
HAL Id: hal-00115501
https://hal.science/hal-00115501

Preprint submitted on 22 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of single machine scheduling
problems under scenario-based uncertainty

Mohamed Ali Aloulou, Federico Della Croce

To cite this version:
Mohamed Ali Aloulou, Federico Della Croce. On the complexity of single machine scheduling problems
under scenario-based uncertainty. 2006. �hal-00115501�

https://hal.science/hal-00115501
https://hal.archives-ouvertes.fr

On the complexity of single machine scheduling
problems under scenario-based uncertainty1

Mohamed Ali Aloulou∗, Federico Della Croce†

Résumé

Nous considérons des problèmes d’ordonnancement où certains paramètres des
tâches sont incertains. Cette incertitude est modélisée au travers d’un ensemble fini
de scénarios bien définis. Nous cherchons une solution qui soit acceptable pour l’en-
semble des scénarios considérés. Plusieurs critères ont été utilisés dans la littérature
pour sélectionner la “meilleure” solution. Nous utilisons ici le critère appelérobus-
tesse absolue. Nous présentons des résultats algorithmiques et de complexité pour
quelques problèmes classiques d’ordonnancement sur une machine.

Mots-clefs : Ordonnancement ; Données incertaines ; Scénarios ; Robustesse absolue

Abstract

We consider scheduling environments where some job characteristics are uncer-
tain. This uncertainty is modeled through a finite set of well-defined scenarios. In
such a context, we search for a solution that is acceptable for any considered sce-
nario. For this purpose, several criteria can be applied to select among solutions.
We use here the so-calledabsolute robustness criterion. We present algorithmic and
computational complexity results for several single machine scheduling problems.

Key words : Scheduling; Scenario-based uncertainty; Absolute robustness.

1Research performed while the second author was visiting LAMSADE on a research position funded by
the CNRS

†LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16, France.aloulou@lamsade.
dauphine.fr
‡D.A.I., Politecnico di Torino, Italy.federico.dellacroce@polito.it

1

On the complexity of single machine scheduling problems [...]

1 Introduction

This paper deals with single machine scheduling problems where some job characteristics
are uncertain. This uncertainty is described through a finite setS of well-defined scenar-
ios. We denote byps

j, ds
j andws

j , respectively, the processing time, the release date, the
due date and the weight of jobj under scenarios ∈ S.

Consider a scheduling problem, denoted byα|β|γ according to Grahamet al. notation
[5]. Let Π be the set of feasible schedules with respect to the problem constraints. For
each scenarios ∈ S, we denote byOPT (α|β|γ, s) the problem of finding an optimal
scheduleπ∗

s satisfying

F (π∗
s , s) = min

π∈Π
F (π, s). (1)

When problem parameters are uncertain, it is appropriate to search for a solution that
is acceptable for any considered scenario. For this purpose, several criteria can be applied
to select among solutions. In [8], Kouvelis and Yu proposed three different robustness
criteria: the absolute robustness or maximal cost, the maximal regret or robust deviation
and the relative robustness. In this paper, we focus on theabsolute robustness criterion.

To the best of our knowledge, the absolute robustness in single machine scheduling
problems has only been considered in [3] and [12] where, for the1||∑ Cj problem with
uncertain processing times, two distinct proofs of theNP -hardness even for|S| = 2
were provided (notice that the corresponding deterministic version is well known to be
polynomially solvable [11]). The maximal regret criterion was instead much more studied
(see for instance, again [12] but also [1, 6, 7]).

The absolute robustness of scheduleπ over all scenarioss ∈ S is denoted byF̄ (π).
We have

F̄ (π) = max
s∈S

F (π, s). (2)

We denote byMinMax(α|β|γ, θ) the problem of finding a scheduleπA minimiz-
ing the absolute robustness̄F (π) among all schedulesπ ∈ Π. Field θ indicates the set
of uncertain problem parameters. For the problems considered here,θ ⊆ {pj, dj, wj}.
SequenceπA is called in [8]absolute robust sequence. Its costF̄ (πA) satisfies

F̄ (πA) = min
π∈Π

F̄ (π) = min
π∈Π

max
s∈S

F (π, s). (3)

Notice that if problemα|β|γ is NP-hard, then, in the presence of uncertainty, the cor-
responding problemsMinMax(α|β|γ, θ) are also NP-hard. However, if problemα|β|γ
is polynomially solvable, then, the corresponding problemsMinMax(α|β|γ, θ) are not
necessarily polynomially solvable. In this work we establish the complexity status for

2

Annales du LAMSADE n˚4-5

the absolute robustness versions of the most well known non-preemptive polynomial-
time single machine scheduling problems, namely problems1|prec|fmax (with fmax ∈
{Cmax, Lmax, Tmax}) , 1||∑ wjCj and1||∑ Uj. Notice that all these problems present
regular cost functions non-decreasing in the job completion times. In this context any
scheduleπ ∈ Π is completely characterized by the corresponding job sequence. Given
a scheduleπ ∈ Π, the completion time of jobj under scenarios, denoted byCj(π, s),
j = 1, . . . , n, s ∈ S, can easily be determined and the quality of the scheduleπ ∈ Π
under scenarios is then evaluated using the regular cost functionF (π, s). We consider
the following cost functions :

• the general maximum cost functionfmax = maxj{fj(Cj)} with fmax ∈ {Cmax,
Lmax, Tmax}: hence we deal with the maximum completion time (makespan)Cmax =
maxj{Cj}, the maximum latenessLmax = maxj{Lj} with Lj = Cj − dj and the
maximum tardinessTmax = maxj{Tj} with Tj = max{0, Lj};

• the total weighted completion time
∑

j wjCj;

• the number of late jobs
∑

j Uj with Uj = 0, if job j is on-time (Cj ≤ dj) andUj = 1
if j is late (Cj > dj).

Using the setS of scenarios, we construct a scenariosw in which parameterskj take
their worst case value, denoted bykw

j . In our case, we havepw
j = maxs∈S ps

j, dw
j =

mins∈S ds
j andww

j = maxs∈S ws
j . Notice that in the context of a discrete set of scenarios,

the constructed scenario is not necessarily feasible, i.e. we can havesw /∈ S: sw is called
worst-case artificial scenario.

Remark 1. When parameters are interval-uncertain,sw is a feasible scenario. In this case,
an absolute robust solutionπA of problemMinMax(1|β|γ, θ) is such that

F̄ (πA) = min
π∈Π

F̄ (π) = min
π∈Π

max
s∈S

F (π, s) (4)

= min
π∈Π

F (π, sw). (5)

HenceπA is also optimal for problemOPT (1|β|γ, sw). This means that the problem
of finding an absolute robust sequence can be solved straigtforwardly by the algorithm
solving the problem without uncertainty applied to the worst-case artificial scenario.

When uncertainty is scenario-based, we can not apply the same reasoning because
scenariosw is not necessarily feasible. Nevertheless, we show in this paper that prob-
lemsMinMax(1|prec|Lmax, dj) andMinMax(1||∑ Uj, dj) can be solved by Lawler’s
algorithm [9] and Moore’s algorithm [10] respectively applied to the worst case artificial

3

On the complexity of single machine scheduling problems [...]

scenario. We also prove that an extension of Lawler’s algorithm, called hereMinMax-
Lawler, solves problemMinMax(1|prec|fmax, pj, dj) in polynomial time. On the other
hand, problemsMinMax(1||∑ wjCj, wj) andMinMax(1||∑ Uj, pj) are proved to be
NP-hard even when|S| = 2.

Table 1 summarizes the above results presenting the complexity status for the abso-
lute robustness versions of the most well known non-preemptive polynomial-time single
machine scheduling problems, where an entry "-" indicates that the considered case is not
applicable (for instance problem1||∑ wjCj cannot have uncertainty on due dates as due
dates are not present in the problem).

Table 1: Summary of the obtained results
Uncertain cost function
parameter 1||∑ wjCj 1|prec|fmax 1||∑ Uj

dj – O(n2 + n|S|)(Th. 1) O(n log n + n|S|)(Th. 4)
pj NP-hard [3, 12] O(n2|S|) (Th. 2) NP-hard (Th. 5)
wj NP-hard (Th. 3) – –

pj anddj – O(n2|S|) (Coro. 2) NP-hard (Coro. 3)
pj andwj NP-hard [3, 12] – –

2 Problem MinMax(1|prec|fmax, θ)

2.1 Uncertainty on due dates

We consider problemMinMax(1|prec|fmax, dj) where processing times are determin-
istic and due dates are uncertain (herefmax ∈ {Lmax, Tmax} as forCmax no uncertainty
holds). In this case the worst-case artificial scenariosw is such that, for allj ∈ N ,
dw

j = mins∈S ds
j.

We recall that problem1|prec|fmax can be solved inO(n2) time by Lawler’s algorithm
[9]. This algorithm constructs an optimal schedule backwards. At the points in time where
the unscheduled jobs should complete, starting with pointt = P =

∑
j∈N pj, Lawler’s

algorithm chooses among the unscheduled jobs having no successors a job with minimum
cost to be completed att. Notice that as processing times are deterministic, we have

∀π ∈ Π,∀s ∈ S,∀j ∈ N,Cj(π, s) = Cj(π). (6)

The following theorem holds.

Theorem 1. Problem MinMax(1|prec|fmax, dj) can be optimally solved in O(n2+n|S|)
time by means of Lawler’s algorithm applied to the worst-case artificial scenario sw.

4

Annales du LAMSADE n˚4-5

Proof. In the following, for the sake of clarity we consider thatfmax = Lmax but
the same analysis holds forfmax = Tmax. An absolute robust solutionπA of problem
MinMax(1|prec|Lmax, dj) is such that

L̄(πA) = min
π∈Π

max
s∈S

Lmax(π, s) (7)

= min
π∈Π

max
s∈S

max
j∈N

(Cj(π, s) − ds
j) (8)

= min
π∈Π

max
s∈S

max
j∈N

(Cj(π) − ds
j) (9)

= min
π∈Π

max
j∈N

max
s∈S

(Cj(π) − ds
j) (10)

= min
π∈Π

max
j∈N

(Cj(π) − dw
j) (11)

L̄(πA) = min
π∈Π

Lmax(π, sw) (12)

Hence, πA is also an optimal solution for problem OPT(1|prec|Lmax, s
w). For the

complexity, the construction of the worst-case scenario requiresO(n|S|) time and the
application of Lawler’s algorithm requiresO(n2) time, hence the overall complexity is
O(n2 + n|S|).

We observe that the proof of Theorem 1 can be applied, as it is, to any scheduling
problemα|β|fmax. Hence, we have the following result.

Corollary 1 Any algorithm optimally solving problem α|β|fmax provides an absolute ro-
bust solution for problem MinMax(α|β|fmax, dj), when applied to the worst-case artifi-
cial scenario sw.

2.2 Uncertainty on processing times and due dates

We consider problemMinMax(1|prec|fmax, pj, dj) where we suppose now that both
processing times and due dates are uncertain. A robust solutionπA is such that

F̄ (πA) = min
π∈Π

max
s∈S

Fmax(π, s) (13)

= min
π∈Π

max
s∈S

max
j∈N

fj(Cj(π, s)) (14)

We propose an algorithm, calledMinMax-Lawler, which is an extension of Lawler’s
algorithm. This algorithm constructs a sequenceπ in reverse order. LetU be the set
of unscheduled jobs. Defineps(U) =

∑
j∈U ps

j for all s ∈ S. The rule is the following :
Schedule last the jobj ∈ U , which has no successor inU and such thatmaxs∈S f s

j (ps(U))
is minimal. It is immediate to see that the complexity ofMinMax-Lawler is O(n2|S|).

We have the following result.

5

On the complexity of single machine scheduling problems [...]

Theorem 2. Problem MinMax(1|prec|fmax, pj, dj) is optimally solved by algorithm
MinMax-Lawler.

Proof. The proof is very similar to the proof of Lawler’s algorithm optimality for problem
1|prec|fmax.

Enumerate the jobs in such a way that(1, 2, . . . , n) is the sequence constructed
by the proposed algorithm. LetπA be an absolute robust sequence for problem
MinMax(1|prec|fmax, pj, dj) with πA(i) = i for i = n, n− 1, . . . , r andπA(r) = j < r.

Notice that it is possible to scheduler − 1 immediately beforer. Hence, we can
construct a sequenceπ′ in which we shift to the left the block between jobsr − 1 andr
and processr − 1 immediately beforer. Clearly,

∀i ∈ N − {r − 1},∀s ∈ S,Ci(π
′, s) ≤ Ci(π

A, s) (15)

Hence,

F̄ (π′) = max
s∈S

F (π′, s) = max{F̄ (πA), max
s∈S

f s
r−1(Cr−1(π

′, s))} (16)

= max{F̄ (πA), max
s∈S

f s
r−1(Cj(π

A, s))} (17)

≤ max{F̄ (πA), max
s∈S

f s
j (Cj(π

A, s))} (18)

≤ F̄ (πA) (19)

Consequentlyπ′ is also an absolute robust sequence.

We can reiterate the same reasoning and transform sequenceπA into sequence
(1, 2, ..., n) without increasing the objective function value.

Correspondingly. the following corollary also holds.

Corollary 2 Problem MinMax(1|prec|fmax, pj) is optimally solved by algorithm
MinMax-Lawler.

3 Problem MinMax(1||∑ wjCj, wj)

We consider problemMinMax(1||∑ wjCj, wj) where processing times are determinis-
tic and weights are uncertain. We prove that this problem isNP -hard even when|S| = 2
andpj = 1 ∀j. To this extent we need to prove the following instrumental lemma.

6

Annales du LAMSADE n˚4-5

Lemma 1. The 1||∑ Cj problem and the 1|pj = 1|∑ wjCj problem are equivalent.

Proof. Given any instance of the1||∑ Cj problem where each jobj has processing time
p′j, generate an instance of the1|pj = 1|∑ wjCj problem where each jobj has weight
w′′

j = p′n−j+1. Consider a generic sequence(1, 2, ..., n − 1, n). For the1||∑ Cj problem
the corresponding cost function value isZ1 =

∑n
j=1(n − j + 1)p′j. For the1|pj =

1|∑ wjCj problem the corresponding cost function value isZ2 =
∑n

j=1 jw′′
j . We show

thatZ2 = Z1. Indeed,Z2 =
∑n

j=1 jw′′
j =

∑n
j=1 jp′n−j+1 =

∑n
j=1(n − j + 1)p′j = Z1.

Theorem 3. Problem MinMax(1||∑ wjCj, wj) is NP-hard even when |S| = 2 pj =
1 ∀j.

Proof. Due to Lemma 1 and theNP -hardness of problemMinMax(1||∑ Cj, pj) from
[3, 12], the proof immediately holds.

4 Problem MinMax(1||∑ Uj, θ)

We consider problemMinMax(1||∑ Uj, θ) with θ ⊆ {pj, dj}. We show that problem
MinMax(1||∑ Uj, dj) can be solved by Moore’s algorithm [10] applied to the worst-
case artificial scenario, whereas problemMinMax(1||∑ Uj, pj) is NP-hard.

4.1 Uncertainty on due dates

Lemma 2. There exist an optimal solution of problem MinMax(1||∑ Uj, dj) in which
on-time jobs are scheduled in a non-decreasing order of their worst-case artificial sce-
nario due dates dw

j .

Proof. Let πA be an optimal solution for problemMinMax(1||∑ Uj, dj). Suppose that
in this schedule there exist two consecutive on-time jobsi and j such thati ≺ j and
dw

i ≥ dw
j . We have

∀s ∈ S,Ci(π
A, s) = Ci(π

A) ≤ ds
i (20)

and
∀s ∈ S,Cj(π

A, s) = Cj(π
A) ≤ ds

j (21)

By interchanging jobsi andj, we obtain a new feasible schedule denoted byπ. In this
schedule, only completion time of jobi increases and we have

Ci(π) = Cj(π
A) (22)

7

On the complexity of single machine scheduling problems [...]

According to equation (21), we obtain

Ci(π) ≤ max
s∈S

ds
j ≤ dw

j ≤ dw
i ≤ ds

i ,∀s ∈ S (23)

This means that jobi is on-time in scheduleπ and consequentlyπ is also optimal for
problemMinMax(1||∑ Uj, dj).

We can reiterate the same reasoning and obtain finally a solution in which on-time
jobs are sequenced in a non-decreasing order of their worst-case artificial scenario due
datesdw

j .

Theorem 4. Problem MinMax(1||∑ Uj, dj) can be optimally solved in O(n log n +
n|S|) time by means of Moore’s algorithm applied to the worst-case artificial scenario
sw.

Proof. The proof is very similar to the proof of Moore’s algorithm optimality for problem
1||∑ Uj.

According to Lemma 2, there exists an optimal scheduleπ = (πI , πL) for problem
MinMax(1||∑ Uj, dj) in which

• on-time jobs are scheduled before late jobs, and,

• on-time jobs are scheduled according to the non-decreasing order of their worst-
case artificial scenario due datesdw

j .

Without loss of generality, enumerate the jobs such thatdw
1 ≤ dw

2 ≤ . . . ≤ dw
n . Let

j be the first job deleted, in Moore’s algorithm, from the setI of on-time jobs. Suppose
that jobj is on-time inπ. We transformπ in another optimal schedule in whichj is late.
Remark that there exists at least one jobk, with k < j, which is late inπ. Otherwise,
Moore’s algorithm would not have rejectedj. It is immediate to prove that by interchang-
ing jobsj andk we get a new optimal schedule in which jobj is late. We can reiterate the
same reasoning and transform then sequenceπA into the sequence obtained by Moore’s
algorithm applied to the worst-case artificial scenariosw without increasing the number
of late jobs.

For the complexity, the construction of the worst-case scenario requiresO(n|S|)
time and Moore’s algorithm requiresO(n log n) time, hence the overall complexity is
O(n log n, n|S|).

8

Annales du LAMSADE n˚4-5

4.2 Uncertainty on processing times

We prove that problemMinMax(1||∑ Uj, pj) is NP-hard even when|S| = 2 by con-
structing a reduction from the NP-complete even-odd partition problem [4].

Even-odd partition problem: Given2n positive integersa1 < a2 < . . . < a2n where∑2n
j=1 aj = 2B, is there a partition of the integers into two subsetsA1 andA2 such that

∑
j∈A1

aj =
∑
j∈A2

aj = B (24)

andA1 andA2 each contains exactly one element of each pair(a2i−1, a2i), i = 1, . . . , n ?

Given an instance of the even-odd partition problem, we construct the following in-
stance of problemMinMax(1||∑ Uj, pj).

Instance of problem MinMax(1||∑ Uj, pj): We have2n jobs and two scenarios 1
and 2. Job processing times and due dates are such that




p1
1 = p2

2 = a1

p2
1 = p1

2 = a2

d1 = d2 = a2

(25)

∀i = 2, ..., n




p1
2i−1 = p2

2i = a2i−1 + a2i−2 + . . . + a2

p2
2i−1 = p1

2i = a2i + a2i−2 + . . . + a2

d2i−1 = d2i = a2i + 2a2i−2 + . . . + ia2, for i < n, and,

d2n = d2n−1 = B + d2n−2

(26)

Jobs2i−1 and2i are calleda[i]−jobs. Notice that with this construction, the following
lemmata hold.

Lemma 3. Any sequence in which each position i, i = 1, . . . , n, is occupied by an
a[i] − job admits at least n − 1 on-time jobs.

Proof. We can prove straightforwardly that in such a sequence the firstn − 1 jobs are
on-time.

Lemma 4. If two jobs 2i and 2i− 1 are both on-time, then there exists j, 1 ≤ j < i, such
that jobs 2j and 2j − 1 are both late.

9

On the complexity of single machine scheduling problems [...]

Proof. Suppose by contradiction that there exists a sequence in which for allj, 0 ≤ j < i,
at least one job2j or 2j − 1, denoteda[j]-job, is on time and that jobs2i and2i − 1 are
both on-time.

It is clear that resequencing these on-time jobs in a non-decreasing order of their due
dates does not increase the number of late jobs.

In this new sequence, jobs2i and2i − 1 are sequenced last with respect to the con-
sidered on-time jobs. The completion time of the last job (2i or 2i − 1) is greater than or
equal to the sum of

1. the sum of the minimal processing times ofa[j]-jobs scheduled before jobs2i and
2i − 1, 0 ≤ j < i, denoted byA, and,

2. the processing times of jobs2i and2i − 1, denoted byB.

We have

A =




a1+
a3 + a2+
a5 + a4 + a2+
...

a2i−3 + a2i−4 + · · · + a4 + a2

(27)

= a1 + a3 + · · · + a2i−3 + a2i−4 + · · · + (i − 2) ∗ a2 (28)

and

B = p1
2i + p1

2i−1 = p2
2i + p2

2i (29)

= a2i + a2i−1 + 2 ∗ a2i−2 + · · · + 2 ∗ a4 + 2 ∗ a2. (30)

The completion time of the last job is greater than or equal to

A + B = a1 + a3 + · · · + a2i−3 + a2i + 2a2i−2 + . . . + ia2 (31)

= a1 + a3 + · · · + a2i−3 + d2i (32)

> d2i. (33)

Hence at least one job among jobs2i and2i−1 is late. This contradicts the considered
hypothesis.

Lemma 5. Every schedule admits at most n on-time jobs.

10

Annales du LAMSADE n˚4-5

Proof. Suppose by contradiction that there exists a sequence such that the number of
on-time jobs is greater than or equal ton + 1. Resequencing the on-time jobs in a non-
decreasing order of their due dates and sequencing late jobs last does not increase the
number of late jobs. Letπ be such a sequence.

Since we haven + 1 on-time jobs, then there exist at least an integeri such that jobs
2i and2i − 1 are both on-time. Leti∗ be the smallesti such that2i and2i − 1 are both
on-time andπi∗ be the subsequence of on-time jobs among jobsk, 1 ≤ k ≤ 2i∗. We have
π = (πi∗ , πR). Notice that in subsequenceπi∗ there are at mosti∗ jobs, which are all
on-time.

Due to Lemma 4, there exists an integerj, 1 ≤ j < i∗, such that neither job2j nor job
2j − 1 is on-time. We construct a new subsequence sequenceπ′

i∗ in which we exchange
one job among2i∗ and2i∗ − 1 (which are on-time inπ) with job 2j or 2j − 1 (which are
late inπ). For example, we exchange jobs2i∗ and2j−1. Then, we reorder the jobs ofπ′

i∗

in a non decreasing order of their due dates. Due to Lemma 3, all jobs ofπ′
i∗ are on-time.

Since∀s ∈ S, ps
2j−1 < ps

2i∗ , then sequence(π′
i∗ , πR) has at least the same number jobs

on-time asπ.

We can reiterate the same reasoning until we get a sequence in which we have at
mostn − 1 jobs on-time among jobs1, . . . , 2n − 2. Since we have at leastn + 1 jobs
on-time, then jobs2n and2n−1 are both on-time but this cannot occur due to Lemma 4.

The following theorem hold.

Theorem 5. Problem MinMax(1||∑ Uj, pj) is NP-hard even when |S| = 2.

Proof. We first prove that, if the even-odd partition problem has a solution, then the
constructed instance admits a solution withn on-time jobs.

Let A1 be a solution of the even-odd partition problem. Consider a sequenceπ =
(π1, π2) such that

• for all j ≤ 2n, if aj ∈ A1 then jobj ∈ π1;

• the jobs ofπ1 are ordered in non-decreasing order of their due dates.

Suppose thatπ = ([1], [2], . . . , [n], [n+1], [n+2], . . . [2n]) andπ1 = ([1], [2], . . . , [n])

Due to Lemma 3, the firstn − 1 jobs inπ1 are on-time. We prove that the last job in
π1 is also on-time.

The completion time of the last job[n] in scenarios1 is

11

On the complexity of single machine scheduling problems [...]

C[n](π, s1) = p1
[1] + p1

[2] + · · · p1
[n] (34)

=




a[1]+
a[2] + a2+
...

a[n] + a2n−2 + · · · + a4 + a2

(35)

= a[1] + a[2] + · · · + a[n] + a2n−2 + · · · + (n − 1) ∗ a2 (36)

= B + d2n−2 (37)

= d2n = d2n−1 = d[n]. (38)

The completion time of the last job[n] in scenarios2 is

C[n](π, s2) = p2
[1] + p2

[2] + · · · p2
[n] (39)

=




a[n+1]+
a[n+2] + a2+
...

a[2n] + a2n−2 + · · · + a4 + a2

(40)

= a[n+1] + a[n+2] + · · · + a[2n] + a2n−2 + · · · + (n − 1) ∗ a2 (41)

= B + d2n−2 (42)

= d2n = d2n−1 = d[n]. (43)

Consequently, job[n] is on-time for the two scenarios and the number of on-time jobs
in π is at leastn and cannot be greater thann due to Lemma 5.

We prove now that if the constructed instance admits a solution withn on-time jobs,
then the even-odd partition problem admits a solution.

Let π be a sequence in which the number of on-time jobs is equal ton. Suppose that
in π, there exist two on-time jobs2i and2i − 1. Then, due to Lemma 4, there exists an
indexj, 1 ≤ j < i, such that jobs2j and2j − 1 are both late. Using the same technique
as in Lemma 5, we transform sequenceπ in a new sequence in which job2j or 2j − 1
is on-time and job2i or 2i − 1 is late. We reiterate the same reasoning until we get a
sequenceπ′, in which for all k, 1 ≤ k ≤ n, only one job among jobs2k and2k − 1 is
on-time.

Resequencing the on-time jobs in a non-decreasing order of their due dates and
sequencing the late jobs last we do not increase the number of late jobs. We have
π′ = ([1], [2], . . . , [n], [n + 1], [n + 2], . . . [2n]) and jobs[i], 1 ≤ i ≤ n are on-time.

12

Annales du LAMSADE n˚4-5

The completion time of job[n] in scenarios1 is

C[n](π
′, s1) = p1

[1] + p1
[2] + · · · p1

[n] (44)

= a[1] + a[2] + · · · + a[n] + a2n−2 + · · · + (n − 1) ∗ a2 (45)

= a[1] + a[2] + · · · + a[n] + d2n−2 (46)

The completion time of job[n] in scenarios2 is

C[n](π
′, s2) = p2

[1] + p2
[2] + · · · p2

[n] (47)

= a[n+1] + a[n+2] + · · · + a[2n] + a2n−2 + · · · + (n − 1) ∗ a2 (48)

= a[n+1] + a[n+2] + · · · + a[2n] + d2n−2. (49)

Since job[n] is on-time then

∀s ∈ {s1, s2}, C[n](π
′, s) ≤ d[n] = d2n = d2n−1 = B + d2n−2. (50)

Consequently, we have




a[1] + a[2] + · · · + a[n] ≤ B,

a[n+1] + a[n+2] + · · · + a[2n] ≤ B, and,

a[1] + a[2] + · · · + a[2n] = B.

(51)

This proves that

a[1] + a[2] + · · · + a[n] = a[n+1] + a[n+2] + · · · + a[2n] = B, (52)

which means that the even-odd partition problem has a solution.

Correspondingly. the following corollary also holds.

Corollary 3 Problem MinMax(1||∑ Uj, pj, dj) is NP-hard even when |S| = 2.

References

[1] I. Averbakh, Minmax regret solutions for minimax optimization problems with un-
certainty, Operations Research Letters, 27, 57-65, 2000.

13

On the complexity of single machine scheduling problems [...]

[2] K.R. Baker, Introduction to Sequencing and Scheduling, John Wiley and Sons, New
York, NY, 1974.

[3] R.L. Daniels, P. Kouvelis, Robust scheduling to hedge against processing time un-
certainty in single stage production, Management Science 41: 363–376, 1995.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman, 1979.

[5] R.L. Graham , E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and
approximation in deterministic machine scheduling: a survey, Annals of Discrete
Mathematics 5: 287–326, 1979.

[6] A. Kasperski, Minimizing maximal regret in the single machine sequencing problem
with maximum lateness criterion, Operations Research Letters, 33, 431-436, 2005.

[7] P. Kouvelis and R.L. Daniels and G. Vairaktarakis, Robust scheduling of a two-
machine flow shop with uncertain processing times, IIE Transactions, 32: 421–432,
2000.

[8] P. Kouvelis and G. Yu, Robust Discrete Optimisation and its Applications, Kluwer
Academic Publisher, 1997.

[9] E.L. Lawler, Optimal sequencing of a single machine subject to precedence con-
straints, Management Science 19: 544–546, 1973

[10] J.M. Moore, An job, one machine sequencing algorithm for minimizing the number
of late jobs, Management Science 15: 102–109, 1968.

[11] W.E. Smith, Various optimizers for single-stage production, Naval Research Logis-
tics Quarterly 3 (1956) 59–66.

[12] J. Yang and G. Yu, On the Robust Single Machine Scheduling Problem, Journal of
Combinatorial Optimization, 6, 17-33, 2002.

14

