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Solvability of uniformly elliptic fully

nonlinear PDE

Boyan SIRAKOV

Abstract

We get existence, uniqueness and non-uniqueness of viscosity solutions
of uniformly elliptic fully nonlinear equations of Hamilton-Jacobi-Bellman-
Isaacs type, with unbounded ingredients and quadratic growth in the gra-
dient, without hypotheses of convexity or properness. Some of our results
are new even for equations in divergence form.

1. Introduction and Main Results

This paper is devoted to the Dirichlet problem
{

F (D2u,Du, u, x) = f(x) in Ω
u = ψ(x) on ∂Ω.

(1)

in a bounded domain Ω ⊂ RN , N ≥ 1, which satisfies an uniform exte-
rior cone condition. We study uniformly elliptic fully nonlinear operators F
which can be non-convex, non-proper, with nonlinear growth in the gradient
of u, and with unbounded dependence in x. Our results apply to general
Hamilton-Jacobi-Bellman-Isaacs equations (basic in many applications to
geometry, stochastic control theory, large deviations, game theory, see [Li2],
[Ni], the surveys [K2], [Ca], and the references there)

sup
α∈A

inf
β∈B

Fα,β(u, x) = 0, (2)

for arbitrary index sets A, B. Here Fα,β(u, x) can for instance be the oper-
ator

tr
(
Aα,β(x)D2u

)
+ <Qα,β(x)Du, Du> + <bα,β(x), Du> +cα,β(x)u−fα,β(x),
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where Aα,β , Qα,β are bounded matrices, Aα,β(x) ≥ λI for some λ > 0, and
bα,β ∈ Lp(Ω), for some p > N , cα,β , fα,β ∈ LN (Ω). Our main theorem is
a statement on the solvability of (1) in terms of Lebesgue norms of these
coefficients. The results below are new in much more particular cases than
(2), and some of them are new even for equations in divergence form.

We often use as a model the following equation (for which all results
below are new as well)

M+
λ,Λ(D2u) + µ(x)|Du|2 + b(x)|Du|+ c(x)u = f(x), (3)

with µ ∈ L∞(Ω), b ∈ Lp(Ω), p > N, c, f ∈ LN (Ω), (4)

where M+
λ,Λ is the Pucci extremal operator. As is well-known, even if

M+
λ,Λ(D2·) + µ|D · |2 is replaced by a linear operator, one cannot take

larger Lebesgue spaces in (4) if a general solvability theory for (3) is to be
built.

Our hypothesis on the structure of (1) is : F (0, 0, 0, x) ≡ 0, and for some
null set N ⊂ Ω and all M, N ∈ SN (R), p, q ∈ RN , u, v ∈ R, x ∈ Ω \ N ,

(S)





F (M,p, u, x)− F (N, q, v, x) ≤ M+
λ,Λ(M −N) + µ(|p|+ |q|)|p− q|

+b(x)|p− q|+ d(x)h(u, v)

F (M,p, u, x)− F (N, q, v, x) ≥ M−
λ,Λ(M −N)− µ(|p|+ |q|)|p− q|

−b(x)|p− q| − d(x)h(u, v),

where 0 < λ ≤ Λ, µ ∈ R+, b ∈ Lp(Ω) for some p > N , d ∈ LN (Ω),
µ, b, d ≥ 0, and h, h ∈ C(R2). We recall that Pucci’s operators are defined by
M+

λ,Λ(M) = supA∈A tr(AM), M−
λ,Λ(M) = infA∈A tr(AM), where A ⊂ SN

denotes the set of matrices whose eigenvalues lie in the interval [λ,Λ].
When we speak of solutions of (1) we mean LN -viscosity solutions – we

refer to [CCKS] for a general review of this notion (we recall some definitions
and results in the next section). Note that viscosity solutions are continuous
and that any function in W 2,N

loc (Ω) satisfies (1) almost everywhere – such a
solution is called strong – if and only if it is a LN -viscosity solution.

The next theorem is our main result. As usual, we set a± = max{±a, 0}.
Theorem 1 Suppose (S) holds with h = h((u− v)+), h = h((v− u)+), for
some continuous function h, such that h(0) = 0. Let c ∈ LN (Ω). Then

(i) if c(x) ≤ −c a.e. in Ω, for some constant c > 0, then for any data
f ∈ LN (Ω) and ψ ∈ C(∂Ω) there exists a solution u ∈ C(Ω) of

{
F (D2u,Du, u, x) + c(x)u = f(x) in Ω

u = ψ(x) on ∂Ω.
(5)

(ii) there exists a positive constant δ0, depending on λ,Λ, N, ‖b‖LN (Ω), and
diam(Ω), such that if f ∈ LN (Ω) and ψ ∈ C(∂Ω) satisfy

‖µ|f |+ µMc+ + c+‖LN (Ω) < δ0, (6)

then there exists a solution u ∈ C(Ω) of (5) (here M = max∂Ω |ψ|).
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(iii) If problem (5) with c+ ≡ 0 or with µ = 0 and ‖c+‖LN (Ω) < δ0 has a
strong solution then this solution is the unique viscosity solution of (5).

(iv) The strong solutions of (5) are not unique if µ > 0 and c(x) ≡ c > 0
(arbitrarily small), even for λ = Λ, b = d = f = ψ ≡ 0.

Remark 1. The choice of h, h in Theorem 1 means F is nonincreasing in u,
that is, F is proper. Of course the term c(x)u in (5) can be incorporated
into F , with corresponding generalizations of the statements. We have pre-
ferred not to do so, for clarity.
Remark 2. An explicit expression for the constant δ0 in statement (ii) can
be deduced from its proof – see (18) in Section 3.

We immediately note that the existence hypothesis (6) and the multi-
plicity statement (iv) are new, even for equations with bounded continuous
coefficients or in the divergence framework, where such equations have been
studied extensively (see below). All previous works on problems of this type
concerned cases when either c+ ≡ 0 or µ = 0. Allowing nonlinear growth in
the gradient for nonproper operators yields qualitatively new phenomena,
as the facts that uniqueness breaks down and that the solvability depends
on the size of the boundary data attest.

Further, the result in (ii) is optimal, in the sense that, even for the
simplest equations satisfying our hypotheses, when µ = 0 and c is sufficiently
large, or when µf is large and c ≡ 0, or when µ and c are small and M is large
there may not exist solutions of (5) (see the end of Section 3). Note also
that in the framework of non-divergence form operators with measurable
ingredients uniqueness of (viscosity) solutions does not hold in general, even
for linear equations – see [Na], [Sa]. So, to have a uniqueness result like
in Theorem 1 (iii) some additional hypothesis is needed. Generally, the
existence of a strong solution is such an assumption, verified for example by
operators which are convex or concave in M and F (M, 0, 0, x) is continuous.

Next, we give references and situate Theorem 1 with respect to previ-
ous works. The theory of strong solutions of quasilinear uniformly elliptic
equations was developed in the classical works of Ladizhenskaya-Uraltseva
and Krylov-Safonov, see [LU1], [LU2], [KSa], [K1]. The well-known papers
[CIL], [IL] describe the theory of viscosity solutions of proper equations
with continuous ingredients (c+ = 0; F, c, f continuous in x ∈ Ω) – the so-
called C-viscosity solutions. For proper fully nonlinear equations with linear
growth and bounded measurable coefficients (that is, for µ = 0, c+ = 0,
b, c ∈ L∞(Ω)), the solvability of (5) in the LN -viscosity sense was proved
in [CCKS] and [CKLS]. We are going to use all those important papers.
More recently, an existence theorem for equations where F is convex in
D2u, c ≡ 0, and b ∈ L2N close to the boundary was stated in the thesis
[F1]. The case µ > 0, b ∈ L∞(Ω) and c = 0 is studied in [KS1], where the
authors use [F1].

Theorem 1 (i) is the first statement of this type in the noncontinuous
setting. It is inspired by works on equations in divergence form (see be-
low), and has as a starting point the main existence result in [CIL] (see
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pages 25-26 in that paper), which, applied to (5) with c(x) ≤ −c, would
require that F, c and f be continuous in x ∈ Ω, and that the growth in the
gradient be strictly smaller than 2. We remove these hypotheses here. The
case c+ ≡ 0 in statement (ii) unifies and extends (with a different proof)
the results in [CCKS], [CKLS], [F1], [KS1] to the optimal Lebesgue range
b ∈ Lp, p > N, c, d ∈ LN and general F . Further, and not less importantly,
we get existence for non-proper equations, that is, without a hypothesis
of monotonicity in u of the operator (c+ 6≡ 0). As we noted, the unique-
ness is then lost. In the fully nonlinear setting there are rather few works
on non-proper equations - a related result can be found in [QS1], in the
particular case of convex positively homogeneous operators with bounded
coefficients (like (3) with µ ≡ 0, b, c ∈ L∞(Ω)), when the solutions are still
unique. Some nonproper equations with power growth in u were considered
in [QS2].

It is important to note that the solvability of elliptic equations with
natural (quadratic) growth in the gradient has been studied very extensively
in the divergence framework, where weak solutions can be searched for in
Sobolev spaces. A typical example is div(A(x)Du) + µ|Du|2 + b(x).Du +
c0u = f(x), for b ∈ LN (Ω), f ∈ Lq(Ω). Note that in this situation q = N/2
is the dividing number for the solutions to be bounded and continuous.
We refer to [BMP1], [BMP2], [AGP] for the case c0 < 0, and to [MPS],
[FM], [GMP] for the case c0 = 0 (see also the references in these works).
Uniqueness in the natural Sobolev spaces was proved in [BM], [BBGK],
[BP].

Parts (i), (ii) with c+ = 0, and (iii) of Theorem 1 can be seen as counter-
parts of these results for (fully nonlinear) equations in non-divergence form,
for which the natural weak notion of a solution is the viscosity one. Of course
the methods in the two frameworks are different. We stress once more that
the statements in Theorem 1 (ii) and (iv) are new even for divergence-form
equations which satisfy (S). The (actually not difficult) observation in (iv)
opens interesting lines of research on multiplicity of solutions - see the re-
marks after the proof of (iv) in Section 3.

Let us now make a brief account of the main points in the proof of The-
orem 1, which we give in Section 3. The proof of (i) relies on the method
of sub- and supersolutions, together with smoothing and approximation
techniques. In particular, we extend a fundamental approximation theorem
(Theorem 3.8 in [CCKS]) to equations with unbounded ingredients and
quadratic growth in the gradient – see Theorem 4 in Section 3. For (ii) we
use in addition some recent results on existence and properties of eigenval-
ues of convex positively homogeneous operators, obtained in [QS1]. More
specifically, we take advantage of the fact that the positivity of the eigenval-
ues guarantees the validity of the comparison principle and the solvability
of the associated Dirichlet problem. The uniqueness in (iii) is shown to be a
consequence of the ABP inequality (given in the next section). Finally, the
proof of (iv) is based on a fixed point theorem and Leray-Schauder degree
theory.
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A pivot role in the proofs of (i), (ii) and (iv) play statements on avail-
ability of a priori estimates in the uniform norm for solutions of related
equations - see Lemma 33, Proposition 34 and the proof of (iv). These re-
sults take different form in each of the three cases, and require different
proofs.

Another important point is the global Hölder continuity of the solutions
of (1). The following theorem, which is of clear independent interest, is
used to approximate some of the equations we consider by equations with
regular ingredients (as it implies their set of solutions is precompact in
C(Ω), whenever a priori estimates are available).

Theorem 2 Suppose (S) holds for N = 0, q = 0, v = 0, and u ∈ C(Ω) is
a solution of (1). Then there exists α ∈ (0, 1) depending only on N, λ,Λ, p,
‖b‖Lp(Ω), such that u ∈ Cα

loc(Ω), and for any subdomain Ω′ ⊂⊂ Ω we have
‖u‖Cα(Ω′) ≤ K, where K depends on N, λ, Λ, µ, p, ‖b‖Lp(Ω), ‖c‖LN (Ω), ‖f‖LN (Ω),
dist(Ω′, ∂Ω), supΩ′ |u|.

If, in addition, u ∈ C(Ω) and Ω satisfies an uniform exterior cone
condition (with size L), then there exist some α0, ρ0 > 0, depending only on
N, λ,Λ, L, p, ‖b‖Lp(Ω), such that for each ball Bρ with radius ρ ≤ ρ0 and
center in Ω

osc
Ω∩Bρ

u ≤ K(ρα0 + osc
∂Ω∩B√ρ

u),

K depends on N, λ, Λ, µ, p, ‖b‖Lp(Ω), ‖c‖LN (Ω), ‖f‖LN (Ω), L, supΩ |u|, diam(Ω).
Hence if u|∂Ω ∈ Cβ(∂Ω) then u ∈ Cα(Ω), with α = min{α0, β/2}.
Hölder estimates for LN -viscosity solutions of Pucci equations were ob-

tained by Caffarelli in his seminal work [C], see also [CC]. These estimates
were extended to operators with bounded coefficients (µ, b, c, f ∈ L∞(Ω))
in [W]. An alternative approach to the results in [W] can be found in [F1],
see Theorem 1.3 there. In these papers the Hölder estimate is obtained as a
consequence of a Harnack inequality for the corresponding equation. Here
we will make use of another idea, whose essence is that one does not need to
prove a Harnack inequality if only Hölder estimates are aimed at; actually,
it is enough to have some comparison between the measures of level sets of
the solution, which can be achieved by use of simple barriers and the ABP
inequality. This method is originally due to Krylov and Safonov. We will
develop it in our setting in Section 4 (giving all the proofs in extenso, as
we find it important to provide a full quotable source for the Hölder esti-
mates in this generality). Another adaptation to viscosity solutions of the
methods of Krylov and Safonov can be found in the proof of the Harnack
inequality for Pucci equations in [CC]. The same approach as in [CC] was
used in the work [KS3], which we recently received, where the authors prove
the weak Harnack inequality (which also implies the Hölder continuity of
the solutions, see the remark after Proposition 42) for operators with linear
growth (µ = 0) and f ∈ LN−ε0 , for some ε = ε0(N, λ, Λ) > 0.

Acknowledgement. The author is indebted to A. Swiech and to an anony-
mous referee, for some very useful comments.
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2. Preliminaries

We start by recalling the definition of a viscosity solution of (1).

Definition 21 We say that u ∈ C(Ω) is a Lp-viscosity subsolution (super-
solution) of (1), provided for any ε > 0, any open subset O ⊂ Ω, and any
ϕ ∈ W 2,p(O) – we call ϕ a test function – such that

F (D2ϕ(x), Dϕ(x), u(x), x) ≤ f(x)− ε
(F (D2ϕ(x), Dϕ(x), u(x), x) ≥ f(x) + ε) a.e. in O,

the function u − ϕ cannot achieve a local maximum (minimum) in O. In
this case we say that u satisfies F (D2u, Du, u, x) ≥ (≤)f in the Lp-viscosity
sense in Ω. We say that u is a solution of (1) if u is at the same time a
subsolution and a supersolution of (1).

If both F and f are continuous in x and the above definition holds for all
ϕ ∈ C2(O), then we speak of C-viscosity subsolution (supersolution). We
recall that strong and C-viscosity solutions are Lp-viscosity solutions, see
[CCKS], and that whenever a function in W 2,N

loc (Ω) satisfies an inequality
F (D2u,Du, u, x) ≥ (≤)f a.e. in Ω then it is a viscosity solution.

We shall make essential use of the Generalized Maximum Principle
for elliptic equations, commonly known as the Alexandrov-Bakelman-Pucci
(ABP) inequality. It states that for any measurable matrix A(x), λI ≤
A(x) ≤ ΛI, x ∈ Ω, any b ∈ LN (Ω)N , f ∈ LN (Ω), and any u ∈ W 2,N

loc (Ω) ∩
C(Ω) such that

tr(A(x)D2u) + b(x).Du ≥ f(x),

we have
sup
Ω

u ≤ sup
∂Ω

u+ + C‖f‖LN (Γ ),

where C depends on N, λ, Λ, ‖b‖LN (Ω), diam(Ω), and Γ is the upper contact
set of u (see Chapter 9 of [GT] for a proof and references).

A breakthrough in the theory of viscosity solutions of uniformly ellip-
tic equations was the extension of this inequality to viscosity solutions of
M+

λ,Λ(D2u) ≥ f , obtained by Caffarelli in [C]. The result was subsequently
shown to hold for equations with bounded measurable coefficients in [W],
[CCKS], and with unbounded coefficients in [F2]. A simple self-contained
proof of the inequality from [F2] can be found in [KS2]. We give it next.

Theorem 3 ([F2], [KS2]) Suppose u ∈ C(Ω) is a LN -viscosity solution
of

M+
λ,Λ(D2u) + b(x)|Du| ≥ f(x) (resp. M−

λ,Λ(D2u)− b(x)|Du| ≤ f(x)),

in Ω+ (resp. Ω−), where b ∈ Lp(Ω) for some p > N , f ∈ LN (Ω), and
Ω± = {x ∈ Ω : ±u(x) > 0}. Then

sup
Ω

u ≤ sup
∂Ω

u+ + diam(Ω).C1‖f−‖LN (Ω+) (7)
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(resp. sup
Ω

u− ≤ sup
∂Ω

u− + diam(Ω).C1‖f+‖LN (Ω−)), where C1 is a constant

which depends on N,λ, Λ, ‖b‖LN (Ω), diam(Ω), and C1 remains bounded
when these quantities are bounded.

In the sequel we denote CA := diam(Ω).C1.

Remark 1. See [A], [GT], [KS2] for an explicit expression of CA.
Remark 2. Theorem 3 is a scaled version (with respect to diam(Ω)) of either
Theorem 1.2 of [F2] or Proposition 2.8 in [KS2]. Actually, the result is based
on an upgrade to unbounded coefficients of the basic Lemma 3.1 in [CCKS],
where the correct scaling is given.

We recall some easy properties of Pucci operators (see for instance [CC]).

Lemma 21 Let M, N ∈ SN , φ(x) ∈ C(Ω) be such that 0 < a ≤ φ(x) ≤ A.
Then

M−
λ,Λ(M) = −M+

λ,Λ(−M),

M−
λ,Λ(M) = λ

∑

{νi>0}
νi + Λ

∑

{νi<0}
νi, where {ν1, . . . , νN} = spec(M),

M−
λ,Λ(M) +M−

λ,Λ(N) ≤M−
λ,Λ(M + N) ≤M−

λ,Λ(M) +M+
λ,Λ(N),

M−
λ,Λ(M) +M+

λ,Λ(N) ≤M+
λ,Λ(M + N) ≤M+

λ,Λ(M) +M+
λ,Λ(N),

M−
λa,ΛA(M) ≤M−

λ,Λ(φM) ≤M−
λA,Λa(M),

We shall also use the following simple fact.

Lemma 22 Suppose u ∈ C2(B) is a radial function, say u(x) = g(|x|),
defined on a ball B ⊂ RN . Then g′′(|x|) is an eigenvalue of the matrix
D2u(x), and |x|−1g′(|x|) is an eigenvalue of multiplicity N − 1.

The following lemma will help us to deal with the quadratic dependence
in the gradient.

Lemma 23 Let u ∈ W 2,N
loc (Ω). For any m > 0 set

v =
emu − 1

m
, w =

1− e−mu

m
.

Then a.e. in Ω we have Dv = (1 + mv)Du, Dw = (1−mw)Du,

mλ|Du|2 +M±
λ,Λ(D2u) ≤ M±

λ,Λ(D2v)
1 + mv

≤ mΛ|Du|2 +M±
λ,Λ(D2u),

−mΛ|Du|2 +M±
λ,Λ(D2u) ≤ M±

λ,Λ(D2w)
1−mw

≤ −mλ|Du|2 +M±
λ,Λ(D2u).

and, clearly, u = 0 (resp. u > 0) is equivalent to v = 0 (resp. v > 0) and to
w = 0 (resp. w > 0).
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The same inequalities hold in the LN -viscosity sense, that is, if, for
example, u ∈ C(Ω) is a viscosity solution of

M+
λ,Λ(D2u) + µ|Du|2 + b(x)|Du| ≥ f(x) (8)

then v =
(
e(µ/λ)u − 1

)
/(µ/λ) is a viscosity solution of

M+
λ,Λ(D2v) + b(x)|Dv| − (µ/λ)f(x)v ≥ f(x), etc. (9)

Proof. This is a matter of an easy computation and use of Lemma 21 and
Definition 21. Suppose first that u ∈ W 2,N

loc (Ω). Then a.e. in Ω

Dv = emuDu, D2v = emuD2u + mDu⊗Du,

Dw = e−muDu, D2w = e−muD2u−mDu⊗Du,

and Lemma 23 follows from Lemma 21, since

spec (Du⊗Du) = {0, . . . , 0, |Du|2}.

If u is only continuous and we suppose v does not satisfy (9), then by
Definition 21 there exists a function ψ ∈ W 2,N

loc (Ω) and ε > 0 such that
v − ψ attains a maximum in some open set O ⊂ Ω, while for m = µ/λ

M+
λ,Λ(D2ψ) + b(x)|Dψ| ≤ f(x)emu − ε in O.

By setting φ = (1/m) log(1 + mψ) in this inequality we get a contradiction
with the fact that u satisfies (8) in the sense of Definition 21, since u − φ
attains a maximum in O. ¤

3. Proof of Theorem 1

For any measurable set A ⊂ RN we denote the Lebesgue measure of A
by |A| or meas(A). The first lemma concerns the existence of subsolutions
and supersolutions in a simple continuous setting.

Lemma 31 Suppose ∂Ω is of class C2. For any positive constants µ, b, c, k,
there exist C-viscosity solutions u1, u2, such that u1 ≤ 0 ≤ u2 in Ω, ui = 0
on ∂Ω, of

M+
λ,Λ(D2u2) + µ|Du2|2 + b|Du2| − cu2 ≤ −k,

M−
λ,Λ(D2u1)− µ|Du1|2 − b|Du1| − cu1 ≥ k.

We can take u1 = −u2 and ‖u2‖L∞(Ω) ≤ (λ/µ)
(
e(µk)/(λc) − 1

)
.
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Proof. The proof of this lemma is based on techniques described in [CIL].
Let us prove that the first inequality has a solution (note the second inequal-
ity is obtained from the first by the change u → −u). In view of Lemma 23,
it is enough to construct a nonnegative solution of

M+
λ,Λ(D2v) + b|Dv| − (c/m)(1 + mv) log(1 + mv) ≤ −k(1 + mv), (10)

such that v = 0 on ∂Ω, with m = µ/λ, v defined in Lemma 23.
To avoid writing constants, suppose for simplicity c = m = 1 (the im-

portant point is that c > 0). Then v1 ≡ ek − 1 =: B is a solution of (10)
in Ω. We want to find a neighbourhood of ∂Ω, denoted by Ωα = {x ∈ Ω :
dist(x, ∂Ω) < 1

α}, and a function v2 which satisfies (10) in Ωα, such that
v2 = v1 + 1 on ∂Ωα and v2 = 0 on ∂Ω. Then the function

v =
{

v1 in Ω \Ωα

min{v1, v2} in Ωα

is a solution of (10), since the minimum of two viscosity supersolutions is a
viscosity supersolution.

So we set v2 = (B + 1)(1 − e−1)−1
(
1− e−αd(x)

)
in Ωα, where d(x) is

the distance function to the boundary and α is chosen sufficiently large so
that d is C2 in Ωα.

Let

K = max
t∈[0,A+1]

(1 + t)(k − log(1 + t)) = max{k, ek−1}.

Then, by computing Dv2 and D2v2, and by using the facts that |Dd| = 1
and that D2d is bounded in Ωα (see for instance Chapter 14.16 in [GT]) we
get, with the help of Lemma 21,

M+
λ,Λ(D2v2) + b|Dv2| ≤ −C1α

2 + C2α < −K,

if α is large enough ; here C1, C2 depend on b, B, λ, Λ, and ∂Ω. ¤
Next we recall the following comparison result for C-viscosity solutions,

obtained in [IL].

Proposition 31 Under the conditions of Theorem 1 (i), suppose in addi-
tion that c, f ∈ C(Ω), F is continuously differentiable in x ∈ Ω, and for
each R > 0 there exists CR > 0 such that

∂F

∂x
(M,p, u, x) ≤ CR(1 + |p|2 + ‖M‖),

for all x ∈ Ω, u ∈ [−R, R], p ∈ RN ,M ∈ SN . Then the comparison
principle holds for C-viscosity solutions of (1), that is, if u, v ∈ C(Ω) satisfy

F (D2u,Du, u, x) + c(x)u ≥ f(x) and F (D2v, Dv, v, x) + c(x)v ≤ f(x)

in Ω, and u ≤ v on ∂Ω, then u ≤ v in Ω.
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Proof. This is a particular case of Theorem III.1 (1) of [IL], by taking
ωR(s) = µR(s) = CRs in hypotheses (3.2) and (3.3) of that paper1. ¤

Corollary 31 Under the conditions of Proposition 31, problem (5) has a
unique C-viscosity solution, provided ψ ∈ C2(Ω).

Proof. Suppose first ∂Ω is smooth. From (S) and Lemma 31 (we replace u
by u−ψ, that is, k by k(1 + ‖ψ‖C2(Ω) + ‖ψ‖2

C1(Ω)
) in that lemma) we infer

that (5) has a subsolution and a supersolution which are ordered. Then the
existence of a solution of (5) is an immediate consequence of Proposition 31
and Perron’s method - Proposition II.1 in [IL].

To extend the result to a domain Ω which satisfies only the uniform
exterior cone condition with size L, we approximate Ω by smooth domains
Ωn, which admit exterior cones with size at least L/2, such that Ω ⊂ Ωn,
and take solutions un of (5) in Ωn. By Lemma 31 {un} can be taken to
be uniformly bounded in L∞(Ω). Then, by our Theorem 2, {un} is uni-
formly bounded in Cα(Ωn), so, by the compact embedding Cα ↪→ C0, a
subsequence of un converges uniformly in Ω to a function u, which is then
a solution of (5) in Ω, by the convergence results in Chapter 6 of [CIL]. ¤

The next proposition asserts the existence of strong subsolutions and
supersolutions of extremal equations of our type.

Proposition 32 For any µ ≥ 0, c > 0, b ∈ Lp(Ω) (p > N), f ∈ LN (Ω),
b, f ≥ 0, there exist strong solutions u1, u2 of

M+
λ,Λ(D2u2) + µ|Du2|2 + b(x)|Du2| − cu2 ≤ −f(x),

M−
λ,Λ(D2u1)− µ|Du1|2 − b(x)|Du1| − cu1 ≥ f(x),

such that u1 ≤ 0 ≤ u2 in Ω, ui = 0 on ∂Ω.

We shall use the following lemmas.

Lemma 32 Let c,m > 0 and b, f ∈ C(Ω). Then there exists a strong
solution of the equation

M+
λ,Λ(D2v) + b(x)|Dv| = (f(x) + (c/m) log(1 + mv))(1 + mv) (11)

in Ω, v = 0 on ∂Ω.

Proof. We take the solutions of the problems

M+
λ,Λ(D2u2) + mΛ|Du2|2 + ‖b‖L∞(Ω)|Du2| − cu2 ≤ −‖f‖L∞(Ω),

M+
λ,Λ(D2u1) + mλ|Du1|2 − ‖b‖L∞(Ω)|Du1| − cu1 ≥ ‖f‖L∞(Ω),

1 For the reader’s convenience we note that there is a misprint in [IL] - the as-
sumption on ωR in (3.3) there should read ωR/(1+r) is bounded, as an inspection
of the proof of Theorem III.1 shows ((3.3) is used in (3.14) and the argument after
Lemma III.1 in [IL]).
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given by Lemma 31. Then by Lemma 23 the functions vi = (1/m)(emui −1)
are respectively a subsolution and a supersolution of (11). Hence, by the
standard sub- and supersolution method, this problem has a solution v ∈
C(Ω) (note the right-hand side of (11) is locally Lipschitz in v). By the well-
known regularity results for the equation M+

λ,Λ(D2v)+b(x)|Dv| = g(x) (see
[S]) this solution is strong, v ∈ W 2,p

loc ∩ C(Ω), p < ∞. ¤

Lemma 33 Let c,m > 0 and {bn} ⊂ Lp(Ω) (p > N), {fn} ⊂ LN (Ω) be
sequences such that {bn} is bounded in LN (Ω) and {fn} converges strongly
in LN (Ω). Then each suite {vn} ⊂ C(Ω) (resp. {wn} ⊂ C(Ω)) of solutions
of the inequation

M+
λ,Λ(D2vn) + bn(x)|Dvn| ≥ (fn(x) + (c/m) log(1 + mvn))(1 + mvn)

M−
λ,Λ(D2wn)− bn(x)|Dwn| ≤ (fn(x) + (c/m) log(1 + mwn))(1 + mwn)

in Ω is such that 1+mvn ≤ a (resp. 1+mwn ≥ a) on ∂Ω for some a(a) > 0
implies

1 + mvn ≤ C0 ( resp. 1 + mwn ≥ c0) in Ω,

where c0, C0 are positive constants independent of n.

Proof. Take for simplicity m = c = 1 and set zn = 1 + vn, z̃n = 1 + wn.
Note zn, z̃n > 0 in Ω and zn ≤ a, z̃n ≥ a > 0 on ∂Ω. For each a > 0 let
Ωn

a = {x ∈ Ω : zn > a} and ωn
a = {x ∈ Ω : z̃n < a}. We need to show

that Ωn
a = ∅ for all n if a is sufficiently large, and that ωn

a = ∅ for all n if a
is close to zero.

Since {fn} converges strongly in LN for every ε > 0 there exists δ =
δ(ε) > 0 such that for each G ⊂ Ω, |G| < δ implies ‖fn‖LN (G) < ε for all
n. Set ε0 = 1/(2CA) and δ0 = δ(ε0), where CA is an upper bound for the
constants CA(n, Ω̃) which appear in the ABP inequality for the operator
M+

λ,Λ(D2·)+bn|D·| in any domain Ω̃ ⊂ Ω – see Theorem 3. By this theorem
CA can be taken to depend only on N,λ, Λ, diam(Ω), and supn ‖bn‖LN (Ω).

Next, since {fn} converges strongly in LN we can find a > a sufficiently
large so that |{fn < − log a}| < δ0 for all n. If Ωn

a = ∅ for all n we are done.
If on the other hand Ωn

a 6= ∅ for some n we apply the ABP inequality in Ωn
a

to

M+
λ,Λ(D2zn) + bn(x)|Dzn| = (fn + log zn)zn

≥ −(fn + log a)−zn,

getting

sup
Ωn

a

zn ≤ a + CA‖(fn + log a)−zn‖LN (Ωn
a )

≤ a + CA‖(fn + log a)−‖LN (Ω) sup
Ωn

a

zn

≤ a + CA‖f−n ‖LN ({fn<− log a}) sup
Ωn

a

zn ≤ a + 1/2 sup
Ωn

a

zn
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so Ωn
2a is empty for all n.

In order to prove the existence of c0 we take some a ∈ (0, a) sufficiently
small to have |{fn > − log a}| < δ0 for all n, we apply the ABP inequality
to M+

λ,Λ(D2z̃n) + bn(x)|Dz̃n| ≤ (fn + log a)+z̃n in ωn
a 6= ∅, and get

inf
ωn

a

z̃n ≥ a− CA‖(fn + log a)+‖LN (Ω) sup
ωn

a

z̃n ≥ a/2,

so ωn
a/2 is empty for all n. ¤

Corollary 32 Suppose vn = wn satisfy both inequalities in Lemma 33 and
vn = wn = 0 on ∂Ω. Set vn = (1/m)(emun − 1). Then the sequence {un} is
bounded in L∞(Ω).

Proof. This trivially follows from Lemma 23 and Lemma 33. ¤
Corollary 33 Let {µn}, {bn}, {cn}, {fn} be sequences of measurable func-
tions, such that {µn} is bounded in L∞(Ω), {bn} ⊂ Lp(Ω) (p > N) is
bounded in LN (Ω), {fn} converges strongly in LN (Ω), and cn(x) ≤ −c, for
some constant c > 0. Then each sequence {un} ⊂ C(Ω) of solutions of

{M+
λ,Λ(D2un) + µn(x)|Dun|2 + bn(x)|Dun|+ cn(x)un ≥ −f−n (x)

M−
λ,Λ(D2un)− µn(x)|Dun|2 − bn(x)|Dun|+ cn(x)un ≤ f+

n (x)

is bounded in L∞(Ω), provided it is bounded in L∞(∂Ω).

Proof. The maximum of subsolutions is a viscosity subsolution, so u+
n =

max{un, 0} is a solution of

M+
λ,Λ(D2u+

n ) + µn(x)|Du+
n |2 + bn(x)|Du+

n | − cu+
n ≥ −f−n (x),

(recall cn(x) ≤ −c < 0). We then set vn = (1/m)(emu+
n − 1), with m =

(supn ‖µn‖/λ), and get the first inequality of Lemma 33. Similarly, since
the minimum of supersolutions is a supersolution we get

M−
λ,Λ(D2(−u−n ))−µn(x)|D(−u−n )|2−bn(x)|D(−u−n )|+cn(x)(−u−n ) ≤ f+

n (x),

so
M+

λ,Λ(D2u−n ) + µn(x)|Du−n |2 + bn(x)|Du−n | − cu−n ≥ −f+
n (x),

and we conclude as for u+
n . ¤

Proof of Proposition 32. We take sequences of continuous functions
bn, fn, which approximate b, f in Lp, LN respectively. By Lemma 32 we
know that the problem

M+
λ,Λ(D2vn) + bn(x)|Dvn| = ((Λ/λ)fn(x) + cun)(1 + mvn), (12)

has a strong solution vn, with vn = 0 on ∂Ω (we have set m = µ/Λ and vn =
(1/m)(emun − 1)). Since the right-hand side of (12) is bounded in LN (Ω)
– note Corollary 32 shows that {un} is bounded in L∞(Ω) – by applying
the uniform Cα-estimate (Theorem 2), we see that un, vn are bounded in
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Cα(Ω), so a subsequence of un converges uniformly on Ω to a function u,
and vn = (1/m)(emun − 1) ⇒ v = (1/m)(emu − 1).

The right-hand side of (12) converges in LN (Ω), while for each O in Ω
and each φ ∈ W 2,N (O)

M+
λ,Λ(D2φ) + bn(x)|Dφ| −→M+

λ,Λ(D2φ) + b(x)|Dφ| in LN (O).

Note W 2,N is embedded in W 1,q for all q < ∞, so the convergence of the
term bn(x)|Dφ| in LN is a simple consequence of p > N and the Hölder
inequality.

Hence we are in position to apply Theorem 3.8 in [CCKS], which shows
that we can pass to the limit in (12) and

M+
λ,Λ(D2v) + b(x)|Dv| = ((Λ/λ)f(x) + cu)(1 + mv).

So, by Lemma 23,

M+
λ,Λ(D2u) + µ(λ/Λ)|Du|2 + b(x)|Du| − cu ≤ (Λ/λ)f(x),

and we conclude by replacing u by (Λ/λ)u. Note that we can show the uni-
form boundedness of vn (or un) in W 2,N

loc (Ω) by applying to (12) the same
cut-off argument as the one used in the proof of Lemma 3.1 in [CCKS]. A
precise upgrade of this result to coefficients b ∈ Lp(Ω), p > N , is given in
Proposition 2.6 in [KS2]; actually, (12) can be treated exactly like equa-
tion (2.8) in [KS2]. So a subsequence of un converges weakly to u also in
W 2,N

loc (Ω), and u is a strong solution.
The second inequality in Proposition 32 is obtained from the first by the

change u → −u. ¤
Remark. Strictly speaking, the operator M+

λ,Λ(D2·) + b(x)|D · | does not
satisfy the hypothesis of Theorem 3.8 in [CCKS], since b 6∈ L∞(Ω). However
the proof of this theorem can be repeated without modifications for this
operator, only at its end we have to note that solutions of

{M+
λ,Λ(D2φn) + bn(x)|Dφn| = fn in Ω

φn = 0 on ∂Ω

where bn ∈ L∞(Ω) and {bn} is bounded in LN (Ω), (these φn exist, by the
results in [CCKS], [CKLS]) are such that φn ⇒ 0 in Ω if fn → 0 in LN (Ω),
by the ABP inequality (Theorem 3). ¤

One of the consequences of this result is a general approximation theorem
for operators of our type. It extends Theorem 3.8 in [CCKS] to operators
with unbounded coefficients and natural growth in the gradient.

Theorem 4 Suppose Fn, F are operators which satisfy (S) with h, h as in
Theorem 1. Suppose fn, f ∈ LN (Ω) and un, u ∈ C(Ω) are such that un is a
supersolution (subsolution) of

Fn(D2un, Dun, un, x) = fn in Ω, for each n,
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and un converges to u locally uniformly in Ω. If for any ball B ⊂ Ω and
any φ ∈ W 2,N (B), setting

gn = Fn(D2φ,Dφ, un, x)− fn, g = F (D2φ,Dφ, u, x)− f(x),

we have

‖(g − gn)+‖LN (B) −→ 0
(‖(g − gn)−‖LN (B) −→ 0

)
,

then u is a supersolution (subsolution) of F (D2u,Du, u, x) = f(x) in Ω.

Proof. The proof is identical to the proof of Theorem 3.8 in [CCKS], using
(S) and Proposition 32 at the end (we write Fn − un = fn − un = f̃n so
that Proposition 32 applies to Fn − un). ¤
Proof of Theorem 1 (i). With the previous results at hand, the proof is
carried out with the help of a standard smoothing argument. For instance,
if we have to solve the Dirichlet problem for the model equation (3), we take
smooth functions µn, bn, cn, fn, ψn which converge to µ, b, c, f, ψ respectively
in Lq(Ω) for all q < ∞, Lp(Ω), LN (Ω), C(∂Ω), and ‖µn‖L∞ ≤ ‖µ‖L∞ + 1,
cn ≤ −c/2. Then by Corollary 31 the approximating problems

M+
λ,Λ(D2u) + µn(x)|Du|2 + bn(x)|Du|+ cn(x)u = fn(x),

have solutions un, with un = ψn on ∂Ω. By Corollary 33 {un} is bounded
in L∞(Ω). By Theorem 2 {un} satisfies the conditions of the Arzela-Ascoli
theorem, and hence converges (up to a subsequence) uniformly in Ω. Then
the solvability of (3) follows from Theorem 4, noting again that bn|Dφ| →
b|Dφ| and µn|Dφ|2 → µ|Dφ|2 for any φ ∈ W 2,N ↪→ W 1,q, q < ∞.

For general F we can use the same regularization argument as in the
proof of Theorem 4.1 in [CKLS]. Let fn, cn be sequences of continuous
functions which converge to f, c in LN (Ω), cn ≤ −c/2, and set

Fn(M,p, u, x) = nN

∫

RN

η (n(x− y)) F (M,p, u, y) dy, (13)

where η ≥ 0, η ∈ C∞, is an usual mollifier with compact support and mass 1.
Now, for fixed n, the operator Fn+cn satisfies the conditions of Corollary 31,
so the problem Fn + cn = fn has a solution un. Then we conclude again
with the help of Corollary 33, Theorem 2, and the approximation Theorem
4, noting that

Fn(D2φ,Dφ, un, x) → F (D2φ,Dφ, u, x)

is a consequence of the Lebesgue dominated convergence theorem. Part (i)
of Theorem 1 is proved. ¤

Now we turn to the proof of Theorem 1 (ii). We shall use the notion of
first eigenvalues for convex fully nonlinear elliptic operators with bounded
coefficients, recently developed in [QS1] (previous works include [Be], [Li1],
[FQ], [BEQ]). We need the following particular case of the results in [QS1].
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Theorem 5 ([QS1]) Given λ, Λ > 0, and b, c ∈ L∞(Ω), b ≥ 0, there exist
numbers λ+

1 ≤ λ−1 , and functions ϕ+
1 , ϕ−1 ∈ W 2,p

loc (Ω)∩C(Ω) for each p < ∞,
such that{M+

λ,Λ(D2ϕ±1 ) + b(x)|Dϕ±1 |+ c(x)ϕ±1 = −λ±1 ϕ±1 in Ω

±ϕ±1 > 0 in Ω, ϕ±1 = 0 on ∂Ω,

In addition, λ+
1 > 0 is a sufficient condition for the Dirichlet problem
{M+

λ,Λ(D2u) + b(x)|Du|+ c(x)u = f in Ω

u = 0 on ∂Ω

to have a unique viscosity solution u ∈ W 2,N
loc (Ω) ∩ C(Ω), for any f ∈

LN (Ω).

The following proposition gives a bound on the eigenvalues in terms of
Lebesgue norms of the coefficients.

Proposition 33 Given λ,Λ > 0, and b, c ∈ L∞(Ω), b ≥ 0, the number λ+
1

defined in Theorem 5 satisfies

λ+
1 ≥ |Ω|−1/N

(
C−1

A − ‖c+‖LN (Ω)

)
,

where CA is the ABP constant from Theorem 3. Recall CA depends only on
λ,Λ, N, ‖b‖LN (Ω), diam(Ω).

Proof. We apply the ABP inequality (Theorem 3) to

M+
λ,Λ(D2ϕ+

1 ) + b(x)|Dϕ+
1 | = −(λ+

1 + c(x))ϕ+
1 ≥ −(λ+

1 + c+(x))ϕ+
1 ,

which yields
sup
Ω

ϕ+
1 ≤ CA‖λ+

1 + c+(x)‖LN (Ω) sup
Ω

ϕ+
1 ,

so
λ+

1 |Ω|1/N + ‖c+‖LN (Ω) ≥ ‖λ+
1 + c+(x)‖LN (Ω) ≥ 1/CA,

and the result follows. ¤
We can now deduce a first result on solvability for non-proper equations

with unbounded coefficients.

Proposition 34 Given λ, Λ > 0, and functions b ∈ Lp(Ω) (p > N), b ≥ 0,
c ∈ LN (Ω),

‖c+‖LN (Ω) < C−1
A

is a sufficient condition for the problem
{M+

λ,Λ(D2u) + b(x)|Du|+ c(x)u = f in Ω

u = 0 on ∂Ω
(14)

to have a unique viscosity solution u ∈ W 2,N
loc (Ω) ∩ C(Ω), for any f ∈

LN (Ω). In addition, we have the estimate

‖u‖L∞(Ω) ≤
CA

1− CA‖c+‖LN (Ω)

‖f‖LN (Ω) ,

and f ≤ (≥)0 in Ω implies u ≥ (≤)0 in Ω.
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Proof. We approximate b, c in Lp, LN by sequences of continuous functions
bn, cn, such that ‖c+

n ‖LN (Ω) < C−1
A , so the first eigenvalues of the operators

M+
λ,Λ(D2·)+bn|D ·|+cn· are positive for all n – by the previous proposition.

Hence, by Theorem 5, there exist strong solutions of

M+
λ,Λ(D2un) + bn|Dun|+ cnun = f

with un = 0 on ∂Ω. Note that f ≤ (≥)0 implies un ≥ (≤)0 in Ω by the
maximum principle, which was shown in [QS1] to hold for operators with
positive eigenvalues.

Next, we apply the ABP inequality (Theorem 3) to

M+
λ,Λ(D2un) + bn|Dun| = −cnun + f ≥ −c+

n un + f on {un > 0}
M+

λ,Λ(D2un) + bn|Dun| = −cnun + f ≤ −c+
n un + f on {un < 0}

to get

sup
Ω
|un| ≤ C

(n)
A

(
‖c+

n ‖LN (Ω) sup
Ω
|un|+ ‖f‖LN (Ω)

)
,

where C
(n)
A is the ABP constant for the operator M+

λ,Λ(D2·) + bn|D · | in

Ω. Clearly C
(n)
A → CA, so for n sufficiently large we have

sup
Ω
|un| ≤ C

(n)
A

1− C
(n)
A ‖c+

n ‖LN (Ω)

‖f‖LN (Ω),

that is, un is bounded in L∞(Ω). Then, by Theorem 2, un is bounded in
Cα(Ω) so a subsequence of un converges uniformly in Ω to a solution u of
problem (14).

Further, M+
λ,Λ(D2un) + bn|Dun| = −cnun + f in Ω implies that un

is bounded in W 2,N
loc (Ω), hence converges weakly in that space, so u is a

strong solution. The boundedness in W 2,N
loc is proved again as in the proofs

of Lemma 3.1 in [CCKS] and Proposition 2.6 in [KS2] .
Finally, if (14) has another solution v, by Lemma 21 the function w =

u− v satisfies w = 0 on ∂Ω and

M+
λ,Λ(D2w) + b|Dw| ≥ −cw ≥ −c+w on {w > 0}.

Applying the ABP inequality in {w > 0} and ‖c+‖LN (Ω) < C−1
A imply this

set is empty, that is, w ≤ 0 in Ω. The same holds for −w, so w ≡ 0 in Ω. ¤

Next, we prove a key result on existence of strong subsolutions and
supersolutions of (5).

Proposition 35 Given λ,Λ, µ > 0, M ≥ 0, b ∈ Lp(Ω)(p > N), b ≥ 0,
c ∈ LN (Ω), and an operator F satisfying the hypotheses of Theorem 1 (ii),
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there exists a constant δ > 0 depending only on λ,Λ, N, ‖b‖LN (Ω), diam(Ω),
such that

‖µ|f |+ µMc+ + c+‖LN (Ω) ≤ δ

is a sufficient condition for the existence of functions u, u ∈ W 2,N
loc (Ω) ∩

C(Ω), such that u ≤ 0 ≤ u in Ω,

F (D2u,Du, u, x) + cu ≥ f, F (D2u,Du, u, x) + cu ≤ f in Ω,

and u = −M , u = M on ∂Ω. In addition, the L∞-norms of u, u are bounded
by a constant depending only on λ, Λ, µ, M, N, ‖b‖LN (Ω), and diam(Ω).

Proof. Let us prove the existence of a positive supersolution. In view of (S)
it is enough to find u such that u ≥ 0 in Ω,

M+
λ,Λ(D2u) + µ|Du|2 + b(x)|Du|+ c(x)u ≤ −f−(x)−Mc+(x) in Ω,

and u = 0 on ∂Ω (then we take u = u + M). If µ = 0 the existence of u
follows from Proposition 34. So let µ > 0. We set v = (1/m)(emu − 1) like
in Lemma 23, m = µ/λ, and g(x) := f−(x) + Mc+(x) ≥ 0. By Lemma 23
we see that it is enough to find a solution v ≥ 0 of

M+
λ,Λ(D2v)+b(x)|Dv|+mg(x)v ≤ −g(x)− c+(x)

m
(1+mv) log(1+mv) (15)

in Ω, v = 0 on ∂Ω.
Let v ∈ W 2,N

loc (Ω) ∩ C(Ω) be the solution of the problem

M+
λ,Λ(D2v) + b(x)|Dv|+ mg(x)v = −g(x)− 1

m
c+(x)(1 + mv),

that is, of

M+
λ,Λ(D2v) + b(x)|Dv|+ (mg(x) + c+(x))v = − 1

m
(mg(x) + c+(x)),

in Ω, with v = 0 on ∂Ω. This problem is solvable and its solution is positive,
by Proposition 34, provided

‖mg(x) + c+(x)‖LN (Ω) ≤ δ, (16)

for any δ ∈ (0, C−1
A ). Then, by the same proposition,

‖v‖L∞(Ω) ≤
CAδ

m(1− CAδ)
. (17)

Note the function v is a solution of inequality (15) if log(1+mv(x)) ≤ 1
for all x ∈ Ω, which by (17) follows from

δ = (1− 1/e)C−1
A .

The existence of a subsolution is proved analogously. ¤
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Remark. The number δ which we found in the last proof gives δ0 which
appears in Theorem 1 (ii). We are going to see that problem (5) has a
solution provided

‖µ|f |+ µMc+ + λc+‖LN (Ω) < δ0 = λδ = λ

(
1− 1

e

)
C−1

A (18)

(this implies (16)), where CA is the ABP constant from Theorem 3.
This value of δ0 should be improvable. In particular, a solution v of (15)

can be found provided the first eigenvalues of the ”linearized at zero” op-
erator M+

λ,Λ(D2·) + b(x)|D · | + (mg(x) + c+(x))· are positive (note these
eigenvalues are still to be defined since this operator has unbounded coeffi-
cients) and the function g(x) (which appears in the right hand side of (15)
as well) is not too large, in an appropriate sense. These questions will be
taken up elsewhere.

Proposition 36 Under the conditions of Theorem 1 (ii), suppose in addi-
tion that c, f ∈ C(Ω), F is continuously differentiable in x ∈ Ω, and for
each R > 0 there exists CR > 0 such that

∂F

∂x
(M,p, u, x) ≤ CR(1 + |p|2 + ‖M‖),

for all x ∈ Ω, u ∈ [−R,R], p ∈ RN , M ∈ SN .
Then there exists a solution u ∈ C(Ω) of (5).

Proof. Suppose (18) holds and let u, u be the subsolution and supersolution
obtained in Proposition 35. We solve the hierarchy of problems in Ω





F (D2un, Dun, un, x)− (c−(x) + 1)un = f(x)− (c+(x) + 1)un−1

u0 = u, un = ψ(x) on ∂Ω, n ≥ 1.

Each of these problems is solvable, by Corollary 31 (or by Theorem 1 (i),
which we already proved). It is easily seen, by induction in n and by Propo-
sition 31, that

u ≤ un ≤ un+1 ≤ u for all n ≥ 1. (19)

These inequalities imply {un} is bounded in L∞(Ω), so it has an uni-
formly convergent subsequence, by Theorem 2 and the Arzela-Ascoli the-
orem. By the monotonicity in n given by (19) the whole sequence {un}
converges uniformly. Hence its limit u is a solution to (5), by the approxi-
mation Theorem 4.

Proof of Theorem 1 (ii). We use the same approximating sequences
Fn (given by (13)), fn, cn, ψn as in the proof of (i). Suppose n is large
enough so that (18) holds for Fn, fn, cn, and let un, un be the subsolution
and supersolution obtained in Proposition 35, for the problem Fn +cn = fn.
By Proposition 36 this problem has a solution which is between un and un.
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However (17) implies un, un are bounded in L∞(Ω), independently of
n (since the constant in (17) depends only on the Lebesgue norms of the
coefficients). Hence {un} is bounded in L∞(Ω), so it has an uniformly con-
vergent subsequence, by Theorem 2 and the Arzela-Ascoli theorem. Again
the limit u of this subsequence is a solution to (5), by the approximation
Theorem 4. Theorem 1 (ii) is proved. ¤

Proof of Theorem 1 (iii). Suppose u1 and u2 are solutions of (5) and
u2 ∈ W 2,N

loc (Ω) ∩ C(Ω). Set u = u1 − u2.
By using (S) we see that u satisfies

M−
λ,Λ(D2u)− (µ|Du|+ 2µ|Du2|+ b)|Du| − d(x)h(u+) + c(x)u ≤ 0.

Note that, since u2 is a strong solution, we can use (S) as if both u1 and u2

were strong - this is trivially seen with the help of test functions.
First, if c ≤ 0 in Ω and µ > 0 we use Lemma 23 which implies

M−
λ,Λ(D2ũ)− b̃(x)|Dũ| ≤ 0 in {u < 0} = {ũ < 0},

where ũ = (1/m)(1−e−mu), m = µ/Λ, b̃ = 2µ|Du2|+b. Applying Theorem 3
in the set {ũ < −ε}, we see that it is empty for each ε > 0, so u ≥ 0 in Ω.

Second, if µ = 0 then we apply Theorem 3 directly to

M−
λ,Λ(D2u)− b|Du| ≤ −c+(x)u in {u < 0},

and conclude u− ≡ 0 for ‖c+‖ < C−1
A , like in the proof of Proposition 33.

The fact that u+ ≡ 0 is proved analogously. ¤
Proof of Theorem 1 (iv). We consider the semilinear problem

∆u + µ|Du|2 + c0u = 0 in Ω (20)
u = 0 on ∂Ω,

µ, c0 > 0. This clearly is the simplest problem which satisfies the hypotheses
of Theorem 1 with quadratic dependence in the gradient and non-trivial
positive part of the zero order coefficient.

We want to show that, for all c0 small and positive, this problem has
a solution different from the trivial one u ≡ 0. Setting, as before, v =
(1/µ) (eµu − 1) , we see that (20) transforms into

−∆v = (c0/µ)(1 + µv) log(1 + µv) =: f(v) in Ω, (21)

and v = 0 on ∂Ω. Since f(0) = 0, f(v) > 0 for v > 0,

f ′(0) = c0, lim
t→∞

f(t)
t

= ∞,

following the established terminology in the theory of semilinear elliptic
equations, the nonlinearity f(u) is superlinear provided

0 < c0 < λ1, (22)
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where λ1 > 0 is the first eigenvalue of the Laplacian in Ω.
It is a classical application of the theory of Leray-Schauder degree (see

for instance Theorem 3.6.10 in [Ck]) that a superlinear problem of this type
possesses a positive classical solution provided it admits a priori estimates,
that is, if we able to show that all (eventual) positive classical solutions of
(21) are uniformly bounded in the L∞-norm by a constant which, in this
case, depends only on Ω and µ.

So let us show (21) admits a priori bounds. We use the well-known
”blow-up” method of Gidas and Spruck [GS], adapting it to the logarithmic
nonlinearity in (21) . Suppose for contradiction that there exists a sequence
vn of solutions of (21) such that ‖vn‖L∞(Ω) →∞. Set

sn = log ‖vn‖L∞(Ω) ,

and make the change of unknowns

vn(x) = esnwn(y), y =
√

sn(x− xn),

where xn ∈ Ω is a point where vn attains its maximum. Then 0 ≤ wn ≤ 1,
wn(0) = 1, and

−∆wn(y) = s−1
n e−snf(esnwn(y)) for y ∈ Ωn,

where Ωn :=
√

sn(Ω − xn) is a domain which converges either to RN or to
a half-space in RN .

It is trivial to see that the right-hand side of the last equation remains
bounded (recall 0 ≤ wn ≤ 1), hence by elliptic estimates wn converges in
W 2,p

loc (RN ) to a function w, such that 0 ≤ w ≤ 1 and w(0) = 1. Further,
we have pointwise, and hence in Lp

loc(RN ) (by Lebesgue dominated conver-
gence)

s−1
n e−snf(esnwn) → c0w

so w is a bounded positive (by the strong maximum principle) solution of

−∆w = c0w

in RN or in a half-space (with w = 0 on the boundary of the half space).
This implies that the first eigenvalue of the Laplacian in any ball is larger
than c0, which is a contradiction with c0 > 0. ¤

Remark 1. The above non-uniqueness result can be extended to general
operators (1) (for instance (3) with µ(x) ≥ µ0 > 0 and c+, f 6≡ 0) through a
similar in spirit (though more complicated) argument. Note Leray-Schauder
degree theory was shown to apply to fully nonlinear equations in [QS2].
Remark 2. When the elliptic operator is in divergence form (as in the above
particular case), the problem can also be tackled via variational methods.
For nonlinearities similar to f(v) in (21), some related problems have been
studied in [J], [JT]. Naturally, the variational approach should permit to
obtain more precise results, when it is applicable.
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Developments on multiplicity of solutions of non-proper equations (like
those pointed out in the preceding remarks) will be given in a future work.

Some simple equations without solutions. Here we list some simple
results about existence and non-existence of solutions of

{
∆u + µ|Du|2 + c0u = −A in Ω

u = B on ∂Ω,
(23)

or equivalently
{

∆u + µ|Du|2 + c0u = −(A + c0B) in Ω
u = 0 on ∂Ω,

where c ≡ c0, f ≡ A, ψ ≡ B, µ are nonnegative constants. First, if µ = 0
then this problem, for any A > 0, B ≥ 0, has a positive solution if c0 < λ1,
and has no solutions for c0 = λ1 (multiply by the first eigenfunction of the
Laplacian). Second, if µ > 0, by the change v = (1/µ)(eµu − 1) problem
(23) is equivalent to

∆v + µ(A + c0B)v + c0gµ(v) = −(A + c0B) in Ω (24)

and v = 0 on ∂Ω, where gµ(v) = (1/µ)(1 + µv) log(1 + µv). Now if c0 = 0
then for any A > 0, B ≥ 0, problem (24) has a positive solution if Aµ < λ1

and has no solutions if Aµ = λ1.
Finally, for arbitrary small µ, c0 > 0, if B is such that µ(A + c0B) = λ1,

we multiply (24) by the first eigenfunction of the Laplacian (normalized so
that its L1 norm is equal to one), integrate, use the fact that gµ(v) ≥ − 1

eµ
for all v, and obtain c0 ≥ eλ1, a contradiction.

4. Proof of Theorem 2

For clarity, we are going to start by giving the proof of the interior
estimate in the case of the model equation (3), with µ = 0, c = f ≡ 0.
The next proposition states that, for any given subdomain Ω′ ⊂⊂ Ω, if a
level set in Ω′ of a positive supersolution has sufficiently small measure with
respect to |Ω′|, then this supersolution is uniformly positive in Ω′. As usual,
constants denoted by C may change from line to line, and depend only on
the appropriate quantities.

Proposition 41 There exist numbers δ, κ, ρ0 > 0 depending only on N , λ,
Λ, ‖b‖Lp , p > N , such that if for some ρ ∈ (0, ρ0) the ball B2ρ ⊂ Ω, and
b ∈ Lp(B2ρ), b ≥ 0, u ∈ C(B2ρ) satisfy

L−[u] := M−
λ,Λ(D2u)− b(x)|Du| ≤ 0 in B2ρ

u ≥ 0 in B2ρ,

then for any a > 0

meas {x ∈ Bρ : u(x) < a} ≤ δ |Bρ| implies u ≥ κa in Bρ.
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Proof. Without restricting the generality we can suppose a = 1 (replace u
by u/a). Set v = 1− (|x|2/ρ2). Then, by Lemmas 21 and 22, we have in Bρ

M+
λ,Λ(D2(v − u)) + b(x)|D(v − u)| ≥ M−

λ,Λ(D2v)− b(x)|Dv| − L−[u]

≥ − 2
ρ2

(NΛ + b(x)|x|)

≥ −C

ρ2
(1 + ρb(x)) ,

provided u ∈ W 2,N (B2ρ). Extending this inequality to u only continuous
is then easy (and very standard, since v ∈ C2), by using Definition 21 and
test functions.

Since v − u ≤ 0 on ∂Bρ, by applying Theorem 3 to this inequality we
get

sup
Bρ

(v − u) ≤ C1ρ
−1‖1 + ρb(x)‖LN (Bρ∩{v−u>0}).

Note that {v − u > 0} ⊂ {u < 1}, so meas(Bρ ∩ {v − u > 0}) ≤ δ CρN , by
hypothesis. Then the triangle and Hölder inequalities imply

sup
Bρ

(v − u) ≤ Cδ1/N + ρε1‖b‖Lp(Bρ),

where ε1 = (p−N)/Np. By choosing δ and ρ0 sufficiently small we get

3
4
− inf

B ρ
2

u = inf
B ρ

2

v − inf
B ρ

2

u ≤ sup
B ρ

2

(v − u) ≤ sup
Bρ

(v − u) ≤ 1
4

for ρ ≤ ρ0, so

u ≥ 1
2

in B ρ
2
. (25)

Now set, for s > 0 and x ∈ B2ρ \B ρ
2
,

w(x) =
1
4

|x|−s − (2ρ)−s

(ρ/2)−s − (2ρ)−s
.

It is easy to compute, with the help of Lemma 22, that

M−
λ,Λ(D2(|x|−s))−b(x)|D(|x|−s)| = s(λ(s+1)−Λ(N−1)−b(x)|x|)|x|−s−2,

and hence, fixing s such that λ(s + 1) = Λ(N − 1),

M+
λ,Λ(D2(w − u)) + b(x)|D(w − u)| ≥ M−

λ,Λ(D2w)− b(x)|Dw| − L−[u]

≥ −Cρs|x|−s−2b(x)|x|
≥ −Cρ−1b(x)

in the set B2ρ \B ρ
2
. Since w − u ≤ 0 on ∂(B2ρ \B ρ

2
), Theorem 3 yields

sup
Bρ\B ρ

2

(w − u) ≤ sup
B2ρ\B ρ

2

(w − u) ≤ C‖b‖LN (B2ρ) ≤ Cρε1‖b‖Lp(Bρ)
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so, by taking ρ0 sufficiently small, we have, for ρ ≤ ρ0,

u(x) ≥ inf
Bρ\B ρ

2

w − Cρε1 ≥ 2−s−3 − Cρε1 ≥ 2−s−4 , for x ∈ Bρ \B ρ
2

,

which finishes the proof of Proposition 41. ¤

We use the following well-known measure theoretic result (the ”propa-
gating ink spots” lemma).

Lemma 41 Let G be a ball and K be some measurable subset of G, such
that |K| ≤ η|G|, for some η ∈ (0, 1). Let F be the set of all balls B contained
in G, and such that |B∩K| ≥ η|B|. Then there exists ζ > 0 depending only
on N and η, such that

meas(∪B∈FB) ≥ (1 + ζ)meas(K).

Proof. This is for instance inequality (9.20) from [GT], setting f to be the
indicator function of K in the reasoning there. ¤

With the help of this lemma we can prove the result from Proposition
41 for any δ ∈ (0, 1).

Proposition 42 If for some ρ ∈ (0, ρ0) (ρ0 is the number from Proposition
41) the ball B2ρ ⊂ Ω, and b ∈ Lp(B2ρ) (p > N), b ≥ 0, u ∈ C(B2ρ) satisfy

M−
λ,Λ(D2u)− b(x)|Du| ≤ 0 in B2ρ

and u ≥ 0 in B2ρ, then for any ν, a > 0 there exists κ > 0 depending on
ν,N, λ, Λ,‖b‖Lp , p > N , such that

meas {x ∈ Bρ : u(x) ≥ a} ≥ ν |Bρ| implies u ≥ κa in Bρ.

Remark. We will derive the Hölder estimate from Proposition 42. Note this
proposition can be viewed as a ”very weak” Harnack inequality. The usual
weak Harnack inequality infBρ u ≥ C|Bρ|−1/q‖u‖Lq(Bρ) contains a stronger
statement.

Proof of Proposition 42. Set Ka = {x ∈ Bρ : u(x) ≥ a}. We know that
|Ka| ≥ ν |Bρ|. If |Ka| ≥ (1 − δ)|Bρ|, where δ is the number from Proposi-
tion 41 then we conclude, by that proposition.

If, on the other hand, |Ka| < (1 − δ)|Bρ|, we apply Lemma 41, with
η = 1 − δ. By Proposition 41 we have u ≥ κa in each ball in F (defined
in Lemma 41), for some κ > 0, depending on the appropriate quantities.
Hence, by Lemma 41,

|Kκa| ≥ (1 + ζ)|Ka| ≥ ν(1 + ζ) |Bρ|.

We repeat the same reasoning and get either Proposition 42 or

|Kκ2a| ≥ ν(1 + ζ)2 |Bρ|.
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This process stops after at most n iterations, where n is a number such that
ν(1 + ζ)n ≥ 1. ¤
Proof of the interior Cα-estimate for (3), µ = c = f = 0. We recall
we have a solution u ∈ C(Ω) of M(D2u) + b(x)|Du| = 0. Then for any ρ
such that B2ρ ⊂ Ω the functions u1 := u− inf

B2ρ

u and u2 := sup
B2ρ

u−u satisfy

the hypotheses of Proposition 42. In addition,

ω(2ρ) := osc
B2ρ

u = u1 + u2,

so at each point of B2ρ one of u1, u2 is larger than 1
2ω(2ρ). This implies

meas
{

x ∈ Bρ : ui(x) ≥ 1
2
ω(2ρ)

}
≥ 1

2
meas(Bρ),

for one i, say for i = 1. Then we can apply Proposition 42 to u1 and infer

u− inf
B2ρ

u = u1 ≥ κω(2ρ) in Bρ,

which implies inf
Bρ

u ≥ κ sup
B2ρ

u + (1 − κ) inf
B2ρ

u. Hence ω(ρ) ≤ (1 − κ)ω(2ρ),

for all ρ ∈ (0, ρ0). The proof is now standardly finished, with the help of
Lemma 8.23 in [GT], which gives

ω(ρ) ≤ Cραρ−α
0 ω(ρ0) ≤ C sup

Bρ0

|u| ρα,

for some α depending on N, λ, Λ, ‖b‖Lp(B2ρ), p > N . ¤.

Next, we give the changes in the proofs of Propositions 41 and 42, which
we have to make in order to deal with a nontrivial right-hand side.

Proposition 43 There exist numbers δ, κ, ρ0, C0 > 0 depending only on
N, λ,Λ,‖b‖Lp , p > N , such that if for some ρ ∈ (0, ρ0) the ball B2ρ ⊂ Ω
and f ∈ LN (Ω), b ∈ Lp(B2ρ), b, f ≥ 0, u ∈ C(B2ρ) satisfy u ≥ 0 in B2ρ

and
M−

λ,Λ(D2u)− b(x)|Du| ≤ f(x) in B2ρ,

then, for any a > 0, meas {x ∈ Bρ : u(x) < a} ≤ δ meas(Bρ) implies

inf
Bρ

u ≥ κa− C0ρ‖f‖LN (B2ρ). (26)

Proof. The proof goes the same way as the proof of Proposition 41, by
adding −f to the right-hand sides of the inequalities to which we apply
Theorem 3. We can suppose meas {x ∈ Bρ : u(x) < 1} ≤ δ meas(Bρ), with
f replaced by f/a. Then inequality (25) reads

u ≥ 1
2
− C1a

−1ρ‖f‖LN (B2ρ) in B ρ
2

, (27)

where C1 is the constant from Theorem 3. We distinguish two cases. First,
if a < 4C1ρ‖f‖LN (Bρ) then the conclusion of Proposition 43 trivially holds,
with κ = 1, C0 = 4C1 (so that the right-hand side of (26) is negative). If
not, we have u ≥ 1

4 in B ρ
2
, and we finish the proof as in Proposition 41. ¤
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Proposition 44 If for some ρ ∈ (0, ρ0) (ρ0 is the number from Proposition
43) the ball B2ρ ⊂ Ω and f ∈ LN (Ω), b ∈ Lp(B2ρ), b, f ≥ 0, u ∈ C(B2ρ)
satisfy

M−
λ,Λ(D2u)− b(x)|Du| ≤ f(x) in B2ρ

u ≥ 0 in B2ρ,

then for any ν, a > 0 there exist κ,C > 0 depending on ν,N, λ, Λ,‖b‖Lp ,
p > N , such that meas{x ∈ Bρ : u(x) ≥ a} ≥ ν meas(Bρ) implies

inf
Bρ

u ≥ κa− Cρ‖f‖LN (B2ρ). (28)

Proof. We have to modify the proof of Proposition 42 as in the proof of
the previous proposition. Suppose meas(Ka) < (1 − δ)meas(Bρ). Then in
case a < (2κ)C0ρ‖f‖LN (B2ρ) (the constants κ,C0 are defined in the Propo-
sition 43) then inequality (28) is trivially true, by choosing κ,C such that
its right-hand side is negative. If not, then u ≥ κ

2 a in each ball in F (defined
in Lemma 41), by Proposition 43. Then we repeat the same reasoning as in
the proof of Proposition 42, distinguishing at each step the cases when a is
smaller or larger than (2κ)lC0ρ‖f‖LN (B2ρ), l = 1, . . . , n. ¤

Proof of the interior Cα-estimate for (3), µ = c = 0, f 6= 0. We reason
in exactly the same way as in the case f = 0, only at the end we get

ω(ρ) ≤ (1− κ)ω(2ρ) +
(
C‖f‖LN (B2ρ)

)
ρ,

to which Lemma 8.23 of [GT] applies as well : for any γ ∈ (0, 1) there exists
α depending on γ, N, λ, Λ,‖b‖Lp , p > N , such that

ω(ρ) ≤ C sup
Bρ0

|u| ρα + C‖f‖LN (B2ρ)ρ
γ .

Remark. Note that in order to carry out all the above arguments it is actually
sufficient to know that

M+
λ,Λ(D2u) + b(x)|Du| ≥ −f(x) and M−

λ,Λ(D2u)− b(x)|Du| ≤ f(x).

The next proposition deals with the extension of the result to the bound-
ary. It uses the well-known idea of extending the function u as a constant
outside the domain (like for example in Theorem 8.26 or 9.27 in [GT]).

Proposition 45 Suppose for some ball B ⊂ RN , and for f ∈ LN (B),
b ∈ Lp(B), b, f ≥ 0, u ∈ C(Ω), m > 0, we have

L−[u] := M−
λ,Λ(D2u)− b(x)|Du| ≤ f(x) in Ω ∩B,

u ≥ 0 in Ω ∩B,

u ≥ 2m on ∂Ω ∩B.
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Then for any ball B2ρ ⊂ Ω ∪B, ρ ≤ ρ0, and for any ν, a > 0

meas {x ∈ Bρ : u(x) ≥ a} ≥ ν meas(Bρ) (29)

implies
inf
Bρ

u ≥ κa− Cρ‖f‖LN (Ω),

where κ,C depend on ν, N, λ, Λ,‖b‖Lp , p > N , and u ∈ C(B) is defined by

u(x) =
{

m if x ∈ Ω \B
min{u(x),m} if x ∈ Ω ∩B .

Proof. The function u satisfies the hypotheses of Proposition 44 in the
ball B – since the minimum of two viscosity supersolutions is a viscosity
supersolution, and L−[m] ≡ 0 ≤ f(x) (we have set f = 0 outside Ω). ¤

Proof of the boundary estimate for (3), µ = c = 0, f 6= 0. Let x0 ∈ ∂Ω.
Then by the uniform cone condition, for some ρ1 > 0 and some ξ > 0
(depending on L), the balls B with center x0 and radii 2ρ, ρ ≤ ρ1, satisfy
meas(B \Ω) ≥ ξmeas(B).

We are going to show that for each ball Bρ with center x0 and radius
ρ ≤ min{ρ0, ρ1} we have

ω(ρ) := osc
Ω∩Bρ

u ≤ (1− κ)ω(2ρ) + C‖f‖LN (B2ρ) ρ + 2 osc
∂Ω∩B2ρ

u. (30)

First, if
ω(2ρ) := osc

Ω∩B2ρ

u ≤ 2 osc
∂Ω∩B2ρ

u, (31)

inequality (30) is obvious. If (31) doesn’t hold, then either

inf
∂Ω∩B2ρ

u− inf
Ω∩B2ρ

u ≥ 1
4
ω(2ρ) or sup

Ω∩B2ρ

u− sup
∂Ω∩B2ρ

u ≥ 1
4
ω(2ρ).

Let’s say the first of these holds. Then the function u1 = u − inf
Ω∩B2ρ

u

satisfies the conditions of Proposition 45, with a = m = ω(2ρ)/8 – note
(29) is automatically satisfied thanks to the exterior cone condition. So

u(x)− inf
Ω∩B2ρ

u ≥ κω(2ρ)− C‖f‖LN (B2ρ)ρ for each x ∈ Bρ.

Hence, as before, ω(ρ) ≤ (1− κ)ω(2ρ) + C‖f‖LN (B2ρ) ρ, and (30) holds.
So, by applying Lemma 8.23 of [GT] to (30) for each γ ∈ (0, 1) we can

find α0 ∈ (0, 1) such that

ω(ρ) ≤ C sup
Ω∩Bρ0

|u| ρα0 + C‖f‖Lp(B2ρ)ρ
γ + 2 osc

∂Ω∩Bh(ρ)

u,

where h(ρ) = 2ρ0(ρ/ρ0)γ . The boundary estimate in Theorem 2 easily fol-
lows from this inequality.
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Proof of the global estimate for (3), µ = c = 0, f 6= 0. Putting together
the interior and the boundary estimates we already proved is standard, see
for example the proof of Theorem 8.29 in [GT] or the proof of Proposition
4.13 in [CC].

Proof of Theorem 2. To get the full strength of Theorem 2 we first use (S),
transferring the terms d(x)h(u, 0) to the right-hand side of the inequalities,
which permits to suppose d ≡ 0.

Let us prove the interior estimate. By (S) and Lemma 21 both u and
−u are solutions of M−

λ,Λ(D2u) − µ|Du|2 − b(x)|Du| ≤ |f(x)|. Hence, by
Lemma 23, the functions

w1 =
1− e−mu1

m
, w2 =

1− e−mu2

m

(with m = µ/λ, u1 = u− inf
B2ρ

u, u2 = sup
B2ρ

u− u) satisfy

M−
λ,Λ(D2wi)− b(x)|Dwi| ≤ |f |(1−mwi) =: f. (32)

Since at each point x ∈ B2ρ

wj(x) ≥ 1− e−m(ω(2ρ)/2)

m

for one j, say j = 1, reasoning as before we get

w1 ≥ κ
1− e−m(ω(2ρ)/2)

m
− (

C‖f‖LN

)
ρ,

for ρ ≤ ρ0, the number from Proposition 44. Note that for each t0 there
exists ξ = ξ(t0,m) such that t ≥ 1−e−mt

m ≥ ξt for t ∈ [0, t0]. We apply this
with t0 = ω(2ρ0)/2 and get u1 ≥ κξω(2ρ)− C‖f‖LN ρ in Bρ, so again

ω(ρ) ≤ C sup
Bρ0

|u| ρα + C‖f‖LN (B2ρ)ρ
γ . (33)

for ρ ∈ (0, ρ0). Note that here α depends on µ and sup u, because of the
choice of ξ, but this dependence can easily be transferred to C, by choosing
another α, if necessary. Indeed, ρ0 is independent of µ and sup u (ρ0 comes
from the applications of the ABP inequality to (32), as in the proofs of
Propositions 41 and 42). Then we can choose ρ1 ≤ ρ0 so small that, by
(33), oscB2ρ1

u is so small that if we repeat the above argument with ρ0

replaced by ρ1, we get ξ ≥ 1/2 – since obviously ξ → 1 as t0 → 0. This
implies (33) holds for ρ ≤ ρ1, with a different α1, which is independent of
µ and sup u, the dependence of these now being in the constants C and ρ1.
But since ρα ≤ Cρα1 for ρ ∈ [ρ1, ρ0], C = C(ρ1, ρ0), we see that we have
(33) for α replaced by α1, and all ρ ≤ ρ0.

The boundary estimate is proved similarly. ¤
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