Lemma 8 (about the conditions and the constant K) Let A be a timed automaton. |f
the conditions (a),(b),(c) are satisfied by the region automaton associated with the 1-grid
and constant X' = oo, then they are satisfied by the region automaton associated to the
1-grid and a finite constant.

Proof. Let us denote?(.4)> the region automaton of w.r.t. K = co. Letr be a reach-
able region ink(.A) andreach(r) the associated region &f(.A)>. Note that/, .oy =
(, and thatve € ActX,, Min,caenry = min, andVe € X, min,coenry > min,. Sup-
pose thatreach(r) is time-closed (resp. time-open) theradmits a time-closed (resp.
time-open) description where thed, andord, ...,y mappings are identical for clocks
in ActX,. ThusY(¢,,v) € r,3(¢,,v") € reach(r) such thavz € ActX,,v'(z) = v(x).

Now take a convergent sequenée; ...(¢,,v;) = (¢,,v) with (¢,,v;) € r so that
(¢,,v) € 7. Then the corresponding sequer{¢€,, v;) } being bounded admits an accu-
mulation point(¢,,v") € 7. It is routine to show that/,,v) and (¢,,v") belong to the
same region i?(.A). This proves that conditio(a) for R(.4)> implies condition(a) for
R(A).

Assume thatb) is satisfied byR(.A4)>. Let(¢,,v) € r be a reachable region &f(.A) and
(¢,,v) 5. Letreach(r) be the associated reachable regiom?gfd)> then3(¢,,v') €
reach(r) strongly time bisimilar to(¢,,v), thus (£,,v") 5. Using condition(b), (¢,,
MiNreach(r)) <. Since(¢,, MiNyeach(r)) IS Strongly time bisimilar td/,, min,.), we have
(€., min,) .

Assume thaf{c) is satisfied byR(.A)> and considef/,,v) € 7 wherer is a region of
R(A) and(¢,, min,) <. Letreach(r) be the associated reachable regioafl)>, then
3(4,,v") € reach(r) strongly time bisimilar tq¢,, v). Since({,, min,cqen(r) iS strongly

time bisimilar to(¢,, min,), ({,,Min,ecacny) —- Thus using conditiorc), (¢,,v") <.
By bisimilarity, we obtain(¢,, v) <.
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Rtodo} ()
resety>q

Rtodo,, ()

(a) Widget for conditionz > a (assume (b) Widget for conditionz > a
a > 0)

Figure 16: Widgets for conditions > a andz > a

Rtodof
resety<q
Rtodog,; ()
(a) Widget for condition: < a (b) Widget for conditionz < a (as-
sumea > 0)

Figure 17: Widgets for conditions < a andz < a

We now give the proof that the condition is sufficient. The proof is split into two
parts, corresponding respectively to the constructionT®N and the construction of a
1-TPN.

6.5 First construction

Proof.[for the first construction of sufficiency] We first describe the construction of a
2-TPN N bisimilar to 4. The principles of this construction are similar to those used
for the language equivalence. We build a subnet per elementary condition (including
the part associated with the clock resetting). However except for the conditions

and the resetting part, all the constructions are different. We first remarle thata
occurring in an invariant may be safely omitted. Indeed (see the assumptions on timed
automata), it never forbids to enter the state. If it would forbid the progress of time in
some configuration, then the associated region would be a maximal time-openiregion
Due to condition(a), 7 is reachable but sinceis time-openj N suce(r) # ), so that
succ(r) is reachable which contradicts the maximalityrof

All edges of\ are weighted by. Unless explicitely stated, the transitions are labelled
by e.
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Figure 18: Widget for invariant < a

T 7 Zn(e)
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Figure 19: Widget of an edgé, v = {c1,....cm@) }. e, R = {21, ..., 2y }, 1)
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94

e With each locatiory of the automaton, we associate an eponymous pladéne

place/ is initially marked iff the locatior? is the initial one.

The conditions associated with a clockare arbitrarily numbered from to n(x)
wheren(z) is the number of such conditions. We consider that wheha (a # 0)
occurs in at least one transition and in at least one invariant it is associated to two
different conditions. Then we add placgBtodof },<,(,)+1 for the management of

the resets.

With each conditiont > a (a # 0) occurring in a transition of the automaton,
we associate a widget (see Figure 16 (a)) composed by two plasest.s,
and three transitionshange,>,, resetl. ,, reset?,. The placeF,s, is initially
marked whileT,, is unmarked. The interval associatedctainge, >, is [a, al;
*change,>q = {Fy>q} andchange,>,* = {T.>.}. The interval associated to

reset,, andreset’., is [0,0]. Leti be the number of the condition > a.
*resetl., = {Fu>q, Rtodof} andresetl.,” = {Fy>q, Rtodo?,\}. *reset?., =

{T,>q, Rtodo?} andreset?.,” = {Fy>a, Rtodo?, . }.

With each condition: > @ occurring in a transition of the automaton, we associate
a widget (Figure 16 (b)) composed by two pladés,, F,-, and three transitions
change,q, reset:_ ., reset?_ .. The placeF,-, is initially marked whileT,-, is
unmarked. The interval associateddfainge,~, is [a + 1,a + 1]; *change,~, =
{F,~.} andchange,~,* = {T;~.}. The interval associated teset._, andreset?_,
is [0, 0]. Leti be the number of the condition> a. *resetl., = {F,~,, Rtodo}}
andreset!_,* = {F,~,, Rtodo? , }. *reset?. , = {Tyq, Rtodof} andreset?. ,* =

{Fy>q, Rtodof, }.

With each conditionz < « occurring in a transition of the automaton, we asso-
ciate a widget (Figure 17 (a)) composed by two plates,, F,.<, and three tran-
sitions change, <4, resetl ., reset?_,. The placel,«, is initially marked while
F,<, is unmarked. The interval associateddainge,<, is [a + 1/2,a + 1/2];
*change,<, = {T,<.} andchange,<,* = {F,<,}. The interval associated to
reset:_, andreset2_, is [0,0]. Let: be the number of the condition < a.
*resetl., = {Ty<a, Rtodo?} andresetl_,” = {T,<q, Rtodof,,}. *reset’., =
{Fy<4, Rtodo?} andreset?_,* = {T,<4, Rtodo?,, }.

With each conditionr < a (a # 0) occurring in a transition of the automaton,
we associate a widget (Figure 17 (b)) composed by two pldtes, F,., and
three transitionshange, ., reset!_,, reset?_,. The placel, ., is initially marked
while F, ., is unmarked. The interval associateddtoinge,, is [a — 1/2,a —
1/2]; *changey<q = {Ti<a} @andchange,,* = {F.<.}. The interval associated

to resetl_, andreset?_, is [0,0]. Leti be the number of the condition < a.

z<a x<a
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*resetl_, = {Tyca, Rtodo?} andresetl_,* = {T,<q, Rtodo}, }. *reset?_, =
{F,<q, Rtodo?} andreset?_,* = {T,,, Rtodo? ,}.

e With each conditionz < a (¢ # 0) in a invariant, we associate a widget (Fig-
ure 18) composed by two placé3Reach,<,, F'Reach,<, and three transitions
reachqy<q, resetR,, resetR2_,. The placel Reach,<, is initially marked while
T Reach,<, is unmarked. The interval associatedtach, <, is [a, a]; *change,<, =
{FReach,<,} andchange,<,* = {T Reach,<,}. The intervals associated te-
setR)., andresetR2_, is [0,0]. Let: be the number of the condition < a.
*resetRl., = {FReach,<,, Rtodo}} andresetR._,* = {F Reach,<,, Rtodo,,}.
*resetR?_, = {TReach,<,, Rtodo?} andresetR2_," = {F Reach,<,, Rtodof,}.

o With each edgél,y = {c1,...,cn(e}. ¢, R = {x1,..., 250 },l'), we associate a
widget (Figure 19) composed by plaged’’};<, () and transitiongire,, {next’ };<p ).
The transitionfire. has labek; its interval is[0, oof; * fire, = {I, T, ..., T¢,, . }
and fire.* = {W}, Rtodo{*,T.,, ..., m(ﬁ)} The interval assomated to transi-
tions next! is [0,0]. Vi < n(e),*next! = {W!, Rtodoy, ..} and next!’ =

{WiHL Rtodo*'}. *nextt@ = {W), Rtodonz‘f)( ) ) andnezt! " = {¢}.

WhenR 0, the widget reduces to the transitigive, with ® fire. = {¢(, T,
Tt y @ndfire® = {0, T,,, ..., T, . }-

cryc

e If a conditionz < 0 occurs in the invariant of, then one adds a transitiaiiop,
with interval [0, 0], ®stope, = stop,® = {¢}. If a conditionz < a (a # 0) occurs in
r<a

the invariant of, then one adds a transitietop; =" with interval [0, 0], *stop} ~* =
stopf" = {{,TReach,<,}.

We decompose the reachable configurations (and markings)nitetonediate ones
(someW} is marked) angbermanent ones (somé is marked). An easy induction shows
that in permanent configuratioifd/, ) the enabled timed transitions relative to a clock
are “synchronized’v(change.) = v(change.) = v(reach.) as soon as, ¢, ¢’ relates
to the same clock. We definev(z) as this common value if at least one such transition
is enabled and otherwise(z) = K(x) where K(z) is the maximal value relative to
clock z occuring in the netV'. Furthermore from any intermediate configuratidd, v),
the behaviour of the net is quasi-deterministic until it reaches a permanent configuration:
there are only firing sequences (i.e. no time step) and some of them lead to permanent
configurations. Furthermore these permanent configurations {$ay:, Vse.:)) have the
same marked pladeand the same values,.,;(x).

It is also obvious that once sonfeére, is fired, the construction ensures the existence
of a “resetting” sequence which reinitializes the widgets associated to the clocks to be
reset.
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Bisimulation relation. We now define the relatioR between reachable configurations
of the automatod and the neiV. Let us defing?, v)R (M, v) iff:

e either M/ is a permanent marking and (¢) is marked and itv(z) < K(z) then
v(z) = v(x)elsev(z) > K(x).

e or M is an intermediate marking leading to some permar@ff..;, V/,.;) and
(6, 0)R(Mpewt, Vneat)- This definition is sound due to the common features of the
different(M,cat, Vneat)-

It remains to prove thaR is a bisimulation, which is done in the next lemraa.
Lemma9 Therelation R defined above is a weak timed bisimulation.

Proof. We first consider moves fror.
Casel: (¢,v) < (¢,v) First, let us prove that)/, v) % with o labelled bye. At first, o
begins bys’ which consists to fire all thehange, fireable leading to somg\/’, v') (with

firee

(6, v)R(M’,v")). Now we prove thatM’, ') —. By definition of R, M (¢) is marked.
Let ¢ be a condition occuring in the guard af
If ¢ = [z > a] thenv(x) > a which implies

v(xz) > a and thatT,-, is marked (eventually with the help of).
If ¢ = [x > a] then letr be the region to whicl¢, v) belongs.min,(xz) = |v(x)]. Using
condition(b), (I, min,) <. Thusv(x) > min,(z) > a + 1 which impliesv(z) > a + 1
and that7’,-, is marked (eventually with the help of).
If ¢ = [z < a] thenv(z) < a which impliesy(x) < a and thatl, <, is marked (remember
thatchange,<, fires whenv(z) = a + 1/2).
If ¢ = [z < a] then letr be the region to whicl¥, v) belongs. Then there exist§ v,) € 7
with vy (x) = [v(x)]. Using condition(b) and then(c), (I,v;) . Thusv(z) < vy(x) <
a — 1 which impliesy(z) < a — 1 and that7,., is marked (remember thatange,,
fires wherv(z) = a — 1/2).
Thus fire, is fireable from(M’;v’). We completer by the “resetting” sequence leading
to a configuration bisimilar t¢¢', v")

If M is an intermediate marking, one fires a sequence leading to &ofng;, Vyeu:)
and performs the previous simulation.

Case2: (£,v) % (¢,0+d)

Suppose that < a belongs to the invariant &f This means that(z) + d < a. Thus
from (M, v), we let a timed elapse interleaved with possible firingshinge transitions.
The stop transitions associated towill be possibly firable but only at the end of this step
sequence.
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If M is an intermediate marking, one fires a sequence leading to 8one;, vyext)
and performs the previous simulation.

Conversely, we consider moves frokh
Case3: (M,v) & (M',V/)
If ¢ is labelled bye, then by constructiof¥, v)R(M',').

Thus we only to need to examine the casgof, (M is then a permanent marking).
Let r be the region to whicli/,v) belongs. We will show that¢, min,) <. Then by
condition(c), we will obtain that(¢, v) .

Let ¢ be a condition occuring in the guard af
If ¢ = [z > o] thenT >, is marked which implies that(z) > « and therv(z) > a, thus
min,.(z) = |v(z)]| > a.
If ¢ = [x > a] then thenT,., is marked which implies that(z) > « + 1 and then
v(z) > a+ 1thusmin,.(z) = |v(z)] >a+1>a
If ¢ = [z < o] thenT,<, is marked which implies that(z) < a + 1/2 and therw(z) <
a+ 1/2 thusmin,(z) = [v(z)] <a
If ¢ = [z < d] thenT,, is marked which implies thai(z) < a — 1/2 and therv(z) <
a —1/2thusmin,.(z) = [v(z)| <a—1<a

So (¢,v) 5 (¢,v') for some(¢,v'). By construction ofV" and definition ofR,
(00 YR(M' V).

Case4: (M,v) % (M,v+d)

An intermediate marking cannot let elapse time. Thiigs a permanent marking. Let
x < a belonging to the invariant of

l. a # 0 otherwise from( M, v), stop, must be fired and time may not elapse. Similarly
sincestop: =" is only possibly fireable fromil, v + d), it follows thatv (z) 4 d < a, thus
v(x) +d < a.

Consequently(?, v) 4, (¢,v + d) and obviously(¢,v + dYR(M,v + d). 1 We fi-
nally illustrate this construction on the timed automatgnfrom Figure 6.3 above and
its translation given below (with some simplifications related to this partictil&y. For
readability, immediate transitions (where interjgal] is represented in black andabels
are not shown).

First, note that the subnet associated to the constyaint0 switches the condition
to false (firing oftoF,<¢) when the implicit value ofy maintained in the net reacheg2.
Seemingly, this translation appears to be less constrained than the original condition. We
explain how we prove that this translation is nevertheless sound: lhethe region cor-
responding to the current configuratiohv) of the automaton simulated by the net, if the
net is able to simulate a discrete step of the automaton, we prove that in the configuration
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Figure 20: The TPN bisimilar té,

(¢,min,) of the automaton this step is also possible. Thus by condftiprthe step is
also possible front/, v). On the other hand, if a discrete step is possible for) in the
automaton, we show that this step is also simulatable in the net using both con¢hjions
and(c) and the following factvz € X, 3(¢,.,v'), (¢,,v") € 7 such thaw'(z) = |v(z)]
andv”(x) = [v(x)]. We also need to handle the invariants. First it is straightforward
to observe that due to conditiga), an atomic constraint < ¢ occuring in an invariant
may be safely deleted since its effectiveness leads to the existence of areghmse
time-successor (which interseafswould not be reachable. The subnet associated to the
atomic constraint < 1 occuring in the invariant of, leads to transitiornv, (not modi-
fying the marking) which is fireable as soon as the simulated valug@fched and the
placet, is marked. Thus time cannot progress except if the location is left.

6.6 Second construction

Proof.[for the second construction of sufficiency] When the conditions on the unlabeled
timed automatond are satisfied, we build &TPN A with atomic semantics which is
weakly timed bisimilar ta4. We suppose that all invariant conditions of a location are
added to the guard of each ingoing transition. Recall #iat m + 1, wherem is the
maximal constant fo4. The construction of the TPN is a partial replication of both the
region automaton a#l and the class automaton, as explained later. There is first a subnet
for each clockz, in which only the integral parts af appear in the places (but with a
fractional part that can readh.
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I gz Dk
[1,1] [1,1] [1,1]

Then we add one plac€ for each clasg” = (¢, Z) of the class automaton, with
the initial class marked. Now let = (¢, g,a, R,¢") be a transition ofd. For each pair

(v,v") of clock valuations ifN*X, with v, v < K, we build a subnet which simulates the
transition(¢,v) = (¢',v'), where we have'(z) = 0if x € Randv'(z) = v(z) otherwise.
LetCy, = (¢, Zy),...,Cy = (¢, Zy) be the subset of classes such thalt € Z; A Va €

X, v"(z) =v(x)V (V'(z) > K ANv(z) = K)) for1 <i <k, andC1,...,C} the classes
obtained by applying transitioato C1, ..., C, respectively. We have a transition with
labele for eachC; (with & = 2 in the figure below), all with intervdl), +cc[. Note that alll
reset operations for clocks iR are executed successively with instantaneous transitions.
Moreover, the upper part of the net ensures that the invariant conditions of lotatien
satisfied (this part has been omitted ¢

hz

be s

z <ceInvl)

Figure 21: Simulation of a transition
Like in the previous proof, we say that a configuration (and the corresponding mark-
ing) (M, v) of the TPN is permanent if/ (¢) = 1 for somel. Otherwise, it is an interme-
diate configuration (and marking), wheké(reset?) = 1 for some (exactly one of each)
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x ande, meaning that some reset operations are in progress. Here again, a permanent
configuration is reached instantaneously from such an intermediate configuration, with
only firing sequences completing the reset operations for transit{@merleaved with
possibly transitions firings of soné).

Furthermore, for a configuratiofi/, v), there is exactly one non empty plakcgfor
each clocks. Writing ¢, for the constant such that (h? ) = 1, we have either, = K or
0 <w(tf ) <1, wherev(t7) is the time elapsed since arrival of the token in the plegce
This means that the value of clogks eitherv(z) > K orv(z) = ¢, +v(t ) with [v(z)]
equal to either, or c, + 1. In the latter case, transitidfj can be fired i‘nstantaneously,
leading to the configuratiofV/’, ') with one token in placé? ., and either, +1 = K

orv/(tZ ;) = 0. We can thus reach a configuration where (c,).cx is maximal.

Bismulationrelation. The relationR is defined as the set of paif&\/, v), (¢, v)) such
that:

e either (M, v) is a permanent configuration witil (¢) = 1, the relation between
andv is the one described above, and there exists exactly one(¢lasg, Z) such
that M (C) = 1andv € Z;

e or (M, v)is an intermediate configuration leading to some permanent configuration
(M', ') such that(M', V'), (¢,v)) € R.

We end the proof with an auxiliary lemma and the fact tRais a weak time bisimula-
tion. 1

The following lemma which relates regions and classes, shows how the class automa-
ton will be used to control the firing of a transition when the minimal peiistin not in
the same region than

Lemma 10 Let .4 be an automaton satisfying the conditions of theorem 5, let C' = (¢, Z)
be a class of the class automaton and (¢,v) € C. Let (¢,v) € r wherer is a region
w.r.t. to the choice K = oo (which meansthat there is a infinite number of regions). Then
V(") e, (¢,v) € C. Inparticular, (¢, |v]) € C.

Proof. The proof is by induction on the reachability relation between regions. The case
of a discrete step follows from conditioils) and (c) of theorem 5. The case of a time
step follows from the choice dk' = oo which implies that given a region every item

of suce(r) is reached by a time step from an itemvof

Lemma 1l Therelation R defined above is a weak time bisimulation.
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Proof. Assume thatM, v)R(¢,v) and consider a move iA.

Casel: (¢,v) 4 (¢, v+d) (with d # 0). In this case, we must consider different subcases,
according to the regions that can be reached by elapsing time. We consider only moves
in which at most one different region is reached, the general case would be a combination
of those elementary moves. First note that sitice v + d can be reached, no invariant
condition needs to be activated.M. Moreover, if(M, v) is an intermediate configura-

tion, we first apply the sequence described above and reach the equivalent configuration
(My,11). Also in this case, since classes are unchanged by elapsing time, if we prove
that a delay move is possible frofd/;, v, ), we immediately obtain that the class is the
same in the resulting configuration. Thus, the resulting configuration will be equivalent
to (¢,v +d).

e If v belongs to a time-open region, the case whérbelongs to the same time-
open region is easy, it simply corresponds to a delay transition fidmz, ) in AV,
each clock being in somie and staying inside (no token move), with?;, v, + d)
equivalent to ¢, v + d).

If v/ has reached an integer value, we consider a clogkh greatest integral part,
so that'(z) = |v(z)] + 1 = v(x) + d with v(y) + d < |v(y)] + 1 for all other
clocks. In this case also, we obtain a delay mova/ifrom (M, vy).

e If there are some clocks for which v(z) has an integer value, then elapsing
time leads to the successor region, which is time-open. Riam ), it is pos-
sible to reach with instantaneous transitions a configuratigh, v,) where for
all clocks with integer values)/,(h?) = 1 with ¢ maximal, and(M,v,) still
equivalent to(¢,v). Now from (M, 1), a delay move can be applied so that

(M, v) 5 (My, 1) 2 (M, v3) % (My, vs + d), With (Ms, vs + d)YR(L, v + d).

Case 2: If (¢,v) 5 (¢',0') for somee = (£, g,a, R,l") then condition(b) implies that a
transition(¢, |v|) = (¢, [v']) is also possible ind. Here again we may have to apply
from (M, v) a sequence of instantaneous transitions, leadind4g ;) where placd

is marked, and from there we can reach an equivalent configurgtibn,) with ¢ =
(cz)zex Maximal. LetC' = (¢, Z) be the class for whic/ (C') = 1, withv € Z. From
lemma 10(¢, |v|) also belongs t6’, andvz € X, |v]|(x) = ¢, V(|v]|(z) > KAc, = K)
so that the transitiom (corresponding to this vector and this class) can be firef'jn
immediately followed by the corresponding reset sequence, leadif/ta/). Since
exactly one clas€” is marked after, we have(M’, /)R (¢',v') by the definition ofR.

For the converse, we consider a move\in
Case3: (M,v) 4, (M, v+d) (with d # 0). Then, neither reset transitions nor transitions
of the form¢* can be fired inV. Thus, the places” which contain a token are such that
v(t¥) < landv(t*)+d < 1. For the staté/, v), we haveM (¢) = 1 andv(z) = c+v(t).
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The move(¢,v) 4, (¢,v + d) is possible inA since(¢,v + d) belongs either to the
region of (¢,v) or to its time successor which is reachable by condi{en Therefore
(,v) L (0,v+d)in Awith (M, v+ d)R(L, v + d).
Cased: (M,v) 4 (M',v"). For any transition of\" which is not associated with some
transitione = (¢, g,a, R,!') in A, no time can elapse so there is no need for a mové in
becausé M’ /') is still equivalent to(¢, v). Suppose now thatis associated to an edge
e, we haveM (¢) = 1, M(C) = 1 for some clasg” = (¢, 7Z) with v € Z. Sincet is
fireable, considering the valuatien= (c,.).,cx the construction implies thab” € Z s.t.
Vo e X,v"(z) = ¢, V(v (z) > KAc, = K), which implies that the segmejt’, v] C Z,
from the convexity ofZ, with 0 < v(z) —v"(z) = v(z) — ¢, < 1for eache s.t.c, < K.
Thus, [(¢,v"), (¢,v)] is contained in the topological closureof some reachable region
such thatmin, = c andl = [,. Since((,c) = (¢',c) is possible in4, and(¢,v") is
strongly time bisimilar to(¢, ¢), one hag¢,v”) < (¢,v""). Now condition(c) implies
that a move/, v) = (¢',') is also possible itd. From the definition(A’, v/ )R (¢, ). 1
For instance, for the automatds, from Figure 6.3, we have four classe§) =
{0 <2 =y <1},0 ={h,0<2=y<1},C ={h,x =1Ay =0} and
Cy = {l,0 <y =z —1}. We show below the subnet corresponding to the transitan
point(/y, (1,0)) and class’].

b

Consider the following run irBy: (ly, (0,0)) = (11, (0,0)) EN (I1,(1,1)). The sim-
ulation of this run byN may lead to the following configuratiori;, %, h§ andC; are
marked and? andt} have been enabled fart.u. Suppose that the sequengg” is fired,
marking the placef, then without the input placé’] the transition labelled could be
erroneously fired. Sinc€’ is unmarked this firing is disabled.

6.7 Complexity results

This characterization leads to the the following complexity results.

Proposition 5 (Complexity results) Given a (label-free) timed automaton A, deciding
whether thereisa TPN weakly timed bisimilar to A is PSP AC E-complete. The reacha-
bility problemfor the class7 A~ is PSP AC E-complete.
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Proof. The reachability problem for regions is inSPAC'E. In order to check whether
the condition(a) is false wenon deterministically pick a regionr and a region’ which
intersects” and check whether is reachable and’ is not reachable. In order to check
whether the conditiorib) is false wenon deterministically pick a regionr and a edge
and check whetheris reachable andis firable fromr and not fireable fronl,., min,.).

In order to check whether the conditi¢t) is false wenon deterministically pick a region

r, a regionr’ which intersect$g and a edge and check whether is reachable and is
not firable from or " and fireable fron{l,., min,.). By Savitch construction, we obtain a
deterministic algorithm ilPSPACE.

In order to show the”?S P AC E-hardness, we use the construction given in [2] (in ap-
pendix D) which reduces the acceptation problem for linear bounded Turing machine
(LBTM) to the reachability problem for TA with restricted guards. The computed TA
(called Apq.,) satisfies the conditiong:) and(b) but does not satisfy the conditidn).
However it can be safely transformed in order to satisfy this condition by adding the
invariantt < 1 to any state(q, ) and the invariant < 0 to any state(s, ¢, j). This
intermediate automaton is now bisimilar to a TPN.

Then we transform the edges entering ¢he state by resetting and at last we add
an edg€end,t = 0, ¢, 0, end).

If the LBTM M does not accept the word,, then the statend is not reachable and
A, satisfies the condition@),(b),(c).

If the LBTM M accepts the wordy, then the statend is reachable and ., ,,, does
not satisfy the conditioric) (the additional edge is fireable when enteringl but not
after letting the time elapse). The fact that the reachability problem for the Eldssis
PSPACE-complete was proved implicitely within the proof above.

At last, we complete these results by adapting them to other modélsiof The
previous characterization holds f@rA with diagonal constraints and when satisfied a
bisimilar 1-bounded 1-TPN whose size is exponential w.r.t 7tHemay be built. A sim-
pler characterization holds f@rA without strict (and diagonal) constraints. Nevertheless,
for these two models, the complexity of the membership and reachability problems is still
PSPACE-complete.

Proposition 6 (TAswith diagonal constraints) Let A be an unlabelled timed automa-
ton with diagonal constraints, let R(.A) itsregion w.r.t. the 1-grid, then A isweakly timed

bisimilar to a time Petri net iff:
Vr € R(A), Ve an edge of A,

(a) Everyregionr’ st. v’ N7 # () isreachable
(b) Y(Lr,v) €7, (br,v) D= (£, min,) =
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© V(l.,v) €F, (b, min,) == ({,v) =

Furthermore, if these conditions are satisfied then one can build a 1-bounded 1-TPN
bisimilar to .A whose size is exponential w.r.t. the size of A.

At last, deciding whether there is a TPN weakly time bisimilar to A is PSPACE-
complete.

Proof. The proof of necessity and the second construction of the TPN bisimilar to
need to be slightly adaptated to take into account the nature of the regions of an automa-
ton with diagonal constraints since they are based on properties of the region automaton
whereas the construction of the class automaton is still valid for automata with diagonal
constraints.

The PSPAC E-hardness is obviously true while the membershig?toP AC' E de-
duced from implicit explorations of the region automaton is still valid.

Despite the fact that excluding strict constraints simplifies the characterization, the
complexity of the membership problem remains the same.

Proposition 7 (TA without strict constraints) Let A be an unlabelled timed automaton
without strict constraints, let R(.A) its region w.r.t. the 1-grid, then A is weakly timed
bisimilar to a time Petri net iff:

Vr € R(A), Ve anedgeof A, V(¢,,v) € r, (€., min,) == ({,,v) =

Furthermore, deciding whether thereisa TPN weakly timebisimilar to Ais PSPACE-
complete.

Proof. It is straightforward to show that conditiorig) and (b) are satisfied by an au-
tomaton without strict constraints. Similarly the conditien is easily deduced from the
current condition when the automaton does not include strict constraints.

The PSPACE membership is obviously true. We remark that although the net of [2]
(in appendix D) contains contrainis > 1, they can be safely changeditp> 2. Thus
the PSPACEFE hardness follows

7 Conclusion

In this paper, we have investigated different questions relative to the expressiveness of
TPNs. At first, we have shown that TAs and bounded TPNs (enlarged with strict con-
straints) are equivalent w.r.t. the timed language equivalence. We have also provided a
more general and efficient construction of a TPN equivalent to a TA than the previous
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ones. Then we have focused on the weak time bisimilarity equivalence and we have de-
veloped our main contribution: a characterization of TAs time bisimulateable by a TPN.
From this characterization, we have proved that deciding whether a TA admits a time
bisimilar TPN is aPS P AC E-complete problem. Furthermore the reachability problem

is still PSPACE-complete for this subclass of TAs. Finally we have proved that for
bounded TPNs the different semantics lead to equivalent models w.r.t. the time bisimilar-
ity but that this is no more true with strict constraints.

We are now looking for similar (multiple) characterizations for TPNs enlarged with
strict constraints since in this context the choice of the semantics is relevant. We will also
try to apply the same techniques to compare the different models of Petri nets with time.
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