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On the complexity of single machine scheduling
problems under scenario-based uncertainty?!

Mohamed Ali Aloulou, Federico Della Crode

Résumé

Nous considérons des problémes d’ordonnancement ou certains parametres des
taches sont incertains. Cette incertitude est modélisée au travers d’'un ensemble fini
de scénarios bien définis. Nous cherchons une solution qui soit acceptable pour I'en-
semble des scénarios considérés. Plusieurs criteres ont été utilisés dans la littérature
pour sélectionner la “meilleure” solution. Nous utilisons ici le critére appaés-
tesse absolue. Nous présentons des résultats algorithmiques et de complexité pour
quelques problémes classiques d’ordonnancement sur une machine.

Mots-clefs: Ordonnancement ; Données incertaines ; Scénarios ; Robustesse absolue

Abstract

We consider scheduling environments where some job characteristics are uncer-
tain. This uncertainty is modeled through a finite set of well-defined scenarios. In
such a context, we search for a solution that is acceptable for any considered sce-
nario. For this purpose, several criteria can be applied to select among solutions.
We use here the so-calletsol ute robustness criterion. We present algorithmic and
computational complexity results for several single machine scheduling problems.

Key words: Scheduling; Scenario-based uncertainty; Absolute robustness.
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1 Introduction

This paper deals with single machine scheduling problems where some job characteristics
are uncertain. This uncertainty is described through a finit& sdtwell-defined scenar-

ios. We denote by, d; andwj, respectively, the processing time, the release date, the
due date and the weight of jgbunder scenarie € S.

Consider a scheduling problem, denoted)§|y according to Graharet al. notation
[5]. LetII be the set of feasible schedules with respect to the problem constraints. For
each scenarie € S, we denote byOPT (a5, s) the problem of finding an optimal
scheduler? satisfying

F(rl,s) = min F(rm,s). (1)

When problem parameters are uncertain, it is appropriate to search for a solution that
is acceptable for any considered scenario. For this purpose, several criteria can be applied
to select among solutions. In [8], Kouvelis and Yu proposed three different robustness
criteria: the absolute robustness or maximal cost, the maximal regret or robust deviation
and the relative robustness. In this paper, we focus oalis@ute robustness criterion.

To the best of our knowledge, the absolute robustness in single machine scheduling
problems has only been considered in [3] and [12] where, fot e, C; problem with
uncertain processing times, two distinct proofs of f\i€-hardness even fgiS| = 2
were provided (notice that the corresponding deterministic version is well known to be
polynomially solvable [11]). The maximal regret criterion was instead much more studied
(see for instance, again [12] but also [1, 6, 7]).

The absolute robustness of schedulever all scenarios € S is denoted byF'().
We have

F(r) = max F(m, s). 2

seS

We denote byMinMax(a|3|y,0) the problem of finding a schedute! minimiz-
ing the absolute robustne$¥r) among all schedules € II. Field ¢ indicates the set
of uncertain problem parameters. For the problems consideredthere{p;, d;, w;}.
Sequence is called in [8]absolute robust sequence. Its costF'(74) satisfies

F(7) = min F(7) = min max F(, s). 3)

well well ses

Notice that if problemu| 3|y is NP-hard, then, in the presence of uncertainty, the cor-
responding problems&/inMaz(«|f3|v, 0) are also NP-hard. However, if problems|y
is polynomially solvable, then, the corresponding probléma. M ax(«|5]y, #) are not
necessarily polynomially solvable. In this work we establish the complexity status for
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the absolute robustness versions of the most well known non-preemptive polynomial-
time single machine scheduling problems, namely problépsec| fiax (With fr. €
{Chmaxs Lmax, Tmax }) » 1]| >- w;C; and 1| Y U;. Notice that all these problems present
regular cost functions non-decreasing in the job completion times. In this context any
scheduler € IT is completely characterized by the corresponding job sequence. Given
a scheduler € II, the completion time of joly under scenaria, denoted byC(r, s),
j=1,....,n,s € S, can easily be determined and the quality of the schedude I1

under scenaria is then evaluated using the regular cost functitfar, s). We consider

the following cost functions :

e the general maximum cost functiofy.. = max;{f;(C;)} with fi. € {Crax,
Linax, Tiax - hence we deal with the maximum completion time (makespan) =
max;{C};}, the maximum lateness,,,, = max;{L,} with L; = C; — d; and the
maximum tardines$,,,,. = max;{7;} with 7; = max{0, L, };

o the total weighted completion tinje’ ; w;C};

e the number of late job}; U; with U; = 0, if job j ison-time (C; < d;) andU; = 1
if jislate (C; > d;).

Using the setS of scenarios, we construct a scenafioin which parameters; take
their worst case value, denoted by. In our case, we havgy = max.cspj, df =
Minges d; andw’f = MaXes Wj. Notice that in the context of a discrete set of scenarios,
the constructed scenario is not necessarily feasible, i.e. we canhae&: s is called
worst-case artificial scenario.

Remark 1 When parameters are interval-uncertaihjs a feasible scenario. In this case,
an absolute robust solutiort' of problemMinMaz(1|3|y, #) is such that

7 A o . 7 o .
F(r®) =min F(r) = minmaxF(r, s) 4)
= ErnelrrllF(W,s ). (%)

Hencer is also optimal for problen® PT'(1|3|v, s*). This means that the problem
of finding an absolute robust sequence can be solved straigtforwardly by the algorithm
solving the problem without uncertainty applied to the worst-case artificial scemario.

When uncertainty is scenario-based, we can not apply the same reasoning because
scenarios®” is not necessarily feasible. Nevertheless, we show in this paper that prob-
lemsMinMaz(1|prec|Lias, d;) andMinMaz(1|| > U;, d;) can be solved by Lawler’s
algorithm [9] and Moore’s algorithm [10] respectively applied to the worst case artificial
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scenario. We also prove that an extension of Lawler’s algorithm, calledMietdax-
Lawler, solves problem\/inMax(1|prec| fimaz, pj, d;) in polynomial time. On the other
hand, problema/inMaz(1|]| > w;C;,w;) andMinMaz(1|| > U;, p;) are proved to be
NP-hard even wheff| = 2.

Table 1 summarizes the above results presenting the complexity status for the abso-
lute robustness versions of the most well known non-preemptive polynomial-time single
machine scheduling problems, where an entry "-" indicates that the considered case is not
applicable (for instance problein| > © w;C; cannot have uncertainty on due dates as due
dates are not present in the problem).

Table 1: Summary of the obtained results

Uncertain cost function
parameter 1| > w;C} L|prec| fumax > U;
d; - O(n* +n|S|)(Th. 1) | O(nlogn + n|S|)(Th. 4)
P NP-hard [3, 12]| O(n?|S|) (Th. 2) NP-hard (Th. 5)
W, NP-hard (Th. 3) - -
p; andd; - O(n?|S]) (Coro. 2) NP-hard (Coro. 3)
p; andw; | NP-hard [3, 12] - -

2 Problem MinMax(1|prec| fimax, 0)

2.1 Uncertainty on due dates

We consider problemd/inMaz(1|prec| fmax, d;) Where processing times are determin-
istic and due dates are uncertain (hérex € {Lmax, Tmax} @S forChax NO uncertainty
holds). In this case the worst-case artificial scenatids such that, for allj € N,
di = mingeg dj.

We recall that problenh|prec| f,..x can be solved i®(n?) time by Lawler’s algorithm
[9]. This algorithm constructs an optimal schedule backwards. At the points in time where
the unscheduled jobs should complete, starting with poiat? = .y p;, Lawler’s
algorithm chooses among the unscheduled jobs having no successors a job with minimum
cost to be completed at Notice that as processing times are deterministic, we have

Vr ell,Vs € S,Vj € N,Cj(m, s) = Cj(r). (6)
The following theorem holds.

Theorem 1 Problem MinMaz(1|prec| fmax, d;) can be optimally solved in O(n? +n|S])
time by means of Lawler’s algorithm applied to the worst-case artificial scenario s®.
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Proof. In the following, for the sake of clarity we consider thAf.., = L. but
the same analysis holds f@f,.. = Twmax. An absolute robust solution” of problem
MinMaz(1|prec|Lmax, d;) is such that

L(r?) = I;rnell[IlHSleaXLmax(W s) (7
= minmaxmax(Cj(r, s) - dj) 8)
= G = 4) ©
e - 4) (o
— %n}le%((cj(w)—d;#) (11)

L(r") = min Lux(m,5") (12)

Hence, 74 is also an optimal solution for problem OPMprec| Loy, s®). For the
complexity, the construction of the worst-case scenario reqai@sS|) time and the
application of Lawler’s algorithm require@(n?) time, hence the overall complexity is
O(n*+nl|S|). 1

We observe that the proof of Theorem 1 can be applied, as it is, to any scheduling
probleme || fmax- Hence, we have the following result.

Corollary 1 Any algorithm optimally solving problem «| 3| fuax Provides an absolute ro-
bust solution for problem MinM ax(c|3| fmax, d;), when applied to the wor st-case artifi-
cial scenario sv.

2.2 Uncertainty on processing times and due dates

We consider problem\MinMax( d;) where we suppose now that both
processing times and due dates are uncertain. A robust sotttiensuch that

F(rt) = melﬁl max Frax(m, s) (13)
= minmaxmax f;(C;(m,s)) (14)

w€ll seS jeEN

We propose an algorithm, callédinMax-Lawler, which is an extension of Lawler’s
algorithm. This algorithm constructs a sequenci reverse order. Let be the set
of unscheduled jobs. Defing(U) = 3, p; forall s € S. The rule is the following :
Schedule last the jop e U, which has no successorihand such thatax.es f; (p*(U))
is minimal. It is immediate to see that the complexityMihMax-Lawler is O(n?|S]).

We have the following result.
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Theorem 2. Problem MinMax(1|prec|fumax, pj, d;) is optimally solved by algorithm
MinMax-Lawler.

Proof. The proof is very similar to the proof of Lawler’s algorithm optimality for problem
1prec| fmax-

Enumerate the jobs in such a way that2,...,n) is the sequence constructed
by the proposed algorithm. Let4 be an absolute robust sequence for problem
MinMaz(1|prec| fuas, pj» d;) With 74(i) = ifori = n,n—1,...,randr?(r) = j < r.

Notice that it is possible to schedute— 1 immediately before. Hence, we can
construct a sequence in which we shift to the left the block between jobs- 1 andr
and process — 1 immediately before. Clearly,

Vie N—{r—1},Vs € S,Ci(n',s) < Cy(r?, 5) (15)
Hence,
F(r') = max F(r')s) = max{F(r"), max 2 (Cra (7 8))} (16)
= max{F(r"), max fi(Ci(mA8)} 17)
< max{F(r?), max f}(C;(x", 5))} (18)
< F(r? (19)

Consequentlyr’ is also an absolute robust sequence.

We can reiterate the same reasoning and transform sequehdeto sequence
(1,2,...,n) without increasing the objective function valde.

Correspondingly. the following corollary also holds.

Corollary 2 Problem MinMax(1|prec| fumax,p;) IS optimally solved by algorithm
MinMax-Lawler.

3 Problem MinMaz(1|| Y. w;Cj, w;)

We consider problem/inMax(1|] ) w;C;, w;) where processing times are determinis-
tic and weights are uncertain. We prove that this probleiif&hard even wheiS| = 2
andp; = 1 Vj. To this extent we need to prove the following instrumental lemma.
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Lemmal Thel|| )" C; problemandthe1|p;, = 1| w;C; problemare equivalent.

Proof. Given any instance of thg| >~ C; problem where each jophas processing time
P}, generate an instance of thg; = 1| > w;C; problem where each jophas weight
w! = p,_,;.,- Consider a generic sequende2, ...,n — 1,n). For thel|| ) C; problem
the corresponding cost function valueds = 37 (n — j + 1)p}. For thellp; =
1> w;C; problem the corresponding cost function valueZis= Z;’:ljw;’. We show

thatZ, = Z,. Indeed,Z, = Z?lew‘;’ = Z;.l:ljp;l,jﬂ = Z?Zl(n —Jj+ ;=21 1

Theorem 3. Problem MinMaz(1]| Y w;C;,w;) is NP-hard even when |S| = 2 p; =
1 V).

Proof. Due to Lemma 1 and th& P-hardness of problem/inMazx(1|| > C;, p;) from
[3, 12], the proof immediately holds

4 Problem MinMax(1|| > U;,0)

We consider problem/inMaz(1]| " U;,0) with § C {p;,d;}. We show that problem
MinMaz(1|] > U;, d;) can be solved by Moore’s algorithm [10] applied to the worst-
case artificial scenario, whereas probléfinMax(1|| ) U;, p;) is NP-hard.

4.1 Uncertainty on due dates

Lemma 2 There exist an optimal solution of problem MinMax(1|| > U;, d;) in which
on-time jobs are scheduled in a non-decreasing order of their worst-case artificial sce-
nario due dates dy’.

Proof. Let 7 be an optimal solution for probledinMaz(1|| > U;,d;). Suppose that
in this schedule there exist two consecutive on-time jolhsd ; such that < j and
di > dj. We have

Vs € S, Cy(n?, s) = Ci(n?) < d5 (20)
and

Vs € 5,Ci(n,s) = Cj(n") < d (21)

By interchanging jobs andyj, we obtain a new feasible schedule denoted by this
schedule, only completion time of jabincreases and we have

OL‘(ﬂ') = Cj(ﬂ'A) (22)

7
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According to equation (21), we obtain

Cilm) < maxd; < dj <df <dj,Vs €S (23)

This means that jobis on-time in schedule and consequently is also optimal for
problemMinMazx(1|| > U;, d;).

We can reiterate the same reasoning and obtain finally a solution in which on-time
jobs are sequenced in a non-decreasing order of their worst-case artificial scenario due
datesd.

Theorem 4. Problem MinMax(1]| )" U;,d;) can be optimally solved in O(nlogn +
n|S|) time by means of Moore's algorithm applied to the worst-case artificial scenario

gw

Proof. The proof is very similar to the proof of Moore’s algorithm optimality for problem
1[>2U;.

According to Lemma 2, there exists an optimal schedule (7,7, ) for problem
MinMaz(1]| > U;,d;) in which

e on-time jobs are scheduled before late jobs, and,

e on-time jobs are scheduled according to the non-decreasing order of their worst-
case artificial scenario due dat€s

Without loss of generality, enumerate the jobs such dffa dy < ... < d¥. Let
j be the first job deleted, in Moore’s algorithm, from the seif on-time jobs. Suppose
that jobj is on-time inw. We transformr in another optimal schedule in whighis late.
Remark that there exists at least one jglwith £ < j, which is late inw. Otherwise,
Moore’s algorithm would not have rejectgdlt is immediate to prove that by interchang-
ing jobs; andk we get a new optimal schedule in which jpis late. We can reiterate the
same reasoning and transform then sequericito the sequence obtained by Moore’s
algorithm applied to the worst-case artificial scenatfovithout increasing the number
of late jobs.

For the complexity, the construction of the worst-case scenario reqQifesS|)
time and Moore’s algorithm requirg3(nlogn) time, hence the overall complexity is
O(nlogn,n|S|). 1

8
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4.2 Uncertainty on processing times

We prove that problemi/inMax(1|| > U;,p;) is NP-hard even wheff| = 2 by con-
structing a reduction from the NP-complete even-odd partition problem [4].

Even-odd partition problem: Given2n positive integers; < a; < ... < as, Where
22" a; = 2B, is there a partition of the integers into two subsétsand A, such that

j=1
> a;=) a;=B (24)
j€A1 jEAs

andA; and A, each contains exactly one element of each @air 1, a),i=1,...,n?

Given an instance of the even-odd partition problem, we construct the following in-
stance of problem/inMazx(1|| > U;, p;).

Instance of problem MinMaxz(1||>U;,p;):  We have2n jobs and two scenarios 1
and 2. Job processing times and due dates are such that

P% p% =
” b= @)
d1 dg a9

p%iq = pgi =agi-1+az-—2+...+az
2 1

. i1 =DP9; =02t Q22+ ...+ a

Vi=2,..,n{ P2im1 T o i AR ’ , (26)
doj—1 = do; = az; + 2a9;_2 + ... +iae, fori < n, and,

dop = dop—1 = B+ day 2

Jobs2i—1 and2i are calledi; —jobs. Notice that with this construction, the following
lemmata hold.

Lemma3. Any sequence in which each position i,7 = 1,...,n, is occupied by an
a;) — job admits at least n — 1 on-time jobs.

Proof. We can prove straightforwardly that in such a sequence therfirstl jobs are
on-time

Lemma4 If two jobs2i and 2i — 1 are both on-time, then thereexists j, 1 < j < 4, such
that jobs 25 and 25 — 1 are both late.
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Proof. Suppose by contradiction that there exists a sequence in which fobatl j < i,
at least one jol2j or 2j — 1, denoted;-job, is on time and that job& and2i — 1 are
both on-time.

It is clear that resequencing these on-time jobs in a non-decreasing order of their due
dates does not increase the number of late jobs.

In this new sequence, jol2s and2:; — 1 are sequenced last with respect to the con-
sidered on-time jobs. The completion time of the last jabof 2 — 1) is greater than or
equal to the sum of

1. the sum of the minimal processing timesagf-jobs scheduled before jol2$ and
21— 1,0 < j < i, denoted byA, and,

2. the processing times of joBsand2: — 1, denoted byB.

We have
a1+
a3 + az+
A = as + ag + as+ (27)
a2{—3 + 2i—4 + -+ a4+ az
= a1+a3+~--+a2i,3+a2i74+--~+(i—2)*a2 (28)
and
B = py+Dpy_1 =D+ D (29)
= a9;+agi_1+2%ag_o+---+2%xaq+2x*ao. (30)

The completion time of the last job is greater than or equal to

A+B = ay+az+---+ag_3+ay +2a9_9+...+1ia9 (31)
= a1+az+--+ax-3+dy (32)
> dy;. (33)

Hence at least one job among jahsand2i — 1 is late. This contradicts the considered
hypothesisl

Lemma 5 Every schedule admits at most » on-time jobs.

10
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Proof. Suppose by contradiction that there exists a sequence such that the number of
on-time jobs is greater than or equalito+ 1. Resequencing the on-time jobs in a non-
decreasing order of their due dates and sequencing late jobs last does not increase the
number of late jobs. Let be such a sequence.

Since we have: + 1 on-time jobs, then there exist at least an integaurch that jobs
2; and2i — 1 are both on-time. Let* be the smallest such thati and2: — 1 are both
on-time andr;- be the subsequence of on-time jobs among jolis< k < 2i*. We have
m = (m~,mr). Notice that in subsequenee. there are at most' jobs, which are all
on-time.

Due to Lemma 4, there exists an integer < j < ¢*, such that neither jobj nor job
27 — 1is on-time. We construct a new subsequence sequenae which we exchange
one job amon@i* and2:* — 1 (which are on-time inr) with job 25 or 25 — 1 (which are
late in). For example, we exchange jobs and2;j — 1. Then, we reorder the jobs of.
in a non decreasing order of their due dates. Due to Lemma 3, all jolis afe on-time.
SinceVs € S,p3; ; < p5;, then sequencer;., 7r) has at least the same number jobs
on-time asr.

We can reiterate the same reasoning until we get a sequence in which we have at
mostn — 1 jobs on-time among jobs, ..., 2n — 2. Since we have at least+ 1 jobs
on-time, then job&n and2n — 1 are both on-time but this cannot occur due to Lemnsia 4.

The following theorem hold.
Theorem 5 Problem MinMax(1|| > U;, p;) is NP-hard even when | S| = 2.

Proof. We first prove that, if the even-odd partition problem has a solution, then the
constructed instance admits a solution witbhn-time jobs.

Let A; be a solution of the even-odd partition problem. Consider a sequenee
(1, ;) such that

o forall j < 2n,if a; € A; then joby € my;
e the jobs ofr; are ordered in non-decreasing order of their due dates.

Suppose that = ([1],[2],. .., [n], [n+1], [n+2], ... [2n]) andm, = ([1],[2],. .., [n])

Due to Lemma 3, the first — 1 jobs inm; are on-time. We prove that the last job in
m IS also on-time.

The completion time of the last jdb] in scenarios; is

11
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Clj(m,s1) = plyy+Djg + Py (34)
ap+
_ )ap tat

= (39)

Q[p) + A2p—2 + -+ + a4 + a2

= a[1]+a[2]—|—---—|—a[n]+a2n,2+~--+(n—1)*a2 (36)
= B+dwm (37)
= d2n = d?nfl = d[n] (38)

The completion time of the last jd] in scenarios, is

Cruy(m,52) = Pl +phy + Py (39)
a[n-&-l]+
_ Qfpy2) + a2+ (40)

Qo) + Q2p—2 + -+ a4+ a2
= py1] T g2 T Fapn) Fa2n2+ o+ (= 1) * a2 (42)
B +dan—2 (42)
= doy = dop—1 = djy)- (43)

Consequently, jon] is on-time for the two scenarios and the number of on-time jobs
in 7 is at least and cannot be greater thardue to Lemma 5.

We prove now that if the constructed instance admits a solutionwith-time jobs,
then the even-odd partition problem admits a solution.

Let 7 be a sequence in which the number of on-time jobs is equal 8uppose that
in 7, there exist two on-time job& and2: — 1. Then, due to Lemma 4, there exists an
indexj, 1 < j < i, such that job2j and2j — 1 are both late. Using the same technique
as in Lemma 5, we transform sequence a new sequence in which jaly or 25 — 1
is on-time and jok2i or 2i — 1 is late. We reiterate the same reasoning until we get a
sequencer’, in which for allk, 1 < k < n, only one job among jobgk and2k — 1 is
on-time.

Resequencing the on-time jobs in a non-decreasing order of their due dates and
sequencing the late jobs last we do not increase the number of late jobs. We have
= (1],[2],...,[n],[n +1],[n+2],...[2n]) and jobs]i], 1 < i < n are on-time.

12
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The completion time of joln] in scenarios; is

Cra(7',s1) = pf

Pl + Py + Pl (44)
= aptag -+ taptama2to+(n—1)xa (45)
ap +ap + -+ apy + dan—2 (46)
The completion time of joln] in scenarios, is
Cj(n',s9) = phy+ iy + -0l (47)
= Qpy1) T Apyo) T Apn) ta2n—2 4+ (n— 1) xan (48)
= Q1) T Apgo) T 00+ )+ d2n-2 (49)
Since jobn] is on-time then
Vs € {81782}70[,”] (', s) < d[n] = doy, = dop—1 = B + dap—2. (50)
Consequently, we have
ap tap +--+ a[n] =B
A1) + Any2) T+ Qf2n) S , and (51)
ap +apg) + -+ apa) = 5.
This proves that
ap) + ap + -+ + A = Qppga) + Apgo) + o+ Gon) = B (52)

which means that the even-odd partition problem has a solution

Correspondingly. the following corollary also holds

Corollary 3 ProblemMinMax(1|| > U;, p;, d;) isNP-hard even when | S| = 2
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