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(Non)-Approximability for the multi-criteria
TSP (1, 2)

E. Angel∗, E. Bampis∗, L. Gourvès∗, J. Monnot†

Abstract

The approximability of multi-criteria combinatorial problems motivated a lot of
articles. However, the non-approximability of this problems has never been investi-
gated up to our knowledge. We propose a way to get some results of this kind which
works for several problems and we put it into practice on a multi-criteria version of
the traveling salesman problem with distances one and two (TSP (1, 2)). Follow-
ing the article of Angel et al. [1] who presented an approximation algorithm for the
bi-criteriaTSP (1, 2), we extend and improve the result to any numberk of criteria.

Key words : non-approximability in multi-criteria optimization ; design and analysis
of algorithms

1 Introduction

Multi-criteria optimization refers to problems with two or more objective functions
which are normally in conflict. Vilfredo Pareto stated in 1896 a concept (known today
as "Pareto optimality") that constitutes the origin of research in this area. According to
this concept, the solution to a multi-criteria optimization problem is normally not a sin-
gle value, but instead a set of values (the so-calledPareto curve). From a computational
point of view, this Pareto curve is problematic. Approximating it with a performance
guarantee, i.e. computing anε−approximate Pareto curve, motivated a lot of papers
(see [1, 6, 9] among others). Up to our knowledge, non-approximability in the specific
context of multi-criteria optimization has surprisingly never been investigated. Of course,
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(Non)-Approximability for the multi-criteriaTSP (1, 2)

some straightforward results can be stated if we remark that a multi-criteria problem gen-
eralizes a mono-criterion problem. Consequently, we aim to state some negative results
which are specific to this area. In multi-criteria optimization, one tries to approximate a
set of solutions (the Pareto curve) with another set of solutions (theε-approximate Pareto
curve) and the more theε-approximate Pareto curve contains solutions, the more accurate
the approximation can be. Then, the best approximation ratio that could be achieved can
be related to the size of the approximate Pareto curve. As a first attempt, we propose a
way to get some negative results which works for several multi-criteria problems and we
put it into practice on a special case of the multi-criteria traveling salesman problem.

The traveling salesman problem is one of the most studied problem in the operations
research community, see for instance [4]. The case where distances are either one or
two (denoted byTSP (1, 2)) was investigated by Papadimitriou and Yannakakis [7] who
gave some positive and negative approximation results (see also [2]). Interestingly, this
problem finds an application in a frequency assignment problem [3]. In this article, we
deal with a generalization of theTSP (1, 2) where the distance is a vector of lengthk
instead of a scalar: thek-criteriaTSP (1, 2). Previously, Angel et al. [1] proposed alocal
search algorithm (calledBLS) for the bi-criteriaTSP (1, 2) which, with only two solutions
generated inO(n3), was able to approximate the whole Pareto curve within a ratio of3/2.

A question arises concerning the ability to improve the approximation ratio with an
approximate Pareto curve containing two (or more) solutions. Conversely, given a fixed
number of solutions, how accurate an approximate Pareto curve can be? More gener-
ally, given a multi-criteria problem, how many solutions are necessary to approximate the
Pareto curve within a level of approximation? A second question arises concerning the
ability to generalizeBLS to any number of criteria. Indeed, a large part of the literature
on multi-criteria optimization is devoted to bi-criteria problems and an algorithm which
works for any number of criteria would be interesting.

The paper is organized as follows: In Section 2, we recall some definitions on ex-
act and approximate Pareto curves. Section 3 is devoted to a method to derive some
negatives results in the specific context of multi-criteria optimization. We use it for the
k-criteriaTSP (1, 2) but it works for several other problems. In Section 4, we study the
approximability of thek-criteria TSP (1, 2). Instead of generalizingBLS, we adapt the
classicalnearest neighbor heuristic which is more manageable. This multi-criteria nearest
neighbor heuristic works for anyk and produces a3/2-approximate Pareto curve when
k ∈ {1, 2} and a2k/(k + 1)-approximate Pareto curve whenk ≥ 3. This result extends
for several reasons the one of Angel et al.. First, the new algorithm works for anyk ≥ 2,
second the time complexity is decreased whenk = 2.
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2 Generalities

The Traveling Salesman Problem (TSP ) is about to find in a complete graphG =
(V,E) a Hamiltonian cycle whose total distance is minimal. For thek-criteriaTSP , each
edgee has adistance �d(e) = (�d1(e), . . . , �dk(e)) which is a vector of lengthk (instead of a
scalar). Thetotal distance of a tourT is also a vector�D(T ) where�Dj(T ) =

∑
e∈T

�dj(e)
andj = 1, . . . , k. In fact, a tour is evaluated withk objective functions. Given this, the
goal of the optimization problem could be the following: Generating a feasible solution
which simultaneously minimizes each coordinate. Unfortunately, such an ideal solution
rarely exists since objective functions are normally in conflict. However a set of solu-
tions representing all best possible trade-offs always exists (the so-called Pareto curve).
Formally, a Pareto curve is a set of feasible solutions, each of them optimal in the sense
of Pareto, whichdominates all the other solutions. A tourT dominates another oneT ′

(usually denoted byT ≤ T ′) iff �Dj(T ) ≤ �Dj(T
′) for j = 1, . . . , k and, for at least one

coordinatej′, one has�Dj′(T ) < �Dj′(T
′). A solution is optimal in the sense of Pareto if

no solution dominates it.

From a computational point of view, Pareto curves are problematic [6, 9]. Two of the
main reasons are:

• the size of a Pareto curve which is often exponential with respect to the size of the
corresponding problem,

• a multi-criteria optimization problem often generalizes a mono-criterion problem
which is itself hard.

As a consequence, one tries to get a relaxation of this Pareto curve, i.e. anε-approximate
Pareto curve [6, 9]. An ε-approximate Pareto curvePε is a set of solutions such that for
every solutions of the instance, there is ans′ in Pε which satisfies�Dj(s

′) ≤ ε �Dj(s) for
j = 1, . . . , k.

In [6], Papadimitriou and Yannakakis prove that every multi-criteria problem has an
ε-approximate Pareto curve that is polynomial in the size of the input, and1/ε, but ex-
ponential in the numberk of criteria. The design of polynomial time algorithms which
generate approximate Pareto curves with performance guarantee motivated a lot of recent
papers. In this article we study thek-criteriaTSP (1, 2). In this problem, each edgee of
the graph has a distance vector�d(e) of lengthk and�dj(e) ∈ {1, 2} for all j between 1 and
k.
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3 Non-approximability related to the number of gener-
ated solutions

Up to our knowledge, non-approximability of combinatorial problems with multiple
objectives has never been investigated. As a first attempt, we propose a way to get some
negative results which works for several multi-criteria problems and we put it into practice
on thek-criteriaTSP (1, 2).

Usually, non-approximability results for mono-criterion problems bring thresholds of
performance guarantee under which no polynomial time algorithm is likely to exist. Given
a result of this kind for a mono-criterion problemΠ, we directly get a negative result for
a multi-criteria version ofΠ. Indeed, the multi-criteria version ofΠ generalizesΠ. For
example, hardness of inherent difficulty of the mono-criterionTSP (1, 2) has been studied
in [2, 7] and the best known lower bound is5381/5380 − ε (for all ε > 0). Consequently,
for all ε > 0, no polynomial time algorithm can generate a(5381/5380− ε)-approximate
Pareto curve unlessP = NP . However, the structure of the problem, namely the fact that
several criteria are involved, is not taken into account.

In multi-criteria optimization, one tries to approximate a set of solutions (the Pareto
curve) with another set of solutions (theε-approximate Pareto curve) and the more the
ε-approximate Pareto curve contains solutions, the more accurate the approximation can
be. As a consequence, the best approximation ratio that could be achieved can be related
to the size of the approximate Pareto curve. Formally,ε is a function of|Pε|. If we
consider instances for which the whole (or a large part of the) Pareto curveP is known
and if we suppose that we approximate it with a setP ′ ⊂ P such that|P ′| = x then the
best approximation ratioε such thatP ′ is anε-approximate Pareto curve is related tox.
Indeed, there must be a solution inP ′ which approximates at least two (or more) solutions
in P .

In the following, we explicitly give a family of instances of thek-criteriaTSP (1, 2)
for which we known a lot of different Pareto optimal tours covering a large spectrum of
the possible values.

Lemma 3.1 For any r ≥ 1, for any n ≥ 2k + 1, there exists an instance In,r of the
k-criteria TSP (1, 2) with nr vertices such that there are

(
r+k−1

r

)
Pareto optimal tours

(denoted by Tc1,...,ck−1
where ci for 1 ≤ i ≤ k − 1 are k − 1 indexes in {0, . . . , r})

satisfying:

(i) ∀i = 1, . . . , k − 1, ci ∈ {0, . . . , r} and
∑k−1

i=1 ci ≤ r.

(ii) ∀i = 1, . . . , k−1, �Di(Tc1,...,ck−1
) = 2rn−cin and �Dk(Tc1,...,ck−1

) = rn+n(
∑k−1

i=1 ci).
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Proof. We first consider an instanceIn with n ≥ 2k + 1 vertices where distances belong
to {(1, 2, . . . , 2), (2, 1, 2, . . . , 2),
. . . , (2, . . . , 2, 1)}. Moreover, we suppose that for anyi = 1, . . . , k, the subgraph in-
duced by the edges where the distance has a1 only on coordinatei is Hamiltonian (Ti

denotes this tour). For anyn ≥ 2k + 1, using an old result (see [5]), we know thatKn is
Hamiltonian cycles decomposable intok disjoint tours and then, such an instance exists.
Finally, the instanceIn,r is built by the following way: We duplicateIn = (Kn, d) r times
(vc

i denotes the vertexvi of the c-th copy) and between two copies withc1 < c2, we set
�d([vc1

i , vc2
j ]) = �d([vi, vj]) if i �= j and �d([vc1

i , vc2
i ]) = (1, 2, . . . , 2). Let c1, . . . , ck−1 be

integers satisfying(i), we build the tourTc1,...,ck−1
by applying the following process: On

thec1 first copies, we take the tourT1, on thec2 second copies, we take the tourT2 and so
on. Finally, for ther −∑k−1

i=1 ci last copies, we takeTk. For any1 ≤ l1 < l2 ≤ r, and any
toursT, T ′, we patch the tourT on copyl1 with the tourT ′ on copyl2 by replacing edges
[vl1

i , vl1
j ] ∈ T , [vl2

j , vl2
m] ∈ T ′ by edges[vl1

i , vl2
j ], [vl2

m, vl1
j ]. Observe that the resulting tour

has a weight�D(T ′) + �D(T ). So, by applyingr times this process, we can obtain a tour
Tc1,...,ck−1

satisfying(ii). Moreover, the number of tours is equal to the number of choices
of k − 1 elements amongr + (k − 1).

Theorem 3.2 For any k ≥ 2, any algorithm A producing a ρ-approximate Pareto curve
with at most x solutions for the k-criteria TSP (1, 2) satisfies:

ρ ≥ 1+maxi=2,...,k{ 1

(2i − 1)r(i, x) − 1
} where r(i, x) = min{r| x ≤

(
r + i − 1

r

)
−1}.

Proof. Let ρ = (1 + ε) and letr(k, x) = r be the smallest integer such that
x ≤ (

r+k−1
r

) − 1 and consider the instanceIn,r of Lemma 3.1. Sincex ≤ (
r+k−1

r

) − 1,
there exists two distinct toursTc1,...,ck−1

andTc′1,...,c′k−1
and a tourT produced byA such

that:
�D(T ) ≤ (1 + ε) �D(Tc1,...,ck−1

) and �D(T ) ≤ (1 + ε) �D(Tc′1,...,c′k−1
) (1)

Let li = max{ci, c
′
i} for i = 1, . . . , k − 1 and lk = min{∑k−1

i=1 ci,
∑k−1

i=1 c′i}. By
construction, we havelk ≤ ∑k−1

i=1 li − 1. Moreover, the total distance ofT can be written
�Di(T ) = 2rn − qi for i = 1, . . . , k − 1 and �Dk(T ) = rn +

∑k−1
i=1 qi for some value of

qi (qi is the number of edges ofT where the distance has a 2 on coordinatei and 1 on
the others). Thus, using inequalities (1), we deduce that, fori = 1, . . . , k − 1, we have
2nr − qi ≤ (1 + ε)(2rn − lin) which is equivalent to

qi ≥ lin(1 + ε) − 2rnε. (2)

We also havern +
∑k−1

i=1 qi ≤ (1 + ε)(rn + lkn) which is equivalent to

k−1∑
i=1

qi ≤ εrn + lkn(1 + ε). (3)
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Adding inequalities (2) fori = 1, . . . , k−1 and by using inequality (3) andlk ≤ ∑k−1
i=1 li−

1, we deduce:

ε ≥ 1

(2k − 1)r(k, x) − 1
. (4)

Finally, since aρ-approximation for thek-criteria TSP (1, 2) is also aρ-approximation
for thei-criteriaTSP (1, 2) with i = 2, . . . , k − 1 (for thek − i last coordinates, we get a
factor 2), we can applyk − 1 times the inequality (4) and the result follows.

The following table gives some (truncated) numerical values of the best approximation
ratio that it is possible to achieve:

������k
x

1 2 3 4 5 6 7 8 9

2 1.500 1.200 1.125 1.090 1.071 1.058 1.050 1.043 1.038
3 1.500 1.250 1.125 1.111 1.111 1.071 1.071 1.071 1.071
4 1.500 1.250 1.166 1.111 1.111 1.076 1.076 1.076 1.076

From Theorem 3.2, we are able to give a more explicit but less powerful result.

Corollary 3.3 For any k ≥ 2, any ρ-approximate algorithm A producing at most x solu-
tions for the k-criteria TSP (1, 2) satisfies:

ρ ≥ 1 +
1

(2k − 1)
(
x(k − 1)!

)1/(k−1)

− 1

.

Proof. By construction ofr(k, x) = r, we havex ≥ (
r(k,x)−1+k−1

k−1

)
. Since

(
r − 1 + k − 1

k − 1

)
≥ rk−1

(k − 1)!
,

we deduce

r ≤
(
x(k − 1)!

)1/(k−1)

.

Thus, using the inequality (4), we obtain the expected result. �

For instance, these bounds becomeρ ≥ 1 + 1/(3x − 1) for the bi-criteriaTSP (1, 2)
andρ ≥ 1 + 1/(5

√
2x − 1) for the 3-criteriaTSP (1, 2). More generally, observe that if

we writeRk(x) = 1 +
(
(2k − 1)(x(k − 1)!)1/(k−1) − 1

)−1

, then the following property

holds :∀k ≥ 2,∃x0,∀x ≥ x0 we haveRk+1(x) ≥ Rk(x). In other words, between two
different versions of thek-criteriaTSP (1, 2), the negative bound increases withk. So,
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these bounds are interesting whenk is a fixed constant andx is an arbitrarily large integer
(indeed, whenk = o(x)).

On the other hand, we can also obtain other bounds whenx is fixed andk grows
to infinity (x = o(k)). In particular, when theρ-approximate algorithm returns justx
solutions, we obtainρ ≥ 2x/(2x − 1) − ε for thek-criteriaTSP (1, 2) with k arbitrarily
large.

Theorem 3.4 For any k ≥ 2, any ρ-approximate algorithm producing at most x solutions
for k-criteria TSP (1, 2) satisfies: ρ ≥ 1 + k−x

k(2x−1)
.

Proof. Let x be an integer. We apply Lemma 3.1 withr = 1. So, we havek Pareto
optimal toursTei

for i = 1, . . . , k whereei is a (k − 1)-uplet with a 1 oncoordinatei
and 0 otherwise (i.e.,e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0) andek = (0, . . . , 0, 1)). Now
consider aρ = (1 + ε)-approximate algorithm using at mostx solutions. Thus, one of
these solutions approximates at leastp = 
k

x
� Pareto optimal toursTei1

, . . . , Teip
with

i1 < . . . < ip.

Applying the same arguments as in Theorem 3.2 and if we only consider thesep solutions,
we have: lk ≤ ∑k−1

i=j lj − (k−x
x

). Indeed, ifi1 = 0 then lk = 0 and lj = 1 for j =

i2, . . . , ip and lj = 0 otherwise. So,lk =
∑k−1

i=j lj − (p − 1) ≤ ∑k−1
i=j lj − (k−x

x
). If

i1 > 0 then lk = 1 and lj = 1 for j = i1, . . . , ip and lj = 0 otherwise. So,lk =∑k−1
i=j lj − (p − 1) ≤ ∑k−1

i=j lj − (k−x
x

). As in the previous Theorem, we also have:

n(1+ε)(
∑k−1

i=j lj)−2nε(k−1) ≤ εn+ lkn(1+ε). Thus, by using these two inequalities,
the result follows.

The method presented in this section can be applied to several other multi-criteria
problems. For instance, it works with problems where all feasible solutions have the
same size (|V | for a Hamiltonian cycle,|V | − 1 for a spanning tree, etc).

4 Nearest neighbor heuristic for the k-criteria TSP (1, 2)

The k-criteria TSP (1, 2) is a special case of the metrick-criteria TSP where all
coordinates of the distance vectors are either one or two. Given this, any feasible tour
constitutes a2-approximate Pareto curve. In this Section, we try to design a polynomial
time algorithm which approximates the Pareto curve within a ratio strictly better than 2.

Angel et al. present in [1] alocal search algorithm (calledBLS) for the bi-criteria
TSP (1, 2). This algorithm returns in timeO(n3) a3/2-approximate Pareto curve. Since
BLS works only for the bi-criteriaTSP (1, 2), an algorithm which works for any number
of criteria would be interesting.
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A generalization ofBLS may exist but it is certainly done with difficulty. SinceBLS

uses the2 − opt neighborhood, two neighboring solutions differ on two edges. Defining
an order on each couple of possible distance vector is necessary to decide, among two
neighboring solutions, which one is the best. Whenk grows, such an order is hard to
handle.

In this section, we present a different algorithm which is more manageable. It works
for any number of criteria and its time complexity is better thanBLS’s one for the bi-
criteriaTSP (1, 2). We propose anearest neighbor heuristic which computes inO(n2k!)
time a 2k

k+1
-approximate Pareto curve whenk ≥ 3 and a3/2-approximate Pareto curve

whenk ∈ {1, 2}. Let us observe here that the dependence of the time complexity on
k! is not surprising since the size of the approximateε-Pareto curve is not necessarily
polynomial on the number of the optimization criteria [6].

Traditionally, the nearest neighbor heuristic [8] consists in starting from a randomly
chosen node and greedily insert non-visited vertices, chosen as the closest ones from
the last inserted vertex. Adapting this heuristic to thek-criteriaTSP (1, 2) gives rise to
two questions : How can we translate the notion of closeness when multiple objectives are
considered? How many solutions must be generated to get an approximation of the Pareto
curve? In the following, we propose a way which simultaneously brings an answer to both
questions. Given the problem, the total distance of a Pareto optimal tourT ∗ is enclosed
in a k-dimensional cost space. The way to generate a tourT which approximatesT ∗,
and also the notion of closeness, depends on where�D(T ∗) is located in the cost space.
The idea is to partition the cost space into a fixed number of parts. Then, with each
part we associate an appropriate notion of closeness. Given a part and its proper notion
of closeness, we can generate with the nearest neighbor rule a tour which approximates
any Pareto optimal solution whose total distance is in the part. For any instance of the
k-criteriaTSP (1, 2), we propose to divide the cost space intok! parts as follows: Each
part is identified by a permutation of{1, . . . , k}. Given a permutationL of {1, . . . , k},
a tourT is in the part identified byL if �DL(1)(T ) ≤ . . . ≤ �DL(k)(T ). For the notion
of closeness, we introduce a preference relation over all possible distance vectors which
looks like a lexicographic order. This preference relation which depends onL (denoted
by≺L) is defined by usingk + 1 setsS1, . . . , Sk+1:

Sq = {�a ∈ {1, 2}k | ∀j ≤ k + 1 − q �aL(j) = 1}, for 1 ≤ q ≤ k

Sk+1 = {1, 2}k.

Definition 4.1 For any edge e, we say that e is Sq-preferred(for ≺L) if �d(e) ∈ Sq\Sq−1

(where S0 = ∅). For two edges e and e′ such that e is Sq-preferred and e′ is Sq′-preferred,
we say that �d(e) is preferred (resp., weakly preferred) to �d(e′) and we note �d(e) ≺L

�d(e′)
(resp., �d(e) �L

�d(e′)) iff q < q′ (resp., q ≤ q′).

An example wherek = 3 andL is the identity permutation is given in Figure 1.
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111 112 121
122

211
212
221
222

S1 S2 S3 S4

Figure 1: One has111 ≺L 112 ≺L 121 �L 122 ≺L 211 �L 212 �L 221 �L 222.

KNN: k-criteria Nearest Neighbor
P := ∅;
For all permutationsL of {1, 2, . . . , k} Do

Take arbitrarilyv ∈ V ;
W := {v} ; u := v ;
While W �= V Do

Taker ∈ V \W s.t. r is the closest vertex tou
by �L ;

W := W ∪ {r} ;
p(u) := r ; u := r ;

End While ;
p(r) := v ;
P := P ∪ {p};

End For ;
ReturnP ;

Table 1: Forv ∈ V andp a tour,p(v) denotes the node which immediately followsv in p.

The algorithm that we propose for thek-criteriaTSP (1, 2) is given in Table 1. Called
KNN for k-criteria Nearest Neighbor, it is composed ofk! steps. At each step, a permu-
tationL of {1, 2, . . . , k} is determined. WithL, we build a preference relation≺L and
finally, a solution is generated with the nearest neighbor rule.

Theorem 4.2 KNN runs in polynomial time. It returns a 2k/(k + 1)-approximate Pareto
curve for the k-criteria TSP (1, 2) when k ≥ 3 and a 3/2-approximate Pareto curve when
k ∈ {1, 2}.

The proof of the theorem requires some notations and intermediate lemmata. In the fol-
lowing, we consider two particular toursp andp∗. We assume thatp is the tour generated
by KNN with the preference relation≺L and thatp∗ is a Pareto optimal tour satisfying

�DL(1)(p
∗) ≤ �DL(2)(p

∗) ≤ . . . ≤ �DL(k)(p
∗). (5)
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v

p(v) p∗(v)

p ◦ p∗(v)

Figure 2: The tourp generated byKNN. The edge[v, p∗(v)] belongs top∗.

The set of all possible distance vectors{1, 2}k is denoted byΩ. For all j ≤ k, we
introduceUj = {�a ∈ Ω | �aj = 1} andU j = {�a ∈ Ω | �aj = 2}. For�a ∈ Ω, we note
X�a = {v ∈ V | �d([v, p(v)]) = �a} andX∗

�a = {v ∈ V | �d([v, p∗(v)]) = �a}. Finally, x�a

(resp.x∗
�a ) denotes the cardinality ofX�a (resp.X∗

�a).

If n is the number of vertices then by construction we have
∑

�a∈Ω x�a =
∑

�a∈Ω x∗
�a = n,

�Dj(p) = 2n − ∑
�a∈Uj

x�a and �Dj(p
∗) = 2n − ∑

�a∈Uj
x∗

�a.

Lemma 4.3 The following holds for any q ≤ k:

2
∑

�a∈⋂k+1−q
j=1 UL(j)

x�a ≥
∑

�a∈⋂k+1−q
j=1 UL(j)

x∗
�a.

Proof. We defineFq = {v ∈ V | �d([v, p(v)]) ∈ Sq} andF ∗
q = {v ∈ V | �d([v, p∗(v)]) ∈

Sq}. Then, we have to prove that2|Fq| ≥ |F ∗
q |. The key result is to see thatp∗[F ∗

q \Fq] ⊆
Fq wherep∗[W ] =

⋃
v∈W{p∗(v)}. Take a vertexv in F ∗

q \Fq (see Figure 2). Then,
�d([v, p∗(v)]) ∈ Sq, �d([v, p(v)]) ∈ Sq′ and q′ > q. During the computation ofp, sup-
pose thatv is the current node and thatp∗(v) is not already visited. We get a contra-
diction (the nearest neighbor rule is violated) sincep(v) immediately followsv in p and
�d([v, p∗(v)]) ≺L

�d([v, p(v)]). Now, supposep∗(v) was already visited. It directly pre-
cedesp ◦ p∗(v) in p and then�d([p ∗ (v), p ◦ p∗(v)]) �L

�d([v, p∗(v)]). As a consequence,
�d([p∗(v), p ◦ p∗(v)]) ∈ Sq′′ such thatq′′ ≤ q andp∗(v) ∈ Fq sinceSq′′ ⊆ Sq.

Since|p∗[F ∗
q \Fq]| = |F ∗

q \Fq|, |F ∗
q | = |F ∗

q \Fq| + |F ∗
q ∩ Fq| and |Fq| ≥ |F ∗

q ∩ Fq|,
we deduce|F ∗

q | = |p∗[F ∗
q \Fq]| + |F ∗

q ∩ Fq| ≤ 2|Fq|. Finally, since
⋂k+1−q

j=1 UL(j) = Sq,
|Fq| =

∑
�a∈Sq

x�a and|F ∗
q | =

∑
�a∈Sq

x∗
�a, the result follows.

The following inequality is equivalent to (5):
∑

�a∈UL(1)

x∗
�a ≥

∑
�a∈UL(2)

x∗
�a ≥ . . . ≥

∑
�a∈UL(k)

x∗
�a.
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We easily deduce that for any couplej1, j2 such thatj1 < j2 we have:
∑

�a∈UL(j2)\UL(j1)

x∗
�a ≤

∑
�a∈UL(j1)\UL(j2)

x∗
�a. (6)

Let b1, b2, j andm be such thatb1 ∈ {1, 2}, b2 ∈ {1, 2}, 1 ≤ j ≤ k and1 ≤ m < j.
Let R(b1, j,m, b2) be the set of all�a ∈ Ω such that�aL(j) = b1 and there exists exactlym
distinct coordinates of�a among{�aL(1),�aL(2), . . . ,�aL(j−1)} which are equal tob2. Remark
thatR(b1, j,m, b2) = R(b1, j, j − 1 − m, b2) whereb2 = 3 − b2.

Lemma 4.4 For any j ≤ k, one has:

j−1∑
q=1

(
q ×

∑
�a∈R(1,j,q,2)∪R(2,j,q,2)

x∗
�a

)
≤ (j − 1) ∗

j−1∑
q=0

( ∑
�a∈R(2,j,q,1)

x∗
�a

)
.

Proof. We sum up inequality (6) withj1 ∈ {1, . . . , j − 1} andj2 = j. We get the
following inequality:

j−1∑
q=1

( ∑
�a∈UL(j)\UL(q)

x∗
�a

)
≤

j−1∑
q=1

( ∑
�a∈UL(q)\UL(j)

x∗
�a

)
. (7)

We also have the following equality:

∀j ≤ k,

j−1∑
q=1

( ∑
�a∈UL(j)\UL(q)

x∗
�a

)
=

j−1∑
q=1

(
q ×

∑
�a∈R(1,j,q,2)

x∗
�a

)
. (8)

Let �a be a distance vector inR(1, j, q, 2). By definition,�aL(j) = 1 and there exists a set
{i1, . . . , iq} with 1 ≤ i1 < i2 < . . . < iq < j such that�aL(i1) = �aL(i2) = . . . = �aL(iq) = 2.
Moreover, for allj′ ≤ j − 1 such thatj′ /∈ {i1, . . . , iq}, we have�aL(j′) = 1. Thus,
�a ∈ UL(j)\UL(g) iff g ∈ {i1, i2, . . . , iq}.

Using a similar argument, we obtain:

∀j ≤ k,

j−1∑
q=1

( ∑
�a∈UL(q)\UL(j)

x∗
�a

)
=

j−1∑
q=1

(
q ×

∑
�a∈R(2,j,q,1)

x∗
�a

)
. (9)

Then, using (7), (8) and (9) we get:

j−1∑
q=1

(
q ×

∑
�a∈R(1,j,q,2)

x∗
�a

)
≤

j−1∑
q=1

(
q ×

∑
�a∈R(2,j,q,1)

x∗
�a

)
. (10)
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SinceR(2, j, q, 2) = R(2, j, j − 1 − q, 1), the following equality holds:

j−1∑
q=1

(
q ×

∑
�a∈R(2,j,q,1)

x∗
�a

)
= (j − 1) ∗

j−1∑
q=0

( ∑
�a∈R(2,j,q,1)

x∗
�a

)
−

j−1∑
q=1

(
q ×

∑
�a∈R(2,j,q,2)

x∗
�a

)
. (11)

So, Lemma 4.4 follows from (10) and (11).

Proof of Theorem 4.2

The proof is cut into 3 cases (j = 1, j = 2 andj ≥ 3). In the following, we consider
thatL is any permutation of{1, . . . , k}, p∗ is a Pareto optimal tour satisfying (5) andp
is built with the nearest neighbor rule and the preference relation≺L. Then, we have to
show that:

(i) if j = 1 or 2 then �DL(j)(p) ≤ 3
2
�DL(j)(p

∗),

(ii) if j ≥ 3 then �DL(j)(p) ≤ 2j
j+1

�DL(j)(p
∗).

Case j = 1. �DL(1)(p) ≤ 3
2
�DL(1)(p

∗) is equivalent to the following inequality:

2
∑

�a∈UL(1)

x�a −
∑

�a∈UL(1)

x∗
�a + 2

∑
�a∈UL(1)

x∗
�a ≥ 0. (12)

Indeed,�DL(1)(p) ≤ 3

2
�DL(1)(p

∗) ⇔ 2
(
2n −

∑
�a∈UL(1)

x�a

)
≤ 3

(
2n −

∑
�a∈UL(1)

x∗
�a

)

⇔ −2
∑

�a∈UL(1)

x�a ≤ 2n − 3
∑

�a∈UL(1)

x∗
�a

Usingn =
∑

�a∈UL(1)
x∗

�a +
∑

�a∈UL(1)
x∗

�a, the equivalence follows. Thus, using Lemma 4.3

with q = k and
∑

�a∈UL(1)
x∗

�a ≥ 0 (which is true since for all�a ∈ Ω, x∗
�a ≥ 0), inequal-

ity (12) follows.

Case j = 2. �DL(2)(p) ≤ 3
2
�DL(2)(p

∗) is equivalent to the following inequality:

−2
∑

�a∈UL(2)\UL(1)

x�a − 2
∑

�a∈UL(2)∩UL(1)

x�a ≤ 2
∑

�a∈UL(2)

x∗
�a −

∑
�a∈UL(2)\UL(1)

x∗
�a −

∑
�a∈UL(2)∩UL(1)

x∗
�a. (13)
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Indeed,�DL(2)(p) ≤ 3

2
�DL(2)(p

∗) ⇔ −2
∑

�a∈UL(2)

x�a ≤ 2
∑

�a∈UL(2)

x∗
�a −

∑
�a∈UL(2)

x∗
�a.

If we partitionUL(2) into two subsetsUL(2)\UL(1) andUL(2) ∩ UL(1) then the equivalence
follows. By Lemma 4.3 withq = k − 1 we get:

2
∑

�a∈UL(1)∩UL(2)

x�a ≥
∑

�a∈UL(1)∩UL(2)

x∗
�a.

Then, using inequality (13), we have to prove:

−2
∑

�a∈UL(2)\UL(1)

x�a ≤ 2
∑

�a∈UL(2)

x∗
�a −

∑
�a∈UL(2)\UL(1)

x∗
�a.

By inequality (6), whenj1 = 1 andj2 = 2, we get:

−
∑

�a∈UL(1)\UL(2)

x∗
�a ≤ −

∑
�a∈UL(2)\UL(1)

x∗
�a

Thus:
2

∑
�a∈UL(2)

x∗
�a −

∑
�a∈UL(1)\UL(2)

x∗
�a ≤ 2

∑
�a∈UL(2)

x∗
�a −

∑
�a∈UL(2)\UL(1)

x∗
�a.

SinceUL(1)\UL(2) ⊆ UL(2), we have:

−2
∑

�a∈UL(2)\UL(1)

x�a ≤ 0 ≤ 2
∑

�a∈UL(2)

x∗
�a −

∑
�a∈UL(1)\UL(2)

x∗
�a.

Case j ≥ 3. �DL(j)(p) ≤ 2j
j+1

�DL(j)(p
∗) holds if we have the following inequality:

−(j + 1)
∑

�a∈UL(j)

x�a ≤ 2(j − 1)
∑

�a∈UL(j)

x∗
�a − 2

∑
�a∈UL(j)

x∗
�a. (14)

�DL(j)(p) ≤ 2j

j + 1
�DL(j)(p

∗) ⇔ (j + 1)
(
2n −

∑
�a∈UL(j)

x�a

)
≤ 2j

(
2n −

∑
�a∈UL(j)

x∗
�a

)

⇔ −(j + 1)
∑

�a∈UL(j)

x�a ≤ 2(j − 1)n − 2j
∑

�a∈UL(j)

x∗
�a

⇔ −(j + 1)
∑

�a∈UL(j)

x�a ≤ 2(j − 1)
∑

�a∈UL(j)

x∗
�a − 2

∑
�a∈UL(j)

x∗
�a,
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usingn =
∑

�a∈UL(j)
x∗

�a +
∑

�a∈UL(j)
x∗

�a.

Let us denote byA andB the following quantities:
∑

�a∈UL(j)

x�a =
∑

�a∈UL(j)\(
⋂

m≤j−1 UL(m))

x�a +
∑

�a∈⋂
m≤j UL(m)

x�a = A
∑

�a∈UL(j)

x∗
�a =

∑
�a∈UL(j)\(

⋂
m≤j−1 UL(m))

x∗
�a +

∑
�a∈⋂

m≤j UL(m)

x∗
�a = B.

Then, inequality (14) becomes:

− (j + 1)A ≤ 2(j − 1)
∑

�a∈UL(j)

x∗
�a − 2B. (15)

To prove (15), we propose the following decomposition:

C = 2(j − 1)
∑

�a∈UL(j)

x∗
�a − 2

∑
�a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
�a − 4

∑
�a∈⋂

m≤j UL(m)

x�a (16)

−(j + 1)A ≤ C (17)

C ≤ 2(j − 1)
∑

�a∈UL(j)

x∗
�a − 2B (18)

Thus, (17) becomes:

−(j + 1)
∑

�a∈UL(j)\
⋂

m≤j−1 UL(m)

x�a − (j − 3)
∑

�a∈⋂
m≤j UL(m)

x�a ≤

≤ 2(j − 1)
∑

�a∈UL(j)

x∗
�a − 2

∑
�a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
�a

Since the left part of this inequality is negative, we want to prove that the right part is
positive:

0 ≤ 2(j − 1)
∑

�a∈UL(j)

x∗
�a − 2

∑
�a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
�a (19)

∑
�a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
�a ≤ (j − 1)

∑
�a∈UL(j)

x∗
�a (20)

We also have:

∑
�a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
�a =

j−1∑
q=1

( ∑
�a∈R(1,j,q,2)

x∗
�a

)
and

(j − 1)
∑

�a∈UL(j)

x∗
�a = (j − 1)

j−1∑
q=0

( ∑
�a∈R(2,j,q,1)

x∗
�a

)
.
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The first equality follows fromUL(j)\
⋂

m≤j−1 UL(m) =
⋃j−1

q=1 R(1, j, q, 2) since�a ∈
UL(j)\

⋂
m≤j−1 UL(m) iff �aL(j) = 1 and there exists exactlyq indexes{i1, . . . iq} such

that 1 ≤ q ≤ j − 1 and�aL(i1) = �aL(i2) = . . . = �aL(iq) = 2, which is equivalent to
�a ∈ R(1, j, q, 2). The second equality follows fromUL(j) =

⋃j−1
q=0 R(2, j, q, 1) because

�a ∈ UL(j) means�aL(j) = 2.

As a consequence, (20) becomes:

j−1∑
q=1

( ∑
�a∈R(1,j,q,2)

x∗
�a

)
≤ (j − 1)

j−1∑
q=0

( ∑
�a∈R(2,j,q,1)

x∗
�a

)
.

With Lemma 4.4, we have:

j−1∑
q=1

(
q ×

∑
�a∈R(1,j,q,2)∪R(2,j,q,2)

x∗
�a

)
≤ (j − 1) ∗

j−1∑
q=0

( ∑
�a∈R(2,j,q,1)

x∗
�a

)

and (20) follows from

j−1∑
q=1

(
q ×

∑
�a∈R(1,j,q,2)∪R(2,j,q,2)

x∗
�a

)
≥

j−1∑
q=1

( ∑
�a∈R(1,j,q,2)

x∗
�a

)
.

By Lemma 4.3 withq = k + 1 − j we have:

2
∑

�a∈⋂
m≤j UL(m)

x�a ≥
∑

�a∈⋂
m≤j UL(m)

x∗
�a

which is exactly (18). �

The next section contains two examples to see that the analysis ofKNN is tight.

5 Tightness

In the previous Section we saw thatKNN generates an approximate Pareto curve
whose performance is at least2k/(k + 1). As k grows, this ratio tends to 2 which is the
ratio that any feasible tour achieves. In what follows, we show that the analysis of the
algorithm is tight.

Suppose thatk = 2 and consider the instance given in Figure 3. We focus on the
following three tours:

• T1 = (w1,1, v1,1, w1,2, v1,2, w1,3, v1,3, w1,4, v1,4, w2,1, v2,1, w2,2, v2,2, w2,3, v2,3, w2,4, v2,4)
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v1,1 v1,2 v1,3 v1,4

w1,1 w1,2 w1,3 w1,4

v2,1 v2,2 v2,3 v2,4

w2,1 w2,2 w2,3 w2,4

(2, 1)

(1, 2)

Figure 3: In this instance, edges which are not drawn have a weight(2, 2).

• T2 = (v1,1, v1,2, v1,3, v1,4, v2,2, v2,4, v2,1, v2,3, w2,4, w1,1, w1,2, w1,3, w1,4, w2,1, w2,2, w2,3)

• T3 = (v2,1, v2,2, v2,3, v2,4, v1,2, v1,4, v1,1, v1,3, w1,4, w2,1, w2,2, w2,3, w2,4, w1,1, w1,2, w1,3)

We have�D(T1) = (24, 24), �D(T2) = (32, 28) and �D(T3) = (28, 32). One can easily
see thatKNN can generate{T2, T3} which constitutes a2k

k+1
-approximation ofT1. In the

following, we generalize this instance for anyk > 2. Indeed, we consider a family of
instances for which the Pareto curve is reduced to a single tourT ∗ whose total distance
�D(T ∗) is exactly(k + 1)2k+1 on each coordinate. Given an instance of this family, we
show thatKNN can output a set of tours{TL | L is a permutation of{1, . . . , k}} such
that each tourTL has a total distance equal to(4k)2k on coordinateL(k).

We consider a graphG composed ofk subgraphs{Hj | j = 1, . . . , k}. Each subgraph
Hj has exactly2k+1 nodes partitioned into two classes:

• Thev-nodes, denoted byvj,r wherer = 1, . . . , 2k.

• Thew-nodes, denoted bywj,r wherer = 1, . . . , 2k.

Forj = 1, . . . , k andr = 1, . . . , 2k−1, �d([vj,r, wj,r]), �d([vj,r, wj,r+1]) and�d([vj,2k , wj,2k ])
have a 2 on coordinatej and a 1 on theothers. So, eachHj has an Hamiltonian path
denoted byhp∗j which alternatively visits av-node and aw-node and such that each edge-
distance has only a 2 on coordinatej.

Using a Theorem of Walecki (see [5]), we know that a complete graph with2x nodes
can be decomposed intox edge-disjoint Hamiltonian paths. So, the subgraph ofHj in-
duced by thev-nodes has2k−1 Hamiltonian paths{hpj,1, . . . , hpj,2k−1} satisfying the fol-
lowing properties:
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• For q = 1 . . . , 2k−1, the endpoints ofhpj,q arevj,q andvj,2k−(q−1).

• Any two different Hamiltonian pathshpj,q andhpj,q′ never share an edge.

We consider these Hamiltonian paths forq ∈ {1, . . . , 2k−1} andhpj,q will be composed
of edges of the same distance. If the distance of an edge is fixed to 2 on coordinatej
while the other coordinates can be 1 or 2, one can easily count2k−1 possible vectors.
This is exactly the number of distinct Hamiltonian paths amongv-nodes ofHj. Thus,
each possible distance such that coordinatej is fixed to 2 is assigned to the edges of an
Hamiltonian pathhpj,q. For the ease of presentation, we assume that�d(hpj,q) denotes the
distance of the edges ofhpj,q. Among the2k−1 Hamiltonian paths ofHj, we distinguish
hpj,1 andhpj,2k−1 and assume that�d(hpj,1) has a 2 oneach coordinate while�d(hpj,2k−1)
has a 1 on each coordinate excepted for coordinatej.

We set up all componentsHj and link them as follows:

1. ∀hpj′,q′ , hpj′′,q′′, with j′ �= j′′ and such that�d(hpj′,q′) only differ from �d(hpj′′,q′′)

on exactly one coordinate (saym) and �d(hpj′,q′) has a 2 oncoordinatem then
�d([vj′,2k−(q′−1), vj′′,q′′ ]) = �d(hpj′,q′).

2. Lete∗j be[vj,2k , wj+1,1] for j = 1, . . . , k − 1 ande∗k = [vk,2k , w1,1]. Moreover,�d(e∗j)
has a 2 oncoordinatej and a 1 on theothers.

Finally, makeG complete by adding the edges not given by the rules above. Their distance
is 2 on each coordinate.

Lemma 5.1 The analysis of KNN is tight.

Proof. We consider the graphG described above and several tours:T ∗ andTL for any
permutationL. We can observe the three following facts:

(i) T ∗ =
⋃

j≤k(hp∗j ∪ e∗j) is an Hamiltonian cycle and∀j ≤ k, �Dj(T
∗) = (k + 1)2k+1.

(ii) Let L be a permutation of{1, 2 . . . , k}. TL starts with the Hamiltonian pathhpL(1),1

(by hypothesis,�d(hpL(1),1) has a 2 on coordinatesL(1) L(2) . . . L(k)). Then,
TL takes successively forj = 2, . . . , k, the Hamiltonian pathhpL(j),q such that
�d(hpL(j),q) has a 2 oncoordinatesL(j) L(j + 1) . . . L(k) and a 1 oncoordinate
L(1) L(2) . . . L(j − 1). Finally TL goes towL(k),2k−1+1 and visits arbitrarily the

remaining nodes. We have�DL(j)(TL) = (3k + j)2k for anyj ≤ k.

(iii) The algorithmKNN can output the tourTL.
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For j = 1 to k Do
For r = 1 to 2k Do

Go towj,r;
Go tovj,r;

EndFor
EndFor
Go tow1,1;

Table 2: Procedure to buildT ∗.

Distance of the edges
steps 1 2 3 . . . k quantity
j = 1 2 1 1 . . . 1 2k+1

j = 2 1 2 1 . . . 1 2k+1

j = 3 1 1 2 . . . 1 2k+1

...
...

...
...

...
...

...
j = k 1 1 1 . . . 2 2k+1

(k + 1)2k+1 (k + 1)2k+1 (k + 1)2k+1 . . . (k + 1)2k+1

Table 3: The total distance ofT ∗.

Proof of(i): The procedure to build the tourT ∗ in G is given in Table 2. The total distance
of T ∗ is (k + 1)2k+1 on each coordinate. To see it, we put in Table 3 the distance of the
edges used byT and their quantity.

Proof of (ii): Consider a permutationL of {1, 2, . . . , k} and a tourTL in G built as
explained in Table 4.

The total distance ofTL is equal to(3k + j)2k on coordinateL(j). TL first visits the
v-nodes ofHL(1) using the Hamiltonian pathhpL(1),1 (remark that the starting node of
hpL(1),1 is vL(1),1) and �d(hpL(1),1) has a 2 on coordinatesL(1) to L(k). Afterwards,TL

takes an Hamiltonian pathhpL(2),q such that�d(hpL(2),q) has a 2 oncoordinatesL(2) to
L(k) and a 1 oncoordinateL(1). By construction, the edge that links the ending node
of hpL(1),1 and the starting node ofhpL(2),q has a distance�d(hpL(1),1). Successively,TL

visits thev-nodes of componentsHL(3) to HL(k−1) and finally takeshpL(k),2k−1. We know

that �d(hpL(k),2k−1) has a 2 on coordinateL(k) and a 1 on the others. The ending node
of hpL(k),2k−1 is vL(k),2k−1+1. By construction, there is an edge[vL(k),2k−1+1, wL(k),2k−1+1]

with distance�d(hpL(k),2k−1). The tourTL uses this edge and afterwards it passes through
all the non-visited nodes (namely thew-nodes ofHL(1), HL(2), . . . , HL(k)) using edges
with distance 2 on each coordinate. At the end,TL returns tovL(1),1. Table 5 helps us to
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For j = 1 to k Do
TakehpL(j),q s.t. �d(hpL(j),q) has a 2 on coordinatesL(j) to L(k) and a

1 on the others;
EndFor
Go towL(k),2k−1+1;
Pass through all non-visited edges;
Return tovL(1),1;

Table 4: Procedure to buildTL.

Distance of the edges
steps L(1) L(2) L(3) . . . L(k − 1) L(k) quantity
j = 1 2 2 2 . . . 2 2 2k

j = 2 1 2 2 . . . 2 2 2k

j = 3 1 1 2 . . . 2 2 2k

...
...

...
... . . .

...
...

...
j = k 1 1 1 . . . 1 2 2k

2 2 2 . . . 2 2 k2k

(3k + 1)2k (3k + 2)2k (3k + 3)2k . . . (4k − 1)2k (4k)2k

Table 5: The total distance ofTL.

see thatTL has a total distance of(3k + j)2k on coordinateL(j).

Proof of(iii): KNN uses the preference relation≺L. To make sure thatKNN can output
TL, we have to prove that, whenTL uses an edge[a, b], there is not any non-visited node
c such that�d([a, c]) ≺L

�d([a, b]). By construction,TL starts at nodevL(1),1 and visits
all the otherv-nodes ofG until it reachesvL(k),2k−1+1. Afterwards,TL passes through
wL(k),2k−1+1 and visits all thew-nodes ofG. If the current node is av-node (sayvL(j),r),

the next edge (saye) that is used has a distance�d(e) with a 2 on coordinatesL(j) to L(k)

and a 1 on the others. To be preferred, another edgee′ must have a distance�d(e′) with a
1 on coordinatesL(j) to L(k). By construction ofG, there is not any. If the current node
is aw-node (saywL(j),r), the next edge (saye) that is used has a distance�d(e) with a 2 on
each coordinate. To be preferred, another edgee′ must have a distance�d(e′) with a 1 on
coordinateL(1). Moreover, this edgee′ must lead to another non-visitedw-node (all the
v-nodes are already visited). By construction ofG, there is not any.

Finally, KNN can generate a set of solutionsP = {TL | L is a permutation of{1, . . . , k}}
while the Pareto curve is reduced to one tourT ∗. Since �D(T ∗) is (k + 1)2k+1 on each
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coordinate and�DL(k)(TL) = (4k)2k, P approximatesT ∗ within a ratio (4k)2k

(k+1)2k+1 = 2k
k+1

.

6 Conclusion

Up to our knowledge, negative results for multi-criteria optimization problems were
not investigated though their approximability motivated a lot of articles. As a first attempt,
we present a way to get results of this type by connecting the size the approximate Pareto
curve and the best approximation ratio which can be achieved. We apply the method to
thek-criteriaTSP (1, 2) but it also works with problems where all feasible solutions have
the same size.

The approximability of thek-criteria TSP (1, 2) is also investigated. By giving a
multi-criteria version of the classical nearest neighbor heuristic, we extend and improve
the previous positive results. However, as the number of criteria grows, and even though
the number of solutions is large (k!), the approximation ratio tends to 2. Then, it would
be interesting to reduce the gap between positive and negative results.
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