Mohamed Ali Aloulou
email: aloulou@lamsade.dauphine.fr

Federico Della Croce
email: federico.dellacroce@polito.it

On the complexity of single machine scheduling problems under scenario-based uncertainty 1

Keywords: Ordonnancement, Données incertaines, Scénarios, Robustesse absolue Scheduling, Scenario-based uncertainty, Absolute robustness

Nous considérons des problèmes d'ordonnancement où certains paramètres des tâches sont incertains. Cette incertitude est modélisée au travers d'un ensemble fini de scénarios bien définis. Nous cherchons une solution qui soit acceptable pour l'ensemble des scénarios considérés. Plusieurs critères ont été utilisés dans la littérature pour sélectionner la "meilleure" solution. Nous utilisons ici le critère appelé robustesse absolue. Nous présentons des résultats algorithmiques et de complexité pour quelques problèmes classiques d'ordonnancement sur une machine.

Introduction

This paper deals with single machine scheduling problems where some job characteristics are uncertain. This uncertainty is described through a finite set S of well-defined scenarios. We denote by p s j , d s j and w s j , respectively, the processing time, the release date, the due date and the weight of job j under scenario s ∈ S.

Consider a scheduling problem, denoted by α|β|γ according to Graham et al. notation [START_REF] Graham | Optimization and approximation in deterministic machine scheduling: a survey[END_REF]. Let Π be the set of feasible schedules with respect to the problem constraints. For each scenario s ∈ S, we denote by OP T (α|β|γ, s) the problem of finding an optimal schedule π * s satisfying

F (π * s , s) = min π∈Π F (π, s). (1
)
When problem parameters are uncertain, it is appropriate to search for a solution that is acceptable for any considered scenario. For this purpose, several criteria can be applied to select among solutions. In [START_REF] Kouvelis | Robust Discrete Optimisation and its Applications[END_REF], Kouvelis and Yu proposed three different robustness criteria: the absolute robustness or maximal cost, the maximal regret or robust deviation and the relative robustness. In this paper, we focus on the absolute robustness criterion.

To the best of our knowledge, the absolute robustness in single machine scheduling problems has only been considered in [START_REF] Daniels | Robust scheduling to hedge against processing time uncertainty in single stage production[END_REF] and [START_REF] Yang | On the Robust Single Machine Scheduling Problem[END_REF] where, for the 1|| C j problem with uncertain processing times, two distinct proofs of the NP -hardness even for |S| = 2 were provided (notice that the corresponding deterministic version is well known to be polynomially solvable [START_REF] Smith | Various optimizers for single-stage production[END_REF]). The maximal regret criterion was instead much more studied (see for instance, again [START_REF] Yang | On the Robust Single Machine Scheduling Problem[END_REF] but also [START_REF] Averbakh | Minmax regret solutions for minimax optimization problems with uncertainty[END_REF][START_REF] Kasperski | Minimizing maximal regret in the single machine sequencing problem with maximum lateness criterion[END_REF][START_REF] Kouvelis | Robust scheduling of a twomachine flow shop with uncertain processing times[END_REF]).

The absolute robustness of schedule π over all scenarios s ∈ S is denoted by F (π). We have

F (π) = max s∈S F (π, s). (2
)
We denote by MinMax(α|β|γ, θ) the problem of finding a schedule π A minimizing the absolute robustness F (π) among all schedules π ∈ Π. Field θ indicates the set of uncertain problem parameters. For the problems considered here, θ ⊆ {p j , d j , w j }. Sequence π A is called in [START_REF] Kouvelis | Robust Discrete Optimisation and its Applications[END_REF] absolute robust sequence. Its cost F (π A) satisfies

F (π A) = min π∈Π F (π) = min π∈Π max s∈S F (π, s). (3
)
Notice that if problem α|β|γ is NP-hard, then, in the presence of uncertainty, the corresponding problems MinMax(α|β|γ, θ) are also NP-hard. However, if problem α|β|γ is polynomially solvable, then, the corresponding problems MinMax(α|β|γ, θ) are not necessarily polynomially solvable. In this work we establish the complexity status for the absolute robustness versions of the most well known non-preemptive polynomialtime single machine scheduling problems, namely problems 1|prec|f max (with f max ∈ {C max , L max , T max }) , 1|| w j C j and 1|| U j . Notice that all these problems present regular cost functions non-decreasing in the job completion times. In this context any schedule π ∈ Π is completely characterized by the corresponding job sequence. Given a schedule π ∈ Π, the completion time of job j under scenario s, denoted by C j (π, s), j = 1, . . . , n, s ∈ S, can easily be determined and the quality of the schedule π ∈ Π under scenario s is then evaluated using the regular cost function F (π, s). We consider the following cost functions :

• the general maximum cost function f max = max j {f j (C j)} with f max ∈ {C max ,
L max , T max }: hence we deal with the maximum completion time (makespan) C max = max j {C j }, the maximum lateness L max = max j {L j } with L j = C jd j and the maximum tardiness T max = max j {T j } with T j = max{0, L j };

• the total weighted completion time j w j C j ;

• the number of late jobs j U j with U j = 0, if job j is on-time (C j ≤ d j) and

U j = 1 if j is late (C j > d j).
Using the set S of scenarios, we construct a scenario s w in which parameters k j take their worst case value, denoted by k w j . In our case, we have p w j = max s∈S p s j , d w j = min s∈S d s j and w w j = max s∈S w s j . Notice that in the context of a discrete set of scenarios, the constructed scenario is not necessarily feasible, i.e. we can have s w / ∈ S: s w is called worst-case artificial scenario. Remark 1. When parameters are interval-uncertain, s w is a feasible scenario. In this case, an absolute robust solution π A of problem MinMax(1|β|γ, θ) is such that

F (π A) = min π∈Π F (π) = min π∈Π max s∈S F (π, s) (4) = min π∈Π F (π, s w). (5)
Hence π A is also optimal for problem OP T (1|β|γ, s w). This means that the problem of finding an absolute robust sequence can be solved straigtforwardly by the algorithm solving the problem without uncertainty applied to the worst-case artificial scenario.

When uncertainty is scenario-based, we can not apply the same reasoning because scenario s w is not necessarily feasible. Nevertheless, we show in this paper that problems MinMax(1|prec|L max , d j) and MinMax(1|| U j , d j) can be solved by Lawler's algorithm [START_REF] Lawler | Optimal sequencing of a single machine subject to precedence constraints[END_REF] and Moore's algorithm [START_REF] Moore | A n job, one machine sequencing algorithm for minimizing the number of late jobs[END_REF] respectively applied to the worst case artificial scenario. We also prove that an extension of Lawler's algorithm, called here MinMax-Lawler, solves problem MinMax(1|prec|f max , p j , d j) in polynomial time. On the other hand, problems MinMax(1|| w j C j , w j) and MinMax(1|| U j , p j) are proved to be NP-hard even when |S| = 2.

Table 1 summarizes the above results presenting the complexity status for the absolute robustness versions of the most well known non-preemptive polynomial-time single machine scheduling problems, where an entry "-" indicates that the considered case is not applicable (for instance problem 1|| w j C j cannot have uncertainty on due dates as due dates are not present in the problem).

j C j 1|prec|f max 1|| U j d j - O(n 2 + n|S|)(Th. 1) O(n log n + n|S|)(Th. 4) p j NP-hard [3, 12] O(n 2 |S|) (Th. 2) NP-hard (Th. 5) w j NP-hard (Th. 3) - - p j and d j - O(n 2 |S|) (Coro. 2) NP-hard (Coro.
3) p j and w j NP-hard [START_REF] Daniels | Robust scheduling to hedge against processing time uncertainty in single stage production[END_REF][START_REF] Yang | On the Robust Single Machine Scheduling Problem[END_REF] --2 Problem M inM ax(1|prec|f max , θ)

Uncertainty on due dates

We consider problem MinMax(1|prec|f max , d j) where processing times are deterministic and due dates are uncertain (here f max ∈ {L max , T max } as for C max no uncertainty holds). In this case the worst-case artificial scenario s w is such that, for all j ∈ N , d w j = min s∈S d s j . We recall that problem 1|prec|f max can be solved in O(n 2) time by Lawler's algorithm [START_REF] Lawler | Optimal sequencing of a single machine subject to precedence constraints[END_REF]. This algorithm constructs an optimal schedule backwards. At the points in time where the unscheduled jobs should complete, starting with point t = P = j∈N p j , Lawler's algorithm chooses among the unscheduled jobs having no successors a job with minimum cost to be completed at t. Notice that as processing times are deterministic, we have

∀π ∈ Π, ∀s ∈ S, ∀j ∈ N, C j (π, s) = C j (π). (6)
The following theorem holds.

Theorem 1. Problem MinMax(1|prec|f max , d j) can be optimally solved in O(n 2 +n|S|) time by means of Lawler's algorithm applied to the worst-case artificial scenario s w .

Proof. In the following, for the sake of clarity we consider that f max = L max but the same analysis holds for f max = T max . An absolute robust solution π A of problem MinMax(1|prec|L max , d j) is such that

L(π A) = min π∈Π max s∈S L max (π, s) (7) = min π∈Π max s∈S max j∈N (C j (π, s) -d s j) (8)
= min

π∈Π max s∈S max j∈N (C j (π) -d s j) (9)
= min

π∈Π max j∈N max s∈S (C j (π) -d s j) (10)
= min

π∈Π max j∈N (C j (π) -d w j) (11)
L(π A) = min π∈Π L max (π, s w) (12)
Hence, π A is also an optimal solution for problem OPT(1|prec|L max , s w). For the complexity, the construction of the worst-case scenario requires O(n|S|) time and the application of Lawler's algorithm requires O(n 2) time, hence the overall complexity is

O(n 2 + n|S|).
We observe that the proof of Theorem 1 can be applied, as it is, to any scheduling problem α|β|f max . Hence, we have the following result.

Corollary 1 Any algorithm optimally solving problem α|β|f max provides an absolute robust solution for problem MinMax(α|β|f max , d j), when applied to the worst-case artificial scenario s w .

Uncertainty on processing times and due dates

We consider problem MinMax(1|prec|f max , p j , d j) where we suppose now that both processing times and due dates are uncertain. A robust solution π A is such that

F (π A) = min π∈Π max s∈S F max (π, s) (13) = min π∈Π max s∈S max j∈N f j (C j (π, s)) (14)
We propose an algorithm, called MinMax-Lawler, which is an extension of Lawler's algorithm. This algorithm constructs a sequence π in reverse order. Let U be the set of unscheduled jobs. Define p s (U) = j∈U p s j for all s ∈ S. The rule is the following : Schedule last the job j ∈ U , which has no successor in U and such that max s∈S f s j (p s (U)) is minimal. It is immediate to see that the complexity of MinMax-Lawler is O(n 2 |S|).

We have the following result. Proof. The proof is very similar to the proof of Lawler's algorithm optimality for problem 1|prec|f max .

Enumerate the jobs in such a way that (1, 2, . . . , n) is the sequence constructed by the proposed algorithm. Let π A be an absolute robust sequence for problem MinMax(1|prec|f max , p j , d j) with π A (i) = i for i = n, n -1, . . . , r and π A (r) = j < r.

Notice that it is possible to schedule r -1 immediately before r. Hence, we can construct a sequence π in which we shift to the left the block between jobs r -1 and r and process r -1 immediately before r. Clearly,

∀i ∈ N -{r -1}, ∀s ∈ S, C i (π , s) ≤ C i (π A , s) (15)
Hence,

F (π) = max s∈S F (π , s) = max{ F (π A), max s∈S f s r-1 (C r-1 (π , s))} (16) = max{ F (π A), max s∈S f s r-1 (C j (π A , s))} (17) ≤ max{ F (π A), max s∈S f s j (C j (π A , s))} (18) ≤ F (π A) (19
)
Consequently π is also an absolute robust sequence.

We can reiterate the same reasoning and transform sequence π A into sequence (1, 2, ..., n) without increasing the objective function value.

Correspondingly. the following corollary also holds.

Corollary 2 Problem MinMax(1|prec|f max , p j) is optimally solved by algorithm MinMax-Lawler.

Problem M inM ax(1|| w j C j , w j)

We consider problem MinMax(1|| w j C j , w j) where processing times are deterministic and weights are uncertain. We prove that this problem is NP -hard even when |S| = 2 and p j = 1 ∀j. To this extent we need to prove the following instrumental lemma. Lemma 1. The 1|| C j problem and the 1|p j = 1| w j C j problem are equivalent.

Proof. Given any instance of the 1|| C j problem where each job j has processing time p j , generate an instance of the 1|p j = 1| w j C j problem where each job j has weight w j = p n-j+1 . Consider a generic sequence (1, 2, ..., n -1, n). For the 1|| C j problem the corresponding cost function value is Z 1 = n j=1 (nj + 1)p j . For the 1|p j = 1| w j C j problem the corresponding cost function value is Z 2 = n j=1 jw j . We show that

Z 2 = Z 1 . Indeed, Z 2 = n j=1 jw j = n j=1 jp n-j+1 = n j=1 (n -j + 1)p j = Z 1 .
Theorem 3. Problem MinMax(1|| w j C j , w j) is NP-hard even when |S| = 2 p j = 1 ∀j.

Proof. Due to Lemma 1 and the NP -hardness of problem MinMax(1|| C j , p j) from [START_REF] Daniels | Robust scheduling to hedge against processing time uncertainty in single stage production[END_REF][START_REF] Yang | On the Robust Single Machine Scheduling Problem[END_REF], the proof immediately holds.

Problem M inM ax(1|| U j , θ)

We consider problem MinMax(1|| U j , θ) with θ ⊆ {p j , d j }. We show that problem MinMax(1|| U j , d j) can be solved by Moore's algorithm [START_REF] Moore | A n job, one machine sequencing algorithm for minimizing the number of late jobs[END_REF] applied to the worstcase artificial scenario, whereas problem MinMax(1|| U j , p j) is NP-hard.

Uncertainty on due dates

Lemma 2. There exist an optimal solution of problem MinMax(1|| U j , d j) in which on-time jobs are scheduled in a non-decreasing order of their worst-case artificial scenario due dates d w j .

Proof. Let π A be an optimal solution for problem MinMax(1|| U j , d j). Suppose that in this schedule there exist two consecutive on-time jobs i and j such that i ≺ j and

d w i ≥ d w j . We have ∀s ∈ S, C i (π A , s) = C i (π A) ≤ d s i (20) and ∀s ∈ S, C j (π A , s) = C j (π A) ≤ d s j (21)
By interchanging jobs i and j, we obtain a new feasible schedule denoted by π. In this schedule, only completion time of job i increases and we have

C i (π) = C j (π A) (22)
According to equation (21), we obtain

C i (π) ≤ max s∈S d s j ≤ d w j ≤ d w i ≤ d s i , ∀s ∈ S (23
)
This means that job i is on-time in schedule π and consequently π is also optimal for problem MinMax(1|| U j , d j).

We can reiterate the same reasoning and obtain finally a solution in which on-time jobs are sequenced in a non-decreasing order of their worst-case artificial scenario due dates d w j .

Theorem 4. Problem MinMax(1|| U j , d j) can be optimally solved in O(n log n + n|S|) time by means of Moore's algorithm applied to the worst-case artificial scenario s w .

Proof. The proof is very similar to the proof of Moore's algorithm optimality for problem 1|| U j .

According to Lemma 2, there exists an optimal schedule π = (π I , π L) for problem MinMax(1|| U j , d j) in which

• on-time jobs are scheduled before late jobs, and,

• on-time jobs are scheduled according to the non-decreasing order of their worstcase artificial scenario due dates d w j .

Without loss of generality, enumerate the jobs such that d w 1 ≤ d w 2 ≤ . . . ≤ d w n . Let j be the first job deleted, in Moore's algorithm, from the set I of on-time jobs. Suppose that job j is on-time in π. We transform π in another optimal schedule in which j is late. Remark that there exists at least one job k, with k < j, which is late in π. Otherwise, Moore's algorithm would not have rejected j. It is immediate to prove that by interchanging jobs j and k we get a new optimal schedule in which job j is late. We can reiterate the same reasoning and transform then sequence π A into the sequence obtained by Moore's algorithm applied to the worst-case artificial scenario s w without increasing the number of late jobs.

For the complexity, the construction of the worst-case scenario requires O(n|S|) time and Moore's algorithm requires O(n log n) time, hence the overall complexity is O(n log n, n|S|).

Proof. Suppose by contradiction that there exists a sequence in which for all j, 0 ≤ j < i, at least one job 2j or 2j -1, denoted a [j] -job, is on time and that jobs 2i and 2i -1 are both on-time.

It is clear that resequencing these on-time jobs in a non-decreasing order of their due dates does not increase the number of late jobs.

In this new sequence, jobs 2i and 2i -1 are sequenced last with respect to the considered on-time jobs. The completion time of the last job (2i or 2i -1) is greater than or equal to the sum of 1. the sum of the minimal processing times of a [j] -jobs scheduled before jobs 2i and 2i -1, 0 ≤ j < i, denoted by A, and, 2. the processing times of jobs 2i and 2i -1, denoted by B.

We have

A =                a 1 + a 3 + a 2 + a 5 + a 4 + a 2 + ... a 2i-3 + a 2i-4 + • • • + a 4 + a 2 (27)
= a 1 + a 3 + • • • + a 2i-3 + a 2i-4 + • • • + (i -2) * a 2 (28)
and

B = p 1 2i + p 1 2i-1 = p 2 2i + p 2 2i (29) = a 2i + a 2i-1 + 2 * a 2i-2 + • • • + 2 * a 4 + 2 * a 2 . (30
)
The completion time of the last job is greater than or equal to

A + B = a 1 + a 3 + • • • + a 2i-3 + a 2i + 2a 2i-2 + . . . + ia 2 (31) = a 1 + a 3 + • • • + a 2i-3 + d 2i (32) > d 2i . (33
)
Hence at least one job among jobs 2i and 2i-1 is late. This contradicts the considered hypothesis.

Lemma 5. Every schedule admits at most n on-time jobs.

Proof. Suppose by contradiction that there exists a sequence such that the number of on-time jobs is greater than or equal to n + 1. Resequencing the on-time jobs in a nondecreasing order of their due dates and sequencing late jobs last does not increase the number of late jobs. Let π be such a sequence.

Since we have n + 1 on-time jobs, then there exist at least an integer i such that jobs 2i and 2i -1 are both on-time. Let i * be the smallest i such that 2i and 2i -1 are both on-time and π i * be the subsequence of on-time jobs among jobs k, 1 ≤ k ≤ 2i * . We have π = (π i * , π R). Notice that in subsequence π i * there are at most i * jobs, which are all on-time.

Due to Lemma 4, there exists an integer j, 1 ≤ j < i * , such that neither job 2j nor job 2j -1 is on-time. We construct a new subsequence sequence π i * in which we exchange one job among 2i * and 2i * -1 (which are on-time in π) with job 2j or 2j -1 (which are late in π). For example, we exchange jobs 2i * and 2j -1. Then, we reorder the jobs of π i * in a non decreasing order of their due dates. Due to Lemma 3, all jobs of π i * are on-time. Since ∀s ∈ S, p s 2j-1 < p s 2i * , then sequence (π i * , π R) has at least the same number jobs on-time as π.

We can reiterate the same reasoning until we get a sequence in which we have at most n -1 jobs on-time among jobs 1, . . . , 2n -2. Since we have at least n + 1 jobs on-time, then jobs 2n and 2n -1 are both on-time but this cannot occur due to Lemma 4.

The following theorem hold. Theorem 5. Problem MinMax(1|| U j , p j) is NP-hard even when |S| = 2.

Proof. We first prove that, if the even-odd partition problem has a solution, then the constructed instance admits a solution with n on-time jobs.

Let A 1 be a solution of the even-odd partition problem. Consider a sequence π = (π 1 , π 2) such that

• for all j ≤ 2n, if a j ∈ A 1 then job j ∈ π 1 ;
• the jobs of π 1 are ordered in non-decreasing order of their due dates.

Suppose that

π = ([1], [2], . . . , [n], [n + 1], [n + 2], . . . [2n]) and π 1 = ([1], [2], . . . , [n])
Due to Lemma 3, the first n -1 jobs in π 1 are on-time. We prove that the last job in π 1 is also on-time.

The completion time of the last job

[n] in scenario s 1 is C [n] (π, s 1) = p 1 [1] + p 1 [2] + • • • p 1 [n] (34) =            a [1] + a [2] + a 2 + ... a [n] + a 2n-2 + • • • + a 4 + a 2 (35) = a [1] + a [2] + • • • + a [n] + a 2n-2 + • • • + (n -1) * a 2 (36) = B + d 2n-2 (37) = d 2n = d 2n-1 = d [n] . (38
)
The completion time of the last job [n] in scenario s 2 is

C [n] (π, s 2) = p 2 [1] + p 2 [2] + • • • p 2 [n] (39) =            a [n+1] + a [n+2] + a 2 + ... a [2n] + a 2n-2 + • • • + a 4 + a 2 (40) = a [n+1] + a [n+2] + • • • + a [2n] + a 2n-2 + • • • + (n -1) * a 2 (41) = B + d 2n-2 (42) = d 2n = d 2n-1 = d [n] . (43)
Consequently, job [n] is on-time for the two scenarios and the number of on-time jobs in π is at least n and cannot be greater than n due to Lemma 5.

We prove now that if the constructed instance admits a solution with n on-time jobs, then the even-odd partition problem admits a solution.

Let π be a sequence in which the number of on-time jobs is equal to n. Suppose that in π, there exist two on-time jobs 2i and 2i -1. Then, due to Lemma 4, there exists an index j, 1 ≤ j < i, such that jobs 2j and 2j -1 are both late. Using the same technique as in Lemma 5, we transform sequence π in a new sequence in which job 2j or 2j -1 is on-time and job 2i or 2i -1 is late. We reiterate the same reasoning until we get a sequence π , in which for all k, 1 ≤ k ≤ n, only one job among jobs 2k and 2k -1 is on-time.

Resequencing the on-time jobs in a non-decreasing order of their due dates and sequencing the late jobs last we do not increase the number of late jobs. We have π = ([1], [START_REF] Baker | Introduction to Sequencing and Scheduling[END_REF] (44) = a [START_REF] Averbakh | Minmax regret solutions for minimax optimization problems with uncertainty[END_REF] + a [START_REF] Baker | Introduction to Sequencing and Scheduling[END_REF]

+ • • • + a [n] + a 2n-2 + • • • + (n -1) * a 2 (45) = a [1] + a [2] + • • • + a [n] + d 2n-2 (46)
The completion time of job [n] in scenario s 2 is

C [n] (π , s 2) = p 2 [1] + p 2 [2] + • • • p 2 [n] (47) = a [n+1] + a [n+2] + • • • + a [2n] + a 2n-2 + • • • + (n -1) * a 2 (48) = a [n+1] + a [n+2] + • • • + a [2n] + d 2n-2 .
(49)

Since job [n] is on-time then This proves that

a [1] + a [2] + • • • + a [n] = a [n+1] + a [n+2] + • • • + a [2n] = B, (52)
which means that the even-odd partition problem has a solution.

Correspondingly. the following corollary also holds.

Corollary 3 Problem MinMax(1|| U j , p j , d j) is NP-hard even when |S| = 2.

Theorem 2 .

 2 Problem MinMax(1|prec|f max , p j , d j) is optimally solved by algorithm MinMax-Lawler.

1 [1] + p 1 [2]

 1112 , . . . , [n], [n + 1], [n + 2], . . . [2n]) and jobs [i], 1 ≤ i ≤ n are on-time. The completion time of job [n] in scenario s 1 is C [n] (π , s 1) = p + • • • p 1 [n]

∀s ∈ {s 1 a [1]

 11 , s 2 }, C [n] (π , s) ≤ d [n] = d 2n = d 2n-1 = B + d 2n-2 . + a [2] + • • • + a [n] ≤ B, a [n+1] + a [n+2] + • • • + a [2n] ≤ B, and, a [1] + a [2] + • • • + a [2n] = B.(51)

Table 1 :

 1 Summary of the obtained results

	Uncertain	cost function
	parameter	1|| w

 [START_REF] Averbakh | Minmax regret solutions for minimax optimization problems with uncertainty[END_REF]Research performed while the second author was visiting LAMSADE on a research position funded by the CNRS

Uncertainty on processing times

We prove that problem MinMax(1|| U j , p j) is NP-hard even when |S| = 2 by constructing a reduction from the NP-complete even-odd partition problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

Even-odd partition problem: Given 2n positive integers a 1 < a 2 < . . . < a 2n where 2n j=1 a j = 2B, is there a partition of the integers into two subsets A 1 and A 2 such that

and A 1 and A 2 each contains exactly one element of each pair (a 2i-1 , a 2i), i = 1, . . . , n ?

Given an instance of the even-odd partition problem, we construct the following instance of problem MinMax(1|| U j , p j).

Instance of problem MinMax(1|| U j , p j): We have 2n jobs and two scenarios 1 and 2. Job processing times and due dates are such that

Jobs 2i-1 and 2i are called a [i] -jobs. Notice that with this construction, the following lemmata hold. Lemma 3. Any sequence in which each position i, i = 1, . . . , n, is occupied by an a [i]job admits at least n -1 on-time jobs.

Proof. We can prove straightforwardly that in such a sequence the first n -1 jobs are on-time. Lemma 4. If two jobs 2i and 2i -1 are both on-time, then there exists j, 1 ≤ j < i, such that jobs 2j and 2j -1 are both late.