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NONPARAMETRIC ESTIMATION OF THE STATIONARY

DENSITY AND THE TRANSITION DENSITY OF A MARKOV

CHAIN

Claire Lacour1

April 2005

Abstract. In this paper, we study first the problem of nonparametric estimation

of the stationary density f of a discrete-time Markov chain (Xi). We consider a

collection of projection estimators on finite dimensional linear spaces. We select

an estimator among the collection by minimizing a penalized contrast. The same

technique enables to estimate the density g of (Xi, Xi+1) and so to provide an

adaptive estimator of the transition density π = g/f . We give bounds in L2 norm

for these estimators and we show that they are adaptive in the minimax sense over

a large class of Besov spaces. Some examples and simulations are also provided.

Keywords: Adaptive estimation; Markov Chain; Stationary density; Transition

density; Model selection; Penalized contrast; Projection estimators.

1. Introduction

Nonparametric estimation is now a very rich branch of statistical theory. The case

of i.i.d. observations is the most detailed but many authors are also interested in the

case of Markov processes. Early results are stated by Roussas (1969), who studies

nonparametric estimators of the stationary density and the transition density of a

Markov chain. He considers kernel estimators and assumes that the chain satisfies

the strong Doeblin’s condition (D0) (see Doob (1953) p.221). He shows consistency

and asymptotic normality of his estimator. Several authors tried to consider weaker

assumptions than the Doeblin’s condition. Rosenblatt (1970) introduces an other

condition, denoted by (G2), and he gives results on the bias and the variance of the

kernel estimator of the invariant density in this weaker framework. Yakowitz (1989)

improves also the result of asymptotic normality by considering a Harris-condition.
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2 NONPARAMETRIC ESTIMATION FOR A MARKOV CHAIN

The study of kernel estimators is completed by Masry and Györfi (1987) who find

sharp rates for this kind of estimators of the stationary density and by Basu and Sa-

hoo (1998) who prove a Berry-Esseen inequality under the condition (G2) of Rosen-

blatt. Other authors are interested in the estimation of the invariant distribution

and the transition density in the non-stationary case: Doukhan and Ghindès (1983)

bound the integrated risks for any initial distribution. In Hernández-Lerma et al.

(1988), recursive estimators for a non-stationary Markov chain are described. Lieb-

scher (1992) gives results for the invariant density in this non-stationary framework

using a condition denoted by (D1) derived from the Doeblin’s condition but weaker

than (D0). All the above papers deal with kernel estimators. Among those who are

not interested in such estimators, let us mention Bosq (1973) who studies an estima-

tor of the stationary density by projection on a Fourier basis, Prakasa Rao (1978)

who outlines a new estimator for the stationary density by using delta-sequences

and Gillert and Wartenberg (1984) who present estimators based on Hermite bases

or trigonometric bases.

The recent work of Clémençon (1999) allows to measure the performance of all

these estimators since he proves lower bounds for the minimax rates and gives thus

the optimal convergence rates for the estimation of the stationary density and the

transition density. Clémençon also provides an other kind of estimator for the sta-

tionary density and for the transition density, that he obtains by projection on

wavelet bases. He presents an adaptive procedure which is ”quasi-optimal” in the

sense that the procedure reaches almost the optimal rate but with a logarithmic loss.

He needs other conditions than those we cited above and in particular a minoration

condition derived from Nummelin’s (1984) works. In this paper, we will use the

same condition.

The aim of this paper is to estimate the stationary density of a discrete-time

Markov chain and its transition density. We consider an irreducible positive recur-

rent Markov chain (Xn) with a stationary density denoted by f . We suppose that

the initial density is f (hence the process is stationary) and we construct an esti-

mator f̃ from the data X1, . . . , Xn. Then, we study the mean integrated squared

error E‖f̃ − f‖2
2 and its convergence rate. The same technique enables to estimate

the density g of (Xi, Xi+1) and so to provide an estimator of the transition density

π = g/f , called the quotient estimator.
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An adaptative procedure is proposed for the two estimations and it is proved

that both resulting estimators reach the optimal minimax rates without additive

logarithmic factor.

We will use here some technical methods known as the Nummelin splitting tech-

nique (see Nummelin (1984), Meyn and Tweedie (1993) or Höpfner and Löcherbach

(2003)). This method allows to reduce the general state space Markov chain theory

to the countable space theory. Actually, the splitting of the original chain creates an

artificial accessible atom and we will use the hitting times to this atom to decompose

the chain, as we would have done for a countable space chain.

To build our estimator of f , we use model selection via penalization as described in

Barron et al. (1999). First, estimators by projection denoted by f̂m are considered.

The index m denotes the model, i.e. the subspace to which the estimator belongs.

Then the model selection technique allows to select automatically an estimator f̂m̂

from the collection of estimators (f̂m). The estimator of g is built in the same

way. The collections of models that we consider here include wavelets but also

trigonometric polynomials and piecewise polynomials.

This paper is organized as follows. In section 2, we present our assumptions

on the Markov chain and on the collections of models. We give also examples of

chains and models. Section 3 is devoted to estimation of the stationary density and

contains examples and simulations. In section 4, the estimation of the transition

density is explained. The proofs are gathered in the last section, which contains also

a presentation of the Nummelin splitting technique.

2. The framework

2.1. Assumptions on the Markov chain. We consider an irreducible Markov

chain (Xn) taking its values in the real line R. We suppose that (Xn) is positive

recurrent, i.e. it admits a stationary probability measure µ (for more details, we

refer to Meyn and Tweedie (1993)). We assume that the distribution µ has a density

f with respect to the Lebesgue measure and it is this quantity that we want to

estimate. Since the number of observations is finite, f is estimated on a compact

set only. Without loss of generality, this compact set is assumed to be equal to [0, 1]

and, from now, f denotes actually the restriction of the transition density to [0, 1].

More precisely, the Markov process is supposed to satisfy the following assumptions:
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A1. (Xn) is irreducible and positive recurrent.

A2. The distribution of X0 is equal to µ , thus the chain is (strictly) stationary.

A3. The stationary density f belongs to L∞([0, 1]) i.e. supx∈[0,1] |f(x)| <∞
A4. The chain is strongly aperiodic, i.e. it satisfies the following minorization

condition: there is some function h : [0, 1] 7→ [0, 1] with
∫

hdµ > 0 and a

positive distribution ν such that, for all event A and for all x,

P (x,A) ≥ h(x)ν(A)

where P is the transition kernel of (Xn).

A5. The chain is geometrically ergodic, i.e. there exists a function V > 0 finite

and a constant ρ ∈ (0, 1) such that, for all n ≥ 1

‖P n(x, .) − µ‖TV ≤ V (x)ρn

where ‖.‖TV is the total variation norm.

We can remark that condition A3 implies that f belongs to L2([0, 1]) where

L2([0, 1]) = {t : R 7→ R, Supp(t) ⊂ [0, 1] and ‖t‖2 =

∫ 1

0

t2(x)dx <∞}.
Notice that, if the chain is aperiodic, condition A4 holds, at least for some m-

skeleton (i.e. a chain with transition probability Pm) (see Theorem 5.2.2 in Meyn

and Tweedie (1993)). This minorization condition is used in the Nummelin splitting

technique and is also required in Clémençon (1999).

The last assumption, which is called geometric regularity by Clémençon (2000),

means that the convergence of the chain to the invariant distribution is geometrically

fast. In Meyn and Tweedie (1993), we find a slightly different condition (replacing

the total variation norm by the V -norm). This condition, which is sufficient for A5,

is widely used in Monte Carlo Markov Chain literature because it guarantees central

limit theorems and enables to simulate laws via a Markov chain (see for example

Jarner and Hansen (2000), Roberts and Rosenthal (1998) or Meyn and Tweedie

(1994)).

The following subsection gives some examples of Markov chains satisfying hy-

potheses A1–A5.

2.2. Examples of chains.
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2.2.1. Diffusion processes. We consider the process (Xi∆)1≤i≤n where ∆ > 0 is the

observation step and (Xt)t≥0 is defined by

dXt = b(Xt)dt+ σ(Xt)dWt

where W is the standard Brownian motion. We suppose that the drift function

b and the diffusion coefficient σ satisfy the following conditions, given by Leblanc

(1997):

(1) ∃b, ∀|x|, |b(x)| ≤ b(1 + |x|),
(2) ∃γ > 0, ∃R, ∀|x| ≥ R, xb(x) ≤ −γ|x|,
(3) ∃σ2

1 , ∃σ2
0, ∀x, σ2

1 ≥ σ2(x) ≥ σ2
0 > 0

(4) ∃L, ∀(x, y), |σ(x) − σ(y)| ≤ L|x− y|1/2.

Then the discretized process (Xi∆)1≤i≤n satisfies assumptions A1–A5.

2.2.2. Nonlinear AR(1) processes. Let us consider the following process

Xn = ϕ(Xn−1) + εXn−1,n

where εx,n has a positive density lx with respect to the Lebesgue measure, which

does not depend on n. We suppose that ϕ is bounded on any compact set and that

there exist M > 0 and ρ < 1 such that, for all |x| > M , |ϕ(x)| < ρ|x|. Mokkadem

(1987) proves that if there exists s > 0 such that supx E|εx,n|s <∞, then the chain

is geometrically ergodic. If we assume furthermore that lx has a lower bound then

the chain satisfies all the previous assumptions.

2.2.3. ARX (1,1) models. The nonlinear process ARX(1,1) is defined by

Xn = F (Xn−1, Zn) + ξn

where F is bounded and (ξn), (Zn) are independent sequences of i.i.d. random

variables. We suppose that the distribution of Zn has a positive density l with

respect to the Lebesgue mesure. At last, we assume that there exist positive reals a

and α such that |x| ≤ a+ ‖F‖∞ ⇒ l(x) ≥ α.

Then the process (Xn) satisfies assumptions A1–A5 (see Doukhan (1994) p.101).
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2.2.4. ARCH process. The considered model is

Xn+1 = F (Xn) +G(Xn)εn+1

where F and G are continuous functions and for all x, G(x) 6= 0. We suppose

that the distribution of εn has a positive and continuous density with respect to the

Lebesgue measure and that there exists s ≥ 1 such that E|εn|s < ∞. The chain

(Xi) satisfies assumptions A1–A5 if (see Doukhan (1994) p.106):

lim sup
|x|→∞

|F (x)| + |G(x)|(E|εn|s)1/s

|x| < 1.

2.3. Assumptions on the models. In order to estimate f , we need to introduce

some collections of models. The assumptions on the models are the following:

M1. Each Sm is a linear subspace of (L∞ ∩ L2)([0, 1]) with dimension Dm ≤ √
n

M2. Let

φm =
1√
Dm

sup
t∈Sm\{0}

‖t‖∞
‖t‖

There exists a real r0 such that for all m, φm ≤ r0.

This assumption (L2-L∞ connexion) is introduced by Barron et al. (1999) and

can be written:

(1) ∀t ∈ Sm ‖t‖∞ ≤ r0
√

Dm‖t‖.

We get then a set of models (Sm)m∈Mn
where Mn = {m, Dm ≤ √

n}. We need

now a last assumption regarding the whole collection, which ensures that, for m and

m′ in Mn, Sm + S ′
m belongs to the collection of models.

M3. The models are nested, that is for all m, Dm ≤ Dm′ ⇒ Sm ⊂ Sm′ .

2.4. Examples of models. We show here that the assumptions M1-M3 are not

too restrictive. Indeed, they are verified for the models spanned by the following

bases (see Barron et al. (1999)):

• Histogram basis: Sm =< ϕ1, . . . , ϕ2m > with ϕj = 2m/21[ j−1
2m , j

2m [ for j =

1, . . . , 2m. Here Dm = 2m, r0 = 1 and Mn = {1, . . . , ⌊lnn/2 ln 2⌋} where ⌊x⌋
denotes the floor of x, i.e. the largest integer less than or equal to x.

• Trigonometric basis: Sm =< ϕ0, . . . , ϕm−1 > with ϕ0(x) = 1, ϕ2j =
√

2

cos(2πjx)1[0,1](x), ϕ2j−1 =
√

2 sin(2πjx)1[0,1](x) for j ≥ 1. For this model

Dm = m and r0 =
√

2 hold.
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• Regular piecewise polynomial basis: Sm is spanned by polynomials of degree

0, . . . , r (where r is fixed) on each interval [(j − 1)/2D, j/2D[, j = 1, . . . , 2D.

In this case, m = (D, r), Dm = (r + 1)2D and Mn = {(D, r), D =

1, . . . , ⌊log2(
√
n/(r + 1))⌋}.We can put r0 =

√
r + 1.

• Regular wavelet basis: Sm =< ψjk, j = −1, . . . , m, k ∈ Λ(j) > where ψ−1,k

points out the translates of the father wavelet and ψjk(x) = 2j/2ψ(2jx − k)

where ψ is the mother wavelet. We assume that the support of the wavelets is

included in [0, 1] and that ψ−1 = ϕ belongs to the Sobolev space W r
2 . In this

framework Λ(j) = {0, . . . , K2j − 1} (for j ≥ 0) where K is a constant which

depends on the supports of ϕ and ψ: for example for the Haar basis K = 1.

We have then Dm =
∑m

j=−1 |Λ(j)| = |Λ(−1)| +K(2m+1 − 1). Moreover

φm ≤
∑

k |ψ−1,k| +
∑m

j=0 2j/2
∑

k |ψj,k|√
Dm

≤
‖ϕ‖∞ ∨ ‖ψ‖∞(1 +

∑m
j=0 2j/2)

√

(K ∧ |Λ(−1)|)2m+1
≤ ‖ϕ‖∞ ∨ ‖ψ‖∞

K ∧ |Λ(−1)| =: r0

3. Estimation of the stationary density

3.1. Decomposition of the risk for the projection estimator. Let

(2) γn(t) =
1

n

n
∑

i=1

[‖t‖2 − 2t(Xi)].

Notice that E(γn(t)) = ‖t− f‖2 − ‖f‖2 and therefore γn(t) is the empirical version

of the L2 distance between t and f . Thus, f̂m is defined by

(3) f̂m = arg min
t∈Sm

γn(t)

where Sm is a subspace of L2 which satisfies M2. Although this estimator depends

on n, no index n is mentioned in order to simplify the notations . It is also the case

for all the estimators in this paper.

A more explicit formula for f̂m is easy to derive:

(4) f̂m =
∑

λ∈Λ

β̂λϕλ, β̂λ =
1

n

n
∑

i=1

ϕλ(Xi)
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where (ϕλ)λ∈Λ is an orthonormal basis of Sm. Note that

E(f̂m) =
∑

λ∈Λ

< f, ϕλ > ϕλ,

which is the projection of f on Sm.

In order to evaluate the quality of this estimator, we now compute the mean

integrated squared error E‖f − f̂m‖2 (often denoted by MISE).

Proposition 1. Let Xn be a Markov chain which satisfies Assumptions A1–A4 and

Sm be a subspace of L2 with dimension Dm ≤ n. If Sm satisfies the condition M2,

then the estimator f̂m defined by (3) satisfies

E‖f − f̂m‖2 ≤ d2(f, Sm) + C
Dm

n

where C is a constant which does not depend on n.

To compute the bias term d(f, Sm), we assume that f belongs to the Besov space

Bα
2,∞([0, 1]). Let us recall the definition of Bα

2,∞([0, 1]). Let

∆r
hf(x) =

r
∑

k=0

(−1)r−k

(

r

k

)

f(x+ kh)

the rth difference operateur with step h and

ωr(f, t) = sup
|h|≤t

‖∆r
hf‖

the rth modulus of smoothness of f where we recall that ‖t‖2 =
∫ 1

0
t2(x)dx. We say

that f is in the Besov space Bα
2,∞([0, 1]) if

sup
t>0

t−αωr(f, t) <∞

for r = ⌊α⌋+1 or, equivalently, for r an integer larger than α. Notice that when α is

an integer, the Besov space Bα
2,∞([0, 1]) contains the Sobolev space W α

2 (see DeVore

and Lorentz (1993) p.51–55).

Hence, we have the following corollary.

Corollary 1. Let Xn be a Markov chain which satisfies Assumptions A1–A4. As-

sume that the stationary density f belongs to Bα
2,∞([0, 1]) and that Sm is one of

the spaces mentioned in section 2.4 (with the regularity of polynomials and wavelets
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larger than α − 1). If we choose Dm = ⌊n 1
2α+1 ⌋, then the estimator defined by (3)

satisfies

E‖f − f̂m‖2 = O(n− 2α
2α+1 )

We can notice that we obtain the same rate than in the i.i.d. case (see Donoho et

al. (1996)). Actually, Clémençon (1999) proves that n− 2α
2α+1 is the optimal rate in the

minimax sense in the Markovian framework. With very different theoretical tools,

Tribouley and Viennet (1998) show that this rate is also reached in the case of the

univariate density estimation of β-mixing random variables by using a wavelet esti-

mator. We can remark that our assumption A5 implies the geometrical decreasing

of β-mixing coefficients but that, until now, we did not use this assumption.

However, the choice Dm = ⌊n 1
2α+1 ⌋ is possible only if we know the regularity α of

the unknown f . But generally, it is not the case. It is the reason why we construct

an adaptive estimator, i.e. an estimator which achieves the optimal rate without

requiring the knowledge of α or any information about f .

3.2. Adaptive estimation. Let (Sm)m∈Mn
be a collection of models as described

in section 2.3. For each Sm, f̂m is defined as above by (3). Next, we choose m̂ among

the family Mn such that

m̂ = arg min
m∈Mn

[γn(f̂m) + pen(m)]

where pen is a penalty function to be specified later. We denote f̃ = f̂m̂ and we

bound the L2-risk E‖f − f̃‖ as follows.

Theorem 1. Let Xn be a Markov chain which satisfies Assumptions A1–A5 and

(Sm)m∈Mn
be a collection of models satisfying Assumptions M1–M3. Then the esti-

mator defined by

(5) f̃ = f̂m̂ where m̂ = arg min
m∈Mn

[γn(f̂m) + pen(m)],

with

(6) pen(m) = K0
Dm

n

(where K0 is a constant which depends on the chain) satisfies

E‖f̃ − f‖2 ≤ 3 inf
m∈Mn

{d2(f, Sm) + pen(m)} +
C1

n
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where C1 does not depend on n.

The constant K0 in the penalty is equal to Cmax(r2
0, 1)

1 + ‖f‖∞EE1(s
τ∗

)

(ln s)2
where

C is a numerical constant. The number r0 is known and depends on the choosen

base (see subsection 2.3). The mention of ‖f‖∞ in the penalty term seems to be a

problem, seeing that f is unknown. Actually, we could replace ‖f‖∞ by ‖f̂‖∞ with f̂

an estimator of f . This is a bit technical and useless here since there are some terms

in K0 which are not computable either. Indeed, E1 is an artificial atom created by

the Nummelin splitting technique and τ ∗ is the first return time of the split chain in

this atom. The number s is a real larger than 1 such that supx∈E1
Ex(s

τ∗

) <∞ and

its existence is guaranteed by the condition of geometric ergodicity A5. Actually,

the computation of the penalty is generally ”hand-adjusted” and then we do not

have to know accurately the number s or ‖f‖∞.

Corollary 2. Let Xn be a Markov chain which satisfies Assumptions A1–A5 and

(Sm)m∈Mn
be a collection of models mentioned in section 2.4 (with the regularity

of polynomials and wavelets larger than α − 1). If f belongs to Bα
2,∞([0, 1]), with

α > 1/2, then the estimator defined by (5) and (6) satisfies

E‖f̃ − f‖2 = O(n− 2α
2α+1 )

Remark 1. When α > 1
2
, Bα

2,∞([0, 1]) ⊂ C[0, 1] (where C[0, 1] is the set of the

continuous functions with support in [0, 1]) and then the assumption A3 ‖f‖∞ <∞
is superfluous.

We have already noticed that it is the optimal rate in the minimax sense (see

the lower bound in Clémençon (1999)). Note that here the procedure reaches this

rate whatever the regularity of f , without needing to know α. This result is thus

a improvement of the one of Clémençon (1999), whose adaptive procedure achieves

only the rate (log(n)/n)
2α

2α+1 . Moreover, our procedure allows to use more bases (not

only wavelets) and is easy to implement.

3.3. Simulations. The computation of the previous estimator is very simple. We

use the following procedure:

• For each m, compute γn(f̂m) + pen(m). Notice that γn(f̂m) = −
∑

λ∈Λm
β̂2

λ

where β̂λ is defined by (4) and is quickly computed.



NONPARAMETRIC ESTIMATION FOR A MARKOV CHAIN 11

• Select the argmin m̂ of γn(f̂m) + pen(m).

• Choose f̃ =
∑

λ∈Λm̂
β̂λϕλ.

The bases are here adjusted with an affin transform in order to be defined on

[min1≤i≤n(Xi),max1≤i≤n(Xi)] instead of [0, 1]. We consider 3 different bases (see

section 2.4): trigonometric basis, histogram basis and piecewise polynomial basis.

For the last basis, we use Legendre polynomials with degree 0,1,2 defined by

(7) ∀x ∈ [−1, 1] P0(x) =
1√
2
, P1(x) =

√

3

2
x, P2(x) =

√
5

2
√

2
(3x2 − 1).

The variable substitution y = 2−D−1(x+ 2j − 1) allows to use these polynomials on

each interval [(j− 1)/2D, j/2D], j = 1, .., 2D, D = 1, .., ⌊log2(
√
n/3)⌋. We found that

a good choice for the penalty function is

pen(m) = 5
Dm

n
.

We choose to estimate five different distributions:

– the Gamma distribution with scale parameter l = 3/2 and shape parameter a = 2:

f(x) = Cx exp{−3x/2}1(0,∞)(x) with C such that
∫

f = 1

– the Exponential distribution with parameter l = 0.7: f(x) = 0.7 exp{−0.7x}1(0,∞)(x)

– the Gaussian distribution with mean 0 and variance 1: f(x) = 1/
√

2π exp{−x2/2}
– the Beta distribution with parameter a = 2 and b = 3: f(x) = B(1−x)2x1(0,1)(x)

with B such that
∫

f = 1

– the Cauchy distribution: f(x) = 1/(π(1 + x2)).

The chains are simulated with a Metropolis-Hastings algorithm (see for example

Gilks et al. (1996)).We choose here q(x, y) = 1/σ
√

2π exp{−(y−x)2/2σ2} as a can-

didate transition density, with σ = 0.2 for the Beta distribution and σ = 1 otherwise.

Indeed, for the sake of realism, the support of the candidate distribution must be

close to the support of the simulated distribution.

Figures 1–3 illustrate the performance of the method and Table 1 shows the L2-

risk for different values of n.

We can compare results of Table 1 with those of Dalelane (2005) who gives results

of simulations for i.i.d. random variables. For the density estimation, she uses

three types of kernel: Gauss kernel, sinc-kernel (where sinc(x) = sin(x)/x) and her

Cross Validation optimal kernel (denoted by Dal). Table 2 gives her results for the
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Figure 1. Estimator (solid line) and true function (dotted line) for

a Gaussian distribution estimated with a trigonometric basis.

Gaussian density and the Gamma distribution with the same parameters that we

used (2 and 3/2). If we compare the results that she obtains with her optimal kernel

and our results with trigonometric or polynomial bases, we observe that her risks are

about 5 times less than ours. However this kernel is particularly effective and if we

consider the classical kernels, we notice that the results are completely comparable,

with a reasonable price for dependency.

So the results are roughly good but we can not pretend that a basis among the

others gives better results. We can then imagine a mixed strategy, i.e. a procedure

which uses several kinds of bases and which can choose the best basis or, for instance,

the best degree for a polynomial basis. These techniques are successfully used in

a regression framework by Comte and Rozenholc (2002 ) or Comte and Rozenholc

(2004).
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Figure 2. Estimator (solid line) and true function (dotted line) for

an Exponential distribution estimated with a piecewise polynomial

basis.
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Figure 3. Estimator (solid line) and true function (dotted line) for

a Gamma distribution estimated with an histogram basis.

We can also notice in Table 1 that some distributions are better estimated than

others. An explanation can be found in Mengersen and Tweedie (1996) where

results for Metropolis chains, i.e. chains simulated by the Metropolis algorithm,

are given. Thus, we know that our simulated chains are irreducible (see Lemma

1.1 in Mengersen and Tweedie (1996)) and satisfy condition A4 with ν = µ and

h(x) = ε/d1C(x) where ε = infx,y∈C q(x, y) and d = supx∈C f(x) for any compact

set C (see Lemma 2.1 in Mengersen and Tweedie (1996)). They prove next that (for

a distribution on the whole real line) the Metropolis chain is geometrically ergodic
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H
H

H
H

H
H

HH
law

n
100 250 500 1000 2500 5000 basis

0.0626 0.0386 0.0308 0.0211 0.0112 0.0077 T

Gamma 0.0864 0.0820 0.0703 0.0626 0.0514 0.0283 H

0.0491 0.0237 0.0218 0.0209 0.0092 0.0063 P

0.1284 0.0985 0.0800 0.0680 0.0580 0.0544 T

Exp 0.0778 0.0583 0.0419 0.0278 0.0193 0.0112 H

0.1409 0.0241 0.0122 0.0067 0.0036 0.0031 P

0.0359 0.0102 0.0054 0.0030 0.0012 0.0005 T

Gaussian 0.0571 0.0326 0.0229 0.0170 0.0082 0.0071 H

0.0350 0.0128 0.0074 0.0045 0.0030 0.0027 P

0.1807 0.0732 0.0410 0.0244 0.0111 0.0066 T

Beta 0.2100 0.1170 0.0724 0.0444 0.0238 0.0144 H

0.4736 0.3053 0.2385 0.2101 0.1863 0.1803 P

0.0469 0.0296 0.0191 0.0130 0.0070 0.0040 T

Cauchy 0.0592 0.0522 0.0437 0.0304 0.0182 0.0148 H

0.0446 0.0299 0.0336 0.0262 0.0161 0.0102 P

Table 1. MISE for simulated data with pen(m) = 5Dm/n, averaged

over N = 200 samples. T: trigonometric basis, H: histogram basis, P:

piecewise polynomial basis detailed in (7).

if the tail of f is at least exponentially decreasing, but if the tail is only polynomial,

it is not geometrically ergodic. This may explain for instance why errors are smaller

for the Gaussian distribution than for the Cauchy distribution.

4. Estimation of the transition density

We now suppose that the transition kernel P has a density π. In order to estimate

π, we remark that π can be written g/f where g is the density of (Xi, Xi+1). Thus we

begin with the estimation of g. As previously, g and π are estimated on a compact

set which is assumed to be equal to [0, 1]2, without loss of generality.

4.1. Estimation of g. We need now a new assumption.

A3’. π belongs to L∞([0, 1]2).



NONPARAMETRIC ESTIMATION FOR A MARKOV CHAIN 15

H
H

H
H

H
H

HH
law

n
100 500 1000 kernel

0.0148 0.0052 0.0027 Dal

Gamma 0.0209 0.0061 0.0031 Gauss

0.0403 0.0166 0.0037 sinc

0.0065 0.0013 0.0008 Dal

Gaussian 0.0127 0.0028 0.0016 Gauss

0.0114 0.0026 0.0010 sinc

Table 2. MISE obtained by Dalelane (2005) for i.i.d. data, averaged

over 50 samples

Notice that A3’ implies A3. We consider now the following subspaces.

S(2)
m = {t ∈ L2([0, 1]2), t(x, y) =

∑

λ,µ∈Λm

αλ,µϕλ(x)ϕµ(y)}

where (ϕλ)λ∈Λm
is an orthonormal basis of Sm. Notice that, if we set

φ(2)
m =

1

Dm
sup

t∈S
(2)
m \{0}

‖t‖∞
‖t‖ ,

hypothesis M2 implies that φ
(2)
m is bounded by r2

0. The condition M1 must be replace

by the following condition:

M1’. Each S
(2)
m is a linear subspace of (L∞∩L2)([0, 1]2) with dimension D2

m ≤ √
n.

Let now

γ(2)
n (t) =

1

n− 1

n−1
∑

i=1

{‖t‖2 − 2t(Xi, Xi+1)}.

We define as above

ĝm = arg min
t∈S

(2)
m

γ(2)
n (t)

and m̂(2) = arg min
m∈Mn

[γ
(2)
n (ĝm)+pen(2)(m)] where pen(2)(m) is a penalty function which

would be specified later. Lastly, we set g̃ = ĝm̂(2) .

Theorem 2. Let Xn be a Markov chain which satisfies Assumptions A1-A2-A3’-

A4-A5 and (Sm)m∈Mn
be a collection of models satisfying Assumptions M1’-M2-M3.
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Then the estimator defined by

(8) g̃ = ĝm̂(2) where m̂(2) = arg min
m∈Mn

[γ(2)
n (ĝm) + pen(2)(m)],

with

(9) pen(2)(m) = K
(2)
0

D2
m

n

(where K
(2)
0 is a constant which depends on the chain) satisfies

E‖g̃ − g‖2 ≤ 3 inf
m∈Mn

{d2(g, S(2)
m ) + pen(2)(m)} +

C1

n

where C1 does not depend on n.

The constant K
(2)
0 in the penalty is similar to the constant K0 in Theorem 1

(replacing r0 by r2
0 and ‖f‖∞ by ‖g‖∞). It is compounded of unknown terms but,

as previously explained, it is not a problem for practical purposes.

Corollary 3. Let Xn be a Markov chain which satisfies assumptions A1-A2-A3’-

A4-A5 and (Sm)m∈Mn
be a collection of models mentioned in section 2.4 (with the

regularity of polynomials and wavelets larger than α−1). If g belongs to Bα
2,∞([0, 1]2),

with α > 1, then

E‖g̃ − g‖2 = O(n− 2α
2α+2 )

This rate of convergence is good since it is the minimax rate for density estimation

in dimension 2 in the case of i.i.d. random variables (see for instance Ibragimov and

Has′minskĭı (1980)). Let us now proceed to the estimation of the transition density.

4.2. Estimation of π. The estimator of π is defined in the following way. Let

π̃(x, y) =







g̃(x,y)

f̃(x)
if |g̃(x, y)| ≤ an|f̃(x)|

0 else

with an = nβ and β < 1/8.

We introduce a new assumption:

A6. There exists a positive χ such that ∀x ∈ [0, 1], f(x) ≥ χ.
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Theorem 3. Let Xn be a Markov chain which satisfies Assumptions A1-A2-A3’-

A4-A5-A6 and (Sm)m∈Mn
be a collection of models mentioned in section 2.4 (with

the regularity of polynomials and wavelets larger than α − 1). We suppose that the

dimension Dm of the models is such that

∀m ∈ Mn lnn ≤ Dm ≤ n1/4.

If f belongs to Bα
2,∞([0, 1]), with α > 1/2, then for n large enough

• there exists C1 and C2 such that

E‖π − π̃‖2 ≤ C1E‖g − g̃‖2 + C2E‖f − f̃‖2 + o(
1

n
)

• if furthermore g belongs to Bβ
2,∞([0, 1]2) (with β > 1), then

E‖π − π̃‖2 = O(sup(n− 2β

2β+2 , n− 2α
2α+1 ))

Clémençon (2000) proved that n−2β/(2β+2) is the minimax rate for f and g of

same regularity β. Notice that in this case the procedure is adaptive and there is no

logarithmic loss in the estimation rate contrary to the result of Clémençon (2000).

If g belongs to Bβ
2,∞(R2) (that is to say that we consider the regularity of g on its

whole support and not only on the compact of the observations) then equality f(y) =
∫

g(x, y)dx yields that f belongs to Bβ
2,∞(R) and then E‖π − π̃‖2 = O(n− 2β

2β+2 ).

Moreover the same rate is achieved if π belongs to Bβ
2,∞(R2) with β > 1. Indeed

formula f(y) =
∫

f(x)π(x, y)dx implies that f belongs to Bβ
2,∞(R). Then, by using

properties of Besov spaces (see Runst and Sickel (1996) p.192), g = fπ belongs to

Bβ
2,∞(R2).

But it should be remembered that we consider only the restriction of f or π

since the observations are in a compact set. And, as the example of Clémençon

(2000) proves it, the restriction of the stationary density to [0, 1] may be less regular

than the restriction of the transition density. The previous procedure has thus the

disadvantage that the resulting rate does not depend only on the regularity of π but

also on the one of f .

5. Proofs
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5.1. The Nummelin splitting technique. This whole subsection is summarized

from Höpfner and Löcherbach (2003) p.60–63 and is detailed for the sake of com-

pleteness.

The interest of the Nummelin splitting technique is to create a two-dimensional

chain (the ”split chain”), which contains automatically an atom. Let us recall the

definition of an atom. Let A be a set such that ψ(A) > 0 where ψ is an irreducibility

measure. The set A is called an atom for the chain (Xn) with transition kernel P if

there exists a measure ν such that P (x,B) = ν(B), for all x in A and for all event

B.

Let us now describe the splitting method. Let E = [0, 1] the state space and E
the associated σ-field. Each point x in E is splitted in x0 = (x, 0) ∈ E0 = E × {0}
and x1 = (x, 1) ∈ E1 = E × {1}. Each set A in E is splitted in A0 = A × {0}
and A1 = A × {1}. Thus, we have defined a new probability space (E∗, E∗) where

E∗ := E0 ∪ E1 and E∗ = σ(A0, A1 : A ∈ E). Using h defined in A4, a measure λ on

(E, E) splits according to






λ∗(A1) =
∫ 1A(x)h(x)λ(dx)

λ∗(A0) =
∫ 1A(x)(1 − h)(x)λ(dx)

Notice that λ∗(A0∪A1) = λ(A). Now the aim is to define a new transition probability

P ∗(., .) on (E∗, E∗) to replace the transition kernel P of (Xn). Let

P ∗(xi, .) =















1

1 − h(x)
(P − h⊗ ν)∗(x, .) if i = 0 and h(x) > 1

ν∗ else

where ν is the measure introduced in A4 and h⊗ν is a kernel defined by h⊗ν(x, dy) =

h(x)ν(dy). Consider now a chain (X∗
n) on (E∗, E∗) with one-step transition P ∗ and

with starting law µ∗. The split chain (X∗
n) has the following properties:

P1. For all (Ap)0≤p≤N ∈ EN and for all measure λ

Pλ(Xp ∈ Ap, 0 ≤ p ≤ N) = Pλ∗(X∗
p ∈ Ap × {0, 1}, 0 ≤ p ≤ N).

P2. The split chain is irreducible positive recurrent with stationary distribution

µ∗.

P3. The set E1 is an atom for (X∗
n).
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We can also extend functions g : E 7→ R to E∗ via

g∗(x0) = g(x) = g∗(x1)

Then, the property P1 can be written: for all function E-measurable g : EN 7→ R

Eλ(g(X1, .., XN)) = Eλ∗(g∗(X∗
1 , .., X

∗
N)).

We can say that (Xn) is a marginal chain of (X∗
n). When necessary, the following

proofs are decomposed in two steps: first, we assume that the Markov chain has an

atom, next we extend the result to the general chain by introducing the artificial

atom E1.

5.2. Proof of Proposition 1. First step: We suppose that (Xn) has an atom A.

Let fm be the orthogonal projection of f on Sm. Pythagoras theorem gives us:

E‖f − f̂m‖2 = d2(f, Sm) + E‖fm − f̂m‖2.

We recognize in the right member a bias term and a variance term. According to

the expresssion (4) of f̂m the variance term can be written:

(10) E‖fm − f̂m‖2 =
∑

λ∈Λm

Var(β̂λ) =
∑

λ∈Λm

E(ν2
n(ϕλ))

where νn(t) = 1
n

∑n
i=1[t(Xi)− < t, f >]. By denoting τ = τ(1) = inf{n ≥ 1, Xn ∈

A} and τ(j) = inf{n > τ(j − 1), Xn ∈ A} for j ≥ 2, we can decompose νn(t) in the

following way (see Clémençon (2001)):

(11) νn(t) = ν(1)
n (t) + ν(2)

n (t) + ν(3)
n (t) + ν(4)

n (t)

with ν(1)
n (t) = νn(t)1τ>n,

ν(2)
n (t) =

1

n

τ
∑

i=1

[t(Xi)− < t, f >]1τ≤n,

ν(3)
n (t) =

1

n

τ(ln)
∑

i=1+τ(1)

[t(Xi)− < t, f >]1τ≤n,

ν(4)
n (t) =

1

n

n
∑

i=τ(ln)+1

[t(Xi)− < t, f >]1τ≤n,

and ln =
∑n

i=1 1A(Xi) (number of visits to the atom A). Hence,

νn(t)2 ≤ 4{νn
(1)(t)2 + νn

(2)(t)2 + νn
(3)(t)2 + νn

(4)(t)2}.
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• To bound ν
(1)
n (t)2, notice that |νn(t)| ≤ 2‖t‖∞. And then, by using M2 and (1),

|ν(1)
n (t)| ≤ 2r0

√
Dm‖t‖1τ>n ≤ 2r0

√
n‖t‖1τ>n . Thus,

E(ν(1)
n (t)2) ≤ 4r2

0‖t‖2nP (τ > n) ≤ 4r2
0‖t‖2 E(τ 2)

n
.

• We bound the second term in the same way. Since |ν(2)
n (t)| ≤ 2(τ/n)‖t‖∞, we

obtain |ν(2)
n (t)| ≤ 2‖t‖r0(τ/

√
n) and then

E(ν(2)
n (t)2) ≤ 4r2

0‖t‖2 E(τ 2)

n
.

• Let us study now the fourth term. As

|ν(4)
n (t)| ≤ 2

n− τ(ln)

n
‖t‖∞1τ≤n ≤ 2

n− τ(ln)√
n

r0‖t‖1τ≤n,

we get E(ν
(4)
n (t)2) ≤ 4

r2
0

n
‖t‖2

E((n− τ(ln))21τ≤n).

It remains to bound E((n− τ(ln))21τ≤n):

Eµ((n− τ(ln))21τ≤n) =

n
∑

k=1

Eµ((n− k)21τ(ln)=k1τ≤n)

=

n
∑

k=1

(n− k)2Pµ(Xk+1 /∈ A, .., Xn /∈ A|Xk ∈ A)Pµ(Xk ∈ A)

=
n
∑

k=1

(n− k)2PA(X1 /∈ A, .., Xn−k /∈ A)µ(A)

by using the stationarity of X and the Markov property. Hence

Eµ((n− τ(ln))21τ≤n) =
n
∑

k=1

(n− k)2PA(τ > n− k)µ(A)

≤
n−1
∑

k=1

EA(τ 4)

(n− k)2
µ(A).

Therefore Eµ((n− τ(ln))21τ≤n) = 2EA(τ 4)µ(A). Finally

E(ν(4)
n (t)2) ≤ 8r2

0‖t‖2µ(A)EA(τ 4)

n

and we can summarize the last three results by

(12) E
(

ν(1)
n (t)2 + ν(2)

n (t)2 + ν(4)
n (t)2

)

≤ 8r2
0‖t‖2 Eµ(τ 2) + µ(A)EA(τ 4)

n
.
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In particular, if t = ϕλ:

E
(

ν(1)
n (ϕλ)

2 + ν(2)
n (ϕλ)

2 + ν(4)
n (ϕλ)

2
)

≤ 8r2
0

Eµ(τ 2) + µ(A)EA(τ 4)

n
.

• Last

ν(3)
n (t) ≤ 1

n

τ(ln)
∑

i=1+τ(1)

[t(Xi)− < t, f >].

Let us write ν
(3)
n (t) ≤ 1

n

∑ln−1
j=1 Sj(t) where

Sj(t) =

τ(j+1)
∑

i=1+τ(j)

(t(Xi)− < t, f >).(13)

We remark that, according to the Markov property, the Sj(t) are independent iden-

tically distributed and centered. Thus,

E(ν(3)
n (ϕλ)

2) ≤ 1

n2

n
∑

j=1

E|Sj(ϕλ)|2.

Then, we use Lemma 1 below to bound the expectation of ν
(3)
n (ϕλ)

2 :

Lemma 1. For all m ≥ 2, Eµ|Sj(t)|m ≤ (2‖t‖∞)m−2‖f‖∞‖t‖2
EA(τm).

We can then give the bound

E(ν(3)
n (ϕλ)

2) ≤ 1

n2

n
∑

j=1

‖f‖∞‖ϕλ‖2
EA(τ 2) ≤ ‖f‖∞EA(τ 2)

n
.

Finally

E(ν2
n(ϕλ)) ≤

4

n
[8r2

0(Eµ(τ 2) + µ(A)EA(τ 4)) + ‖f‖∞EA(τ 2)].

Letting C = 4[8r2
0(Eµ(τ 2) + µ(A)EA(τ 4)) + ‖f‖∞EA(τ 2)], we obtain with (10)

E‖fm − f̂m‖2 ≤ C
Dm

n
.

Second step: We do not suppose any more that (Xn) has an atom.

Let us apply the Nummelin splitting technique to the chain (Xn) and let

(14) γ∗n(t) =
1

n

n
∑

i=1

[‖t‖2 − 2t∗(X∗
i )].

We define also

(15) f̂ ∗
m = arg min

t∈Sm

γ∗n(t).
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Then the property P1 in section 5.1 yields

E‖f − f̂ ∗
m‖2 = E‖f − f̂m‖2

The split chain having an atom (property P3), we can use the first step to deduce

E‖f − f̂ ∗
m‖2 = d2(f, Sm) + CDm/n. It follows that

E‖f − f̂m‖2 ≤ d2(f, Sm) + CDm/n.

�

Proof of Lemma 1: For all j, Eµ|Sj(t)|m = Eµ|S1(t)|m = Eµ|
∑τ(2)

i=τ+1 t̄(Xi)|m

where t̄ = t− < t, f >. Thus

Eµ|Sj(t)|m =
∑

k<l

E

(

∣

∣

∣

l
∑

i=k+1

t̄(Xi)
∣

∣

∣

m

|τ = k, τ(2) = l

)

P (τ = k, τ(2) = l)

≤
∑

k<l

(2‖t‖∞(l − k))m−2
E

(

∣

∣

∣

l
∑

i=k+1

t̄(Xi)
∣

∣

∣

2

|τ = k, τ(2) = l

)

P (τ = k, τ(2) = l)

≤
∑

k<l

(2‖t‖∞(l − k))m−2
E

(

∣

∣

∣

l
∑

i=k+1

t̄(X1)
∣

∣

∣

2

|τ = k, τ(2) = l

)

P (τ = k, τ(2) = l)

since, under µ, the Xi have the same distribution.

Eµ|Sj(t)|m ≤
∑

k<l

(2‖t‖∞)m−2(l − k)m
E(t2(X1))P (τ = k, τ(2) = l)

≤
∑

k<l

(2‖t‖∞)m−2(l − k)m‖f‖∞‖t‖2P (τ = k, τ(2) = l)

≤ (2‖t‖∞)m−2
E(|τ(2) − τ |m)‖f‖∞‖t‖2.

We conclude by using the Markov property. �

5.3. Proof of Corollary 1. According to Proposition 1

E‖f − f̂m‖2 ≤ d2(f, Sm) + C
Dm

n
.

Then we use Lemma 12 in Barron et al. (1999) which ensures that (for piecewise

polynomials or wavelets having a regularity larger than α− 1 and for trigonometric

polynomials)

d2(f, Sm) = O(D−2α
m )
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Thus,

E‖f − f̂m‖2 = O(D−2α
m +

Dm

n
)

In particular, if Dm = ⌊n 1
1+2α ⌋, then E‖f − f̂m‖2 = O(n− 2α

1+2α ). �

5.4. Proof of Theorem 1. First step: We suppose that (Xn) has an atom A.

Let m in Mn. The definition of m̂ yields that

γn(f̂m̂) + pen(m̂) ≤ γn(fm) + pen(m).

This leads to

(16) ‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + 2νn(f̂m̂ − fm) + pen(m) − pen(m̂)

where νn(t) = 1
n

∑n
i=1[t(Xi)− < t, f >].

Remark 2. If t is deterministic, νn(t) can actually be written νn(t) = 1
n

∑n
i=1[t(Xi)−

E(t(Xi))].

We set B(m′) = {t ∈ Sm + Sm′ , ‖t‖ = 1}. Let us write now

2νn(f̂m̂ − fm) = 2‖f̂m̂ − fm‖νn

( f̂m̂ − fm

‖f̂m̂ − fm‖
)

≤ 2‖f̂m̂ − fm‖ sup
t∈B(m̂)

νn(t) ≤ 1

5
‖f̂m̂ − fm‖2 + 5 sup

t∈B(m̂)

νn(t)2

by using inequality 2xy ≤
1

5
x2 + 5y2. Thus,

2E|νn(f̂m̂ − fm)| ≤ 1

5
E‖f̂m̂ − fm‖2 + 5E( sup

t∈B(m̂)

νn(t)2).(17)

Consider decomposition (11) of νn(t) again. We can write

sup
t∈B(m̂)

ν(3)
n (t)2 ≤ p(m, m̂) +

∑

m′∈Mn

[ sup
t∈B(m′)

ν(3)
n (t)2 − p(m,m′)]

where p(., .) is a function to be specified later. Then, using the bound (12), (16) and

(17) give

E‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 +
1

5
E‖f̂m̂ − fm‖2 + 160r2

0

E(τ 2) + µ(A)EA(τ 4)

n

+20
∑

m′∈Mn

E[ sup
t∈B(m′)

ν(3)
n (t)2 − p(m,m′)]

+20p(m, m̂) + pen(m) − pen(m̂).
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We choose p(m,m′) such that 20p(m,m′) ≤ pen(m)+pen(m′). Thus 20p(m, m̂)+

pen(m) − pen(m̂) ≤ 2pen(m). Let

Zn(t) =
1

n

τ(ln)
∑

j=1+τ(1)

[t(Xi)− < t, f >]

and W (m,m′) = [ sup
t∈B(m′)

Z2
n(t) − p(m,m′)]+.

We use now the inequality
1

5
(x+ y)2 ≤

1

3
x2 +

1

2
y2 to deduce

E‖f̂m̂ − f‖2 ≤ 1

3
E‖f̂m̂ − f‖2 +

3

2
‖fm − f‖2 + 20

∑

m′∈Mn

EW (m,m′) + 2pen(m) +
C

n

⇒ E‖f̂m̂ − f‖2 ≤ 9

4
‖fm − f‖2 + 30

∑

m′∈Mn

EW (m,m′) + 3pen(m) +
3C

2n
.

We need now to bound EW (m,m′) to complete the proof. Proposition 2 below

implies

EW (m,m′) ≤ K ′e−Dm′ (r0 ∨ 1)2K3
1 +K2‖f‖∞

n
where K ′ is a numerical constant and K2, K3 depend on the chain and with

p(m,m′) = K
D(m′)

n
(r0 ∨ 1)2K3(1 +K2‖f‖∞).(18)

The notation a ∨ b means max(a, b).

Assumption M3 yields
∑

m′∈Mn
e−Dm′ ≤

∑

k≥1 e
−k = 1/(e − 1). Thus, by sum-

mation on m′ in Mn

∑

m′∈Mn

EW (m,m′) ≤ K ′ 1

e− 1
(r0 ∨ 1)2K3

1 +K2‖f‖∞
n

.

It remains to specify the penalty, which has to satisfy 20p(m,m′) ≤ pen(m) +

pen(m′). The value of p(m,m′) is given by (18), so we set

pen(m) = 20K
Dm

n
(r0 ∨ 1)2K3(1 +K2‖f‖∞)

Finally

∀m E‖f̂m̂ − f‖2 ≤ 3‖fm − f‖2 + 3pen(m) +
C1

n
where C1 depends on r0, ‖f‖∞, µ(A),Eµ(τ

2),EA(τ 4), K2, K3. Since it is true for all

m, we obtain the result.

Second step: We do not suppose any more that (Xn) has an atom.
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The Nummelin splitting technique allows us to create the chain (X∗
n) and to define

γ∗n(t) and f̂ ∗
m as above by (14),(15). Set now

m̂∗ = arg min
m∈Mn

[γ∗n(f̂
∗
m) + pen(m)]

and f̃ ∗ = f̂ ∗
m̂∗ . The property P1 in section 5.1 gives E‖f − f̃‖2 = E‖f − f̃ ∗‖2. The

split chain having an atom, we can use the first step to deduce

E‖f − f̃ ∗‖2 ≤ 3 inf
m∈Mn

{d2(f, Sm) + pen(m)} +
C1

n
.

And then the result is valid when replacing f̃ ∗ by f̃ .

�

Proposition 2. Let (Xn) be a Markov chain which satisfies assumptions A1–A5

and (Sm)m∈Mn
be a collection of models satisfying the assumptions M1–M3. We

suppose that (Xn) has an atom A. Let Zn(t) = 1
n

∑τ(ln)
i=1+τ(1)[t(Xi)− < t, f >] where

τ(1) is the first return time in A and τ(ln) is the last return time. Let B = {t ∈
Sm + S ′

m, ‖t‖ = 1} and

W (m,m′) = [ sup
t∈B

Z2
n(t) − p(m,m′)]+

where

p(m,m′) = K
D(m′)

n
(r0 ∨ 1)21 + ‖f‖∞EA(sτ )

(ln s)2

(where K is a numerical constant and s is a real depending on the chain). Then

EW (m,m′) ≤ K ′e−Dm′ (r0 ∨ 1)21 + ‖f‖∞EA(sτ )

(ln s)2n

Proof of Proposition 2: We can write

Zn(t) =
1

n

ln−1
∑

j=1

Sj(t)

where Sj(t) is defined by (13). According to Lemma 1:

Eµ|Sj(t)|m ≤ (2‖t‖∞)m−2‖f‖∞‖t‖2
EA(τm). Now, we use condition A5 of geometric

ergodicity. The proof of Theorem 15.4.2 in Meyn and Tweedie (1993) shows that A is
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a Kendall set, i.e. there exists s > 1 (depending on A) such that supx∈A Ex(s
τ ) <∞.

Then EA(τm) ≤ [m!/(ln s)m]EA(sτ ). Indeed

EA(τm) =

∫ ∞

0

mxm−1PA(τ > x)dx

≤
∫ ∞

0

mxm−1s−x
EA(sτ )dx =

m!

(ln s)m
EA(sτ )

Thus

(19) ∀m ≥ 2 Eµ|Sj(t)|m ≤ m!

(

2‖t‖∞
ln s

)m−2 ‖f‖∞‖t‖2

(ln s)2
EA(sτ ).

We use now the following inequality (see Petrov (1975) p.49) :

P
(

max
1≤l≤n

l
∑

j=1

Sj(t) ≥ y
)

≤ 2P
(

n
∑

j=1

Sj(t) ≥ y −
√

2Bn

)

where Bn ≥ ∑n
j=1 ESj(t)

2. The inequality (19) gives us Bn = 2n
‖f‖∞‖t‖2

(ln s)2
EA(sτ )

and

P
(

ln−1
∑

j=1

Sj(t) ≥ y
)

≤ P
(

max
1≤l≤n

l
∑

j=1

Sj(t) ≥ y
)

≤ 2P
(

n
∑

j=1

Sj(t) ≥ y − 2
√
n‖t‖M/ ln s

)

where M2 = ‖f‖∞EA(sτ ). We use then the Bernstein inequality given by Birgé and

Massart (1998).

P (

n
∑

j=1

Sj(t) ≥ nε) ≤ e−nx

with ε =
2‖t‖∞
ln s

x+
2‖t‖M

ln s

√
x . Indeed, according to (19),

1

n

n
∑

j=1

E|Sj(t)|m ≤ m!

2
(
2‖t‖∞
ln s

)m−2(

√
2‖t‖M
ln s

)2.

Finally

(20) P

(

Zn(t) ≥
2

ln s

[

‖t‖∞x+M‖t‖
√
x+M‖t‖/

√
n
]

)

≤ 2e−nx.

We will now use a chaining technique used in Barron et al. (1999). Let us recall

first the following lemma (Lemma 9 p.400 in Barron et al. (1999), see also Proposition

1 in Birgé and Massart (1998)).
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Lemma 2. Let S̄ a subspace of L2 with dimension D spanned by (ϕλ)λ∈Λ (orthonor-

mal basis). Let

r =
1√
D

sup
β 6=0

‖∑λ∈Λ βλϕλ‖∞
supλ∈Λ |βλ|

.

Then, for all δ > 0, we can find a countable set T ⊂ S̄ and a mapping π from S̄ to

T such that :

• for all ball B with radius σ ≥ 5δ

(21) |T ∩ B| ≤ (5σ/δ)D

• ‖u− π(u)‖ ≤ δ, ∀u ∈ S̄ et

sup
u∈π−1(t)

‖u− t‖∞ ≤ rδ, ∀t ∈ T.

We apply this lemma to the subpace Sm +Sm′ with dimension Dm ∨Dm′ denoted

by D(m′) and r = r(m′) defined by

r(m′) =
1

√

D(m′)
sup
β 6=0

‖∑λ∈Λ(m′) βλϕλ‖∞
supλ∈Λ(m′) |βλ|

where (ϕλ)λ∈Λ(m′) is an orthonormal basis of Sm + Sm′. Notice that this quantity

satisfy φm” ≤ r(m′) ≤
√

D(m′)φm” where m” is such that Sm + Sm′ = Sm” and

then, using M2,

r(m′) ≤ r0
√

D(m′).

We consider δ0 ≤ 1/5 , δk = δ02
−k, and the Tk = T ∩ B where T is defined by

Lemma 2 with δ = δk. Inequality (21) gives us |T ∩B| ≤ (5/δk)
D(m′) where B is the

unit ball of Sm + Sm′ . By letting Hk = ln(|Tk|), we obtain

(22) Hk ≤ D(m′)[ln(
5

δ0
) + k ln 2].

Thus, for all u in B, we can find a sequence {uk}k≥0 with uk ∈ Tk such that

‖u−uk‖ ≤ δk and ‖u−uk‖∞ ≤ r(m′)δk. Hence, we have the following decomposition:

u = u0 +
∞
∑

k=1

(uk − uk−1)
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with ‖u0‖ ≤ 1,

‖u0‖∞ ≤ r0
√

D(m′)‖u0‖ ≤ r0
√

D(m′)
and for all k ≥ 1,

‖uk − uk−1‖ ≤ δk + δk−1 = 3δk−1/2,

‖uk − uk−1‖∞ ≤ 3r(m′)δk−1/2 ≤ 3r0
√

D(m′)δk−1/2.

Then

P (sup
u∈B

Zn(u) > η) =P (∃(uk)k≥0 ∈
∏

k≥0

Tk, Zn(u0) +
∞
∑

k=1

Zn(uk − uk−1) > η0 +
∞
∑

k=1

ηk)

≤
∑

u0∈T0

P (Zn(u0) > η0) +
∞
∑

k=1

∑

uk∈Tk
uk−1∈Tk−1

P (Zn(uk − uk−1) > ηk)

with η0 +
∑∞

k=1 ηk ≤ η. We use the exponential inequality (20) to obtain

∑

u0∈T0

P (Zn(u0) > η0) ≤2eH0−nx0

∑

uk∈Tk
uk−1∈Tk−1

P (Zn(uk − uk−1) > ηk) ≤2eHk+Hk−1−nxk

by choosing























η0 =
2

ln s

(

r0
√

D(m′)x0 +M
√
x0 +

M
√
n

)

ηk =
3

ln s

(

r0
√

D(m′)δk−1xk +Mδk−1
√
xk +

Mδk−1√
n

)

.

Let us choose now the (xk)k≥0 such that nx0 = H0 +Dm′ + v and for k ≥ 1,

nxk = Hk−1 +Hk + kDm′ +Dm′ + v

Thus

P (sup
u∈B

Zn(u) > η) ≤ 2e−Dm′−v(1 +
∑

k≥1

e−kDm′ ) ≤ 3.2e−Dm′−v

It remains to bound
∑∞

k=0 ηk:

∞
∑

k=0

ηk ≤ 1

(ln s)
(A1 + A2 + A3).
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where











































A1 = r0
√

D(m′)(2x0 + 3
∞
∑

k=1

δk−1xk)

A2 = 2M
√
x0 + 3M

∞
∑

k=1

δk−1

√
xk

A3 = 2
M
√
n

+
∞
∑

k=1

3Mδk−1√
n

• Regarding the third term, just write

A3 =
M
√
n

(

2 + 3
∞
∑

k=1

δk−1

)

=
M
√
n
(6δ0 + 2) ≤ c5(δ0)

M
√
n

with c5(δ0) = 6δ0 + 2.

• Let us bound the first term. First, recall that D(m′) ≤ √
n and then

A1 ≤ r0

√

n

D(m′)

(

2
H0 +Dm′ + v

n
+ 3

∞
∑

k=1

δk−1

Hk−1 +Hk + kDm′ +Dm′ + v

n

)

.

Observing that
∑∞

k=1 δk−1 = 2δ0 and
∑∞

k=1 kδk−1 = 4δ0 and using (22), we get

A1 ≤ c1(δ0)r0
v

√

nD(m′)
+ 2c2(δ0)r0

√

D(m′)

n

with







c1(δ0) = 2 + 6δ0

c2(δ0) = c1(δ0) + ln( 5
δ0

)(2 + 12δ0) + 6δ0(2 + 3 ln 2)

• To bound the second term, we use the Schwarz inequality and the inequality√
a + b ≤ √

a+
√
b. We obtain

A2 ≤ c3(δ0)M

√

v

n
+ c4(δ0)M

√

D(m′)

n

with







c3(δ0) = 6δ0 + 2

c4(δ0) = 2
√

1 + ln( 5
δ0

) + 3
√

2δ0

√

(6δ0(1 + ln 2) + 4δ0 ln( 5
δ0

)
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We get so

(
∞
∑

k=0

ηk) ≤
(

r0 ∨ 1

ln s

)

(

c1
v

√

nD(m′)
+ c3M

√

v

n

)

+

√

D(m′)

n

(

r0 ∨ 1

ln s

)

[c2 + c4M + c5M ]

≤ c6(δ0)

(

r0 ∨ 1

ln s

)2

[
v2

nD(m′)
∨M2 v

n
] + c7(δ0)

D(m′)

n

(

r0 ∨ 1

ln s

)2

(1 +M)2

where







c6(δ0) = 6(c1 + c3)
2

c7(δ0) = 6
5
sup(c2, c4 + c5)

2

Let us choose now δ0 = 0.024 and then c6 = 110, c7 = 268. Let K1 = c6(r0∨1/ ln s)2.

Then

η2 = K1[
v2

nD(m′)
∨M2 v

n
] + p(m,m′)

where

p(m,m′) = 2c7(r0 ∨ 1)2D(m′)

n

1 + ‖f‖∞EA(sτ )

(ln s)2

We get P (sup
u∈B

Z2
n(u) > K1[

v2

nD(m′)
∨M2 v

n
] + p(m,m′))

= P (sup
u∈B

Z2
n(u) > η2)

≤ P (sup
u∈B

Zn(u) > η) + P (sup
u∈B

Zn(u) < −η)
Now

P (sup
u∈B

Zn(u) < −η) ≤
∑

u0∈T0

P (Zn(u0) < −η0) +

∞
∑

k=1

∑

uk∈Tk
uk−1∈Tk−1

P (Zn(uk − uk−1) < −ηk)

≤
∑

u0∈T0

P (Zn(−u0) > η0) +
∞
∑

k=1

∑

uk∈Tk
uk−1∈Tk−1

P (Zn(−uk + uk−1) > ηk)

≤3.2e−Dm′−v.

Hence

P (sup
u∈B

Z2
n(u) > K1[

v2

nD(m′)
∨M2 v

n
] + p(m,m′)) ≤ 6.4e−Dm′−v.
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We obtain then

E[ sup
t∈B

Z2
n(t) − p(m,m′)]+ ≤

∫ ∞

0

P (sup
u∈B

Z2
n(u) > p(m,m′) + z)dz

≤
∫ M2D(m′)

0

P (sup
u∈B

Z2
n(u) > p(m,m′) +K1M

2 v

n
)K1

M2

n
dv

+

∫ ∞

M2D(m′)

P (sup
u∈B

Z2
n(u) > p(m,m′) +K1

v2

nD(m′)
)K1

2v

nD(m′)
dv

≤ K1

n

[

M2

∫ ∞

0

6.4e−Dm′−vdv +
2

D(m′)

∫ ∞

0

6.4e−Dm′−vvdv

]

≤ 6.4K1

n
e−Dm′ (M2 +

2

D(m′)
)

≤ 12.8K1e
−Dm′

1 +M2

n
.

By replacing M2 by its value, we get so

EW (m,m′) ≤ K ′(
r0 ∨ 1

ln s
)2e−Dm′

1 + ‖f‖∞EA(sτ )

n

where K ′ is a numerical constant �

5.5. Proof of Corollary 2. According to Theorem 1

E‖f̃ − f‖2 ≤ C2 inf
m∈Mn

{d2(f, Sm) +
Dm

n
}

Since d2(f, Sm) = O(D−2α
m ) (see Lemma 12 in Barron et al. (1999)),

E‖f̃ − f‖2 ≤ C3 inf
m∈Mn

{D−2α
m +

Dm

n
}

In particular, if m0 is such that Dm0 = ⌊n 1
1+2α ⌋, then

E‖f̃ − f‖2 ≤ C3{D−2α
m0

+
Dm0

n
} ≤ C4n

− 2α
1+2α .

The condition Dm ≤ √
n allows this choice of m only if α > 1

2
. �

5.6. Proof of Theorem 2. The proof is identical to the one of Theorem 1. �

5.7. Proof of Corollary 3. It is sufficient to prove that d(g, S
(2)
m ) ≤ D−α

m if g

belongs to Bα
2,∞([0, 1]2). It is done in the following lemma. �

Lemma 3. Let g in the Besov space Bα
2,∞([0, 1]2). We consider the following spaces

of dimension D2 :

• S1 is a space of piecewiwe polynomials of degree bounded by s > α− 1 based

on a partition with square of vertice 1/D,
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• S2 is a space of of orthonormal wavelets of regularity s > α− 1,

• S3 is the space of trigonometric polynomials.

Then, there exists positive constants Ci such that

d(g, Si) ≤ CiD
−α for i = 1, 2, 3.

Proof of Lemme 3: Let us recall the definition of Bα
2,∞([0, 1]2). Let

∆r
hg(x, y) =

r
∑

k=0

(−1)r−k

(

r

k

)

g(x+ kh1, y + kh2)

the rth difference operateur with step h and

ωr(g, t) = sup
|h|≤t

‖∆r
hg‖2

the rth modulus of smoothness of g. We say g is in the Besov space Bα
2,∞([0, 1]2) if

sup
t>0

t−αωr(g, t) <∞

for r = ⌊α⌋ + 1, or equivalently, for r an integer larger than α.

DeVore (1998) proved that d(g, S1) ≤ Cωs+1(g,D
−1) , so

d(g, S1) ≤ CD−α.

For the wavelets case, we use the fact that f belongs to Bα
2,∞([0, 1]2) if and only if

sup
j≥−1

2jα‖βj‖ <∞

(see Meyer (1990) chapter 6, section 10). If gD is the orthogonal projection of g on

S2, it follows from Bernstein’s inequality that

‖g − gD‖2 =
∑

j>m

∑

k,l

|βjkl|2 ≤ C
∑

j>m

2−2jα ≤ C ′D−jα

where m is such that 2m = D. For the trigonometric case, we will just adjust the

demonstration of DeVore and Lorentz (1993) to the dimension 2. Let us begin to

define F (x, y) = g( x
2π
, y

2π
). We will prove that

d(F, S3(0, 2π)) ≤ Cωr(F,D
−1) for r = ⌊α⌋ + 1,

then

d(g, S3) ≤ Cωr(g,D
−1) ≤ C ′D−α
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Let K(t) = λ

(

sinmt/2

sin t/2

)2r

the generalized Jackson Kernel where m = ⌊D/r⌋ + 1

and λ is such that
∫ 2π

0
K(t) = 1. We define now

SF (x, y) =

∫

[(−1)r+1∆r
(t,u)F (x, y) + F (x, y)]K(t)K(u)dtdu

Let us notice that SF belongs to S3 since it is a linear combination of terms
∫

F (x+ kt, y + ku) cos(lt) cos(l′u)dtdu

with k = 1, ..., r and l, l′ = 1, ..., D. But t 7→ F (x + kt, y + ku) is 2π/k periodic,

so the integral is zero unless k divides l and k divides l′. In the latter case, it is a

trigonometric polynomial of degree l/k in x and l′/k in y. Thus SF is a trigonometric

polynom of degree ≤ D and d(F, S3) ≤ ‖SF − F‖.

‖SF − F‖2 ≤ ‖
∫

(−1)r+1∆r
(t,u)FK(t)K(u)dtdu‖

≤
∫

‖∆r
(t,u)F‖K(t)K(u)dtdu

≤
∫

ωr(F, |t| ∨ |u|)K(t)K(u)dtdu

But the rth modulus of smoothness satisfies the following property ωr(F, t) ≤ (Dt+

1)rωr(F,D
−1), so

d(F, S3) ≤ ωr(F,D
−1)

∫

(D(|t| ∨ |u|) + 1)rK(t)K(u)dtdu

≤ ωr(F,D
−1)

∫

(D|t| + 1)r(D|u| + 1)rK(t)K(u)dtdu

≤ ωr(F,D
−1)

(
∫ π

0

(D|t| + 1)rK(t)dt

)2

Now, Lemma 2.1 chapter 7 of DeVore and Lorentz (1993) shows that
∫ π

0

(D|t| + 1)rK(t)dt ≤ Cr

and then d(F, S3) ≤ Cωr(F,D
−1). �
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5.8. Proof of Theorem 3. Let us prove first the first item Let En = {‖f − f̃‖∞ ≤
χ
2
}. On En, f̃(x) = f̃(x)−f(x)+f(x) ≥ χ

2
and for n large enough, π̃(x, y) =

g̃(x, y)

f̃(x)
.

For all (x, y) ∈ [0, 1]2,

|π̃(x, y) − π(x, y)|2 ≤ | g̃(x, y) − f̃(x)π(x, y)

f̃(x)
|21En

+ (‖π̃‖∞ + ‖π‖∞)21EC
n

≤ |g̃(x, y) − g(x, y) + π(x, y)(f(x) − f̃(x))|2
χ2/4

+(an + ‖π‖∞)21EC
n

E‖π − π̃‖2 ≤ 8

χ2
[E‖g − g̃‖2 + ‖π‖2

∞E‖f − f̃‖2] + (an + ‖π‖∞)2P (EC
n )

It remains to bound P (EC
n ).

‖f − f̃‖∞ ≤ ‖f − fm̂‖∞ + ‖fm̂ − f̂m̂‖∞

Let γ = α − 1
2
, then Bα

2,∞([0, 1]) ⊂ Bγ
∞,∞([0, 1]) (see DeVore and Lorentz (1993)

p.182). Thus f belongs to Bγ
∞,∞([0, 1]) and Lemma 12 in Barron et al. (1999) gives

‖f − fm̂‖∞ ≤ D−γ
m̂ ≤ k−γ

n

Thus ‖f − fm̂‖∞ decreases to 0 and ‖f − fm̂‖∞ ≤ χ
4

for n large enough. And so,

P (EC
n ) ≤ P (‖fm̂ − f̂m̂‖∞ >

χ

4
)

But ‖fm̂ − f̂m̂‖∞ ≤ r0
√

D(m̂)‖fm̂ − f̂m̂‖ ≤ r0n
1/8‖fm̂ − f̂m̂‖ and ‖fm̂ − f̂m̂‖2 =

∑

λ∈Λ(m̂) ν
2
n(ϕλ). Thus,

P (EC
n ) ≤ P (

∑

λ∈Λ(m̂)

ν2
n(ϕλ) >

χ2

16r2
0n

1/4
)

≤ P (
∑

λ∈Λ(m̂)

ν(1)
n (ϕλ)

2 + ν(2)
n (ϕλ)

2 + ν(4)
n (ϕλ)

2 >
χ2

32r2
0n

1/4
)

+P (
∑

λ∈Λ(m̂)

Z2
n(ϕλ) >

χ2

32r2
0n

1/4
)

≤ 32r2
0n

1/4

χ2
E(

∑

λ∈Λ(m̂)

ν(1)
n (ϕλ)

2 + ν(2)
n (ϕλ)

2 + ν(4)
n (ϕλ)

2)

+ sup
m∈Mn

∑

λ∈Λ(m)

P (Z2
n(ϕλ) >

χ2

32r2
0n

1/4
)
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We need then to bound two terms. For the first term, notice that |ν(1)
n (t)| ≤

2‖t‖∞1τ>n ≤ 2r0n
1/8‖t‖1τ>n and so

E(ν(1)
n (ϕλ)

2) ≤ 4r2
0

E(τ 2)n1/4

n2
.

In the same way |ν(2)
n (t)| ≤ 2‖t‖

r0τn
1/8

n
implies

E(ν(2)
n (ϕλ)

2) ≤ 4r2
0

E(τ 2)n1/4

n2

At last, since |ν(4)
n (t)| ≤ 2(n− τ(ln))

n1/8

n
r0‖t‖1τ≤n

E(ν(4)
n (ϕλ)

2) ≤ 8r2
0

µ(A)EA(τ 4)n1/4

n2

Thus

E[ν(1)
n (ϕλ)

2 + ν(2)
n (ϕλ)

2 + ν(4)
n (ϕλ)

2] ≤ Cn−7/4

and

E[
∑

λ∈Λ(m̂)

ν(1)
n (ϕλ)

2 + ν(2)
n (ϕλ)

2 + ν(4)
n (ϕλ)

2] ≤ sup
m∈Mn

∑

λ∈Λ(m)

Cn−7/4 ≤ Cn−3/2

We can then bound the first term :

32r2
0n

1/4

χ2
E(

∑

λ∈Λ(m̂)

ν(1)
n (ϕλ)

2 + ν(2)
n (ϕλ)

2 + ν(4)
n (ϕλ)

2) ≤ C ′n−5/4

Besides, for all x and for all λ,

P (Zn(ϕλ) ≥ 2r0n
1/8x+ 2M

√
x+ 2

M√
n

) ≤ 2e−nx

and so

P (Z2
n(ϕλ) ≥ (2r0n

1/8x+ 2M
√
x+ 2

M√
n

)2) ≤ 4e−nx

Let now x = n−1/2, x verifies (for n large enough)

2r0n
1/4x+ 2Mn1/8

√
x+ 2Mn−3/8 ≤ χ

r0
√

32

that yields

(2r0n
1/8x+ 2M

√
x+ 2

M√
n

)2 ≤ χ2

32r2
0n

1/4
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The previous inequality gives then

P
(

Z2
n(ϕλ

)

>
χ2

32r2
0n

1/4
) ≤ 4e−nx ≤ 4e−

√
n

Finally

P (EC
n ) ≤ 4n1/4e−

√
n + C ′n−5/4 ≤ C”n−5/4

for n great enough. And then, for n large enough, (an + ‖π‖∞)2P (EC
n ) ≤ Ca2

nn
−5/4.

So, since an = o(n1/8), (an + ‖π‖∞)2P (EC
n ) = o( 1

n
).

Following result in Theorem 3 is provided by using Corollary 2 and Corollary 3.

�
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