(Non) -Approximability for the multi-criteria TSP (1,2)

E. Angel, E. Bampis, Laurent Gourvès, Jérôme Monnot

To cite this version:

E. Angel, E. Bampis, Laurent Gourvès, Jérôme Monnot. (Non) -Approximability for the multi-criteria TSP (1,2). 2006. hal-00115511

HAL Id: hal-00115511

https://hal.science/hal-00115511

Preprint submitted on 22 Nov 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

(Non)-Approximability for the multi-criteria $T S P(1,2)$

E. Angel* ${ }^{*}$ E. Bampis*, L. Gourvès*, J. Monnot ${ }^{\dagger}$

Abstract

The approximability of multi-criteria combinatorial problems motivated a lot of articles. However, the non-approximability of this problems has never been investigated up to our knowledge. We propose a way to get some results of this kind which works for several problems and we put it into practice on a multi-criteria version of the traveling salesman problem with distances one and two $(\operatorname{TSP}(1,2))$. Following the article of Angel et al. [1] who presented an approximation algorithm for the bi-criteria $\operatorname{TSP}(1,2)$, we extend and improve the result to any number k of criteria.

Key words : non-approximability in multi-criteria optimization ; design and analysis of algorithms

1 Introduction

Multi-criteria optimization refers to problems with two or more objective functions which are normally in conflict. Vilfredo Pareto stated in 1896 a concept (known today as "Pareto optimality") that constitutes the origin of research in this area. According to this concept, the solution to a multi-criteria optimization problem is normally not a single value, but instead a set of values (the so-called Pareto curve). From a computational point of view, this Pareto curve is problematic. Approximating it with a performance guarantee, i.e. computing an ε-approximate Pareto curve, motivated a lot of papers (see $[1,6,9]$ among others). Up to our knowledge, non-approximability in the specific context of multi-criteria optimization has surprisingly never been investigated. Of course,

[^0]some straightforward results can be stated if we remark that a multi-criteria problem generalizes a mono-criterion problem. Consequently, we aim to state some negative results which are specific to this area. In multi-criteria optimization, one tries to approximate a set of solutions (the Pareto curve) with another set of solutions (the ε-approximate Pareto curve) and the more the ε-approximate Pareto curve contains solutions, the more accurate the approximation can be. Then, the best approximation ratio that could be achieved can be related to the size of the approximate Pareto curve. As a first attempt, we propose a way to get some negative results which works for several multi-criteria problems and we put it into practice on a special case of the multi-criteria traveling salesman problem.

The traveling salesman problem is one of the most studied problem in the operations research community, see for instance [4]. The case where distances are either one or two (denoted by $\operatorname{TSP}(1,2)$) was investigated by Papadimitriou and Yannakakis [7] who gave some positive and negative approximation results (see also [2]). Interestingly, this problem finds an application in a frequency assignment problem [3]. In this article, we deal with a generalization of the $\operatorname{TSP}(1,2)$ where the distance is a vector of length k instead of a scalar: the k-criteria $\operatorname{TSP}(1,2)$. Previously, Angel et al. [1] proposed a local search algorithm (called BLS) for the bi-criteria $\operatorname{TSP}(1,2)$ which, with only two solutions generated in $\mathcal{O}\left(n^{3}\right)$, was able to approximate the whole Pareto curve within a ratio of $3 / 2$.

A question arises concerning the ability to improve the approximation ratio with an approximate Pareto curve containing two (or more) solutions. Conversely, given a fixed number of solutions, how accurate an approximate Pareto curve can be? More generally, given a multi-criteria problem, how many solutions are necessary to approximate the Pareto curve within a level of approximation? A second question arises concerning the ability to generalize BLS to any number of criteria. Indeed, a large part of the literature on multi-criteria optimization is devoted to bi-criteria problems and an algorithm which works for any number of criteria would be interesting.

The paper is organized as follows: In Section 2, we recall some definitions on exact and approximate Pareto curves. Section 3 is devoted to a method to derive some negatives results in the specific context of multi-criteria optimization. We use it for the k-criteria $\operatorname{TSP}(1,2)$ but it works for several other problems. In Section 4, we study the approximability of the k-criteria $\operatorname{TSP}(1,2)$. Instead of generalizing BLS, we adapt the classical nearest neighbor heuristic which is more manageable. This multi-criteria nearest neighbor heuristic works for any k and produces a $3 / 2$-approximate Pareto curve when $k \in\{1,2\}$ and a $2 k /(k+1)$-approximate Pareto curve when $k \geq 3$. This result extends for several reasons the one of Angel et al.. First, the new algorithm works for any $k \geq 2$, second the time complexity is decreased when $k=2$.

2 Generalities

The Traveling Salesman Problem (TSP) is about to find in a complete graph $G=$ (V, E) a Hamiltonian cycle whose total distance is minimal. For the k-criteria $T S P$, each edge e has a distance $\vec{d}(e)=\left(\vec{d}_{1}(e), \ldots, \vec{d}_{k}(e)\right)$ which is a vector of length k (instead of a scalar). The total distance of a tour T is also a vector $\vec{D}(T)$ where $\vec{D}_{j}(T)=\sum_{e \in T} \vec{d}_{j}(e)$ and $j=1, \ldots, k$. In fact, a tour is evaluated with k objective functions. Given this, the goal of the optimization problem could be the following: Generating a feasible solution which simultaneously minimizes each coordinate. Unfortunately, such an ideal solution rarely exists since objective functions are normally in conflict. However a set of solutions representing all best possible trade-offs always exists (the so-called Pareto curve). Formally, a Pareto curve is a set of feasible solutions, each of them optimal in the sense of Pareto, which dominates all the other solutions. A tour T dominates another one T^{\prime} (usually denoted by $T \leq T^{\prime}$) iff $\vec{D}_{j}(T) \leq \vec{D}_{j}\left(T^{\prime}\right)$ for $j=1, \ldots, k$ and, for at least one coordinate j^{\prime}, one has $\vec{D}_{j^{\prime}}(T)<\vec{D}_{j^{\prime}}\left(T^{\prime}\right)$. A solution is optimal in the sense of Pareto if no solution dominates it.

From a computational point of view, Pareto curves are problematic [6, 9]. Two of the main reasons are:

- the size of a Pareto curve which is often exponential with respect to the size of the corresponding problem,
- a multi-criteria optimization problem often generalizes a mono-criterion problem which is itself hard.

As a consequence, one tries to get a relaxation of this Pareto curve, i.e. an ε-approximate Pareto curve [6, 9]. An ε-approximate Pareto curve P_{ε} is a set of solutions such that for every solution s of the instance, there is an s^{\prime} in P_{ε} which satisfies $\vec{D}_{j}\left(s^{\prime}\right) \leq \varepsilon \vec{D}_{j}(s)$ for $j=1, \ldots, k$.

In [6], Papadimitriou and Yannakakis prove that every multi-criteria problem has an ε-approximate Pareto curve that is polynomial in the size of the input, and $1 / \varepsilon$, but exponential in the number k of criteria. The design of polynomial time algorithms which generate approximate Pareto curves with performance guarantee motivated a lot of recent papers. In this article we study the k-criteria $\operatorname{TSP}(1,2)$. In this problem, each edge e of the graph has a distance vector $\vec{d}(e)$ of length k and $\vec{d}_{j}(e) \in\{1,2\}$ for all j between 1 and k.

3 Non-approximability related to the number of generated solutions

Up to our knowledge, non-approximability of combinatorial problems with multiple objectives has never been investigated. As a first attempt, we propose a way to get some negative results which works for several multi-criteria problems and we put it into practice on the k-criteria $\operatorname{TSP}(1,2)$.

Usually, non-approximability results for mono-criterion problems bring thresholds of performance guarantee under which no polynomial time algorithm is likely to exist. Given a result of this kind for a mono-criterion problem Π, we directly get a negative result for a multi-criteria version of Π. Indeed, the multi-criteria version of Π generalizes Π. For example, hardness of inherent difficulty of the mono-criterion $\operatorname{TSP}(1,2)$ has been studied in [2, 7] and the best known lower bound is 5381/5380- (for all $\epsilon>0$). Consequently, for all $\epsilon>0$, no polynomial time algorithm can generate a (5381/5380- ϵ)-approximate Pareto curve unless $P=N P$. However, the structure of the problem, namely the fact that several criteria are involved, is not taken into account.

In multi-criteria optimization, one tries to approximate a set of solutions (the Pareto curve) with another set of solutions (the ε-approximate Pareto curve) and the more the ε-approximate Pareto curve contains solutions, the more accurate the approximation can be. As a consequence, the best approximation ratio that could be achieved can be related to the size of the approximate Pareto curve. Formally, ε is a function of $\left|P_{\varepsilon}\right|$. If we consider instances for which the whole (or a large part of the) Pareto curve P is known and if we suppose that we approximate it with a set $P^{\prime} \subset P$ such that $\left|P^{\prime}\right|=x$ then the best approximation ratio ε such that P^{\prime} is an ε-approximate Pareto curve is related to x. Indeed, there must be a solution in P^{\prime} which approximates at least two (or more) solutions in P.

In the following, we explicitly give a family of instances of the k-criteria $\operatorname{TSP}(1,2)$ for which we known a lot of different Pareto optimal tours covering a large spectrum of the possible values.

Lemma 3.1 For any $r \geq 1$, for any $n \geq 2 k+1$, there exists an instance $I_{n, r}$ of the k-criteria $\operatorname{TSP}(1,2)$ with $n r$ vertices such that there are $\binom{r+k-1}{r}$ Pareto optimal tours (denoted by $T_{c_{1}, \ldots, c_{k-1}}$ where c_{i} for $1 \leq i \leq k-1$ are $k-1$ indexes in $\{0, \ldots, r\}$) satisfying:
(i) $\forall i=1, \ldots, k-1, c_{i} \in\{0, \ldots, r\}$ and $\sum_{i=1}^{k-1} c_{i} \leq r$.
(ii) $\forall i=1, \ldots, k-1, \vec{D}_{i}\left(T_{c_{1}, \ldots, c_{k-1}}\right)=2 r n-c_{i} n$ and $\vec{D}_{k}\left(T_{c_{1}, \ldots, c_{k-1}}\right)=r n+n\left(\sum_{i=1}^{k-1} c_{i}\right)$.

Proof. We first consider an instance I_{n} with $n \geq 2 k+1$ vertices where distances belong to $\{(1,2, \ldots, 2),(2,1,2, \ldots, 2)$,
$\ldots,(2, \ldots, 2,1)\}$. Moreover, we suppose that for any $i=1, \ldots, k$, the subgraph induced by the edges where the distance has a 1 only on coordinate i is Hamiltonian (T_{i} denotes this tour). For any $n \geq 2 k+1$, using an old result (see [5]), we know that K_{n} is Hamiltonian cycles decomposable into k disjoint tours and then, such an instance exists. Finally, the instance $I_{n, r}$ is built by the following way: We duplicate $I_{n}=\left(K_{n}, d\right) r$ times (v_{i}^{c} denotes the vertex v_{i} of the c-th copy) and between two copies with $c_{1}<c_{2}$, we set $\vec{d}\left(\left[v_{i}^{c_{1}}, v_{j}^{c_{2}}\right]\right)=\vec{d}\left(\left[v_{i}, v_{j}\right]\right)$ if $i \neq j$ and $\vec{d}\left(\left[v_{i}^{c_{1}}, v_{i}^{c_{2}}\right]\right)=(1,2, \ldots, 2)$. Let c_{1}, \ldots, c_{k-1} be integers satisfying (i), we build the tour $T_{c_{1}, \ldots, c_{k-1}}$ by applying the following process: On the c_{1} first copies, we take the tour T_{1}, on the c_{2} second copies, we take the tour T_{2} and so on. Finally, for the $r-\sum_{i=1}^{k-1} c_{i}$ last copies, we take T_{k}. For any $1 \leq l_{1}<l_{2} \leq r$, and any tours T, T^{\prime}, we patch the tour T on copy l_{1} with the tour T^{\prime} on copy l_{2} by replacing edges $\left[v_{i}^{l_{1}}, v_{j}^{l_{1}}\right] \in T,\left[v_{j}^{l_{2}}, v_{m}^{l_{2}}\right] \in T^{\prime}$ by edges $\left[v_{i}^{l_{1}}, v_{j}^{l_{2}}\right],\left[v_{m}^{l_{2}}, v_{j}^{l_{1}}\right]$. Observe that the resulting tour has a weight $\vec{D}\left(T^{\prime}\right)+\vec{D}(T)$. So, by applying r times this process, we can obtain a tour $T_{c_{1}, \ldots, c_{k-1}}$ satisfying (ii). Moreover, the number of tours is equal to the number of choices of $k-1$ elements among $r+(k-1)$.

Theorem 3.2 For any $k \geq 2$, any algorithm \mathcal{A} producing a ρ-approximate Pareto curve with at most x solutions for the k-criteria $\operatorname{TSP}(1,2)$ satisfies:
$\rho \geq 1+\max _{i=2, \ldots, k}\left\{\frac{1}{(2 i-1) r(i, x)-1}\right\}$ where $r(i, x)=\min \left\{r \left\lvert\, x \leq\binom{ r+i-1}{r}-1\right.\right\}$.
Proof. Let $\rho=(1+\varepsilon)$ and let $r(k, x)=r$ be the smallest integer such that $x \leq\binom{ r+k-1}{r}-1$ and consider the instance $I_{n, r}$ of Lemma 3.1. Since $x \leq\binom{ r+k-1}{r}-1$, there exists two distinct tours $T_{c_{1}, \ldots, c_{k-1}}$ and $T_{c_{1}^{\prime}, \ldots, c_{k-1}^{\prime}}$ and a tour T produced by \mathcal{A} such that:

$$
\begin{equation*}
\vec{D}(T) \leq(1+\varepsilon) \vec{D}\left(T_{c_{1}, \ldots, c_{k-1}}\right) \text { and } \vec{D}(T) \leq(1+\varepsilon) \vec{D}\left(T_{c_{1}^{\prime}, \ldots, c_{k-1}^{\prime}}\right) \tag{1}
\end{equation*}
$$

Let $l_{i}=\max \left\{c_{i}, c_{i}^{\prime}\right\}$ for $i=1, \ldots, k-1$ and $l_{k}=\min \left\{\sum_{i=1}^{k-1} c_{i}, \sum_{i=1}^{k-1} c_{i}^{\prime}\right\}$. By construction, we have $l_{k} \leq \sum_{i=1}^{k-1} l_{i}-1$. Moreover, the total distance of T can be written $\vec{D}_{i}(T)=2 r n-q_{i}$ for $i=1, \ldots, k-1$ and $\vec{D}_{k}(T)=r n+\sum_{i=1}^{k-1} q_{i}$ for some value of q_{i} (q_{i} is the number of edges of T where the distance has a 2 on coordinate i and 1 on the others). Thus, using inequalities (1), we deduce that, for $i=1, \ldots, k-1$, we have $2 n r-q_{i} \leq(1+\varepsilon)\left(2 r n-l_{i} n\right)$ which is equivalent to

$$
\begin{equation*}
q_{i} \geq l_{i} n(1+\varepsilon)-2 r n \varepsilon . \tag{2}
\end{equation*}
$$

We also have $r n+\sum_{i=1}^{k-1} q_{i} \leq(1+\varepsilon)\left(r n+l_{k} n\right)$ which is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{k-1} q_{i} \leq \varepsilon r n+l_{k} n(1+\varepsilon) \tag{3}
\end{equation*}
$$

Adding inequalities (2) for $i=1, \ldots, k-1$ and by using inequality (3) and $l_{k} \leq \sum_{i=1}^{k-1} l_{i}-$ 1, we deduce:

$$
\begin{equation*}
\varepsilon \geq \frac{1}{(2 k-1) r(k, x)-1} \tag{4}
\end{equation*}
$$

Finally, since a ρ-approximation for the k-criteria $\operatorname{TSP}(1,2)$ is also a ρ-approximation for the i-criteria $\operatorname{TSP}(1,2)$ with $i=2, \ldots, k-1$ (for the $k-i$ last coordinates, we get a factor 2), we can apply $k-1$ times the inequality (4) and the result follows.

The following table gives some (truncated) numerical values of the best approximation ratio that it is possible to achieve:

| k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1.500 | 1.200 | 1.125 | 1.090 | 1.071 | 1.058 | 1.050 | 1.043 | 1.038 |
| 3 | 1.500 | 1.250 | 1.125 | 1.111 | 1.111 | 1.071 | 1.071 | 1.071 | 1.071 |
| 4 | 1.500 | 1.250 | 1.166 | 1.111 | 1.111 | 1.076 | 1.076 | 1.076 | 1.076 |

From Theorem 3.2, we are able to give a more explicit but less powerful result.

Corollary 3.3 For any $k \geq 2$, any ρ-approximate algorithm \mathcal{A} producing at most x solutions for the k-criteria $\operatorname{TSP}(1,2)$ satisfies:

$$
\rho \geq 1+\frac{1}{(2 k-1)(x(k-1)!)^{1 /(k-1)}-1} .
$$

Proof. By construction of $r(k, x)=r$, we have $x \geq\binom{ r(k, x)-1+k-1}{k-1}$. Since

$$
\binom{r-1+k-1}{k-1} \geq \frac{r^{k-1}}{(k-1)!},
$$

we deduce

$$
r \leq(x(k-1)!)^{1 /(k-1)}
$$

Thus, using the inequality (4), we obtain the expected result.
For instance, these bounds become $\rho \geq 1+1 /(3 x-1)$ for the bi-criteria $\operatorname{TSP}(1,2)$ and $\rho \geq 1+1 /(5 \sqrt{2 x}-1)$ for the 3 -criteria $\operatorname{TSP}(1,2)$. More generally, observe that if we write $R_{k}(x)=1+\left((2 k-1)(x(k-1)!)^{1 /(k-1)}-1\right)^{-1}$, then the following property holds: $\forall k \geq 2, \exists x_{0}, \forall x \geq x_{0}$ we have $R_{k+1}(x) \geq R_{k}(x)$. In other words, between two different versions of the k-criteria $\operatorname{TSP}(1,2)$, the negative bound increases with k. So,
these bounds are interesting when k is a fixed constant and x is an arbitrarily large integer (indeed, when $k=o(x)$).

On the other hand, we can also obtain other bounds when x is fixed and k grows to infinity $(x=o(k))$. In particular, when the ρ-approximate algorithm returns just x solutions, we obtain $\rho \geq 2 x /(2 x-1)-\varepsilon$ for the k-criteria $\operatorname{TSP}(1,2)$ with k arbitrarily large.

Theorem 3.4 For any $k \geq 2$, any ρ-approximate algorithm producing at most x solutions for k-criteria $\operatorname{TSP}(1,2)$ satisfies: $\rho \geq 1+\frac{k-x}{k(2 x-1)}$.

Proof. Let x be an integer. We apply Lemma 3.1 with $r=1$. So, we have k Pareto optimal tours $T_{e_{i}}$ for $i=1, \ldots, k$ where e_{i} is a $(k-1)$-uplet with a 1 on coordinate i and 0 otherwise (i.e., $e_{0}=(0, \ldots, 0), e_{1}=(1,0, \ldots, 0)$ and $e_{k}=(0, \ldots, 0,1)$). Now consider a $\rho=(1+\varepsilon)$-approximate algorithm using at most x solutions. Thus, one of these solutions approximates at least $p=\left\lceil\frac{k}{x}\right\rceil$ Pareto optimal tours $T_{e_{i_{1}}}, \ldots, T_{e_{i_{p}}}$ with $i_{1}<\ldots<i_{p}$.

Applying the same arguments as in Theorem 3.2 and if we only consider these p solutions, we have: $l_{k} \leq \sum_{i=j}^{k-1} l_{j}-\left(\frac{k-x}{x}\right)$. Indeed, if $i_{1}=0$ then $l_{k}=0$ and $l_{j}=1$ for $j=$ i_{2}, \ldots, i_{p} and $l_{j}=0$ otherwise. So, $l_{k}=\sum_{i=j}^{k-1} l_{j}-(p-1) \leq \sum_{i=j}^{k-1} l_{j}-\left(\frac{k-x}{x}\right)$. If $i_{1}>0$ then $l_{k}=1$ and $l_{j}=1$ for $j=i_{1}, \ldots, i_{p}$ and $l_{j}=0$ otherwise. So, $l_{k}=$ $\sum_{i=j}^{k-1} l_{j}-(p-1) \leq \sum_{i=j}^{k-1} l_{j}-\left(\frac{k-x}{x}\right)$. As in the previous Theorem, we also have: $n(1+\varepsilon)\left(\sum_{i=j}^{k-1} l_{j}\right)-2 n \varepsilon(k-1) \leq \varepsilon n+l_{k} n(1+\varepsilon)$. Thus, by using these two inequalities, the result follows.

The method presented in this section can be applied to several other multi-criteria problems. For instance, it works with problems where all feasible solutions have the same size ($|V|$ for a Hamiltonian cycle, $|V|-1$ for a spanning tree, etc).

4 Nearest neighbor heuristic for the k-criteria $T S P(1,2)$

The k-criteria $\operatorname{TSP}(1,2)$ is a special case of the metric k-criteria $T S P$ where all coordinates of the distance vectors are either one or two. Given this, any feasible tour constitutes a 2-approximate Pareto curve. In this Section, we try to design a polynomial time algorithm which approximates the Pareto curve within a ratio strictly better than 2 .

Angel et al. present in [1] a local search algorithm (called BLS) for the bi-criteria $\operatorname{TSP}(1,2)$. This algorithm returns in time $\mathcal{O}\left(n^{3}\right)$ a $3 / 2$-approximate Pareto curve. Since BLS works only for the bi-criteria $\operatorname{TSP}(1,2)$, an algorithm which works for any number of criteria would be interesting.

A generalization of BLS may exist but it is certainly done with difficulty. Since BLS uses the 2 - opt neighborhood, two neighboring solutions differ on two edges. Defining an order on each couple of possible distance vector is necessary to decide, among two neighboring solutions, which one is the best. When k grows, such an order is hard to handle.

In this section, we present a different algorithm which is more manageable. It works for any number of criteria and its time complexity is better than BLS's one for the bicriteria $\operatorname{TSP}(1,2)$. We propose a nearest neighbor heuristic which computes in $\mathcal{O}\left(n^{2} k!\right)$ time a $\frac{2 k}{k+1}$-approximate Pareto curve when $k \geq 3$ and a $3 / 2$-approximate Pareto curve when $k \in\{1,2\}$. Let us observe here that the dependence of the time complexity on k ! is not surprising since the size of the approximate ε-Pareto curve is not necessarily polynomial on the number of the optimization criteria [6].

Traditionally, the nearest neighbor heuristic [8] consists in starting from a randomly chosen node and greedily insert non-visited vertices, chosen as the closest ones from the last inserted vertex. Adapting this heuristic to the k-criteria $\operatorname{TSP}(1,2)$ gives rise to two questions: How can we translate the notion of closeness when multiple objectives are considered? How many solutions must be generated to get an approximation of the Pareto curve? In the following, we propose a way which simultaneously brings an answer to both questions. Given the problem, the total distance of a Pareto optimal tour T^{*} is enclosed in a k-dimensional cost space. The way to generate a tour T which approximates T^{*}, and also the notion of closeness, depends on where $\vec{D}\left(T^{*}\right)$ is located in the cost space. The idea is to partition the cost space into a fixed number of parts. Then, with each part we associate an appropriate notion of closeness. Given a part and its proper notion of closeness, we can generate with the nearest neighbor rule a tour which approximates any Pareto optimal solution whose total distance is in the part. For any instance of the k-criteria $\operatorname{TSP}(1,2)$, we propose to divide the cost space into k ! parts as follows: Each part is identified by a permutation of $\{1, \ldots, k\}$. Given a permutation L of $\{1, \ldots, k\}$, a tour T is in the part identified by L if $\vec{D}_{L(1)}(T) \leq \ldots \leq \vec{D}_{L(k)}(T)$. For the notion of closeness, we introduce a preference relation over all possible distance vectors which looks like a lexicographic order. This preference relation which depends on L (denoted by \prec_{L}) is defined by using $k+1$ sets S_{1}, \ldots, S_{k+1} :

$$
\begin{aligned}
S_{q} & =\left\{\vec{a} \in\{1,2\}^{k} \mid \forall j \leq k+1-q \quad \vec{a}_{L(j)}=1\right\}, \text { for } 1 \leq q \leq k \\
S_{k+1} & =\{1,2\}^{k} .
\end{aligned}
$$

Definition 4.1 For any edge e, we say that e is S_{q}-preferred (for \prec_{L}) if $\vec{d}(e) \in S_{q} \backslash S_{q-1}$ (where $S_{0}=\emptyset$). For two edges e and e^{\prime} such that e is $S_{q^{-}}$-preferred and é is $S_{q^{\prime}}$-preferred, we say that $\vec{d}(e)$ is preferred (resp., weakly preferred) to $\vec{d}\left(e^{\prime}\right)$ and we note $\vec{d}(e) \prec_{L} \vec{d}\left(e^{\prime}\right)$ (resp., $\vec{d}(e) \preccurlyeq{ }_{L} \vec{d}\left(e^{\prime}\right)$) iff $q<q^{\prime}$ (resp., $q \leq q^{\prime}$).

An example where $k=3$ and L is the identity permutation is given in Figure 1.

Figure 1: One has $111 \prec_{L} 112 \prec_{L} 121 \preccurlyeq_{L} 122 \prec_{L} 211 \preccurlyeq_{L} 212 \preccurlyeq_{L} 221 \preccurlyeq_{L} 222$.

```
KNN: \(k\)-criteria Nearest Neighbor
\(P:=\emptyset\);
For all permutations \(L\) of \(\{1,2, \ldots, k\}\) Do
    Take arbitrarily \(v \in V\);
    \(W:=\{v\} ; u:=v\);
    While \(W \neq V\) Do
        Take \(r \in V \backslash W\) s.t. \(r\) is the closest vertex to \(u\)
by \(\preccurlyeq L\);
    \(W:=W \cup\{r\} ;\)
    \(p(u):=r ; u:=r\);
    End While ;
    \(p(r):=v\);
    \(P:=P \cup\{p\} ;\)
End For ;
Return \(P\);
```

Table 1: For $v \in V$ and p a tour, $p(v)$ denotes the node which immediately follows v in p.

The algorithm that we propose for the k-criteria $\operatorname{TSP}(1,2)$ is given in Table 1. Called KNN for k-criteria Nearest Neighbor, it is composed of k ! steps. At each step, a permutation L of $\{1,2, \ldots, k\}$ is determined. With L, we build a preference relation \prec_{L} and finally, a solution is generated with the nearest neighbor rule.

Theorem 4.2 KNN runs in polynomial time. It returns a $2 k /(k+1)$-approximate Pareto curve for the k-criteria $\operatorname{TSP}(1,2)$ when $k \geq 3$ and a $3 / 2$-approximate Pareto curve when $k \in\{1,2\}$.

The proof of the theorem requires some notations and intermediate lemmata. In the following, we consider two particular tours p and p^{*}. We assume that p is the tour generated by KNN with the preference relation \prec_{L} and that p^{*} is a Pareto optimal tour satisfying

$$
\begin{equation*}
\vec{D}_{L(1)}\left(p^{*}\right) \leq \vec{D}_{L(2)}\left(p^{*}\right) \leq \ldots \leq \vec{D}_{L(k)}\left(p^{*}\right) \tag{5}
\end{equation*}
$$

Figure 2: The tour p generated by KNN. The edge $\left[v, p^{*}(v)\right]$ belongs to p^{*}.

The set of all possible distance vectors $\{1,2\}^{k}$ is denoted by Ω. For all $j \leq k$, we introduce $U_{j}=\left\{\vec{a} \in \Omega \mid \vec{a}_{j}=1\right\}$ and $\bar{U}_{j}=\left\{\vec{a} \in \Omega \mid \vec{a}_{j}=2\right\}$. For $\vec{a} \in \Omega$, we note $X_{\vec{a}}=\{v \in V \mid \vec{d}([v, p(v)])=\vec{a}\}$ and $X_{\vec{a}}^{*}=\left\{v \in V \mid \vec{d}\left(\left[v, p^{*}(v)\right]\right)=\vec{a}\right\}$. Finally, $x_{\vec{a}}$ (resp. $x_{\vec{a}}^{*}$) denotes the cardinality of $X_{\vec{a}}$ (resp. $X_{\vec{a}}^{*}$).

If n is the number of vertices then by construction we have $\sum_{\vec{a} \in \Omega} x_{\vec{a}}=\sum_{\vec{a} \in \Omega} x_{\vec{a}}^{*}=n$, $\vec{D}_{j}(p)=2 n-\sum_{\vec{a} \in U_{j}} x_{\vec{a}}$ and $\vec{D}_{j}\left(p^{*}\right)=2 n-\sum_{\vec{a} \in U_{j}} x_{\vec{a}}^{*}$.

Lemma 4.3 The following holds for any $q \leq k$:

$$
2 \sum_{\vec{a} \in \bigcap_{j=1}^{k+1-q}} x_{\vec{a}} \geq \sum_{\vec{a} \in \bigcap_{j(j)}^{k+1-q}} x_{\vec{a}}^{*} .
$$

Proof. We define $F_{q}=\left\{v \in V \mid \vec{d}([v, p(v)]) \in S_{q}\right\}$ and $F_{q}^{*}=\left\{v \in V \mid \vec{d}\left(\left[v, p^{*}(v)\right]\right) \in\right.$ $\left.S_{q}\right\}$. Then, we have to prove that $2\left|F_{q}\right| \geq\left|F_{q}^{*}\right|$. The key result is to see that $p^{*}\left[F_{q}^{*} \backslash F_{q}\right] \subseteq$ F_{q} where $p^{*}[W]=\bigcup_{v \in W}\left\{p^{*}(v)\right\}$. Take a vertex v in $F_{q}^{*} \backslash F_{q}$ (see Figure 2). Then, $\vec{d}\left(\left[v, p^{*}(v)\right]\right) \in S_{q}, \vec{d}([v, p(v)]) \in S_{q^{\prime}}$ and $q^{\prime}>q$. During the computation of p, suppose that v is the current node and that $p^{*}(v)$ is not already visited. We get a contradiction (the nearest neighbor rule is violated) since $p(v)$ immediately follows v in p and $\vec{d}\left(\left[v, p^{*}(v)\right]\right) \prec_{L} \vec{d}([v, p(v)])$. Now, suppose $p^{*}(v)$ was already visited. It directly precedes $p \circ p^{*}(v)$ in p and then $\vec{d}\left(\left[p *(v), p \circ p^{*}(v)\right]\right) \preccurlyeq_{L} \vec{d}\left(\left[v, p^{*}(v)\right]\right)$. As a consequence, $\vec{d}\left(\left[p^{*}(v), p \circ p^{*}(v)\right]\right) \in S_{q^{\prime \prime}}$ such that $q^{\prime \prime} \leq q$ and $p^{*}(v) \in F_{q}$ since $S_{q^{\prime \prime}} \subseteq S_{q}$.

Since $\left|p^{*}\left[F_{q}^{*} \backslash F_{q}\right]\right|=\left|F_{q}^{*} \backslash F_{q}\right|,\left|F_{q}^{*}\right|=\left|F_{q}^{*} \backslash F_{q}\right|+\left|F_{q}^{*} \cap F_{q}\right|$ and $\left|F_{q}\right| \geq\left|F_{q}^{*} \cap F_{q}\right|$, we deduce $\left|F_{q}^{*}\right|=\left|p^{*}\left[F_{q}^{*} \backslash F_{q}\right]\right|+\left|F_{q}^{*} \cap F_{q}\right| \leq 2\left|F_{q}\right|$. Finally, since $\bigcap_{j=1}^{k+1-q} U_{L(j)}=S_{q}$, $\left|F_{q}\right|=\sum_{\vec{a} \in S_{q}} x_{\vec{a}}$ and $\left|F_{q}^{*}\right|=\sum_{\vec{a} \in S_{q}} x_{\vec{a}}^{*}$, the result follows.

The following inequality is equivalent to (5):

$$
\sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}}^{*} \geq \sum_{\vec{a} \in U_{L(2)}} x_{\vec{a}}^{*} \geq \ldots \geq \sum_{\vec{a} \in U_{L(k)}} x_{\vec{a}}^{*} .
$$

We easily deduce that for any couple j_{1}, j_{2} such that $j_{1}<j_{2}$ we have:

$$
\begin{equation*}
\sum_{\vec{a} \in U_{L\left(j_{2}\right)} \backslash U_{L\left(j_{1}\right)}} x_{\vec{a}}^{*} \leq \sum_{\vec{a} \in U_{L\left(j_{1}\right) \backslash U_{L\left(j_{2}\right)}}} x_{\vec{a}}^{*} . \tag{6}
\end{equation*}
$$

Let b_{1}, b_{2}, j and m be such that $b_{1} \in\{1,2\}, b_{2} \in\{1,2\}, 1 \leq j \leq k$ and $1 \leq m<j$. Let $R\left(b_{1}, j, m, b_{2}\right)$ be the set of all $\vec{a} \in \Omega$ such that $\vec{a}_{L(j)}=b_{1}$ and there exists exactly m distinct coordinates of \vec{a} among $\left\{\vec{a}_{L(1)}, \vec{a}_{L(2)}, \ldots, \vec{a}_{L(j-1)}\right\}$ which are equal to b_{2}. Remark that $R\left(b_{1}, j, m, b_{2}\right)=R\left(b_{1}, j, j-1-m, \overline{b_{2}}\right)$ where $\overline{b_{2}}=3-b_{2}$.

Lemma 4.4 For any $j \leq k$, one has:

$$
\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(1, j, q, 2) \cup R(2, j, q, 2)} x_{\vec{a}}^{*}\right) \leq(j-1) * \sum_{q=0}^{j-1}\left(\sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right)
$$

Proof. We sum up inequality (6) with $j_{1} \in\{1, \ldots, j-1\}$ and $j_{2}=j$. We get the following inequality:

$$
\begin{equation*}
\sum_{q=1}^{j-1}\left(\sum_{\vec{a} \in U_{L(j)} \backslash U_{L(q)}} x_{\vec{a}}^{*}\right) \leq \sum_{q=1}^{j-1}\left(\sum_{\vec{a} \in U_{L(q)} \backslash U_{L(j)}} x_{\vec{a}}^{*}\right) . \tag{7}
\end{equation*}
$$

We also have the following equality:

$$
\begin{equation*}
\forall j \leq k, \sum_{q=1}^{j-1}\left(\sum_{\vec{a} \in U_{L(j)} \backslash U_{L(q)}} x_{\vec{a}}^{*}\right)=\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(1, j, q, 2)} x_{\vec{a}}^{*}\right) \tag{8}
\end{equation*}
$$

Let \vec{a} be a distance vector in $R(1, j, q, 2)$. By definition, $\vec{a}_{L(j)}=1$ and there exists a set $\left\{i_{1}, \ldots, i_{q}\right\}$ with $1 \leq i_{1}<i_{2}<\ldots<i_{q}<j$ such that $\vec{a}_{L\left(i_{1}\right)}=\vec{a}_{L\left(i_{2}\right)}=\ldots=\vec{a}_{L\left(i_{q}\right)}=2$. Moreover, for all $j^{\prime} \leq j-1$ such that $j^{\prime} \notin\left\{i_{1}, \ldots, i_{q}\right\}$, we have $\vec{a}_{L\left(j^{\prime}\right)}=1$. Thus, $\vec{a} \in U_{L(j)} \backslash U_{L(g)}$ iff $g \in\left\{i_{1}, i_{2}, \ldots, i_{q}\right\}$.

Using a similar argument, we obtain:

$$
\begin{equation*}
\forall j \leq k, \sum_{q=1}^{j-1}\left(\sum_{\vec{a} \in U_{L(q)} \backslash U_{L(j)}} x_{\vec{a}}^{*}\right)=\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right) \tag{9}
\end{equation*}
$$

Then, using (7), (8) and (9) we get:

$$
\begin{equation*}
\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(1, j, q, 2)} x_{\vec{a}}^{*}\right) \leq \sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right) \tag{10}
\end{equation*}
$$

Since $R(2, j, q, 2)=R(2, j, j-1-q, 1)$, the following equality holds:

$$
\begin{equation*}
\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right)=(j-1) * \sum_{q=0}^{j-1}\left(\sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right)-\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(2, j, q, 2)} x_{\vec{a}}^{*}\right) \tag{11}
\end{equation*}
$$

So, Lemma 4.4 follows from (10) and (11).

Proof of Theorem 4.2

The proof is cut into 3 cases $(j=1, j=2$ and $j \geq 3)$. In the following, we consider that L is any permutation of $\{1, \ldots, k\}, p^{*}$ is a Pareto optimal tour satisfying (5) and p is built with the nearest neighbor rule and the preference relation \prec_{L}. Then, we have to show that:
(i) if $j=1$ or 2 then $\vec{D}_{L(j)}(p) \leq \frac{3}{2} \vec{D}_{L(j)}\left(p^{*}\right)$,
(ii) if $j \geq 3$ then $\vec{D}_{L(j)}(p) \leq \frac{2 j}{j+1} \vec{D}_{L(j)}\left(p^{*}\right)$.

Case $j=1$. $\vec{D}_{L(1)}(p) \leq \frac{3}{2} \vec{D}_{L(1)}\left(p^{*}\right)$ is equivalent to the following inequality:

$$
\begin{equation*}
2 \sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}}-\sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}}^{*}+2 \sum_{\vec{a} \in \bar{U}_{L(1)}} x_{\vec{a}}^{*} \geq 0 \tag{12}
\end{equation*}
$$

$$
\text { Indeed, } \begin{aligned}
\vec{D}_{L(1)}(p) \leq \frac{3}{2} \vec{D}_{L(1)}\left(p^{*}\right) & \Leftrightarrow 2\left(2 n-\sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}}\right) \leq 3\left(2 n-\sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}}^{*}\right) \\
& \Leftrightarrow-2 \sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}} \leq 2 n-3 \sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}}^{*}
\end{aligned}
$$

Using $n=\sum_{\vec{a} \in U_{L(1)}} x_{\vec{a}}^{*}+\sum_{\vec{a} \in \bar{U}_{L(1)}} x_{\vec{a}}^{*}$, the equivalence follows. Thus, using Lemma 4.3 with $q=k$ and $\sum_{\vec{a} \in \bar{U}_{L(1)}} x_{\vec{a}}^{*} \geq 0$ (which is true since for all $\vec{a} \in \Omega, x_{\vec{a}}^{*} \geq 0$), inequality (12) follows.

Case $j=2 . \vec{D}_{L(2)}(p) \leq \frac{3}{2} \vec{D}_{L(2)}\left(p^{*}\right)$ is equivalent to the following inequality:

$$
\begin{equation*}
-2 \sum_{\vec{a} \in U_{L(2)} \backslash U_{L(1)}} x_{\vec{a}}-2 \sum_{\vec{a} \in U_{L(2)} \cap U_{L(1)}} x_{\vec{a}} \leq 2 \sum_{\vec{a} \in \bar{U}_{L(2)}} x_{\vec{a}}^{*}-\sum_{\left.\vec{a} \in U_{L(2)}\right)\left(U_{L(1)}\right.} x_{\vec{a}}^{*}-\sum_{\vec{a} \in U_{L(2)} \cap U_{L(1)}} x_{\vec{a}}^{*} . \tag{13}
\end{equation*}
$$

$$
\text { Indeed, } \vec{D}_{L(2)}(p) \leq \frac{3}{2} \vec{D}_{L(2)}\left(p^{*}\right) \Leftrightarrow-2 \sum_{\vec{a} \in U_{L(2)}} x_{\vec{a}} \leq 2 \sum_{\vec{a} \in \bar{U}_{L(2)}} x_{\vec{a}}^{*}-\sum_{\vec{a} \in U_{L(2)}} x_{\vec{a}}^{*} \text {. }
$$

If we partition $U_{L(2)}$ into two subsets $U_{L(2)} \backslash U_{L(1)}$ and $U_{L(2)} \cap U_{L(1)}$ then the equivalence follows. By Lemma 4.3 with $q=k-1$ we get:

$$
2 \sum_{\vec{a} \in U_{L(1)} \cap U_{L(2)}} x_{\vec{a}} \geq \sum_{\vec{a} \in U_{L(1)} \cap U_{L(2)}} x_{\vec{a}}^{*}
$$

Then, using inequality (13), we have to prove:

$$
-2 \sum_{\vec{a} \in U_{L(2)} \backslash U_{L(1)}} x_{\vec{a}} \leq 2 \sum_{\vec{a} \in \bar{U}_{L(2)}} x_{\vec{a}}^{*}-\sum_{\vec{a} \in U_{L(2)} \backslash U_{L(1)}} x_{\vec{a}}^{*}
$$

By inequality (6), when $j_{1}=1$ and $j_{2}=2$, we get:

$$
-\sum_{\vec{a} \in U_{L(1)} \backslash U_{L(2)}} x_{\vec{a}}^{*} \leq-\sum_{\vec{a} \in U_{L(2)} \backslash U_{L(1)}} x_{\vec{a}}^{*}
$$

Thus:

$$
2 \sum_{\vec{a} \in \bar{U}_{L(2)}} x_{\vec{a}}^{*}-\sum_{\vec{a} \in U_{L(1)} \backslash U_{L(2)}} x_{\vec{a}}^{*} \leq 2 \sum_{\vec{a} \in \bar{U}_{L(2)}} x_{\vec{a}}^{*}-\sum_{\vec{a} \in U_{L(2)} \backslash U_{L(1)}} x_{\vec{a}}^{*} .
$$

Since $U_{L(1)} \backslash U_{L(2)} \subseteq \bar{U}_{L(2)}$, we have:

$$
-2 \sum_{\vec{a} \in U_{L(2)} \backslash U_{L(1)}} x_{\vec{a}} \leq 0 \leq 2 \sum_{\vec{a} \in \bar{U}_{L(2)}} x_{\vec{a}}^{*}-\sum_{\vec{a} \in U_{L(1)} \backslash U_{L(2)}} x_{\vec{a}}^{*}
$$

Case $j \geq 3 . \vec{D}_{L(j)}(p) \leq \frac{2 j}{j+1} \vec{D}_{L(j)}\left(p^{*}\right)$ holds if we have the following inequality:

$$
\begin{equation*}
-(j+1) \sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}} \leq 2(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}-2 \sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}}^{*} . \tag{14}
\end{equation*}
$$

$$
\begin{aligned}
\vec{D}_{L(j)}(p) \leq \frac{2 j}{j+1} \vec{D}_{L(j)}\left(p^{*}\right) & \Leftrightarrow(j+1)\left(2 n-\sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}}\right) \leq 2 j\left(2 n-\sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}}^{*}\right) \\
& \Leftrightarrow-(j+1) \sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}} \leq 2(j-1) n-2 j \sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}}^{*} \\
& \Leftrightarrow-(j+1) \sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}} \leq 2(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}-2 \sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}}^{*},
\end{aligned}
$$

using $n=\sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}}^{*}+\sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}$.
Let us denote by \mathcal{A} and \mathcal{B} the following quantities:

$$
\begin{aligned}
\sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}} & =\sum_{\vec{a} \in U_{L(j)} \backslash\left(\cap_{m \leq j-1} U_{L(m)}\right)} x_{\vec{a}}+\sum_{\vec{a} \in \bigcap_{m \leq j} U_{L(m)}} x_{\vec{a}}=\mathcal{A} \\
\sum_{\vec{a} \in U_{L(j)}} x_{\vec{a}}^{*}= & \sum_{\vec{a} \in U_{L(j)} \backslash\left(\bigcap_{m \leq j-1} U_{L(m)}\right)}+\sum_{\vec{a} \in \bigcap_{m \leq j} U_{L(m)}} x_{\vec{a}}^{*}=\mathcal{B} .
\end{aligned}
$$

Then, inequality (14) becomes:

$$
\begin{equation*}
-(j+1) \mathcal{A} \leq 2(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}-2 \mathcal{B} \tag{15}
\end{equation*}
$$

To prove (15), we propose the following decomposition:

$$
\begin{gather*}
\mathcal{C}=2(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}-2 \sum_{\vec{a} \in U_{L(j)} \backslash \bigcap_{m \leq j-1} U_{L(m)}} x_{\vec{a}}^{*}-4 \sum_{\vec{a} \in \bigcap_{m \leq j} U_{L(m)}} x_{\vec{a}} \tag{16}\\
\quad-(j+1) \mathcal{A} \leq \mathcal{C} \tag{17}\\
\mathcal{C} \leq 2(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}-2 \mathcal{B} \tag{18}
\end{gather*}
$$

Thus, (17) becomes:

$$
\begin{array}{r}
-(j+1) \sum_{\vec{a} \in U_{L(j)} \backslash \cap_{m \leq j-1} U_{L(m)}} x_{\vec{a}}-(j-3) \sum_{\vec{a} \in \bigcap_{m \leq j} U_{L(m)}} x_{\vec{a}} \leq \\
\leq 2(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}-2 \sum_{\vec{a} \in U_{L(j)} \backslash \bigcap_{m \leq j-1} U_{L(m)}} x_{\vec{a}}^{*}
\end{array}
$$

Since the left part of this inequality is negative, we want to prove that the right part is positive:

$$
\begin{array}{r}
0 \leq 2(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*}-2 \sum_{\vec{a} \in U_{L(j)} \backslash \cap_{m \leq j-1} U_{L(m)}} x_{\vec{a}}^{*} \\
\sum_{\vec{a} \in U_{L(j)} \backslash \cap_{m \leq j-1} U_{L(m)}} x_{\vec{a}}^{*} \leq(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*} \tag{20}
\end{array}
$$

We also have:

$$
\begin{aligned}
\sum_{\vec{a} \in U_{L(j)} \backslash \cap_{m \leq j-1} U_{L(m)}} x_{\vec{a}}^{*} & =\sum_{q=1}^{j-1}\left(\sum_{\vec{a} \in R(1, j, q, 2)} x_{\vec{a}}^{*}\right) \text { and } \\
(j-1) \sum_{\vec{a} \in \bar{U}_{L(j)}} x_{\vec{a}}^{*} & =(j-1) \sum_{q=0}^{j-1}\left(\sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right) .
\end{aligned}
$$

The first equality follows from $U_{L(j)} \backslash \bigcap_{m \leq j-1} U_{L(m)}=\bigcup_{q=1}^{j-1} R(1, j, q, 2)$ since $\vec{a} \in$ $U_{L(j)} \backslash \bigcap_{m \leq j-1} U_{L(m)}$ iff $\vec{a}_{L(j)}=1$ and there exists exactly q indexes $\left\{i_{1}, \ldots i_{q}\right\}$ such that $1 \leq q \leq j-1$ and $\vec{a}_{L\left(i_{1}\right)}=\vec{a}_{L\left(i_{2}\right)}=\ldots=\vec{a}_{L\left(i_{q}\right)}=2$, which is equivalent to $\vec{a} \in R(1, j, q, 2)$. The second equality follows from $\bar{U}_{L(j)}=\bigcup_{q=0}^{j-1} R(2, j, q, 1)$ because $\vec{a} \in \bar{U}_{L(j)}$ means $\vec{a}_{L(j)}=2$.

As a consequence, (20) becomes:

$$
\sum_{q=1}^{j-1}\left(\sum_{\vec{a} \in R(1, j, q, 2)} x_{\vec{a}}^{*}\right) \leq(j-1) \sum_{q=0}^{j-1}\left(\sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right)
$$

With Lemma 4.4, we have:

$$
\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(1, j, q, 2) \cup R(2, j, q, 2)} x_{\vec{a}}^{*}\right) \leq(j-1) * \sum_{q=0}^{j-1}\left(\sum_{\vec{a} \in R(2, j, q, 1)} x_{\vec{a}}^{*}\right)
$$

and (20) follows from

$$
\sum_{q=1}^{j-1}\left(q \times \sum_{\vec{a} \in R(1, j, q, 2) \cup R(2, j, q, 2)} x_{\vec{a}}^{*}\right) \geq \sum_{q=1}^{j-1}\left(\sum_{\vec{a} \in R(1, j, q, 2)} x_{\vec{a}}^{*}\right)
$$

By Lemma 4.3 with $q=k+1-j$ we have:

$$
2 \sum_{\vec{a} \in \bigcap_{m \leq j} U_{L(m)}} x_{\vec{a}} \geq \sum_{\vec{a} \in \bigcap_{m \leq j} U_{L(m)}} x_{\vec{a}}^{*}
$$

which is exactly (18).
The next section contains two examples to see that the analysis of KNN is tight.

5 Tightness

In the previous Section we saw that KNN generates an approximate Pareto curve whose performance is at least $2 k /(k+1)$. As k grows, this ratio tends to 2 which is the ratio that any feasible tour achieves. In what follows, we show that the analysis of the algorithm is tight.

Suppose that $k=2$ and consider the instance given in Figure 3. We focus on the following three tours:

- $T_{1}=\left(w_{1,1}, v_{1,1}, w_{1,2}, v_{1,2}, w_{1,3}, v_{1,3}, w_{1,4}, v_{1,4}, w_{2,1}, v_{2,1}, w_{2,2}, v_{2,2}, w_{2,3}, v_{2,3}, w_{2,4}, v_{2,4}\right)$

Figure 3: In this instance, edges which are not drawn have a weight $(2,2)$.

- $T_{2}=\left(v_{1,1}, v_{1,2}, v_{1,3}, v_{1,4}, v_{2,2}, v_{2,4}, v_{2,1}, v_{2,3}, w_{2,4}, w_{1,1}, w_{1,2}, w_{1,3}, w_{1,4}, w_{2,1}, w_{2,2}, w_{2,3}\right)$
- $T_{3}=\left(v_{2,1}, v_{2,2}, v_{2,3}, v_{2,4}, v_{1,2}, v_{1,4}, v_{1,1}, v_{1,3}, w_{1,4}, w_{2,1}, w_{2,2}, w_{2,3}, w_{2,4}, w_{1,1}, w_{1,2}, w_{1,3}\right)$

We have $\vec{D}\left(T_{1}\right)=(24,24), \vec{D}\left(T_{2}\right)=(32,28)$ and $\vec{D}\left(T_{3}\right)=(28,32)$. One can easily see that KNN can generate $\left\{T_{2}, T_{3}\right\}$ which constitutes a $\frac{2 k}{k+1}$-approximation of T_{1}. In the following, we generalize this instance for any $k>2$. Indeed, we consider a family of instances for which the Pareto curve is reduced to a single tour T^{*} whose total distance $\vec{D}\left(T^{*}\right)$ is exactly $(k+1) 2^{k+1}$ on each coordinate. Given an instance of this family, we show that KNN can output a set of tours $\left\{T_{L} \mid L\right.$ is a permutation of $\left.\{1, \ldots, k\}\right\}$ such that each tour T_{L} has a total distance equal to $(4 k) 2^{k}$ on coordinate $L(k)$.

We consider a graph G composed of k subgraphs $\left\{H_{j} \mid j=1, \ldots, k\right\}$. Each subgraph H_{j} has exactly 2^{k+1} nodes partitioned into two classes:

- The v-nodes, denoted by $v_{j, r}$ where $r=1, \ldots, 2^{k}$.
- The w-nodes, denoted by $w_{j, r}$ where $r=1, \ldots, 2^{k}$.

For $j=1, \ldots, k$ and $r=1, \ldots, 2^{k}-1, \vec{d}\left(\left[v_{j, r}, w_{j, r}\right]\right), \vec{d}\left(\left[v_{j, r}, w_{j, r+1}\right]\right)$ and $\vec{d}\left(\left[v_{j, 2^{k}}, w_{j, 2^{k}}\right]\right)$ have a 2 on coordinate j and a 1 on the others. So, each H_{j} has an Hamiltonian path denoted by $h p_{j}^{*}$ which alternatively visits a v-node and a w-node and such that each edgedistance has only a 2 on coordinate j.

Using a Theorem of Walecki (see [5]), we know that a complete graph with $2 x$ nodes can be decomposed into x edge-disjoint Hamiltonian paths. So, the subgraph of H_{j} induced by the v-nodes has 2^{k-1} Hamiltonian paths $\left\{h p_{j, 1}, \ldots, h p_{j, 2^{k-1}}\right\}$ satisfying the following properties:

- For $q=1 \ldots, 2^{k-1}$, the endpoints of $h p_{j, q}$ are $v_{j, q}$ and $v_{j, 2^{k}-(q-1)}$.
- Any two different Hamiltonian paths $h p_{j, q}$ and $h p_{j, q^{\prime}}$ never share an edge.

We consider these Hamiltonian paths for $q \in\left\{1, \ldots, 2^{k-1}\right\}$ and $h p_{j, q}$ will be composed of edges of the same distance. If the distance of an edge is fixed to 2 on coordinate j while the other coordinates can be 1 or 2 , one can easily count 2^{k-1} possible vectors. This is exactly the number of distinct Hamiltonian paths among v-nodes of H_{j}. Thus, each possible distance such that coordinate j is fixed to 2 is assigned to the edges of an Hamiltonian path $h p_{j, q}$. For the ease of presentation, we assume that $\vec{d}\left(h p_{j, q}\right)$ denotes the distance of the edges of $h p_{j, q}$. Among the 2^{k-1} Hamiltonian paths of H_{j}, we distinguish $h p_{j, 1}$ and $h p_{j, 2^{k-1}}$ and assume that $\vec{d}\left(h p_{j, 1}\right)$ has a 2 on each coordinate while $\vec{d}\left(h p_{j, 2^{k-1}}\right)$ has a 1 on each coordinate excepted for coordinate j.

We set up all components H_{j} and link them as follows:

1. $\forall h p_{j^{\prime}, q^{\prime}}, h p_{j^{\prime \prime}, q^{\prime \prime}}$, with $j^{\prime} \neq j^{\prime \prime}$ and such that $\vec{d}\left(h p_{j^{\prime}, q^{\prime}}\right)$ only differ from $\vec{d}\left(h p_{j^{\prime \prime}, q^{\prime \prime}}\right)$ on exactly one coordinate (say m) and $\vec{d}\left(h p_{j^{\prime}, q^{\prime}}\right)$ has a 2 on coordinate m then $\vec{d}\left(\left[v_{j^{\prime}, 2^{k}-\left(q^{\prime}-1\right)}, v_{j^{\prime \prime}, q^{\prime \prime}}\right]\right)=\vec{d}\left(h p_{j^{\prime}, q^{\prime}}\right)$.
2. Let e_{j}^{*} be $\left[v_{j, 2^{k}}, w_{j+1,1}\right]$ for $j=1, \ldots, k-1$ and $e_{k}^{*}=\left[v_{k, 2^{k}}, w_{1,1}\right]$. Moreover, $\vec{d}\left(e_{j}^{*}\right)$ has a 2 on coordinate j and a 1 on the others.

Finally, make G complete by adding the edges not given by the rules above. Their distance is 2 on each coordinate.

Lemma 5.1 The analysis of KNN is tight.

Proof. We consider the graph G described above and several tours: T^{*} and T_{L} for any permutation L. We can observe the three following facts:
(i) $T^{*}=\bigcup_{j \leq k}\left(h p_{j}^{*} \cup e_{j}^{*}\right)$ is an Hamiltonian cycle and $\forall j \leq k, \vec{D}_{j}\left(T^{*}\right)=(k+1) 2^{k+1}$.
(ii) Let L be a permutation of $\{1,2 \ldots, k\} . T_{L}$ starts with the Hamiltonian path $h p_{L(1), 1}$ (by hypothesis, $\vec{d}\left(h p_{L(1), 1}\right)$ has a 2 on coordinates $\left.L(1) L(2) \ldots L(k)\right)$. Then, T_{L} takes successively for $j=2, \ldots, k$, the Hamiltonian path $h p_{L(j), q}$ such that $\vec{d}\left(h p_{L(j), q}\right)$ has a 2 on coordinates $L(j) L(j+1) \ldots L(k)$ and a 1 on coordinate $L(1) L(2) \ldots L(j-1)$. Finally T_{L} goes to $w_{L(k), 2^{k-1}+1}$ and visits arbitrarily the remaining nodes. We have $\vec{D}_{L(j)}\left(T_{L}\right)=(3 k+j) 2^{k}$ for any $j \leq k$.
(iii) The algorithm KNN can output the tour T_{L}.

```
For \(j=1\) to \(k\) Do
    For \(r=1\) to \(2^{k}\) Do
        Go to \(w_{j, r}\);
        Go to \(v_{j, r}\);
    EndFor
EndFor
Go to \(w_{1,1}\);
```

Table 2: Procedure to build T^{*}.

	Distance of the edges					
steps	1	2	3	\ldots	k	quantity
$j=1$	2	1	1	\ldots	1	2^{k+1}
$j=2$	1	2	1	\ldots	1	2^{k+1}
$j=3$	1	1	2	\ldots	1	2^{k+1}
\vdots						
$j=k$	1	1	1	\ldots	2	2^{k+1}
	$(k+1) 2^{k+1}$	$(k+1) 2^{k+1}$	$(k+1) 2^{k+1}$	\ldots	$(k+1) 2^{k+1}$	

Table 3: The total distance of T^{*}.
Proof of (i) : The procedure to build the tour T^{*} in G is given in Table 2. The total distance of T^{*} is $(k+1) 2^{k+1}$ on each coordinate. To see it, we put in Table 3 the distance of the edges used by T and their quantity.

Proof of $(i i)$: Consider a permutation L of $\{1,2, \ldots, k\}$ and a tour T_{L} in G built as explained in Table 4.

The total distance of T_{L} is equal to $(3 k+j) 2^{k}$ on coordinate $L(j)$. T_{L} first visits the v-nodes of $H_{L(1)}$ using the Hamiltonian path $h p_{L(1), 1}$ (remark that the starting node of $h p_{L(1), 1}$ is $\left.v_{L(1), 1}\right)$ and $\vec{d}\left(h p_{L(1), 1}\right)$ has a 2 on coordinates $L(1)$ to $L(k)$. Afterwards, T_{L} takes an Hamiltonian path $h p_{L(2), q}$ such that $\vec{d}\left(h p_{L(2), q}\right)$ has a 2 on coordinates $L(2)$ to $L(k)$ and a 1 on coordinate $L(1)$. By construction, the edge that links the ending node of $h p_{L(1), 1}$ and the starting node of $h p_{L(2), q}$ has a distance $\vec{d}\left(h p_{L(1), 1}\right)$. Successively, T_{L} visits the v-nodes of components $H_{L(3)}$ to $H_{L(k-1)}$ and finally takes $h p_{L(k), 2^{k-1}}$. We know that $\vec{d}\left(h p_{L(k), 2^{k-1}}\right)$ has a 2 on coordinate $L(k)$ and a 1 on the others. The ending node of $h p_{L(k), 2^{k-1}}$ is $v_{L(k), 2^{k-1}+1}$. By construction, there is an edge $\left[v_{L(k), 2^{k-1}+1}, w_{L(k), 2^{k-1}+1}\right]$ with distance $\vec{d}\left(h p_{L(k), 2^{k-1}}\right)$. The tour T_{L} uses this edge and afterwards it passes through all the non-visited nodes (namely the w-nodes of $H_{L(1)}, H_{L(2)}, \ldots, H_{L(k)}$) using edges with distance 2 on each coordinate. At the end, T_{L} returns to $v_{L(1), 1}$. Table 5 helps us to

For $j=1$ to k Do
Take $h p_{L(j), q}$ s.t. $\vec{d}\left(h p_{L(j), q}\right)$ has a 2 on coordinates $L(j)$ to $L(k)$ and a 1 on the others;

EndFor

Go to $w_{L(k), 2^{k-1}+1}$;
Pass through all non-visited edges;
Return to $v_{L(1), 1}$;

Table 4: Procedure to build T_{L}.

	Distance of the edges						
steps	$L(1)$	$L(2)$	$L(3)$	\ldots	$L(k-1)$	$L(k)$	quantity
$j=1$	2	2	2	\ldots	2	2	2^{k}
$j=2$	1	2	2	\ldots	2	2	2^{k}
$j=3$	1	1	2	\ldots	2	2	2^{k}
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots	\vdots
$j=k$	1	1	1	\ldots	1	2	2^{k}
	2	2	2	\ldots	2	2	$k 2^{k}$
	$(3 k+1) 2^{k}$	$(3 k+2) 2^{k}$	$(3 k+3) 2^{k}$	\ldots	$(4 k-1) 2^{k}$	$(4 k) 2^{k}$	

Table 5: The total distance of T_{L}.
see that T_{L} has a total distance of $(3 k+j) 2^{k}$ on coordinate $L(j)$.
Proof of ($i i i$): KNN uses the preference relation \prec_{L}. To make sure that KNN can output T_{L}, we have to prove that, when T_{L} uses an edge $[a, b]$, there is not any non-visited node c such that $\vec{d}([a, c]) \prec_{L} \vec{d}([a, b])$. By construction, T_{L} starts at node $v_{L(1), 1}$ and visits all the other v-nodes of G until it reaches $v_{L(k), 2^{k-1}+1}$. Afterwards, T_{L} passes through $w_{L(k), 2^{k-1}+1}$ and visits all the w-nodes of G. If the current node is a v-node (say $v_{L(j), r}$), the next edge (say e) that is used has a distance $\vec{d}(e)$ with a 2 on coordinates $L(j)$ to $L(k)$ and a 1 on the others. To be preferred, another edge e^{\prime} must have a distance $\vec{d}\left(e^{\prime}\right)$ with a 1 on coordinates $L(j)$ to $L(k)$. By construction of G, there is not any. If the current node is a w-node (say $w_{L(j), r}$), the next edge (say e) that is used has a distance $\vec{d}(e)$ with a 2 on each coordinate. To be preferred, another edge e^{\prime} must have a distance $\vec{d}\left(e^{\prime}\right)$ with a 1 on coordinate $L(1)$. Moreover, this edge e^{\prime} must lead to another non-visited w-node (all the v-nodes are already visited). By construction of G, there is not any.

Finally, KNN can generate a set of solutions $P=\left\{T_{L} \mid L\right.$ is a permutation of $\left.\{1, \ldots, k\}\right\}$ while the Pareto curve is reduced to one tour T^{*}. Since $\vec{D}\left(T^{*}\right)$ is $(k+1) 2^{k+1}$ on each
coordinate and $\vec{D}_{L(k)}\left(T_{L}\right)=(4 k) 2^{k}, P$ approximates T^{*} within a ratio $\frac{(4 k) 2^{k}}{(k+1) 2^{k+1}}=\frac{2 k}{k+1}$.

6 Conclusion

Up to our knowledge, negative results for multi-criteria optimization problems were not investigated though their approximability motivated a lot of articles. As a first attempt, we present a way to get results of this type by connecting the size the approximate Pareto curve and the best approximation ratio which can be achieved. We apply the method to the k-criteria $\operatorname{TSP}(1,2)$ but it also works with problems where all feasible solutions have the same size.

The approximability of the k-criteria $\operatorname{TSP}(1,2)$ is also investigated. By giving a multi-criteria version of the classical nearest neighbor heuristic, we extend and improve the previous positive results. However, as the number of criteria grows, and even though the number of solutions is large ($k!$), the approximation ratio tends to 2 . Then, it would be interesting to reduce the gap between positive and negative results.

References

[1] E. Angel, E. Bampis and L. Gourvès. Approximating the Pareto curve with local search for the bi-criteria TSP(1,2) problem. Theoretical Computer Science,310(1-3), 135-146, 2004.
[2] L. Engebretsen. An Explicit Lower Bound for TSP with Distances One and Two. Algorithmica, 35(4), 301-318, 2003.
[3] D. Fotakis and P. Spirakis. A Hamiltonian Approach to the Assignment of NonReusable Frequencies. in Proceedings of FCS\&TCS'98, LNCS 1530, 18-29, 1998.
[4] D.S. Johnson and C.H. Papadimitriou. Performance guarantees for heuristics, chapter in The Traveling Salesman Problem: a guided tour of Combinatorial Optimization, E.L Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.), Wiley Chichester, 145-180, 1985.
[5] D.E. Lucas, Récréations mathématiques. Vol. II, Gauthier Villars, Paris 1892.
[6] C.H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal access of web sources. in Proceedings of FOCS'2000, 86-92, 2000.
[7] C.H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two. Mathematics of Operations Research, 18(1), 1-11, 1993.
[8] D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis II. An analysis of several heuristics for the traveling salesman problem. SIAM J. Comp., 6, 563-581, 1977.
[9] A. Warburton. Approximation of Pareto optima in multiple-objective shortest path problems. Operations Research, 35(1), 70-79, 1987.

[^0]: *LaMI, CNRS UMR 8042, Université d'Évry, France. \{angel, bampis, lgourves \}@lami. univ-evry.fr
 ${ }^{\dagger}$ LAMSADE, Université Paris IX-Dauphine, 75775 Paris cedex 16, France. monnot@lamsade. dauphine.fr

