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(Non)-Approximability for the multi-criteria
TSP(1,2)

E. Angel, E. Bampis, L. Gourves, J. Monnot

Abstract

The approximability of multi-criteria combinatorial problems motivated a lot of
articles. However, the non-approximability of this problems has never been investi-
gated up to our knowledge. We propose a way to get some results of this kind which
works for several problems and we put it into practice on a multi-criteria version of
the traveling salesman problem with distances one and Tu*(1, 2)). Follow-
ing the article of Angel et al. [1] who presented an approximation algorithm for the
bi-criteriaT'SP(1, 2), we extend and improve the result to any numbef criteria.

Key words: non-approximability in multi-criteria optimization ; design and analysis
of algorithms

1 Introduction

Multi-criteria optimization refers to problems with two or more objective functions
which are normally in conflict. Vilfredo Pareto stated in 1896 a concept (known today
as "Pareto optimality") that constitutes the origin of research in this area. According to
this concept, the solution to a multi-criteria optimization problem is normally not a sin-
gle value, but instead a set of values (the so-cdi@to curve). From a computational
point of view, this Pareto curve is problematic. Approximating it with a performance
guarantee, i.e. computing an-approximate Pareto curve, motivated a lot of papers
(see [1, 6, 9] among others). Up to our knowledge, non-approximability in the specific
context of multi-criteria optimization has surprisingly never been investigated. Of course,
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(Non)-Approximability for the multi-criteria” S P(1, 2)

some straightforward results can be stated if we remark that a multi-criteria problem gen-
eralizes a mono-criterion problem. Consequently, we aim to state some negative results
which are specific to this area. In multi-criteria optimization, one tries to approximate a
set of solutions (the Pareto curve) with another set of solutions{#pproximate Pareto
curve) and the more theapproximate Pareto curve contains solutions, the more accurate
the approximation can be. Then, the best approximation ratio that could be achieved can
be related to the size of the approximate Pareto curve. As a first attempt, we propose a
way to get some negative results which works for several multi-criteria problems and we
put it into practice on a special case of the multi-criteria traveling salesman problem.

The traveling salesman problem is one of the most studied problem in the operations
research community, see for instance [4]. The case where distances are either one or
two (denoted byl"'SP(1,2)) was investigated by Papadimitriou and Yannakakis [7] who
gave some positive and negative approximation results (see also [2]). Interestingly, this
problem finds an application in a frequency assignment problem [3]. In this article, we
deal with a generalization of tHESP(1,2) where the distance is a vector of lendth
instead of a scalar: thecriteria7'SP(1,2). Previously, Angel et al. [1] proposedacal
search algorithm (calledsLs) for the bi-criterial’ S P(1, 2) which, with only two solutions
generated if©(n?), was able to approximate the whole Pareto curve within a ratigf

A question arises concerning the ability to improve the approximation ratio with an
approximate Pareto curve containing two (or more) solutions. Conversely, given a fixed
number of solutions, how accurate an approximate Pareto curve can be? More gener-
ally, given a multi-criteria problem, how many solutions are necessary to approximate the
Pareto curve within a level of approximation? A second question arises concerning the
ability to generalizeBLS to any number of criteria. Indeed, a large part of the literature
on multi-criteria optimization is devoted to bi-criteria problems and an algorithm which
works for any number of criteria would be interesting.

The paper is organized as follows: In Section 2, we recall some definitions on ex-
act and approximate Pareto curves. Section 3 is devoted to a method to derive some
negatives results in the specific context of multi-criteria optimization. We use it for the
k-criteriaT'SP(1,2) but it works for several other problems. In Section 4, we study the
approximability of thek-criteriaT'SP(1,2). Instead of generalizingLs, we adapt the
classicahearest neighbor heuristic which is more manageable. This multi-criteria nearest
neighbor heuristic works for any and produces &/2-approximate Pareto curve when
k € {1,2} and a2k/(k + 1)-approximate Pareto curve whén> 3. This result extends
for several reasons the one of Angel et al.. First, the new algorithm works fdr ang,
second the time complexity is decreased when 2.
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2 Generalities

The Traveling Salesman Problem{P) is about to find in a complete gragh =
(V. E)) a Hamiltonian cycle whose total distance is minimal. ForiteziteriaZ'S P, each
edgec has adistance d(e) = (dy(¢), . . ., dx(e)) which is a vector of lengtl (instead of a
scalar). Theotal distance of a tour?” is also a vecto(T) Whereﬁj(T) = er c@(e)
andj = 1,..., k. Infact, a tour is evaluated with objective functions. Given this, the
goal of the optimization problem could be the following: Generating a feasible solution
which simultaneously minimizes each coordinate. Unfortunately, such an ideal solution
rarely exists since objective functions are normally in conflict. However a set of solu-
tions representing all best possible trade-offs always exists (the so-called Pareto curve).
Formally, a Pareto curve is a set of feasible solutions, each of them optimal in the sense
of Pareto, whichdominates all the other solutions. A touf’ dominates another or#
(usually denoted by” < 7) iff D;(T) < D,(T") for j = 1,...,k and, for at least one
coordinatej’, one hasﬁj/(T) < Djf(T’). A solution is optimal in the sense of Pareto if
no solution dominates it.

From a computational point of view, Pareto curves are problematic [6, 9]. Two of the
main reasons are:

o the size of a Pareto curve which is often exponential with respect to the size of the
corresponding problem,

e a multi-criteria optimization problem often generalizes a mono-criterion problem
which is itself hard.

As a consequence, one tries to get a relaxation of this Pareto curve, ¢-@pproximate
Pareto curve [6, 9]. An c-approximate Pareto curve is a set of solutions such that for
every solutions of the instance, there is afin P. which satisfiesD;(s") < ¢D;(s) for
j=1,... k.

In [6], Papadimitriou and Yannakakis prove that every multi-criteria problem has an
e-approximate Pareto curve that is polynomial in the size of the input,l Andout ex-
ponential in the numbek of criteria. The design of polynomial time algorithms which
generate approximate Pareto curves with performance guarantee motivated a lot of recent
papers. In this article we study thecriteria7’ S P(1,2). In this problem, each edgeof
the graph has a distance vectiée) of lengthk andd; (¢) € {1, 2} for all j between 1 and
k.
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3 Non-approximability related to the number of gener-
ated solutions

Up to our knowledge, non-approximability of combinatorial problems with multiple
objectives has never been investigated. As a first attempt, we propose a way to get some
negative results which works for several multi-criteria problems and we put it into practice
on thek-criteriaT’SP(1,2).

Usually, non-approximability results for mono-criterion problems bring thresholds of
performance guarantee under which no polynomial time algorithm is likely to exist. Given
a result of this kind for a mono-criterion problei) we directly get a negative result for
a multi-criteria version ofl. Indeed, the multi-criteria version @f generalizedI. For
example, hardness of inherent difficulty of the mono-critefighP (1, 2) has been studied
in [2, 7] and the best known lower boundidd1/5380 — ¢ (for all e > 0). Consequently,
for all e > 0, no polynomial time algorithm can generaté&a31 /5380 — ¢)-approximate
Pareto curve unles8 = N P. However, the structure of the problem, namely the fact that
several criteria are involved, is not taken into account.

In multi-criteria optimization, one tries to approximate a set of solutions (the Pareto
curve) with another set of solutions (theapproximate Pareto curve) and the more the
e-approximate Pareto curve contains solutions, the more accurate the approximation can
be. As a consequence, the best approximation ratio that could be achieved can be related
to the size of the approximate Pareto curve. Formallis a function of|P.|. If we
consider instances for which the whole (or a large part of the) Pareto ¢uivd&nown
and if we suppose that we approximate it with aBetc P such thati P'| = « then the
best approximation ratie such that”’ is anc-approximate Pareto curve is relatedito
Indeed, there must be a solutionffiwhich approximates at least two (or more) solutions
in P.

In the following, we explicitly give a family of instances of tlecriteria7 S P(1, 2)
for which we known a lot of different Pareto optimal tours covering a large spectrum of
the possible values.

Lemma3.1 For any » > 1, for any n > 2k + 1, there exists an instance I, of the
k-criteria TSP(1,2) with nr vertices such that there are ("**~") Pareto optimal tours

(denoted by 7, .. , wherec, for 1 < i < k— 1 arek — 1 indexesin {0, ...,r})
satisfying:

-1

(i) Vi:l,‘..,k—l,ci6{0,...,r}and2f;110i§r.

(i) Vi=1,..., k-1, D’i(Tc1 ,,,,, eny) = 2rn—c;nand D_'k(TCl ,,,,, 1) = T'n—i-n(Zf;ll ).
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Proof. We first consider an instandg with n > 2k + 1 vertices where distances belong
to{(1,2,...,2),(2,1,2,...,2),

..,(2,...,2,1)}. Moreover, we suppose that for any= 1,...,k, the subgraph in-
duced by the edges where the distance haoaly on coordinate is Hamiltonian {;
denotes this tour). For any > 2k + 1, using an old result (see [5]), we know th], is
Hamiltonian cycles decomposable irtalisjoint tours and then, such an instance exists.
Finally, the instancé,, . is built by the following way: We duplicat§, = (K, d) r times
(v§ denotes the vertex; of the c-th copy) and between two copies with < ¢, we set
d([v*,v2]) = d([vi,v5]) if i # j andd([vf,v?]) = (1,2,....2). Letey,... ¢y be
integers satisfyingi), we build the toufT,., ., , by applying the following process: On
thec, first copies, we take the todF, on thec, second copies, we take the tayrand so
on. Finally, for ther — Zf;f ¢; last copies, we také),. For anyl < [; < [, < r, and any
toursT 7', we patch the tour’ on copyh with the tourT’ on copyl, by replacing edges
[l Wl € T, [v!2,02] € T" by edgedv!!, v'2], [v/2,v""]. Observe that the resulting tour

Ui 7 o U, v 7 U J
has a Welgth(T’) + D(T). So, by applying- times this process, we can obtain a tour
T.,....c._, Satisfying(ii). Moreover, the number of tours is equal to the number of choices

of k — 1 elements among+ (k — 1).

Theorem 3.2 For any & > 2, any algorithm .4 producing a p-approximate Pareto curve
with at most x solutions for the k-criteria 7S P(1, 2) satisfies:

1
vvvv o (2i — 1)r(i,z) —

i —1
p > 1+maz;—s 1} wherer (i, z) = min{r| z < (T o ) -1}
r
Proof. Letp = (1 + ¢) and letr(k,z) = r be the smallest integer such that
z < (") — 1 and consider the instandg, of Lemma 3.1. Since < ("**7') — 1,
there exists two distinct toufg,, ., , andT;, 4, and a tourl” produced byA4 such
that:

Ck—

By < (1 +s>5<Tq,...,ck,l> and D(T) < (1+)D(Ty...;_,) 1)

Cl—1

Letl; = max{c;, ¢} fori = 1,....k — 1 andl, = min{> ' ¢;, ¢ ¢}. By
construction, we havg < Z Y- 1 Moreover the total dlstance @f can be written
Di(T) = 2rn — ¢; for i = 1,...,k, — 1andDy(T) = rn + Y1~ ¢; for some value of
¢; (¢; is the number of edges @f where the distance has a 2 on coordinatend 1 on
the others). Thus, using inequalities (1), we deduce that, ferl, ...,k — 1, we have
2nr — q; < (14 ¢)(2rn — I;n) which is equivalent to

g > lLin(l+¢) — 2rne. 2
We also haven + S ¢; < (1 + )(rn + lxn) which is equivalent to

k-1
Z%‘ <ern+lpn(l+¢). 3)
i=1
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Adding inequalities (2) foi = 1, ..., k—1 and by using inequality (3) arlg < Zf;f l;—

1, we deduce: .
> )
=0k Urlka) — 1 @)

Finally, since ap-approximation for the:-criteria TS P(1,2) is also ap-approximation
for thei-criteriaT’'SP(1,2) withi = 2,... k — 1 (for thek — i last coordinates, we get a
factor 2), we can apply — 1 times the inequality (4) and the result follows.

The following table gives some (truncated) numerical values of the best approximation
ratio that it is possible to achieve:

1 2 3 4 5 6 7 8 9

2 1500 1.200 1.125 1.090 1.071 1.058 1.050 1.043 1]038
3 1500 1.250 1.125 1.111 1.111 1.071 1.071 1.071 071
4 1500 1.250 1.166 1.111 1.111 1.076 1.076 1.076 1076

=

From Theorem 3.2, we are able to give a more explicit but less powerful result.

Corollary 3.3 For any k > 2, any p-approximate algorithm A producing at most x solu-
tions for the k-criteria 'S P(1, 2) satisfies:

1
(2k — 1)(x(k — 1)l

p>1+

)1/(](771)

Proof. By construction of-(k, ) = r, we haver > (") ~1**~1). Since
r—1+k—1 < rk-1 ’
k=1 )T 1)

1/(k—1)

we deduce
r< (a:(k - 1)!)
Thus, using the inequality (4), we obtain the expected result. O

For instance, these bounds become 1 + 1/(3z — 1) for the bi-criterial’SP(1, 2)
andp > 1+ 1/(5v/2z — 1) for the 3-criterial’ S P(1,2). More generally, observe that if

-1
we write Ry(z) = 1 + ((Qk — 1) (z(k — 1YY =D 1) , then the following property

holds :Vk > 2,3z, Va > xo we haveRy,1(x) > Ry(z). In other words, between two
different versions of thé-criteriaT'SP(1,2), the negative bound increases with So,
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these bounds are interesting wheis a fixed constant andis an arbitrarily large integer
(indeed, wherk = o(2)).

On the other hand, we can also obtain other bounds whinfixed andk grows
to infinity (z = o(k)). In particular, when the-approximate algorithm returns just
solutions, we obtaip > 2x/(2x — 1) — ¢ for the k-criteriaT' S P(1, 2) with & arbitrarily
large.

Theorem 3.4 For any k > 2, any p-approxi mateanorithm producing at most = solutions
for k-criteria TS P(1,2) satisfies: p > 1+ k(gl -
Proof. Letz be an integer. We apply Lemma 3.1 with= 1. So, we havé: Pareto
optimal toursT,, fori = 1,...,k wheree; is a (k — 1)-uplet with a 1 oncoordinate;
and 0 otherwise (i.egy = (0,...,0), e; = (1,0,...,0) andey = (0,...,0,1)). Now
consider g = (1 + ¢)-approximate algorithm using at mastsolutions. Thus, one of
these solutions approximates at least (f] Pareto optimal tourg., ..., T, with
i< <

Applying the same arguments as in Theorem 3.2 and if we only considentkekéions,
we have:l, < Zk 11, — (®=2). Indeed, ifi; = 0thenl, = 0 andl; = 1 for j =
ig, ..., i, andl; = 0 otherwise. Sol =Y —(p—1) < Y 1l — (=) 0f
iy > 0thenl, = 1andl; = 1forj = il,....t,, andl; = 0 otherW|se S0, =
Siil—(p-1) < Zk 11; — (5=2). As in the previous Theorem, we also have:

n(l+e) (X! ;) —2ne(k—1) < en+Ilxn(l+¢). Thus, by using these two inequalities,

i=j
the result follows.
The method presented in this section can be applied to several other multi-criteria
problems. For instance, it works with problems where all feasible solutions have the
same size|{’| for a Hamiltonian cycle|V| — 1 for a spanning tree, etc).

4 Nearest neighbor heuristic for the k-criteria TSP(1,2)

The k-criteria TSP(1,2) is a special case of the metriccriteria TSP where all
coordinates of the distance vectors are either one or two. Given this, any feasible tour
constitutes &-approximate Pareto curve. In this Section, we try to design a polynomial
time algorithm which approximates the Pareto curve within a ratio strictly better than 2.

Angel et al. present in [1] #ocal search algorithm (calledsLs) for the bi-criteria
TSP(1,2). This algorithm returns in timé&(n?) a 3/2-approximate Pareto curve. Since
BLS works only for the bi-criterid 'S P(1, 2), an algorithm which works for any number
of criteria would be interesting.

21



(Non)-Approximability for the multi-criteria” S P(1, 2)

A generalization oBLS may exist but it is certainly done with difficulty. Sinea.s
uses the — opt neighborhood, two neighboring solutions differ on two edges. Defining
an order on each couple of possible distance vector is necessary to decide, among two
neighboring solutions, which one is the best. Wltegrows, such an order is hard to
handle.

In this section, we present a different algorithm which is more manageable. It works
for any number of criteria and its time complexity is better tigars’s one for the bi-
criteriaT’SP(1,2). We propose aearest neighbor heuristic which computes i@ (n?k!)
time a%—approximate Pareto curve whén> 3 and a3/2-approximate Pareto curve
whenk € {1,2}. Let us observe here that the dependence of the time complexity on
k! is not surprising since the size of the approximat@areto curve is not necessarily

polynomial on the number of the optimization criteria [6].

Traditionally, the nearest neighbor heuristic [8] consists in starting from a randomly
chosen node and greedily insert non-visited vertices, chosen as the closest ones from
the last inserted vertex. Adapting this heuristic to theriteria7'SP(1,2) gives rise to
two questions : How can we translate the notion of closeness when multiple objectives are
considered? How many solutions must be generated to get an approximation of the Pareto
curve? In the following, we propose a way which simultaneously brings an answer to both
guestions. Given the problem, the total distance of a Pareto optimaltoisrenclosed
in a k-dimensional cost space. The way to generate afowhich approximate§™,
and also the notion of closeness, depends on wh¥fe") is located in the cost space.

The idea is to partition the cost space into a fixed number of parts. Then, with each
part we associate an appropriate notion of closeness. Given a part and its proper notion
of closeness, we can generate with the nearest neighbor rule a tour which approximates
any Pareto optimal solution whose total distance is in the part. For any instance of the
k-criteriaT'SP(1,2), we propose to divide the cost space iktgarts as follows: Each

part is identified by a permutation ¢f, ... k}. Given a permutatior of {1,... k},

a tourT is in the part identified by if Dy)(T) < ... < Dy (T). For the notion

of closeness, we introduce a preference relation over all possible distance vectors which
looks like a lexicographic order. This preference relation which depends (denoted

by <) is defined by using + 1 setsS;, ..., Sgi1:

S, = {ae{l,2}"|Vi<k+1l-q apy=1}, forl<q<k
Se = {12}~

—

Definition 4.1 For any edge e, we say that e is S,-preferred(for <) if d(e) € S,\S;—1
(where S, = (). For two edges e and ¢’ such that e is S,-preferred and ¢’ is S,/ -preferred,

- — -

we say that d(e) is preferred (resp., weakly preferred) to d(¢’) and we note d(e) <, d(¢')

- -

(resp., d(e) <y, d(€))iff ¢ < ¢ (resp., ¢ < ¢').

An example wheré = 3 and L is the identity permutation is given in Figure 1.
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212
111 291
222

Figure 1: One has$ll <, 112 <, 121 5, 122 <, 211 <4, 212 <, 221 <, 222.

KNN: k-criteria Nearest Neighbor
P =0
For all permutationd. of {1,2,...,k} Do
Take arbitrarilyy € V' ;
W.={v},u:=v;
While W =V Do
Taker € V\W s.t.r is the closest vertex to
by <r;
W .=wWu{r};
plu):=r;u:=r;
End While;
p(r)=uv;
P := PU{p};
End For ;
ReturnpP ;

Table 1: Forw € V andp a tour,p(v) denotes the node which immediately follows p.

The algorithm that we propose for thecriteria7'S P(1, 2) is given in Table 1. Called
KNN for k-criteria Nearest Neighbor, it is composedidfsteps. At each step, a permu-
tation L of {1,2,...,k} is determined. With, we build a preference relatior; and
finally, a solution is generated with the nearest neighbor rule.

Theorem 4.2 KNN runsin polynomial time. It returnsa 2k/(k + 1)-approximate Pareto
curve for the k-criteria T'SP(1, 2) when k > 3 and a 3 /2-approximate Pareto curve when
ke {1,2}.

The proof of the theorem requires some notations and intermediate lemmata. In the fol-

lowing, we consider two particular toupsandp*. We assume thatis the tour generated

by KNN with the preference relatior; and thatp* is a Pareto optimal tour satisfying
Dry(®*) < Do) < ... < Dy (07). (5)
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Figure 2: The toup generated bxNN. The edgdv, p*(v)] belongs tg*.

The set of all possible distance vectgr}:, 2}* is denoted by2. For allj < k, we
introducelU; = {@ € Q | a; = 1} andU; = {d € Q | @; = 2}. Fora € Q, we note

Xz ={v eV |d(v,pw)]) =a} andX: = {v € V | d([v,p*(v)]) = a}. Finally, zz
(resp.z ) denotes the cardinality of; (resp..X}).

If n is the number of vertices then by constructionwe haye , x5 = > .. s = n,
D;(p) = 2n =3 ey, va @nAD;(p*) = 2n = 3 Lz 45

Lemma 4.3 Thefollowing holdsfor any g < k:

2 Z T5 > Z g

ki L ~kt1—
aeN) 2 UL aeny " UL

- -

Proof. We defineF, = {v € V | d([v, p(v)]) € Sy} andF; = {v € V | d([v, p*(v)]) €
Sq}- Then, we have to prove thatF,| > |F|. The key resultis to see that[ [\ F] C
F, wherep*[W] = U,cpip*(v)}. Take a vertex in F;\F, (see Figure 2). Then,

d([v,p*(v)]) € Sqr d([v,pv))) € Sy andq¢’ > ¢. During the computation of, sup-
pose thaw is the current node and that(v) is not already visited. We get a contra-
diction (the nearest neighbor rule is violated) sip¢e) immediately followsv in p and

— —

d([v,p*(v)]) <z d([v,p(v)]). Now, suppose*(v) was already visited. It directly pre-
cedes o p*(v) in p and therrf([p x (v),pop*(v)]) <L cf([v,p*(v)]). As a consequence,
d([p*(v), po p*(v)]) € Sy such thay” < g andp*(v) € F, sinceS,» C S,.

Since|p*[F¢;\Fq]| = |F;\Fq|! |Fq*‘ = ‘F;\Fq| + ‘Fq* N Fy| and|F,| > |F; N Fyl,
we deducd | = [p*[F\F,]| + |F; N F,| < 2|F,|. Finally, since ;""" Uy = S,
|Fyl = > ges, xa and|Fy| = > 2cq, 7, the result follows.

The following inequality is equivalent to (5):

Z re > Z zh> 0> Z s

deUL(l) EGUL(Q) deUL(k)

Q%
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We easily deduce that for any couple j> such thatj; < j, we have:

>oooms > a (6)

a€UL(j5)\UL(iy) acUr(j) \UL(ja)

Let by, by, 7 @andm be such thab, € {1,2}, b, € {1,2},1 < j < kandl < m < j.
Let R(by,j,m, by) be the set of alli € 2 such thati,;) = b, and there exists exacty
distinct coordinates of among{d.), dr), - - -, @r-1) } Which are equal td,. Remark
thatR(bl,],m bz) R(bl,] j 1—m bg) Wherebg =3 — bs.

Lemma4.4 For any j < k, one has.

Jj—1 -1

Z(qx > ) (G—1) *Z( > xa)

q=1 acR(1,5,9,2)UR(2,5,q,2) =0  deR(2,,q,1)

k)

Proof. We sum up inequality (6) with; € {1,...,5 — 1} andj, = j. We get the
following inequality:
j,

Sy @)= (Y w) ™

a=1  @eUr;)\UL(g) q=1  @eUrg\UL(y)

—

We also have the following equality:

-1 j—1

Vi <k, ( Z x:;) = (q X Z x}) (8)

q=1 aGUL(j)\UL(q) q=1 acR(1,5,q,2)

<.

Let @ be a distance vector iR(1, j, ¢, 2). By definition,a;) = 1 and there exists a set
{ig, .. yighwith 1 <4y <y < ... <ig < jsuchthatiy,) = dre,) = ... = dru,) = 2.
Moreover, for all;’ < j — 1 such thatj’ ¢ {i,...,i,}, we haved,;y = 1. Thus,
ae UL(j)\UL(g) iff g € {’L'l,i% R 7iq}.

Using a similar argument, we obtain:

Jj—1 J—1
sk (> w) = (ax Y @) ©)
a=1 @€l \UL( g=1 acR(2,.9,1)

Then, using (7), (8) and (9) we get:

(qx Z x>§ (qx Z x

aeR(1,5,4,2) g=1 A€ R(2,5,9,1)

<.
—
<.
|
—

) . (10)

U
U

=]
I
—
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SinceR(2,4,q,2) = R(2,7,7 — 1 — ¢, 1), the following equality holds:

Jj—1 j—1 j—1

Z(WZ ) = Z(qxz ). ay

A€R(2,5,q,1) q=0 GeR(2,5,9,1) ¢=1  a@eR(2,,q,2)

ISTRS
\
—
<
\
—_
~—
*
ISV

So, Lemma 4.4 follows from (10) and (11).

Proof of Theorem 4.2

The proofis cut into 3 casesg & 1, 7 = 2 andj > 3). In the following, we consider
that L is any permutation of1,. .., k}, p* is a Pareto optimal tour satisfying (5) apd
is built with the nearest neighbor rule and the preference relationThen, we have to
show that:

(i) if j = 1or2thenDy;(p) < 3Dy (p*),

(if) if j > 3then Dy (p) < 25 Dy (p").

Casej = 1. Dyy(p) < 2Dy (p7) is equivalent to the following inequality:

2 ) ma— Y ap+2 > ap>0. (12)

Indeed,ﬁm)(p)g;ﬁm)(p*) & 2(2n— Z xa) §3(2n— Z a:}})

5€UL(1) aGUL(l)

& =2 > wp<2-3 Y
(_iEUL(l) EEUL(l)
Usingn = > ey, ,, ¥ + 2aer, ., Tar the equivalence follows. Thus, using Lemma 4.3
with ¢ = kand) x% > 0 (which is true since for alil € 2, % > 0), inequal-
ity (12) follows.

EEUL(U

Casej = 2. ﬁL(g)(p) < %EL(Q)(p*) is equivalent to the following inequality:

—22 Tg—2 Z :z:,;SQZ Th— Z T — Z zz. (13)

a€Ur2)\Ur(1) a€Up2)NUL(1) aclp 2 acUr2)\UL(1) a€Up2)NUL(1)
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- 3 -
Indeed,DL(g)() §D (2)( ) & =2 Z xz <2 Z 3:2— Z l‘j—;.

If we partition Uy, (2 into two subset$/;,2)\ULny andUy) N Uy then the equivalence
follows. By Lemma 4.3 with; = k£ — 1 we get:

D SR S
6€UL(1)OUL(2) anL(l)ﬁUL@)
Then, using inequality (13), we have to prove:
2 Y w2 Y w- Y @
acUr2)\UL(1) €U (2 a€Ur2)\UL(1)

By inequality (6), wheryj; = 1 andj, = 2, we get:

- > ms<- ) =

a€Ur1)\UL(2) a€Ur2)\Ur(1)
Thus:
2 Tp— g e <2 g TE— E TE.
acUp s acUr1)\UL(2) aclp 2 acUr2)\UL(1)

SinceUL(l)\UL(g) - UL<2), we have:

-2 Y anSZZ— > @
aclp

a€Ur2)\UL(1) a€Ur1)\UL(2)

Casej > 3. 5L(j)( ) < ]+1DL<J)( *) holds if we have the following inequality:

G+ D wa<2i-1) Y, ar—-2 Y (14)

acur ) aclypj) aclr, )

() < D) & G+1)(2a— Y wa) <2j(on- Y )

+1 . B
/ a€Urj) a€Urj)

& —(+D Y wa<2i-n—-2j Y

aelL(j) aelL(j)
s —(+1) E g <2(j-1) g rE—2 E g,
aclL) acly () aclp)
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H _ * . *
usingn = > ey, . Tat+ ZanW) Tk

Let us denote byl andB the following quantities:

Z Tg = Z Tg+ Z -Ta:.A

acly) acUrL(H\(Np<j—1 UL(m)) @€M< UL(m)
E xp = g T+ E zz = B.
aclyj) aG€UL(H\Nym<j—1 UL(m)) a€Nn<; UL(m)

Then, inequality (14) becomes:
—(G+DA<2 - 1) xi — 2B. (15)
acly )

To prove (15), we propose the following decomposition:

C=2(j-1) > a5—2 > -4 Y. xa (16)

acUp ) €U \Nin<j—1 Urom) €N <j Urim)
—-(j+1A<LC a7
C<2(j-1) Z zi — 2B (18)
€U L)

Thus, (17) becomes:

—(j+1) Z xz— (7 —3) Z xg <

G€UL()\Nm<j—1 UL(m) G€N<; Ur(m)
<2(j—-1) E rE—2 E i
aclp G€ULGH)\ Nm<j—1 UL(m)

Since the left part of this inequality is negative, we want to prove that the right part is

positive:
0<2(j—1) Y ;-2 > % (19)
aclp ;) UL\ Nim<j—1 ULim)
> <G-1 ) o (20)
A€VUL()\Nim<j—1 UL (m) acU L)
We also have:
j—1
3 ok = Z( x) and
aG€UL(H\Nm<j—1ULm) g=1  acR(1,5,4,2)
Jj—1
G- > @ = G-0>( X =)
€l 4=0  deR(2,j,q,1)
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The first equality follows fromUz;)\ (<, Urm) = U‘f;_ R(1,7,q,2) sinced €
UL()\Nn<j1 ULy iff dr;) = 1 and there exists exactly indexes{i, .. .4} such
thatl < ¢ < j—1anddyu,) = dru,) = ... = dra,) = 2, Which is equivalent to
a ei%(l,j7q,2). The second equality follows frori ;) = Ué;l) R(2,j,q,1) because
a € Up;) meansiy ) = 2.

As a consequence, (20) becomes:

J—1 J—1

> ( m) G-y (> =)
g=1 @eR(1,j,q,2) q=0  @eR(2,j,q,1)
With Lemma 4.4, we have:
j—1 j—1
(ax > =) <i-ney( 73)
g=1 acR(1,4,4,2)UR(2,5,4,2) =0  @cR(2,,q,1)
and (20) follows from
j—1 j—1
> (ax >ooow)=y (X W)
g=1 @€ R(1,5,4,2)UR(2,5,q,2) q=1  @eR(1,5,q,2)

By Lemma 4.3 withy = k£ + 1 — j we have:
2 Y owmz Y @
€N n<j UL(m) a€Nyn<; ULim)

which is exactly (18). O
The next section contains two examples to see that the analysi$Nfis tight.

5 Tightness

In the previous Section we saw thalNN generates an approximate Pareto curve
whose performance is at le&st/(k + 1). As k grows, this ratio tends to 2 which is the
ratio that any feasible tour achieves. In what follows, we show that the analysis of the
algorithm is tight.

Suppose thak = 2 and consider the instance given in Figure 3. We focus on the
following three tours:

o T\ = (w1,1-,U1,1,w1,2,111,2,w1,3-,U1,3,w1,4,v1,4,w2,1,Uz,hw2,2,02,2,w2,3,U2,37w2,4,’02,4)
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w11 Wi,2 W1,3 W14 Wz, 1 w2 2 W3 W2 4

Figure 3: In this instance, edges which are not drawn have a wgigit

o T) = (U1,17U1,27?)1,3>U1,4,U2,2-,U2,47U2,17112,3>U12,47U11,17U11,27U11,377U1,4a1U2¢1,7U2,27w2,3)

o Iy = (U2,17U2,27’U2,3>U2,4,‘U1,2-,’U1,47U1,17’U1,3>w1,4,w2,17w2,27w2,3,w2,4,w1,17w1,27’w1,3)

We haveD(T}) = (24,24), D(Ty) = (32,28) and D(T3) = (28,32). One can easily
see thak NN can generat¢T», 73} which constitutes %%-approximation off}. In the
following, we generalize this instance for ahy> 2. Indeed, we consider a family of
instances for which the Pareto curve is reduced to a singleTtouvhose total distance
D(T*) is exactly(k + 1)2¥! on each coordinate. Given an instance of this family, we
show thatk NN can output a set of tourET;, | L is a permutation of1,...,k}} such
that each tou’;, has a total distance equal ¢¢k)2* on coordinate. (k).

We consider a grapy composed ok subgraphg§ H; | j = 1,...,k}. Each subgraph
H; has exacth2"! nodes partitioned into two classes:

e Thev-nodes, denoted by; . wherer =1, ..., 2"

e Thew-nodes, denoted by, . wherer = 1,..., 2",

Forj=1,....kandr =1,...,25~1,d([vj,, w;,]), d([v; s w;r41]) and(i([Uj,Qk, w;ok])
have a 2 on coordinatgand a 1 on thethers. So, eacli/; has an Hamiltonian path
denoted by:p; which alternatively visits a-node and as-node and such that each edge-
distance has only a 2 on coordinate

Using a Theorem of Walecki (see [5]), we know that a complete graph2witiodes
can be decomposed intoedge-disjoint Hamiltonian paths. So, the subgrapt/pin-
duced by the-nodes hag*~! Hamiltonian pathgip;:, ..., hp; .1} satisfying the fol-
lowing properties:
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e Forg=1...,2%"! the endpoints ofip;, arev;, andv; or_(g—1)-

¢ Any two different Hamiltonian pathsp; , andhp; , never share an edge.

We consider these Hamiltonian paths foe {1,...,2*!} andhp;, will be composed

of edges of the same distance. If the distance of an edge is fixed to 2 on coordinate
while the other coordinates can be 1 or 2, one can easily cjuhtpossible vectors.
This is exactly the number of distinct Hamiltonian paths amoswdes ofH;. Thus,
each possible distance such that coordinatefixed to 2 is assigned to the edges of an
Hamiltonian pathp; ,. For the ease of presentation, we assumecf(fqtj,q) denotes the
distance of the edges éf); ,. Among the2*~! Hamiltonian paths of{;, we distinguish
hp;1 andhp; .« and assume thal{hp; ;) has a 2 oreach coordinate whilé(hp; » 1)

has a 1 on each coordinate excepted for coordipate

We set up all components; and link them as follows:

— —

1. Yhpj 4, hpjr o+, With j° 2 3 and such thatl(hp; ) only differ from d(hp;» 4)

—

on exactly one coordinate (say) andd(hp; ,) has a 2 orcoordinatem then

- -

d([vj’,Qk—(q’—l)a ”j”,q”]) = ,(hpj/7q/),

—

2. Lete; belv;qon, wipiq] for j =1,... k — 1 andej = [vj o¢, w1 1. Moreoverd(e;)
has a 2 orcoordinatej and a 1 on thethers.

Finally, makez complete by adding the edges not given by the rules above. Their distance
is 2 on each coordinate.

Lemmab5.1 The analysisof KNN istight.

Proof. We consider the grap@¥ described above and several toufs:and 7}, for any
permutation... We can observe the three following facts:

(i) T* = U< (hp; Uej) is an Hamiltonian cycle and; < £, ﬁj(T*) = (k+1)2~1,

(i) LetL be apermutation of1,2..., k}. T}, starts with the Hamiltonian patkpy,) 1

(by hypothesisd(hp.)1) has a 2 on coordinates(1) L(2) ... L(k)). Then,
Ty, takes successively fof = 2,...,k, the Hamiltonian patthpy,;) , such that
cf(hpuj),q) has a 2 orcoordinates.(j) L(j + 1) ... L(k) and a 1 orcoordinate
L(1)L(2) ... L(j — 1). Finally T}, goes towy,).x-1,, and visits arbitrarily the

remaining nodes. We ha\lé'Lm(TL) = (3k + j)2* foranyj < k.

(73i) The algorithmcNN can output the toufy..
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For j =1tok Do
For » = 1to 2F Do
Go tow ,;
Go tov;,;
EndFor
EndFor
Go tOle;

Table 2: Procedure to build*.

Distance of the edges
steps 1 2 3 k quantity
j=1 2 1 1 1 ok F1
j=2 1 2 1 1 ok+1
j=3 1 1 2 1 2k+1
j=k 1 1 1 e 2 2k+1
(k+1)2M1 (k+1)281 (k4 1)28 . (k+1)2M!

Table 3: The total distance @f*.

Proof of(i): The procedure to build the toit* in G is given in Table 2. The total distance
of T* is (k + 1)2¥*! on each coordinate. To see it, we put in Table 3 the distance of the
edges used by and their quantity.

Proof of (iz): Consider a permutatio of {1,2,...,k} and a tour7,, in G built as
explained in Table 4.

The total distance df, is equal to(3k + j)2* on coordinate.(j). T}, first visits the
v-nodes ofH ) using the Hamiltonian pathp;;); (remark that the starting node of

-

hprya is vpaya) andd(hpray,) has a 2 on coordinatels(1) to L(k). Afterwards,T),

-

takes an Hamiltonian pathp,,) , such thatd(hp. ) ,) has a 2 orcoordinates.(2) to
L(k) and a 1 orcoordinateL(1). By construction, the edge that links the ending node

—

of hpr1y,1 and the starting node @fp(2), has a distancé(hp),1). Successively],
visits thev-nodes of component ) to Hy,—1) and finally takegipy, ) ox-1. We know

-

that d(hpy, ) 2x-1) has a 2 on coordinaté(k) and a 1 on the others. The ending node
Of hpp (k)61 1S V() 26-141. By construction, there is an ed@g, () ox—11, W) 25-141)

with distancecf(hpL(k)VQkfl). The tourT7y, uses this edge and afterwards it passes through
all the non-visited nodes (namely thenodes ofH; ), Hy), ..., Hyu) using edges

with distance 2 on each coordinate. At the efiglreturns tov;(;);. Table 5 helps us to
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For j=1tokDo
Takehpyj),q S-t. d(hpr(;),,) has a 2 on coordinates(j) to L(k) and &
1 on the others;
EndFor
GO towy, () 26141
Pass through all non-visited edges;
Return tOUL(l),l;

Table 4: Procedure to build;,.

Distance of the edges

steps L(1) L(2) L(3) ... L(k—1) L(k) | quantity
j=1 2 2 2 2 2 2k
j =2 1 2 2 2 2 2k
j=3 1 1 2 2 2 2k
j=k 1 1 1 . 1 2 2k

2 2 2 . 2 2 k2k

(Bk+1)2F (3k+2)28 (Bk+3)2% ... (4k—1)2F (4k)2*

Table 5: The total distance @f;.

see thafl;, has a total distance ¢8% + j)2* on coordinate.(;).

Proof of (iii): KNN uses the preference relatier,. To make sure thatNN can output
T., we have to prove that, whéf}, uses an edg, b], there is not any non-visited node
¢ such thatcf([a,c]) < cf([a., b]). By construction,l’, starts at node); and visits
all the otherv-nodes ofG until it reachesv,, ) .x-1,,. Afterwards, T}, passes through
Wi k),26-141 and visits all thew-nodes ofG. If the current node is a-node (sayyj).),
the next edge (say) that is used has a distanéé) with a 2 on coordinates ;) to L(k)
and a 1 on the others. To be preferred, another etigrist have a distana&¢’) with a

1 on coordinates () to L(k). By construction of7, there is not any. If the current node
is aw-node (saywj) ), the next edge (say) that is used has a distami'@z) witha 2 on
each coordinate. To be preferred, another edgeust have a distana#¢’) with a 1 on
coordinatel(1). Moreover, this edge’ must lead to another non-visitednode (all the
v-nodes are already visited). By constructiorfthere is not any.

Finally, KNN can generate a set of solutioRs= {7}, | L is a permutation of1, ... k}}
while the Pareto curve is reduced to one t@ur SinceD(T*) is (k + 1)2¥+! on each
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(4k)2k o

coordinate an(ﬁL(k)(TL) = (4k)2%, P approximated™ within a ratiom =g

6 Conclusion

Up to our knowledge, negative results for multi-criteria optimization problems were
not investigated though their approximability motivated a lot of articles. As a first attempt,
we present a way to get results of this type by connecting the size the approximate Pareto
curve and the best approximation ratio which can be achieved. We apply the method to
thek-criteriaT'S P (1, 2) but it also works with problems where all feasible solutions have
the same size.

The approximability of thek-criteria T'SP(1,2) is also investigated. By giving a
multi-criteria version of the classical nearest neighbor heuristic, we extend and improve
the previous positive results. However, as the number of criteria grows, and even though
the number of solutions is largé!], the approximation ratio tends to 2. Then, it would
be interesting to reduce the gap between positive and negative results.
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