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Solvability of fully nonlinear elliptic
equations with natural growth and

unbounded coefficients

Boyan SIRAKOV1

UFR SEGMI, Université Paris 10, 92001 Nanterre Cedex, France
and CAMS, EHESS, 54 bd Raspail, 75270 Paris Cedex 06, France

Abstract. We prove several results of existence, uniqueness and non-uniqueness of
viscosity solutions of uniformly elliptic fully nonlinear equations with unbounded
measurable ingredients and quadratic growth in the gradient.

1 Introduction and Main Results

In this paper we prove results on existence and uniqueness of solutions of
the Dirichlet problem for uniformly elliptic fully nonlinear equations in non-
divergence form

F (D2u,Du, u, x) = f(x) (1)

in a bounded domain Ω ⊂ RN . Our model equation is

M(D2u) + µ(x)|Du|2 + b(x)|Du|+ c(x)u = f(x), (2)

where M is a Pucci extremal operator (see below), and

µ ∈ L∞(Ω), b ∈ Lp(Ω), p > N, c, f ∈ LN(Ω). (3)

The quadratic dependence in the gradient is usually referred to in the litera-
ture as natural growth, while the condition on b is required for solvability of
the Dirichlet problem even for linear equations in non-divergence form. We
have new results in both particular cases when µ ≡ 0 or b ≡ 0.

Note (2) is only a model case, we shall not suppose that the operator
is convex or concave in any of its parts. For instance, our results apply
to general Bellman-Isaacs equations (these equations appear frequently in
control theory, large deviations problems, game theory)

sup
α∈A

inf
β∈B

Fα,β(u, x) = 0, (4)

where A, B are arbitrary index sets and Fα,β(u, x) denotes the operator

tr
(
Aα,β(x)D2u

)
+ <Qα,β(x)Du,Du> + <bα,β(x), Du> +cα,β(x)u− fα,β(x).

1e-mail : sirakov@ehess.fr
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For the general equation (1), we suppose that F (0, 0, 0, x) ≡ 0, and for
some null set N ⊂ Ω and all M,N ∈ Sn(R), p, q ∈ RN , u, v ∈ R, x ∈ Ω \ N ,

(S)





F (M, p, u, x)− F (N, q, v, x) ≤ M+
λ,Λ(M −N) + µ(|p|+ |q|)|p− q|

+b(x)|p− q|+ d(x)h(u, v)

F (M, p, u, x)− F (N, q, v, x) ≥ M−
λ,Λ(M −N)− µ(|p|+ |q|)|p− q|

−b(x)|p− q| − d(x)h(u, v),

where 0 < λ ≤ Λ, µ ∈ R, b ∈ Lp(Ω) for some p > N , d ∈ LN(Ω),
µ, b, d ≥ 0, and h, h ∈ C(R2). We recall that Pucci’s operators are defined
by M+

λ,Λ(M) = supA∈A tr(AM), M−
λ,Λ(M) = inf

A∈A
tr(AM), where A ⊂ SN

denotes the set of matrices whose eigenvalues lie in the interval [λ, Λ]. Note
M1,1(D

2u) = ∆u.
When we speak of solutions of (1) we shall mean LN -viscosity solutions

– we refer to [CCKS] for a general review of these (we recall definitions and
results that we need in the next section). Note that viscosity solutions are
continuous and that any function in W 2,N

loc (Ω) satisfies (1) almost everywhere
– such a solution is called strong – if and only if it is a LN -viscosity solution.

Here is our main result. As usual, we set a± = max{±a, 0}.
Theorem 1 Suppose (S) holds with h = h((u − v)+), h = h((v − u)+), for
some continuous function h, with h(0) = 0. Let c ∈ LN(Ω). Then

(i) if c(x) ≤ −c0 a.e. in Ω, for some c0 > 0, then for any f ∈ LN(Ω) there
exists a solution u ∈ C(Ω) of

{
F (D2u,Du, u, x) + c(x)u = f(x) in Ω

u = 0 on ∂Ω.
(5)

(ii) there exist positive constants δ0, c0, depending on λ, Λ, p,N, Ω, ‖b‖Lp(Ω),
such that if

‖µf‖LN (Ω) ≤ δ0 and ‖c+‖L∞(Ω) < c0, (6)

then there exists a solution u ∈ C(Ω) of (5).

(iii) If problem (5) with c+ ≡ 0 or with µ = 0 and ‖c+‖L∞(Ω) < c0 has a
strong solution then this solution is the unique viscosity solution of (5).

(iv) The strong solutions of (5) are not unique if µ > 0 and c(x) ≡ c > 0
arbitrarily small, even for b = d = f ≡ 0 (see Theorem 6 in Section 4).
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Remark 1. The choice of h, h in Theorem 1 means F is nonincreasing in u. Of
course the term c(x)u in (5) can be incorporated into F , with corresponding
modifications of the hypotheses. We have avoided this, for clarity.
Remark 2. Gradient dependence with precise growth between 1 and 2 can
be dealt with through the (trivial) inequality xm ≤ (2 −m)x + (m − 1)x2,
valid for all x ≥ 0, m ∈ [1, 2].
Remark 3. We recall that, even for the simplest equations satisfying our
hypotheses, for µ = 0 and c(x) ≡ c0 large, or for µf large and c ≡ 0, there
may not exist solutions of (5) (see the end of the paper).

Existence of strong solutions of quasilinear uniformly elliptic equations
was studied in the classical works of Ladizhenskaya-Uraltseva and Krylov-
Safonov, [LU1], [LU2], [KSa], [K]. For viscosity solutions and fully nonlinear
equations, in the linear growth case (µ = 0), results for solvability of (5) can
be found in [CCKS] and in [CKLS], for equations with bounded coefficients.
An existence result for equations where F is convex in D2u, c ≡ 0, and
b ∈ L2N close to the boundary is stated in the thesis work [F1]. An existence
result for µ > 0, b bounded and c = 0 is contained in the recent paper [KS1],
where the authors use results from [F1]. In all these works it is supposed
that c+ ≡ 0. The results in (i) and (ii) above unify and extend the results in
the fully nonlinear setting, to cover the cases of b ∈ Lp, p > N, c, d ∈ LN , and
changing-sign zero-order term. Actually, in the fully nonlinear case c+ 6≡ 0
has only been considered in the recent work [QS2], where convex positively
homogeneous operators (like (2) with µ ≡ 0, Bellman equations) were studied
and the constant c0 from (6) is related to eigenvalues of F .

It is important to note that solvability of elliptic equations with nat-
ural growth has been studied very extensively for divergence-form equations,
where weak solutions can be searched for in Sobolev spaces. A typical exam-
ple in this case is the equation

div(A(x)Du) + µ|Du|2 + b(x).Du + c0u = f(x),

for b ∈ LN(Ω), f ∈ Lq(Ω). Note that in this situation q = N/2 is the dividing
number for the solutions to be bounded and continuous. We shall quote here
[BMP1], [BMP2], [AGP] for the case c0 < 0, and [MPS], [FM], [GMP] for the
case c0 = 0 (see also the references in these works). Corresponding uniqueness
results in the natural Sobolev spaces were proved in [BM], [BBGK], [BP].
Some results on uniqueness of viscosity solutions of quasilinear equations
with Lipschitz ingredients are obtained in [BR].

Our Theorem 1 can be seen as a counterpart of these results for fully
nonlinear equations in non-divergence form, where the natural weak notion of
a solution is the viscosity one. Of course the methods in the two frameworks
are completely different.
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Further, the existence hypothesis (6) appears to be new, even in the
divergence case. All previous works seem to have concerned either c+ ≡ 0 or
µ = 0. Unifying these results leads to qualitatively new phenomena, as the
fact that uniqueness breaks down attests.

We remark that in the framework of non-divergence form operators with
measurable ingredients uniqueness of viscosity solutions does not hold in
general, even for linear equations (see [N] and [Sa] for counter-examples). So,
to have a uniqueness result like in Theorem 1 (iii) some additional hypothesis
is needed. Generally, the existence of a strong solution is such a hypothesis,
verified for example by operators which are convex or concave in D2u and
F (M, 0, 0, x) is continuous.

The existence result in Theorem 1 (i) is based on the method of sub-
and supersolutions, together with approximation techniques (see Theorem 4
in Section 4). For the results in (ii) we use in addition some recent results
on existence and properties of eigenvalues of convex fully nonlinear opera-
tors, obtained in [QS2]. The proof of the result in (iv) is based on results
on solvability of superlinear equations, which admit a priori bounds in the
uniform norm for their positive solutions. The uniqueness result in (iii) is a
consequence of the ABP inequality, see below.

An important point in the existence proofs is a result on global Hölder
continuity of solutions of equations of type (1), satisfying (S). This result,
which is of clear independent interest, permits to approximate the equations
we consider by equations with regular ingredients.

Theorem 2 Suppose (S) holds for N = q = v = 0 and u ∈ C(Ω) is a
solution of (1). Then

1. (interior estimate) there exists α ∈ (0, 1) depending only on N, λ, Λ, p,
‖b‖Lp(Ω), such that u ∈ Cα

loc(Ω), and for any subdomain Ω′ ⊂⊂ Ω we have

‖u‖Cα(Ω′) ≤ K,

where K depends on N, λ, Λ, µ, p, ‖b‖Lp(Ω), ‖c‖LN (Ω), ‖f‖LN (Ω), dist(Ω′, ∂Ω),
and sup

Ω′
u.

2. (global estimate) if, in addition, u ∈ C(Ω), u|∂Ω ∈ Cβ(∂Ω) for some
β ∈ (0, 1), and Ω satisfies an uniform exterior cone condition (with size L),
then there exists some α ∈ (0, 1) depending only on N, λ, Λ, β, L, p, ‖b‖Lp(Ω),
such that u ∈ Cα(Ω), and

‖u‖Cα(Ω) ≤ K,

where K depends on N, λ, Λ, µ, p, ‖b‖Lp(Ω), ‖c‖LN (Ω), ‖f‖LN (Ω), L, sup
Ω

u, and

diam(Ω).
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Interior Hölder estimates for the viscosity solutions of Pucci equations
(µ = b ≡ 0 in (2)) were obtained by Caffarelli in his founding work [C],
see also [CC]. These estimates were extended to operators with bounded
coefficients (µ, b, c, f ∈ L∞(Ω)) in [W]. The proofs in [W] are somewhat
difficult to read, an alternative approach can be found in [F1], see Theorem
1.3 there. We do not know of any works on Hölder estimates for viscosity
solutions of equations with unbounded coefficients.

In the above works the Hölder estimate is obtained as a consequence of a
Harnack inequality for the corresponding equation. Here we will make use
of another idea, whose essence is that one does not need to prove a Harnack
inequality if only Hölder estimates are aimed at ; actually, it is enough to have
some comparison between the measures of level sets of the solution, which
can be achieved by use of simple barriers and the so-called ABP inequality
(this exhibits, as in so many other situations, the strength of this splendid
result), which we discuss in the next section. The idea of using level sets to
prove Harnack inequalities and Hölder regularity is essentially due to Krylov
and Safonov. Another adaptation of their methods to viscosity solutions
was used in the proof of the interior Harnack inequality for Pucci equations
in [CC].

In the next section we give some preliminary results and recall definitions
and results which we need, in particular the ABP inequality. The proof of
Theorem 2 is given in Section 3, while Section 4 is devoted to the proof of
Theorem 1.

Acknowledgement. The author is indebted to A. Swiech for some very
useful comments.

2 Preliminaries

Let us start by recalling the definition of a viscosity solution of (1).

Definition 2.1 We say that the function u ∈ C(Ω) is a Lp-viscosity subso-
lution (supersolution) of (1), provided for any ε > 0, any open subset O ⊂ Ω,
and any ϕ ∈ W 2,p(O) – we call ϕ a test function – such that

F (D2ϕ(x), Dϕ(x), u(x), x) ≤ f(x)− ε
(F (D2ϕ(x), Dϕ(x), u(x), x) ≥ f(x) + ε) a.e. in O,

the function u − ϕ cannot achieve a local maximum (minimum) in O. In
this case we say that the function w satisfies F (D2u,Du, u, x) ≥ (≤)f in the
Lp-viscosity sense in Ω.
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If both F and f are continuous in x and the above definition holds for all
ϕ ∈ C2(O), then we speak of C-viscosity subsolution (supersolution).

We say that u is a solution of (1) if u is at the same time a subsolution
and a supersolution of (1).

We recall that strong and C-viscosity solutions are Lp-viscosity solutions,
see [CCKS], and that whenever a function in W 2,N

loc (Ω) satisfies an inequality
F (D2u,Du, u, x) ≥ (≤)f a.e. then it is a viscosity solution.

We shall make essential use of the Generalized Maximum Principle for el-
liptic equations, commonly known as the Alexandrov-Bakelman-Pucci (ABP)
inequality. It was obtained by Bakelman and Alexandrov, see [A1], [A2], [Ba],
and independently by Pucci [P]. It states that for any measurable matrix
A(x), λI ≤ A(x) ≤ ΛI, x ∈ Ω, any b ∈ LN(Ω)N , f ∈ LN(Ω), and any
u ∈ W 2,N

loc (Ω) ∩ C(Ω) such that

tr(A(x)D2u) + b(x).Du ≥ f(x)

we have
sup

Ω
u ≤ sup

∂Ω
u+ + C‖f‖LN (Γ)

where C depends on N, λ, Λ, ‖b‖LN (Ω), diam(Ω), and Γ is the upper contact
set of u.

A breakthrough in the theory of viscosity solutions of uniformly ellip-
tic equations was the extension of this inequality to viscosity solutions of
M(D2u) ≥ f , obtained by Caffarelli in [C]. The result was subsequently
extended to equations with bounded measurable coefficients in [W], [CCKS],
and to unbounded coefficients in [F2]. A simple self-contained proof of the
result from [F2] can be found in [KS2]. We give the statement next.

Theorem 3 ([F2], [KS2]) Suppose u ∈ C(Ω) is a Lq-viscosity solution of

M+
λ,Λ(D2u) + b(x)|Du| ≥ f(x),

where b ∈ Lp(Ω) for some p > N , and f ∈ Lq(Ω), for some q ≥ N . Then

sup
Ω

u ≤ sup
∂Ω

u+ + (diam(Ω))2−N
q C1‖f‖Lq(Ω+), (7)

where Ω+ = {x ∈ Ω : u(x) > 0} and C1 is a constant which depends
on N, λ, Λ, p, q, ‖b‖Lp(Ω), diam(Ω), and C1 remains bounded when all these
quantities are bounded.

6



Remark 1. Note that the norm of f in (7) has to be taken over the whole
domain Ω. Then, reapplying the result in the set Ω+ one sees that it is
enough to consider the norm over Ω+. We are going to use this in the proof
of the Hölder regularity.
Remark 2. Theorem 3 is a scaled version (with respect to diam(Ω)) of either
Theorem 1.2 of [F2] or Proposition 2.8 in [KS2]. Actually, the result is based
on an upgrade to unbounded coefficients of the basic Lemma 3.1 in [CCKS],
where the correct scaling is given.

We recall some easy properties of Pucci operators (see for instance [CC]).

Lemma 2.1 Let M, N ∈ SN , φ(x) ∈ C(Ω) be such that 0 < a ≤ φ(x) ≤ A.
Then

M−
λ,Λ(M) = −M+

λ,Λ(−M),

M−
λ,Λ(M) = λ

∑

{νi>0}
νi + Λ

∑

{νi<0}
νi, where {ν1, . . . , νN} = spec(M),

M−
λ,Λ(M) +M−

λ,Λ(N) ≤M−
λ,Λ(M + N) ≤M−

λ,Λ(M) +M+
λ,Λ(N),

M−
λ,Λ(M) +M+

λ,Λ(N) ≤M+
λ,Λ(M + N) ≤M+

λ,Λ(M) +M+
λ,Λ(N),

M−
λa,ΛA(M) ≤M−

λ,Λ(φM) ≤M−
λA,Λa(M),

We will also use the following simple fact.

Lemma 2.2 Suppose u ∈ C2(B) is a radial function, say u(x) = g(|x|),
defined on a ball B ⊂ RN . Then g′′(|x|) is an eigenvalue of the matrix
D2u(x), and |x|−1g′(|x|) is an eigenvalue of multiplicity N − 1.

The following lemma will help us deal with the quadratic dependence in
the gradient.

Lemma 2.3 Let u ∈ W 2,N
loc (Ω). For any m > 0 set

v =
emu − 1

m
, w =

1− e−mu

m
.

Then a.e. in Ω Dv = (1 + mv)Du, Dw = (1−mw)Du,

mλ|Du|2 +M±
λ,Λ(D2u) ≤ M±

λ,Λ(D2v)

1 + mv
≤ mΛ|Du|2 +M±

λ,Λ(D2u),

−mΛ|Du|2 +M±
λ,Λ(D2u) ≤ M±

λ,Λ(D2w)

1−mw
≤ −mλ|Du|2 +M±

λ,Λ(D2u).

and, clearly, u = 0 (or u > 0) is equivalent to v = 0 (or v > 0).
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The same inequalities hold in the LN -viscosity sense, that is, if, for ex-
ample, u ∈ C(Ω) is a viscosity solution of

M+
λ,Λ(D2u) + µ|Du|2 + b(x)|Du| ≥ f(x) (8)

then v is a viscosity solution of

M+
λ,Λ(D2v) + b(x)|Dv| − (µ/λ)f(x)v ≥ f(x), etc. (9)

Proof. This is a matter of an easy computation and use of Lemma 2.1 and
Definition 2.1. Suppose first that u ∈ W 2,N

loc (Ω). Then a.e. in Ω

Dv = emuDu, D2v = emuD2v + mDu⊗Du,

Dw = e−muDu, D2w = e−muD2w −mDu⊗Du,

and the inequalities follow by Lemma 2.1, since

spec (Du⊗Du) = {0, . . . , 0, |Du|2}.

If u is only continuous and we suppose v does not satisfy (9), then there
exists a function ψ ∈ W 2,p

loc (Ω) and ε > 0 such that ψ− v attains a minimum
in some open set O, while for m = µ/λ

M+
λ,Λ(D2ψ) + b(x)|Dψ| ≤ f(x)emu − ε in O.

By setting φ = (1/m) log(1+mψ) we get a contradiction with the fact that u
satisfies (8) in the sense of Definition 2.1, since then φ−u attains a minimum
in O. ¤

3 Proof of Theorem 2

For any measurable subset A in RN we denote the measure of A by |A| or
meas(A). As usual, constants denoted by C may change from line to line,
and depend only on the appropriate quantities.

For clarity, we are going to start by giving the proof of the interior es-
timate in the case of the model equation (2), with µ = 0, c = f ≡ 0. The
following statements appear, in somewhat different form and for strong so-
lutions of quasilinear equations with bounded ingredients, in the works of
Krylov and Safonov (see for instance [K]).

The next proposition states that, for any given subdomain Ω′ ⊂⊂ Ω, if a
level set in Ω′ of a positive supersolution has sufficiently small measure with
respect to |Ω′|, then this supersolution is uniformly positive in Ω′.
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Proposition 3.1 There exist numbers δ, κ, ρ0 > 0 depending only on N , λ,
Λ, ‖b‖Lp, p > N , such that if for some ρ ∈ (0, ρ0) the ball B2ρ ⊂ Ω, and
b ∈ Lp(B2ρ), b ≥ 0, u ∈ C(B2ρ) satisfy

G[u] := M−
λ,Λ(D2u)− b(x)|Du| ≤ 0 in B2ρ

u ≥ 0 in B2ρ,

then for any a > 0

meas {x ∈ Bρ : u(x) < a} ≤ δ |Bρ| implies u ≥ κa in Bρ.

Proof. Without restricting the generality we can suppose a = 1 (replace u
by u/a). Set

v = 1− |x|2
ρ2

.

Then, by Lemmas 2.1 and 2.2, for any x ∈ Bρ

M+
λ,Λ(D2(v − u)) + b(x)|D(v − u)| ≥ M−

λ,Λ(D2v)− b(x)|Dv| −G[u]

≥ − 2

ρ2
(NΛ + b(x)|x|)

≥ −C

ρ2
(1 + ρb(x)) ,

provided u ∈ W 2,N(B2ρ). Extending this inequality to u only continuous is
then easy (and very standard, since v ∈ C2), by using Definition 2.1 and test
functions.

Since v − u ≤ 0 on ∂Bρ, by applying Theorem 3 (with q = N) to this
inequality we obtain

sup
Bρ

(v − u) ≤ Cρ−1‖1 + ρb(x)‖LN (Bρ∩{v−u>0}).

Note that {v − u > 0} ⊂ {u < 1}, so meas(Bρ ∩ {v − u > 0}) ≤ δ CρN , by
hypothesis. Then the triangle and Hölder inequalities imply

sup
Bρ

(v − u) ≤ Cδ + ρε1‖b‖Lp(Bρ),

where ε1 = (p−N)/Np. By choosing δ and ρ0 sufficiently small we get

3

4
− inf

B ρ
2

u = inf
B ρ

2

v − inf
B ρ

2

u ≤ sup
B ρ

2

(v − u) ≤ sup
Bρ

(v − u) ≤ 1

4
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for ρ ≤ ρ0, so

u ≥ 1

2
in B ρ

2
. (10)

Now set, for s > 0 and x ∈ B2ρ \B ρ
2
,

w =
1

4

|x|−s − (2ρ)−s

(ρ/2)−s − (2ρ)−s
.

It is easy to compute, with the help of Lemma 2.2, that

M−
λ,Λ(D2(|x|−s))− b(x)|D(|x|−s)| = s(λ(s + 1)−Λ(N − 1)− b(x)|x|)|x|−s−2,

and hence, fixing s such that λ(s + 1) = Λ(N − 1),

M+
λ,Λ(D2(w − u)) + b(x)|D(w − u)| ≥ M−

λ,Λ(D2w)− b(x)|Dw| −G[u]

≥ −Cρs|x|−s−2b(x)|x|
≥ −Cρ−1b(x)

in the set B2ρ \B ρ
2
. Since w − u ≤ 0 on ∂(B2ρ \B ρ

2
), Theorem 3 yields

sup
Bρ\B ρ

2

(w − u) ≤ sup
B2ρ\B ρ

2

(w − u) ≤ C‖b‖LN (B2ρ) ≤ Cρε1‖b‖Lp(Bρ)

so, by taking ρ0 sufficiently small, we have, for ρ ≤ ρ0,

u(x) ≥ inf
Bρ\B ρ

2

w − Cρε1 ≥ 2−s−3 − Cρε1 ≥ 2−s−4 , for x ∈ Bρ \B ρ
2

which finishes the proof of Proposition 3.1. ¤
We shall use the following well-known measure theoretic result (Krylov’s

”propagating ink spots” lemma).

Lemma 3.1 Let G be a ball and K be some measurable subset of G, such
that |K| ≤ η|G|, for some η ∈ (0, 1). Let F be the set of all balls B contained
in G, and such that |B ∩K| ≥ η|B|. Then there exists ζ > 0 depending only
on N, η, such that

meas(∪B∈FB) ≥ (1 + ζ)meas(K).

Proof. This is essentially inequality (9.20) from [GT], setting f to be the
indicator function of K in the reasoning there. ¤

Wit the help of this lemma we can prove the result from Proposition (3.1)
for any δ ∈ (0, 1).
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Proposition 3.2 If for some ρ ∈ (0, ρ0) (ρ0 is the number from Proposition
3.1) the ball B2ρ ⊂ Ω, and b ∈ Lp(B2ρ), p > N , b ≥ 0, u ∈ C(B2ρ) satisfy

G[u] := M−
λ,Λ(D2u)− b(x)|Du| ≤ 0 in B2ρ

u ≥ 0 in B2ρ,

then for any ν, a > 0 there exists κ > 0 depending on ν, N, λ, Λ,‖b‖Lp, p > N ,
such that

meas {x ∈ Bρ : u(x) ≥ a} ≥ ν |Bρ| implies u ≥ κa in Bρ.

Remark. Proposition 3.2 can be viewed as a ”very weak” Hölder inequality.
Note that the usual weak Hölder inequality infBρ u ≥ C|Bρ|−1/q‖u‖Lq(Bρ)

contains a much stronger statement.

Proof of Proposition 3.2. Set Ka = {x ∈ Bρ : u(x) ≥ a}. We know that

|Ka| ≥ ν |Bρ|.

If |Ka| ≥ (1 − δ)|Bρ|, where δ is the number from Proposition 3.1 then we
conclude, by that Proposition.

If, on the other hand, |Ka| < (1 − δ)|Bρ|, we apply Lemma 3.1, with
η = 1 − δ. By Proposition 3.1 we have u ≥ κa in each ball in F (defined
in Lemma 3.1), for some κ > 0, depending on the appropriate quantities.
Hence, by Lemma 3.1,

|Kκa| ≥ (1 + ζ)|Ka| ≥ ν(1 + ζ) |Bρ|.

We repeat the same reasoning and get either Proposition 3.2 or

|Kκ2a| ≥ ν(1 + ζ)2 |Bρ|.

This process stops after at most n iterations, where n is a number such that
ν(1 + ζ)n ≥ 1. ¤
Proof of the interior Cα-estimate for (2), µ = c = f = 0. We recall we
have a solution u ∈ C(Ω) of

M(D2u) + b(x)|Du| = 0.

Then for any ρ such that B2ρ ⊂ Ω the functions

u1 := u− inf
B2ρ

u, u2 := sup
B2ρ

u− u,

11



satisfy the hypotheses of Proposition 3.2. In addition,

ω(2ρ) := osc
B2ρ

u = u1 + u2,

so at each point of B2ρ one of u1, u2 is larger than 1
2
ω(2ρ). This implies

meas

{
x ∈ Bρ : ui(x) ≥ 1

2
ω(2ρ)

}
≥ 1

2
meas(Bρ),

for one i, say for i = 1. Then we can apply Proposition 3.2 to u1 and infer

u− inf
B2ρ

u = u1 ≥ κω(2ρ) in Bρ,

which implies
inf
Bρ

u ≥ κ sup
B2ρ

u + (1− κ) inf
B2ρ

u,

and hence
ω(ρ) ≤ (1− κ)ω(2ρ),

for all ρ ∈ (0, ρ0).
The proof is now standardly finished, with the help of Lemma 8.23 in

[GT], which implies

ω(ρ) ≤ Cραρ−α
0 ω(ρ0) = C(sup

B2ρ

u)ρα,

for some α depending on N, λ, Λ, ‖b‖Lp(B2ρ), p > N . ¤.

Next, we give the changes in the proofs of Propositions 3.1 and 3.2, which
we have to make in order to deal with a nontrivial right-hand side.

Proposition 3.3 There exist numbers δ, κ, ρ0, C0 > 0 depending only on
N, λ, Λ,‖b‖Lp, p > N , such that if for some ρ ∈ (0, ρ0) the ball B2ρ ⊂ Ω and
f ∈ LN(Ω), b ∈ Lp(B2ρ), b, f ≥ 0, u ∈ C(B2ρ) satisfy

G[u] := M−
λ,Λ(D2u)− b(x)|Du| ≤ f(x) in B2ρ

u ≥ 0 in B2ρ,

then, for any a > 0, meas {x ∈ Bρ : u(x) < a} ≤ δ meas(Bρ) implies

inf
Bρ

u ≥ κa− C0ρ‖f‖LN (B2ρ). (11)

12



Proof. The proof goes the same way as the proof of Proposition 3.1, by
adding −f to the right-hand sides of the inequalities to which we apply
Theorem 3. We can suppose meas {x ∈ Bρ : u(x) < 1} ≤ δ meas(Bρ), with
f replaced by f/a. Then inequality (10) reads

u ≥ 1

2
− C1a

−1ρ‖f‖LN (B2ρ) in B ρ
2
, (12)

where C1 is the constant from the ABP inequality. We distinguish two cases.
First, if a < 4C1ρ‖f‖LN (Bρ) then the conclusion of Proposition 3.3 trivially
holds, with κ = 1, C0 = 4C1 (so that the right-hand side of (11) be negative).
If not, we have u ≥ 1

4
in B ρ

2
, and we finish the proof as in Proposition 3.1. ¤

Proposition 3.4 If for some ρ ∈ (0, ρ0) (ρ0 is the number from Proposition
3.3) the ball B2ρ ⊂ Ω and f ∈ LN(Ω), b ∈ Lp(B2ρ), b, f ≥ 0, u ∈ C(B2ρ)
satisfy

G[u] := M−
λ,Λ(D2u)− b(x)|Du| ≤ f(x) in B2ρ

u ≥ 0 in B2ρ,

then for any ν, a > 0 there exist κ,C > 0 depending on N, λ, Λ,‖b‖Lp, p > N ,
such that meas{x ∈ Bρ : u(x) ≥ a} ≥ ν meas(Bρ) implies

inf
Bρ

u ≥ κa− Cρ‖f‖LN (B2ρ). (13)

Proof. We have to modify the proof of Proposition 3.2 as in the proof of
the previous proposition. Suppose meas(Ka) < (1 − δ)meas(Bρ). Then if
a < (2κ)C0ρ‖f‖LN (B2ρ) (the constants κ,C0 are defined in the Proposition
3.3) then inequality (13) is trivially true, by choosing κ,C such that its right-
hand side is negative. If not, then u ≥ κ

2
a in each ball in F (defined in Lemma

3.1), by Proposition 3.3. Then we repeat the same reasoning as in the proof
of Proposition 3.2, distinguishing at each step the cases when a is smaller or
larger than (2κ)lC0ρ‖f‖LN (B2ρ), l = 1, . . . , n. ¤
Proof of the interior Cα-estimate for (2), µ = c = 0, f 6= 0. We reason
in exactly the same way as in the case f = 0, only at the end we get

ω(ρ) ≤ (1− κ)ω(2ρ) +
(
C‖f‖LN (B2ρ)

)
ρ,

to which Lemma 8.23 of [GT] applies as well : for any γ ∈ (0, 1) there exists
α depending on γ,N, λ, Λ,‖b‖Lp , p > N , such that

ω(ρ) ≤ C(sup
B2ρ

u)ρα + C‖f‖LN (B2ρ)ρ
γ.

13



Remark. Note that in order to carry out all the above arguments it is actually
sufficient to know that

M+
λ,Λ(D2u) + b(x)|Du| ≥ −f(x),

M−
λ,Λ(D2u)− b(x)|Du| ≤ f(x),

The next proposition deals with the extension of the result to the bound-
ary. It uses the well-known idea of extending the function u as a constant
outside the domain (like for example in Theorem 8.26 or 9.27 in [GT]).

Proposition 3.5 There exist constants κ,C, ρ0 depending on N, λ, Λ,‖b‖Lp,
p > N , such that if, for some ball B ⊂ RN , and f ∈ LN(B), b ∈ Lp(B),
b, f ≥ 0, u ∈ C(Ω) we have

G[u] := M−
λ,Λ(D2u)− b(x)|Du| ≤ f(x) in Ω ∩B,

u ≥ 0 in Ω ∩B,

u ≥ 2m on ∂Ω ∩B,

for some m > 0, then for any ball B2ρ ⊂ Ω ∪B, ρ ≤ ρ0, and any ν, a > 0

meas {x ∈ Bρ : u(x) ≥ a} ≥ ν meas(Bρ) (14)

implies
inf
Bρ

u ≥ κa− Cρ‖f‖LN (Ω),

where u ∈ C(B) is defined by

u(x) =

{
m if x ∈ Ω \B

min{u(x),m} if x ∈ Ω ∩B .

Proof. The function u satisfies the hypotheses of Proposition 3.4 in the
ball B – since the minimum of two viscosity supersolutions is a viscosity
supersolution, and G[m] ≡ 0 ≤ f(x). ¤
Proof of the boundary Cα-estimate for (2), µ = c = 0, f 6= 0. Let
x0 ∈ ∂Ω. Then by the uniform cone condition, for some ρ and some ξ > 0
(depending on L), the balls B with center x0 and radii 2ρ, ρ ≤ ρ, satisfy
meas(B \ Ω) ≥ ξmeas(B).

We want to show that for each ball Bρ with center x0 and sufficiently
small radius ρ we have

osc
Ω∩B2ρ

u ≤ Cρα. (15)
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First, if
ω(2ρ) := osc

Ω∩B2ρ

u ≤ 2 osc
∂Ω∩B2ρ

u, (16)

inequality (15) follows with α = β, since u|∂Ω is in Cβ(∂Ω). If (16) doesn’t
hold, then either

inf
∂Ω∩B2ρ

u− inf
Ω∩B2ρ

u ≥ 1

4
ω(2ρ) or sup

Ω∩B2ρ

u− sup
∂Ω∩B2ρ

u ≥ 1

4
ω(2ρ).

Let’s say the first of these holds. Then the function

u1 = u− inf
Ω∩B2ρ

u

satisfies the conditions of Proposition 3.5, with a = m = ω(2ρ)/8 – note (14)
is automatically satisfied thanks to the exterior cone condition. So

u(x)− inf
Ω∩B2ρ

u ≥ κω(2ρ)− C‖f‖LN (B2ρ)ρ for each x ∈ Bρ.

Hence again
ω(ρ) ≤ (1− κ)ω(2ρ) + C‖f‖LN (B2ρ) ρ,

and
ω(ρ) ≤ C(sup

B2ρ

u)ρα + C‖f‖Lp(B2ρ)ρ
γ.

Proof of the global Cα-estimate for (2), µ = c = 0, f 6= 0. Putting
together the interior and the boundary estimates we already proved is stan-
dard, see for example the proof of Theorem 8.29 in [GT] or the proof of
Proposition 4.13 in [CC].

Proof of Theorem 2. To get the full strength of Theorem 2 we first use (S),
transferring the terms d(x)h(u, 0) to the right-hand side of the inequalities,
which permits to suppose d ≡ 0.

Let us prove the interior estimate. By (S) and Lemma 2.1 both u and
−u are solutions of

M−
λ,Λ(D2u)− µ|Du|2 − b(x)|Du| ≤ |f(x)|,

hence, by Lemma 2.3, the functions

w1 =
1− e−m(u−infB2ρ

u)

m
w2 =

1− e
−m(supB2ρ

u−u)

m

(with m = µ/λ) satisfy

M−
λ,Λ(D2wi)− b(x)|Dwi| ≤ |f |(1−mwi) =: f. (17)
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Since at each point x ∈ B2ρ

wj(x) ≥ 1− e−m(ω(2ρ)/2)

m

for one j, say j = 1, reasoning as before we get

w1 ≥ κ
1− e−m(ω(2ρ)/2)

m
− (

C‖f‖LN

)
ρ,

for ρ ≤ ρ0, the number from Proposition 3.4. Note that for each t0 there
exists ξ = ξ(t0,m) such that

t ≥ 1− e−mt

m
≥ ξt for t ∈ [0, t0]

We apply this with t0 = ω(2ρ0)/2 and get

u1 ≥ κξω(2ρ)− C‖f‖LN ρ. in Bρ,

so again
ω(ρ) ≤ C(sup

B2ρ

u)ρα + C‖f‖LN (B2ρ)ρ
γ. (18)

for ρ ∈ (0, ρ0). Note that here α depends on µ and sup u, because of the choice
of ξ, but this dependence can easily be transferred to C, by choosing another
α, if necessary. Indeed, ρ0 is independent of µ and sup u (ρ0 comes from the
applications of the ABP inequality to (17), as in the proofs of Propositions
3.1 and 3.2). Then we can choose ρ1 ≤ ρ0 so small that, by (18), oscB2ρ1

u
is so small that if we repeat the above argument with ρ0 replaced by ρ1,
we get ξ ≥ 1/2 – since obviously ξ → 1 as t0 → 0. This implies (18)
holds for ρ ≤ ρ1, with a different α1, which is independent of µ and sup u,
the dependence of these now being in the constants C and ρ1. But since
ρα ≤ Cρα1 for ρ ∈ [ρ1, ρ0], C = C(ρ1, ρ0), we see that we have (18) for α
replaced by α1, and all ρ ≤ ρ0.

The boundary estimate is proved similarly. ¤

4 Proof of Theorem 1

The first lemma concerns existence of sub- and supersolutions in the contin-
uous setting.
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Lemma 4.1 Suppose ∂Ω is of class C2. For any positive constants µ, b, c, k,
there exist C-viscosity solutions u1, u2, such that u1 ≤ 0 ≤ u2 in Ω, ui = 0
on ∂Ω, of

M+
λ,Λ(D2u2) + µ|Du2|2 + b|Du2| − cu2 ≤ −k,

M−
λ,Λ(D2u1)− µ|Du1|2 − b|Du1| − cu1 ≥ k.

Proof. The proof of this lemma is based on techniques described in [CIL].
Let us prove there exists a solution of the first inequality (note the second
inequality is obtained from the first by the change u → −u). In view of
Lemma 2.3, it is enough to construct a solution of

M+
λ,Λ(D2v) + b|Dv| − (c/m)(1 + mv) log(1 + mv) ≤ −k(1 + mv), (19)

such that v = 0 on ∂Ω, with m = µ/λ, v defined in Lemma 2.3.
To avoid writing constants, suppose for simplicity c = m = k = 1. Then

v1 ≡ e− 1 =: A is a solution of (19) in Ω. We search for a neighbourhood of
∂Ω, denoted by Ωα = {x ∈ Ω : dist(x, ∂Ω) < 1

α
}, and a function v2 which

satisfies (19) in Ωα, such that

v2 =

{
A + 1 on ∂Ωα

0 on ∂Ω

Then the function

v =

{
A in Ω \ Ωα

min{v2, A} in Ωα

is a solution of (19), again using the fact that the minimum of two viscosity
supersolutions is a viscosity supersolution.

So we set

v2 = (A + 1)(1 + e−1)−1
(
1− e−αd(x)

)
in Ωα,

where d(x) is the distance function to the boundary and α is chosen suffi-
ciently large so that d is C2 in Ωα.

Let
B = max

t∈[0,A+1]
(1 + t)(1− log(1 + t)).

Then, computing Dv2 and D2v2, and using the fact that |Dd| = 1 and D2d is
bounded in Ωα (see for instance Chapter 14.16 in [GT]) we get, by Lemma 2.1,

M+
λ,Λ(D2v2) + b|Dv2| ≤ −C1α

2 + C2α < −B,

if α is large enough ; here C1, C2 depend on the right quantities and ∂Ω. ¤
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Corollary 4.1 Under the conditions of Theorem 1 (i), problem (5) has a
C-viscosity solution provided F is continuous in x ∈ Ω (so the functions in x
appearing in the bounds in (S) can be considered continuous), and f ∈ C(Ω).

Proof. When ∂Ω is smooth this follows from (S), the previous lemma and
Theorems 3.3 and 4.1 in [CIL]. To extend the result to a domain Ω which
only satisfies the uniform exterior cone condition with size L, we approximate
Ω by smooth domains Ωn, which admit exterior cones with size L/2, such
that Ω ⊂ Ωn, and take solutions un of (5) in Ωn. Then, by our Theorem 2, un

is uniformly bounded in Cα(Ωn), so, by the compact embedding Cα ↪→ C0,
a subsequence of un converges uniformly in Ω to a function u, which is then
a solution of (5) in Ω, by the convergence results in [CIL]. ¤

The next proposition asserts the existence of strong subsolutions and
supersolutions of extremal equations of our type.

Proposition 4.1 For any µ ≥ 0, c > 0, b ∈ Lp(Ω), p > N , f ∈ LN(Ω),
b, f ≥ 0 there exist strong solutions u1, u2 of

M+
λ,Λ(D2u2) + µ|Du2|2 + b(x)|Du2| − cu2 ≤ −f(x),

M−
λ,Λ(D2u1)− µ|Du1|2 − b(x)|Du1| − cu1 ≥ f(x),

such that u1 ≤ 0 ≤ u2 in Ω, ui = 0 on ∂Ω.

We shall use the following lemma.

Lemma 4.2 Let c,m > 0 and b, f ∈ C(Ω). Then there exist strong solutions
of the equations

M+
λ,Λ(D2v) + b(x)|Dv| = (f(x) + (c/m) log(1 + mv))(1 + mv)

in Ω, v = 0 on ∂Ω.

Proof. We take the solutions of the problems

M+
λ,Λ(D2u2) + mΛ|Du2|2 + ‖b‖L∞(Ω)|Du2| − cu2 ≤ −‖f‖L∞(Ω),

M+
λ,Λ(D2u1) + mλ|Du1|2 − ‖b‖L∞(Ω)|Du1| − cu1 ≥ ‖f‖L∞(Ω),

given by Lemma 4.1. Then by Lemma 2.3 the functions vi = (1/m)(emui−1)
are respectively subsolution and supersolution of

M+
λ,Λ(D2v) + b(x)|Dv| = (f(x) + (c/m) log(1 + mv))(1 + mv). (20)
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So by the standard sub- and supersolution method this problem has a solution
v ∈ C(Ω) (note the right-hand side of (20) is locally Lipschitz in v). By well-
known regularity results for the equation M+

λ,Λ(D2v) + b(x)|Dv| = g(x) (see
for instance [S]) this solution is strong. ¤
Proof of Proposition 4.1. We take sequences of continuous functions
bn, fn, which approximate b, f in Lp, LN respectively. By the previous lemma
we know that the problem

M+
λ,Λ(D2vn) + bn(x)|Dvn| = ((Λ/λ)fn(x) + cun)(1 + mvn), (21)

has a strong solution vn, with vn = 0 on ∂Ω (we have set m = µ
Λ

and
vn = (1/m)(emun − 1)). By writing the inequalities on un which follow from
Lemma 2.3 and by applying the uniform Cα-estimate (Theorem 2) we see
that un is bounded in Cα and so a subsequence of un converges uniformly on
Ω to a function u, and vn = (1/m)(emun − 1) ⇒ v = (1/m)(emu − 1).

The right-hand side of (21) converges in LN(Ω), while for each O in Ω
and each φ ∈ W 2,N(O)

M+
λ,Λ(D2φ) + bn(x)|Dφ| −→M+

λ,Λ(D2φ) + b(x)|Dφ| in LN(O).

Note W 2,N is embedded in W 1,q for all q < ∞, so the convergence of the
term bn(x)|Dφ| in LN is a simple consequence of the Hölder inequality and
p > N .

Hence we are in a position to apply Theorem 3.8 in [CCKS], which shows
that

M+
λ,Λ(D2v) + b(x)|Dv| = ((Λ/λ)f(x) + cu)(1 + mv)

so, again by Lemma 2.3,

M+
λ,Λ(D2u) + µ(λ/Λ)|Du|2 + b(x)|Du| − cu ≤ (Λ/λ)f(x),

and we conclude by replacing u by (Λ/λ)u. Note that we can show the
uniform boundedness of vn (or un) in W 2,N

loc (Ω) through the same cut-off
argument as in the proof of Lemma 3.1 in [CCKS]. A precise upgrade of
this result to coefficients in Lp(Ω), p > N , is given in Proposition 2.6 in
[KS2]; actually, (21) can be treated exactly like equation (2.8) in [KS2]. So a
subsequence of un converges weakly to u also in W 2,N

loc (Ω), and u is a strong
solution.

The second inequality in Proposition 4.1 can be treated analogously. ¤
Remark. Strictly speaking, the operator M+

λ,Λ(D2·) + b(x)|D · | does not
satisfy the hypothesis of Theorem 3.8 in [CCKS], since b 6∈ L∞(Ω). However
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the proof of this theorem can be repeated without modifications for this
operator, only at its end we have to note that solutions of

{ M+
λ,Λ(D2φn) + bn(x)|Dφn| = fn in Ω

φn = 0 on ∂Ω

where bn ∈ L∞(Ω) is bounded in Lp(Ω) (such solutions exist, by the results
in [CKLS]) are such that φn ⇒ 0 in Ω if fn → 0 in LN(Ω), by the ABP
inequality (Theorem 3). ¤

One of the consequences of this result is a general approximation theorem
for operators of our type. It extends Theorem 3.8 in [CCKS] to operators
with unbounded coefficients and natural growth in the gradient.

Theorem 4 Suppose Fn, F are operators which satisfy (S) with h, h as in
Theorem 1. Suppose fn, f ∈ LN(Ω) and un, u ∈ C(Ω) are such that un is a
supersolution (subsolution) of

Fn(D2un, Dun, un, x) = fn in Ω, for each n,

and un converges to u locally uniformly in Ω. If for any ball B ⊂ Ω and any
φ ∈ W 2,N(B), setting

gn = Fn(D2φ,Dφ, un, x)− fn, g = F (D2φ,Dφ, u, x)− f(x),

we have

‖(g − gn)+‖LN (B) −→ 0
(‖(g − gn)−‖LN (B) −→ 0

)
,

then u is a supersolution (subsolution) of F (D2u,Du, u, x) = f(x) in Ω.

Proof. The proof is identical to the proof of Theorem 3.8 in [CCKS], using
(S) and Proposition 4.1 at the end. ¤
Proof of Theorem 1 (i). With the previous results at hand, the result is
obtained through a standard smoothing argument. For instance, if we have
to solve the Dirichlet problem for the model equation (2), we take contin-
uous functions µn, bn, cn, fn which converge to µ, b, c ≤ −c0, f respectively
in Lq, q < ∞, Lp, LN , and ‖µn‖L∞ ≤ ‖µ‖L∞ + 1, cn ≤ −c0/2. Then by
Corollary 4.1 the approximate problems

M(D2u) + µn(x)|Du|2 + bn(x)|Du|+ cn(x)u = fn(x),

have solutions un, with un = 0 on ∂Ω. By the uniform Cα-estimate un

is bounded in Cα and hence converges (up to a subsequence) uniformly in
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Ω. Then the solvability of (2) follows from Theorem 4, noting again that
bn|Dφ| → b|Dφ| and µn|Dφ|2 → µ|Dφ|2 for any φ ∈ W 2,N ↪→ W 1,q, q < ∞.

For general F we can use the same argument as in the proof of The-
orem 4.1 in [CKLS]. Let fn be a sequence of continuous functions which
converges to f in LN(Ω), and set

Fε(M, p, u, x) =
1

εn

∫

RN

η

(
x− y

ε

)
F (M, p, u, y) dy,

where η ≥ 0, η ∈ C∞, has compact support and mass 1. Now, for fixed ε, the
operator Fε satisfy the conditions of Corollary 4.1, so the problem Fε = fε

has a solution uε. Then we conclude again with the help of Theorem 2 and
the approximation Theorem 4, noting that

Fε(D
2φ,Dφ, uε, x) → F (D2φ,Dφ, u, x)

is a consequence of the Lebesgue dominated convergence theorem. Part (i)
of Theorem 1 is proved. ¤

Now we turn to the proof of Theorem 1 (ii). We shall use the notion
of first eigenvalues for fully nonlinear elliptic operators, recently developed
in [FQ], [BEQ] (for the Pucci operator) and in [QS2] for general convex or
concave operators. We shall need the following particular case of the results
in [QS2].

Theorem 5 ([QS2]) Given λ, Λ, and b, c ∈ L∞(Ω), b ≥ 0, there exist num-
bers λ+

1 ≤ λ−1 , and functions ϕ+
1 , ϕ−1 ∈ W 2,p

loc (Ω)∩C(Ω) for each p < ∞, such
that

{ M+
λ,Λ(D2ϕ+

1 ) + b(x)|Dϕ+
1 |+ c(x)ϕ+

1 = −λ+
1 ϕ+

1 in Ω

ϕ+
1 > 0 in Ω, ϕ+

1 = 0 on ∂Ω,

{ M+
λ,Λ(D2ϕ−1 ) + b(x)|Dϕ−1 |+ c(x)ϕ−1 = −λ−1 ϕ−1 in Ω

ϕ−1 < 0 in Ω, ϕ−1 = 0 on ∂Ω.

In addition, λ+
1 > 0 is a sufficient condition for the Dirichlet problem

{ M+
λ,Λ(D2u) + b(x)|Du|+ c(x)u = f in Ω

u = 0 on ∂Ω,

to have a solution in W 2,N
loc (Ω) ∩ C(Ω), for any f ∈ LN(Ω).

The following proposition gives a bound on the eigenvalues in terms of
Lebesgue norms of the coefficients.

21



Proposition 4.2 Given λ, Λ, and b, c ∈ L∞(Ω), b ≥ 0, and p > N , there
exists a constant C0 depending only on λ, Λ, p,N, ‖b‖Lp(Ω), diam(Ω), such
that the number λ+

1 defined in Theorem 5 satisfies

λ+
1 ≥ C0 − |Ω|−1/N‖c+‖LN (Ω).

Proof. We apply the ABP inequality (Theorem 3) to

M+
λ,Λ(D2ϕ+

1 ) + b(x)|Dϕ+
1 | = −(λ+

1 + c(x))ϕ+
1 ≥ −(λ+

1 + c+(x))ϕ+
1 ,

which yields
sup

Ω
ϕ+

1 ≤ C1‖λ+
1 + c+(x)‖LN (Ω) sup

Ω
ϕ+

1 ,

so
‖c+‖LN (Ω) + λ+

1 |Ω|1/N ≥ ‖λ+
1 + c+(x)‖LN (Ω) ≥ 1/C1,

and the result follows. ¤
We can now deduce a first result on solvability for non-proper equations

with unbounded coefficients.

Proposition 4.3 Given λ, Λ, and b ∈ Lp(Ω), p > N, c ∈ LN(Ω), b ≥ 0,
there exists a constant δ0 depending only on λ, Λ, p, N, ‖b‖Lp(Ω), diam(Ω),
such that

‖c+‖LN (Ω) < δ0

is a sufficient condition for the problem

{ M+
λ,Λ(D2u) + b(x)|Du|+ c(x)u = f in Ω

u = 0 on ∂Ω,

to have a solution in W 2,N
loc (Ω) ∩ C(Ω), for any f ∈ LN(Ω). In addition,

f ≤ (≥)0 implies u ≥ (≤)0 in Ω, and

sup
Ω
|u| ≤ C‖f‖LN (Ω),

where C depends on λ, Λ, p, N, δ0, ‖c+‖LN (Ω), ‖b‖Lp(Ω), diam(Ω).

Proof. We approximate b, c in Lp, LN by sequences of continuous functions
bn, cn with compact support in Ω, such that ‖c+

n ‖LN (Ω) ≤ δ0, and δ0 is fixed
so small that the first eigenvalues of the operators

M+
λ,Λ(D2·) + bn|D · |+ cn·
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be uniformly positive for all n – this is possible by the previous lemma.
Hence, by Theorem 5, there exist strong solutions of

M+
λ,Λ(D2un) + bn|Dun|+ cnun = f

with un = 0 on ∂Ω. Note that f ≤ (≥)0 implies un ≥ (≤)0 in Ω by the
maximum principle, which was shown in [QS2] to hold for operators with
positive eigenvalues.

Next, we apply the ABP inequality (Theorem 3) to

M+
λ,Λ(D2un) + bn|Dun| = −cnun + f ≥ −c+

n un + f on {un > 0}
M+

λ,Λ(D2un) + bn|Dun| = −cnun + f ≤ −c+
n un + f on {un < 0}

to get

sup
Ω
|un| ≤ C1

(
‖c+

n ‖LN (Ω) sup
Ω
|un|+ ‖f‖LN (Ω)

)
,

so, if δ0 is sufficiently small (say δ0 = 1/(2C1)),

sup
Ω
|un| ≤ 2C1‖f‖LN (Ω),

that is, un is bounded in L∞(Ω). Then, by Theorem 2, un is bounded in
Cα(Ω) so a subsequence of un converges uniformly in Ω to a solution u of
our problem.

Finally,

M+
λ,Λ(D2un) + bn|Dun| = −cnun + f in Ω (22)

implies that un is bounded in W 2,N
loc (Ω), hence converges weakly in that space,

so u is a strong solution. The boundedness in W 2,N
loc is proved again as in the

proofs of Lemma 3.1 in [CCKS] and Proposition 2.6 in [KS2] . ¤
Next, we prove a result on existence of strong subsolutions and superso-

lutions of (5).

Proposition 4.4 Given λ, Λ, and b ∈ Lp(Ω), p > N ,b ≥ 0, c ∈ LN(Ω),
c+ ∈ L∞(Ω), and an operator F satisfying the hypotheses of Theorem 1 (ii),
there exists constants δ0, c0 depending only on λ, Λ, p,N, ‖b‖Lp(Ω), diam(Ω),
such that

‖µf‖LN (Ω) ≤ δ0 and ‖c+‖L∞(Ω) < c0

is a sufficient condition for the existence of functions v, w ∈ W 2,N
loc (Ω)∩C(Ω),

such that v ≤ 0 ≤ w in Ω,

F (D2v, Dv, v, x) + cv ≥ f, F (D2w, Dw, w, x) + cw ≤ f in Ω,

and v = w = 0 on ∂Ω.
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Proof. Let us prove the existence of a positive supersolution. In view of (S)
it is enough to find u ≥ 0 such that

M+
λ,Λ(D2u) + µ|Du|2 + b(x)|Du|+ c(x)u ≤ −f−(x) in Ω.

We set v = (1/m)(emu − 1) like in Lemma 2.3, m = µ/λ, and we see that it
is enough to find a solution v ≥ 0 of

M+
λ,Λ(D2v)+b(x)|Dv|+mf−(x)v ≤ −f−(x)− 1

m
c+(x)(1+mv) log(1+mv).

Let e ∈ W 2,N
loc (Ω) ∩ C(Ω), e ≥ 0, be a solution of the problem





M+
λ,Λ(D2e) + b(x)|De|+ mf−(x)e = − f−(x)

‖f−‖LN (Ω)

− 1 in Ω

e = 0 on ∂Ω,

This problem is solvable, by Proposition 4.3, provided

‖mf−(x)‖LN (Ω) < δ0,

where δ0 is the number from Proposition 4.3. Then

‖e‖L∞(Ω) ≤ C

∥∥∥∥
f−(x)

‖f−‖LN (Ω)

+ 1

∥∥∥∥
LN (Ω)

= C
(
1 + |Ω|1/N

)
=: C1,

by the same proposition.
Set v = ‖f−‖LN (Ω)e. This function is a solution of the inequality we aim

to solve provided

‖f−‖LN (Ω) ≥
1

m
c+(x)(1 + mv(x)) log(1 + mv(x)),

for all x ∈ Ω, which is implied by

‖mf−‖LN ≥ 1

m
‖c+‖L∞(1 + m‖f−‖LN‖e‖L∞) log(1 + m‖f−‖LN‖e‖L∞).

The last inequality holds if we choose c0 such that ‖c+‖L∞(Ω) ≤ c0, and

t ≥ c0(1 + C1t) log(1 + C1t), for all t ∈ [0, δ0].

This holds if we take for example

c0 =
1

1 + log(1 + C1δ0)
.
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The existence of a subsolution is proved analogously. ¤
Proof of Theorem 1 (ii). Let δ0, c0 be the numbers from the previous
proposition and let u0 = v ≤ 0 ≤ w be the subsolution and supersolution
obtained in that proposition. We solve the hierarchy of problems in Ω





F (D2un, Dun, un, x) + c(x)un − (c0 + 1)un = f(x)− (c0 + 1)un−1

u = 0 on ∂Ω, n ≥ 1.

Each of these problems is solvable, by Theorem 1 (i), which we already
proved. Since u0, v0 are strong solutions, it is easily seen, by induction, that

u0 ≤ un ≤ v0 for all n ≥ 1. (23)

For instance, for any n, if we know that un−1 ≥ u0 then we have

F (D2un, Dun, un, x)− F (D2u0, Du0, u0, x) + (c− c0 − 1)(un − u0) ≤ 0,

so, using (S) we see that the function w = un−u0, if we know that un−1 ≥ u0,
satisfies

M−
λ,Λ(D2w)− (µ|Dw|+ 2µ|Du0|+ b)|Dw| − d(x)h(w+) + (c− c0 − 1)w ≤ 0

which gives a contradiction in case w attains a negative minimum in Ω (or,
alternatively, w ≥ 0 is implied by Lemma 2.3 and Theorem 3, applied in the
set {w < 0}). Note that, since u0 is a strong solution, we can use (S) as
if both un and u0 were strong - this is trivially seen with the help of test
functions.

By (23) un is bounded in L∞(Ω), so it is bounded in Cα, for some α > 0,
by Theorem 2. Hence a subsequence of un converges uniformly in Ω to a
function u, which is then a solution to (5), by the approximation Theorem 4.
Theorem 1 (ii) is proved. ¤

Proof of Theorem 1 (iii). Suppose u1 and u2 are solutions of (5) and
u2 ∈ W 2,N

loc (Ω) ∩ C(Ω). Set u = u1 − u2. Then, as above, by (S),

M−
λ,Λ(D2u)− (µ|Du|+ 2µ|Du2|+ b)|Du| − d(x)h(u+) + c(x)u ≤ 0.

First, if c ≤ 0 in Ω then, by Lemma 2.3,

M−
λ,Λ(D2w)− b̃(x)|Dw| ≤ 0 in {u < 0} = {w < 0},

where w = 1/m(1 − e−mu), m = µ/Λ, b̃ = 2µ|Du2| + b. Hence we have
w− ≡ 0, by Theorem 3.
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Second, if µ = 0 then we apply Theorem 3 directly to

M−
λ,Λ(D2u)− b|Du| ≤ c+(x)u in {u < 0},

and conclude u− ≡ 0 for ‖c+‖ small, like in the proof of Proposition 4.3.
The fact that u+ ≡ 0 is proved analogously. ¤
Proof of Theorem 1 (iv). For clarity, let us first consider the problem

∆u + µ|Du|2 + c0u = 0 in Ω (24)

u = 0 on ∂Ω.

We want to show that, for all c0 small, this problem has a solution different
from the trivial one u ≡ 0. We shall in fact show that (24) has a classical
positive solution provided

0 < c0 < λ1, (25)

where λ1 > 0 is the first eigenvalue of the Laplacian in Ω.
Setting, as before, v = (1/µ) (eµu − 1) , we see that (24) transforms into

−∆v = (c0/µ)(1 + µv) log(1 + µv) =: f(v) in Ω (26)

u > 0 in Ω

u = 0 on ∂Ω.

Since f(0) = 0, f(v) > 0 for v > 0,

f ′(0) = c0, lim
t→∞

f(t)

t
= ∞,

the nonlinearity f(u) is superlinear provided (25) holds.
It is well known that superlinear problems of this type possess a positive

solution provided they admit a priori bounds, that is, if we able to show
that all (eventual) positive solutions of (26) are uniformly bounded in the
L∞-norm by a constant which, in this case, depends only on Ω, µ, and an
upper bound for c0.

So let us show (26) admits a priori bounds. We can use the well-known
”blow-up” method of Gidas and Spruck [GS]. Suppose for contradiction that
there exists a sequence vn of solutions of (26) such that ‖vn‖L∞(Ω) →∞. Set

sn = log ‖vn‖L∞(Ω) ,

and make the change of unknowns

vn(x) = esnwn(y), y =
√

sn(x− xn),
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where xn ∈ Ω is a point where vn attains its maximum. Then 0 ≤ wn ≤ 1,
wn(0) = 1, and

−∆wn(y) = s−1
n e−snf(esnwn(y)) for y ∈ Ωn,

where Ωn :=
√

sn(Ω− xn) is a domain which converges either to RN or to a
half-space in RN .

It is trivial to see that the right-hand side of the last equation remains
bounded (recall 0 ≤ wn ≤ 1), hence by elliptic estimates wn converges in
W 2,p

loc (RN) to a function w, such that 0 ≤ w ≤ 1 and w(0) = 1. Further, we
have pointwise, and hence in Lp

loc(RN) (by Lebesgue dominated convergence)

s−1
n e−snf(esnwn) → c0w

so w is a positive (by the strong maximum principle) solution of

−∆w = c0w

in RN or in a half-space, which is a contradiction with c0 > 0, since the
spectrum of the Laplacian in these spaces does not meet the positive half-
line.

Remark. When the elliptic operator is in divergence form (as in the above
particular case), the problem can also be tackled via variational methods.
For nonlinearities similar to f(v) in (26), some related problems have been
studied in [J], [JT]. We would like also to remark that the nonlinearity

(1 + u) log(1 + u) = log(1 + u) + u log(1 + u)

is a sort of ”concave-convex” nonlinearity, but the derivatives of its concave
and convex part have different behaviour than in the case uq +up, q < 1 < p,
which has been studied very extensively in the last years, starting with the
work [ABC] (see also the survey [AAP]). It seems that neither this type of
nonlinearities, nor their connection with problems with natural growth in the
gradient have been studied before. More developments on this topic will be
given in [Sn].

Let us now state a more general result.

Theorem 6 The problem




F (D2u,Du, x) + c(x)u = 0 in Ω
u > 0 in Ω
u = 0 on ∂Ω.

(27)

has a solution if F satisfies the hypotheses of Theorem 1 (in (S) we suppose
b(x) ∈ L∞(Ω), d ≡ 0), 0 < c1 ≤ c(x) ≤ c2, and c2 is sufficiently small.
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Proof. By (S), positive solutions u1, u2 of the problems

M+
λ,Λ(D2u1) + µ|Du1|2 + b(x)|Du1|+ c2u1 = 0 in Ω (28)

M−
λ,Λ(D2u2)− µ|Du2|2 − b(x)|Du2|+ c1u2 = 0 in Ω (29)

ui = 0 on ∂Ω

are respectively a supersolution and a subsolution of problem (27).
The existence of u1, u2 is proved by using the results in the recent pa-

per [QS1], where fully nonlinear superlinear problems were studied, on the
following problems (obtained from (28), (29) by a change of unknowns)

−M+
λ,Λ(D2v1)− b(x)|Dv1| = (c2/m)(1 + mv1) log(1 + mv1) in Ω(30)

−M−
λ,Λ(D2v2) + b(x)|Dv2| = −(c1/m)(1−mv2) log(1−mv2) in Ω(31)

ui = 0 on ∂Ω

Uniform a priori bounds for the positive solutions of (30), (31) are proved
through the same argument that we employed above for the Laplacian. Note
that at the end of the blow-up argument the nonexistence of a positive solu-
tion of

M(D2u) = −ciu in G = RN or RN
+ (32)

follows from the results in [QS2] or [BEQ], where it is shown that the exis-
tence of a positive solution of (32) implies that for any ball BR ⊂ G we have
λ+

1 (M, BR) ≥ ci (by the definition of λ+
1 ), and that λ+

1 (L, BR) ≤ CR−2, a
contradiction for large R.

Finally, to infer the existence of a solution of (27) we need to know that
u1 ≥ u2 in Ω (then we can use the same iteration argument as the one used
to prove Theorem 1 (ii)). Note that, by the a priori L∞-bounds we proved for
(30), (31), and by C1,α-estimates for classical or strong solutions of elliptic
equations (see for example [GT]), we get from (30), (31) that

‖Dui‖L∞(Ω) ≤ C(λ, Λ, µ, b, ci, Ω).

By (S) the function u = u1 − u2 is a solution of

M−
λ,Λ(D2u)− b̃|Du| ≤ c2u

−,

so the ABP inequality implies u ≥ 0 in Ω, provided c2 is small enough, like
in the proof of Proposition 4.3. Here

b̃ = ‖b‖L∞(Ω) + µ‖Du1‖L∞(Ω) + µ‖Du2‖L∞(Ω).

This finishes the proof of Theorem 1. ¤
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Some simple equations without solutions. Here we recall some well-
known results about existence and non-existence of solutions of

{
∆u + µ|Du|2 + c0u = −A in Ω

u = 0 on ∂Ω,
(33)

where µ, c0, A are nonnegative constants. First, if µ = 0 then it is well-known
that this problem, for any A > 0, has a positive solution if c0 < λ1, and has
no solutions for c0 = λ1 (multiply by the first eigenfunction of the Laplacian).
Second, if c0 = 0, then problem (33) is equivalent to

{
∆v + Aµv = −A in Ω

v = 0 on ∂Ω,
(34)

by the change v = (1/µ)(eµu − 1). Again, for any A > 0, problem (34) has a
positive solution if Aµ < λ1 and has no solutions if Aµ = λ1.
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