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We study coercive inequalities in Orlicz spaces associated to the probability measures on finite and infinite dimensional spaces which tails decay slower than the Gaussian ones. We provide necessary and sufficient criteria for such inequalities to hold and discuss relations between various classes of inequalities.

Introduction

Sobolev type inequalities play an essential role in the study of the decay to equilibrium of Markov semi-groups to their associated probability measure. Several surveys deal with the celebrated Poincaré inequality and the stronger logarithmic Sobolev inequality, see e.g. [START_REF] Gross | Logarithmic Sobolev inequalities and contractivity properties of semi-groups[END_REF], [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semi groupes[END_REF], [START_REF] Ledoux | Concentration of measure and logarithmic Sobolev inequalities[END_REF], [ABC + 00], [START_REF] Guionnet | Lectures on logarithmic sobolev inequalities[END_REF] and [START_REF] Royer | Une initiation aux inégalités de Sobolev logarithmiques[END_REF]. It appears that the Poincaré inequality is particularly adapted to the study of the two sided exponential measure while the logarithmic Sobolev inequality is the perfect tool to deal with the Gaussian measure. Both are now well understood.

In recent years intermediate measures, as for example

dµ α (x) = (Z α ) -1 e -|x| α α ∈ (1, 2),
attracted a lot of attention (note that for such measures the Logarithmic Sobolev inequalities cannot hold). To deal with such measures, several authors generalized the Poincaré and logarithmic Sobolev inequalities in the following way.

Recall first that a probability measure µ, say on R n , is said to satisfy a Poincaré inequality if there exists a constant C such that every f : R n → R smooth enough satisfies Var µ (f ) ≤ C |∇f | 2 dµ and to satisfy a logarithmic Sobolev inequality if

Ent µ (f 2 ) ≤ C |∇f | 2 dµ
where Var µ (f ) = µ(f 2 ) -µ(f ) 2 is the variance (for short µ(f ) = f dµ), and Ent µ (f ) = µ (f log(f /µ(f ))) is the entropy of a positive function.

The latter can be rewritten in the form

f 2 log(f 2 )dµ -f 2 dµ log f 2 dµ ≤ C |∇f | 2 dµ or equivalently lim p→2 - f 2 dµ - |f | p 2 p 2 -p ≤ 2C |∇f | 2 dµ.
Hence two natural generalizations are the following additive Φ-Sobolev inequality

Φ(f 2 )dµ -Φ f 2 dµ ≤ C |∇f | 2 dµ (Φ-S)
and the Beckner-type inequality:

sup p∈[1,2) f 2 dµ - |f | p 2 p T (2 -p) ≤ 2C |∇f | 2 dµ. (1) 
Inequality (Φ-S) has been introduced in [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF] as an intermediate tool to prove an isoperimetric inequality for the measure µ α . It is also related to the work by Chafa ï [START_REF] Chafaï | Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities[END_REF]. On the other hand, Beckner introduced in [Bec89] Inequality (1) with T (r) = r in his study of the Gaussian measure µ 2 . Lata la and Oleszkiewicz [START_REF] Lata | Between Sobolev and Poincaré. in geometric aspects of Functional Analysis[END_REF] consider the more general T α (r) = r 2(1-1 α ) , α ∈ (1, 2) and prove that µ α satisfies Inequality (1) with such T α . Furthermore this inequality appears to be well adapted to the study of concentration of measure phenomenon via the celebrated Herbst argument. Further generalizations are done in this direction in [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF], see also [START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF]. When T = T α , Inequality (1) is known as the Lata la and Oleszkiewicz Inequality.

While the logarithmic Sobolev inequality enjoys a lot of properties and applications (tensorisation, concentration of measure, isoperimetry, decay to equilibrium, hypercontractivity), none of its generalizations appears to be well adapted simultaneously to all these properties and applications. This is the main reason why one has to generalize in different ways the logarithmic Sobolev inequality.

Motivated by this, in this paper we study the following new generalization we shall call the Orlicz-Sobolev inequality

(f -µ(f )) 2 Φ ≤ C |∇f | 2 dµ (O-S)
where the constant C is independent of the function f . Here, • Φ denotes the Luxembourg norm associated to the Orlicz function Φ and the probability measure µ on finite or infinite products of real lines R.

If Φ(x) = |x| p , p ∈ [1, ∞) then (f -µ(f )) 2 Φ = (f -µ(f )) 2 p .
Thus for 1 < p < ∞, inequality (O-S) can be considered as a Sobolev type inequality. For p = 1 it is the Poincaré inequality. On the other hand, for Φ(x) = |x| log(1 + |x|), it is proved in [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] that (O-S) is equivalent (up to universal constants) to the logarithmic Sobolev inequality. Thus, for an interpolation family of Orlicz functions going from |x| to |x| log(1 + |x|) (as for instance |x| log(1 + |x|) β , β ∈ [0, 1]), (O-S) is an interpolating family of functional inequalities between Poincaré and the logarithmic Sobolev inequality.

Our first objective is to give in Section 2 a constructive criterium for a probability measure on a finite dimensional Euclidean space to satisfy such an inequality. In particular we will prove (Corollary 6) that the sub-Gaussian probability measures µ α (and product of it) satisfy the Orlicz-Sobolev Inequality (O-S) with Φ(x) = |x| log(1 + |x|) 2(1-1 α ) . Note that the Orlicz-Sobolev Inequality (O-S) need not tensorise in general. Hence, in order to get dimension free results, we will use our criterium and ideas from [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF] to prove the equivalence between the Orlicz-Sobolev Inequality and the Beckner type Inequality (1) that do tensorise.

Finally, using our results, we prove that under suitable mixing conditions the Lata la-Oleszkiewicz inequalities are satisfied for Gibbs measures on infinite dimensional spaces. This provides an extension of a result discussed in [START_REF] Guionnet | Lectures on logarithmic sobolev inequalities[END_REF] to a comprehensive family of local specifications.

In Section 3 we discuss the implications of Orlicz-Sobolev inequalities for the decay to equilibrium in Orlicz norms for Markov semi-group with the generator given by the corresponding Dirichlet form. This includes in particular a necessary and sufficient condition for the exponential decay, which extends a well known classical property of the L 2 space and Poincaré inequality. One of our main result states that the Orlicz-Sobolev inequality (O-S) implies, under mild assumptions on Φ, that

P t f Φ ≤ e -ct f Φ (2)
for any f with µ(f ) = 0. Our technical development allows us to consider at the end of the section the case of decay to equilibrium for functionals which do not have convexity property of the norm as for example functionals of the form µ (|f | q log |f | q /µ(|f | q )) with q > 1. In case of relative entropy corresponding to q = 1 and a hypercontractive diffusion semi-group the exponential decay is well known. For q > 1 we show that after certain characteristic period of time one gets (essentially) exponential decay and by suitable averaging one can redefine the functional so it has the exponential decay property.

In Section 4 we discuss a relation between Orlicz-Sobolev and the additive Φ-Sobolev (Φ-S) inequalities. The additive Φ-Sobolev inequalities naturally tensorise. We show that it also has an analog of the mild perturbation property which allows to construct local specifications satisfying such the inequality. Moreover we prove that, if the local specification is mixing, similar arguments to those employed in the proof of Logarithmic Sobolev inequalities work in the current situation. By this we get a constructive way to provide examples of nontrivial Gibbs measures on infinite dimensional spaces satisfying the additive Φ-Sobolev inequalities. In a forthcoming paper [START_REF] Fougères | Sub-gaussian measures and associated semilinear problems[END_REF] we will use them in the study of infinite dimensional nonlinear Cauchy problems.

In order to show a decay to equilibrium in a stronger than L 2 sense, in Section 5 we introduce and study certain natural generalization of Nash inequalities which follow from Orlicz-Sobolev inequalities. Such inequalities provide a bound on a covariance in terms of the Dirichlet form and suitable (weaker than L 2 ) Orlicz norm. One illustration of our results is that the Inequality (O-S) proved in section 1 for µ α and Φ(x

) = |x| log(1 + x) 2(1-1 α )
implies that the associated semi-group (P t ) t≥0 is a continuous map from

L Ψ into L 2 with Ψ(x) = x 2 / log(1 + |x|) 2(1-1 α ) . Furthermore P t L ψ →L 2 ≤ C α t γ ∀t > 0
for some positive constant C α and γ. This result state that as soon as t is positive, the semi-group regularizes any initial data from L Ψ into L 2 . (For general discussion about the interest and application of Nash-type inequalities, we refer the reader to e.g. [START_REF] Davies | Heat kernels and spectral theory[END_REF], [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF], [START_REF] Coulhon | Analysis and geometry on groups[END_REF], [START_REF] Guionnet | Lectures on logarithmic sobolev inequalities[END_REF].) Note that this bound is different from (2) where on both sides appear the same

L Φ norm.
As a summary, all the multitude of the inequalities and relations between them discussed in this work is illustrated with the corresponding implication network diagram provided at the end of the paper. Since in our investigations we have used intensively numerous properties of Young functions and Orlicz/Luxemburg norms, for the convenience of the reader in the Appendix we gathered a plentitude of useful facts.

For other directions on the study of sub-Gaussian measures, the reader could like to see also [START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF][START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF][START_REF] Barthe | Isoperimetry between exponential and gaussian[END_REF][START_REF] Law | Entropy bounds for Gibbs measures with non-Gaussian tails[END_REF].
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A criterium for Orlicz-Sobolev inequalities

In this section we provide a criterium for inequality (O-S) to hold. This criterium allows us to prove that Orlicz-Sobolev inequalities are equivalent, up to universal constants, to Bekner-type inequalities. In turn, we give a family of Orlicz functions for which the Orlicz-Sobolev inequality holds for a corresponding sub-Gaussian measure. We end with an application to Gibbs measure on infinite state space.

In [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF], the authors introduce a general tool to obtain a criterium which is based on an appropriate notion of capacity ( [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]) initially introduced in [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF]. More precisely, let µ and ν be two absolutely continuous measures on R n . Then, for any Borel set A ⊂ Ω, we set

Cap ν (A, Ω) := inf |∇f | 2 dν; f ≥ 1 I A and f |Ω c = 0 .
If µ is a probability measure on R n , then, for A ⊂ R n such that µ(A) < 1 2 , the capacity of A with respect to µ and ν is

Cap ν (A, µ) := inf |∇f | 2 dν; 1 I ≥ f ≥ 1 I A and µ(f = 0) ≥ 1 2 = inf Cap ν (A, Ω); Ω ⊂ R n s.t. Ω ⊃ A and µ(Ω) = 1 2 .
For simplicity we will write Cap µ (A) for Cap µ (A, µ). [For a general introduction and discussion on the notion of capacity we refer the reader to [BCR05b, section 5.2] .] The second equality in the above definition comes from the fact that Cap ν (A, Ω) is non-increasing in Ω and a suitable truncation argument (see [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF]). We start with the following criterium in dimension n and its more explicit form in dimension one.

Theorem 1. Let µ and ν(dx) = ρ ν (x)dx be two absolutely continuous probability measures on R n . Consider a Young function Φ and fix k ∈ (0, ∞) such that for any function f with

f 2 ∈ L Φ (µ), one has µ(f ) 2 Φ ≤ k f 2 Φ . Let
C Φ be the optimal constant such that for any smooth function f : R n → R one has

(f -µ(f )) 2 Φ ≤ C Φ |∇f | 2 dν.
Then

1 8 B(Φ) ≤ C Φ ≤ 8(1 + k)B(Φ) where B(Φ) is the smallest constant such that for every A ⊂ R n with µ(A) < 1 2 , 1 I A Φ ≤ B(Φ)Cap ν (A, µ).
Moreover if n = 1, one has

1 8 max(B + (Φ), B -(Φ)) ≤ C Φ ≤ 8(1 + k) max(B + (Φ), B -(Φ))
where

B + (Φ) = sup x>m 1 I [x,+∞) Φ x m 1 ρ ν , B -(Φ) = sup x<m 1 I (-∞,x] Φ m x 1 ρ ν ,
and m is a median of µ.

Remark 2. Note that by the property (15) in the Appendix, 1 I A Φ = 1/Φ -1 (1/µ(A)). In particular for µ(A) < 1 2 we have 1 I A Φ < 1/Φ -1 (2). For explanation concerning the condition µ(f ) 2 Φ ≤ k f 2 Φ when f 2 ∈ L Φ (µ), see Lemma 44 and Remark 45 in the Appendix.

Proof. Fix a locally Lipschitz function f : R n → R and let c be a median of

f , i.e. µ(f ≥ c) ≥ 1 2 and µ(f ≤ c) ≥ 1 2 . Then define f + = (f -c)1 I f >c and f -= (f -c)1 I f <c . By assumption about Φ, (f -µ(f )) 2 Φ = (f -c + µ(f -c)) 2 Φ ≤ 2 (f -c) 2 Φ + 2 µ(f -c) 2 Φ ≤ 2(1 + k) (f -c) 2 Φ ≤ 2(1 + k)( f 2 + Φ + f 2 -Φ ).
with k ∈ (0, ∞) independent of f . It follows from [Maz85, Theorem 2.3.2 p.112] that

f 2 + Φ ≤ 4B(Φ, {f ≤ c}) |∇f + | 2 dν,
where B(Φ, {f ≤ c}) is the smallest constant so that for every A ⊂ {f ≤ c},

1 I A Φ ≤ B(Φ, {f ≤ c})Cap ν (A, {f ≤ c}).
A similar result holds for f -. Thus, by definition of Cap ν (A, µ) and B(Φ), we get B(Φ, {f ≤ c}) ≤ B(Φ) and in turn

(f -µ(f )) 2 Φ ≤ 8(1 + k)B(Φ) |∇f + | 2 dν + |∇f -| 2 dν ≤ 8(1 + k)B(Φ) |∇f | 2 dν.
In the last inequality we used that, since f is locally Lipschitz and ν is absolutely continuous, the set {f = c} ∩ {∇f = 0} is ν-negligible. This proves the first part of the criterium.

For the other part, take a Borel set A ⊂ R n with µ(A) < 1 2 and a function f such that µ({f = 0}) ≥ 1 2 and 1

I {f =0} ≥ f ≥ 1 I A . Set G = {g : R n → R; Φ * (g)dµ ≤ 1} where Φ * is the conjugate function of Φ. By (14) we have 2 (f -µ(f )) 2 Φ ≥ sup g∈G ((f -µ(f )) 2 |g|dµ ≥ sup g∈G A ((f -µ(f )) 2 |g|dµ = (1 -µ(f )) 2 sup g∈G A |g|dµ ≥ (1 -µ(f )) 2 1 I A Φ . Since f ≤ 1 I, we get µ(f ) ≤ µ(f = 0) ≤ 1 2 . Thus (1 -µ(f )) 2 ≥ 1 4 . It follows that 1 8 1 I A Φ ≤ (f -µ(f )) 2 Φ ≤ C Φ |∇f | 2 dν.
The result follows by definition of the capacity. This ends the proof in any finite dimension. Consider now n = 1. Let m be a median of µ and define

f + = (f - f (m))1 I (m,+∞) and f -= (f -f (m))1 I (-∞,m) . Note that (f + +f -) 2 = f 2 + +f 2 -.
By our assumption and a similar computation as in the general case,

(f -µ(f )) 2 Φ = (f -f (m) -µ(f -f (m))) 2 Φ ≤ 2(1 + k) (f -f (m)) 2 Φ = 2(1 + k) (f + + f -) 2 Φ ≤ 2(1 + k)( f 2 + Φ + f 2 -Φ ).
From [BR03, Proposition 2] (which originally comes from [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], see also [START_REF] Chen | Variational formulas and explicit bounds of Poincaré-type inequalities for one-dimensional processes[END_REF]), it follows that

f 2 + Φ ≤ 4B + (Φ) ∞ m f ′ + 2 dν.
Since a similar bound holds for f -, summing up we get that

C Φ ≤ 8(1 + k) max(B + (Φ), B -(Φ)).
Next, fix x > m and consider the following function defined on the real line

h(y) =    0 for y ≤ m y m 1 ρν for m ≤ y ≤ x x m 1 ρν for y ≥ x.
Starting as previously, we get that

2 (h -µ(h)) 2 Φ ≥ sup g∈G [x,∞) ((h -µ(h)) 2 |g|dµ ≥ x m 1 ρ ν -µ(h) 2 1 I [x,∞) Φ .
Then, since x > m and h ≤

x m 1 ρν , µ(h) ≤ µ((m, ∞)) x m 1 ρ ν ≤ 1 2 x m 1 ρ ν .
Therefore,

x m

1 ρν -µ(h) ≥ 1 2 x m 1 ρν .
Applying the Orlicz-Sobolev inequality to this special function h, we get

1 4 x m 1 ρ ν 2 1 I [x,∞) Φ ≤ 2 (h -µ(h)) 2 Φ ≤ 2C Φ h ′ 2 dν = 2C Φ x m 1 ρ ν .
This gives for any x > m,

1 I [x,∞) Φ x m 1 ρ ν ≤ 8C Φ .
The same bound holds for x < m and the result follows by definition of B + (Φ) and B -(Φ).

The explicit criterium in dimension 1 leads to the following result.

Proposition 3. Let Φ be an Young function and fix k ∈ (0, +∞) such that µ(f ) 2 Φ ≤ k f 2 Φ , for any function f with f 2 ∈ L Φ (µ). Let V : R → R be a C 1 function such that dµ(x) = e -V (x) dx is a probability measure. Furthermore assume that (i) there exists a constant A > 0 such that for |x| ≥ A, V is C 2 and sign(x)V ′ (x) > 0, (ii) lim |x|→∞

V ′′ (x) V ′ (x) 2 = 0, (iii) lim inf |x|→∞ V ′ (x)e -V (x) Φ -1 (V ′ (x)e V (x) ) > 0.
Then there exists a constant C Φ (that may depend on k) such that for every smooth function f : R → R, one has

(f -µ(f )) 2 Φ ≤ C Φ f ′ 2 dµ.
Proof. The proof is similar to [ABC + 00, Theorem 6.4.3 (Chapter 6)]. Let m be a median of µ. Under assumptions (i) and (ii), when x tends to infinity, one has (see e.g. [ABC + 00, Chapter 6])

x m e V (t) dt ∼ e V (x) V ′ (x) and

∞ x e -V (t) dt ∼ e -V (x) V ′ (x) .
Thus, for x > m,

1 I [x,∞) Φ x m e V (t) dt = 1 Φ -1 (1/µ([x, ∞))) x m e V (t) dt ∼ 1 V ′ (x)e -V (x) Φ -1 (V ′ (x)e V (x) )
.

By hypothesis (iii) this quantity is bounded on

[A ′ , ∞) for some A ′ ≥ m. Since it is continuous on [m, A ′ ],
it is bounded on (m, ∞). It follows that B + (Φ) and B -(Φ), (defined in Theorem 1), are bounded. We conclude with Theorem 1.

In general the capacity can be difficult to compute. However it provides a nice interfacing tool to prove equivalences between inequalities. Indeed, a criterium involving capacity also holds for general Beckner-type inequalities as we will see now. The two general criterium will allows us to prove an equivalence between the Orlicz-Sobolev inequality and the Beckner-type inequalities. Our main motivation here is that the latter naturally tensorises. Thus, dimension free Orlicz Sobolev inequalities will follow from Becknertype inequality.

Combining Theorem 9 and Lemma 8 of [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF] we get the following:

Theorem 4 ( [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF]). Let T : [0, 1] → R + be non-decreasing and such that x → T (x)/x is non-increasing. Let µ and ν be two absolutely continuous measures on R n with µ(R n ) = 1. Let C T be the optimal constant such that for every smooth f : R n → R one has

sup p∈(1,2) f 2 dµ -( |f | p dµ) 2 p T (2 -p) ≤ C T |∇f | 2 dν.
(3)

Then, 1 6 B(T ) ≤ C T ≤ 20B(T ), where B(T ) is the smallest constant so that every Borel set A ⊂ R n with µ(A) < 1 2 satisfies µ(A) T 1/ log(1 + 1 µ(A) ) ≤ B(T )Cap ν (A, µ).
Now, using the previous two theorems, one can see that the Orlicz-Sobolev inequality (O-S) is equivalent, up to universal constant, to the general Beckner-type inequality (3).

Corollary 5. Let µ and ν be two absolutely continuous measures on R n with µ(R n ) = 1. Let T : [0, 1] → R + be non-decreasing and such that x → T (x)/x is non-increasing. Denote by C T the optimal constant such that for every smooth f : R n → R one has

sup p∈(1,2) f 2 dµ -( |f | p dµ) 2 p T (2 -p) ≤ C T |∇f | 2 dν.
Let Φ be a Young function and let k ∈ (0, +∞) be such that for any function

f with f 2 ∈ L Φ (µ), µ(f ) 2 Φ ≤ k f 2 Φ .
Let C Φ the optimal constant such that for every smooth f : R n → R one has

(f -µ(f )) 2 Φ ≤ C Φ |∇f | 2 dν.
Finally, assume that there exists two positive constant c 1 and c 2 such that

c 1 xT 1 log(1 + x) ≤ Φ -1 (x) ≤ c 2 xT 1 log(1 + x) ∀x > 2.
Then,

c 1 48(1 + k) C Φ ≤ C T ≤ 160c 2 C Φ .
Proof. The last assumption on T and Φ -1 is equivalent to

1 c 2 y T 1/ log(1 + 1 y ) ≤ 1 Φ -1 (1/y) ≤ 1 c 1 y T 1/ log(1 + 1 y ) ∀y ∈ (0, 1 2 ). Since 1 I A Φ = 1 Φ -1 (1/µ(A)) , it follows that 1 c 2 B(T ) ≤ B(Φ) ≤ 1 c 1 B(T )
, where B(Φ) and B(T ) are defined in Theorem 1 and 4 respectively. The result follows from Theorem 1 and 4.

Example: T β (x) = |x| β

An important example is given by T β (x) = |x| β with β ∈ [0, 1]. This correspond to the Lata la and Oleszkiewicz inequality (in short L-O inequality) [START_REF] Lata | Between Sobolev and Poincaré. in geometric aspects of Functional Analysis[END_REF].

Consider the Young function Φ

β (x) = |x|[log(1 + |x|)] β with β ∈ [0, 1]. Then, we claim that y [log(1 + y)] β ≤ Φ -1 β (y) ≤ 2 y [log(1 + y)] β ∀y > 2. (4) Indeed, Φ β ( x [log(1 + x)] β ) = x [log(1 + x(log(1 + x)) -β )] β [log(1 + x)] β ∀x ≥ 0. Note that for x ≥ e -1, 1 + x(log(1 + x)) -β ≤ 1 + x. This leads to Φ β ( x [log(1+x)] β ) ≤ x for x > 2.
The first inequality in (4) follows.

On the other hand, it is not difficult to check that for any γ ∈ [0, 1], any x ≥ e -1,

1 + x(log(1 + x)) -β ≥ 1 + x [log(1 + x)] β ≥ e(1 -γ) β β (1 + x) γ . It follows for γ = 1 -(β/e) that Φ β ( x [log(1+x)] β ) ≥ γ β x ≥ e-1 e
x. Thus, for any y ≥ (e -1) 2 /e ≃ 1.09,

Φ -1 β (y) ≤ e e -1 y log(1 + ey e-1 ) β ≤ e e -1 y [log(1 + y)] β .
The result follows.

We are in position to prove a family of Orlicz-Sobolev inequalities.

Corollary 6. Let α ∈ [1, 2], β = 2(1 -1 α ) ∈ [0, 1] and Φ β (x) = |x|[log(1 + |x|)] β . Then, for any integer n, the probability measure on R n , dµ n α (x) = Z -n α exp{-n i=1 |x i | α }dx satisfies for any smooth function f : R n → R, (f -µ n α (f )) 2 Φ β ≤ C |∇f | 2 dµ n α (5)
for some universal constant C independent of n and α.

Proof. Fix an integer n, α ∈ [1, 2], the corresponding β and let

T β (x) = |x| β .
It is proved in [START_REF] Lata | Between Sobolev and Poincaré. in geometric aspects of Functional Analysis[END_REF] that the measure dµ n α on R n satisfies the general Beckner type inequality (3) with T = T β and constant C(T β ) independent of n and α (for the uniformity in α, see [BCR05b, section 7]). Then the result follows by our previous claim (inequality (4)) on Φ -1 β and Corollary 5 (it is easy to check that µ

α (f ) 2 Φ β ≤ e f 2 Φ β from Remark 45).
Remark 7. The family of inequalities in Corollary 6 is an interpolation family between Poincaré, for Φ(x) = |x|, and the logarithmic Sobolev inequality, for Φ(x) = |x| log(1 + |x|) (see [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]).

Remark 8. To prove that inequality (5) holds in dimension 1, we could have used Proposition 3 together with (4). Moreover, given β ∈ [0, 1], Proposition 3 insures that (5) holds for any α ≥ α(β) where β = 2(1 -1 α(β) ) and does not hold for α < α(β).

L-O inequality for Gibbs measures

The following result provides a precise asymptotic of the coefficient in L-O inequality as well as plays a vital role in a construction of examples nonproduct measures satisfying this inequality.

Theorem 9. (i) Let p ∈ [1, 2]. Then, f 2 2 -f 2 p ≤ (p -1) f -µ(f ) 2 2 -f -µ(f ) 2 p + (2 -p) f -µ(f ) 2 2 .
Hence, if with some C ∈ (0, ∞) and β ∈ (0, 1)

f -µ(f ) 2 2 -f -µ(f ) 2 p ≤ C(2 -p) β ∇f 2 2 ,
and for some M ∈ (0, ∞)

M f -µ(f ) 2 2 ≤ ∇f 2 2 , then f 2 2 -f 2 p ≤ (p -1)C(2 -p) β + (2 -p)M ∇f 2 2 . (ii) (Mild Perturbation Lemma) Suppose ν satisfies the following L-O in- equality f 2 L 2 (ν) -f 2 Lp(ν) ≤ C(2 -p) β ∇f 2 L 2 (ν)
and let dµ = ρdν with δU ≡ sup(log ρ) -inf(log ρ) < ∞. Then

f 2 L 2 (µ) -f 2 Lp(µ) ≤ e δU C(2 -p) β ∇f 2 L 2 (µ) . Proof. ([Wan05]) (i)
The first inequality follows from the following convexity property of the

L p (µ) norm for p ∈ [1, 2] f 2 Lp(µ) ≥ µ(f ) 2 + (p -1) f -µ(f ) 2 Lp(µ) ,
see e.g. [START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF]. (sese also [START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF], [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF]Lemma 8]). This together with spectral gap inequality and L-O inequality for f -µ(f ) imply the L-O inequality for f with the improved coefficient.

(ii) We note first that for p ∈ (1, 2), with A ≡ 2-p 2 p 2 p 2-p , we have

f 2 L 2 (µ) -f 2 Lp(µ) = inf t>0 µ f 2 -t|f | p + At 2 2-p .
Since by Young inequality

z p t = 2 p p 2 z p • 2 p -p 2 t ≤ z 2 + 2 -p 2 2 p -p 2-p t 2 2-p = z 2 + At 2 2-p the integrand in the above is nonnegative. Hence, if dµ = ρdν, we get inf t>0 µ f 2 -t|f | p + At p 2-p ≤ sup(ρ) inf t>0 ν f 2 -t|f | p + At p 2-p ≤ sup(ρ)C(2 -p) β ν |∇f | 2 ≤ sup(ρ) inf(ρ) C(2 -p) β µ |∇f | 2 .
Starting from the product measure satisfying L-O inequality, using the Mild Perturbation Lemma we see that one can construct a local specification for which each finite volume conditional expectation E Λ (defined as a mild perturbation of the product measure), satisfies this inequality. This together with the suitable conditioning expansion based on the following step

µ(f 2 ) -(µ(f p )) 2 p = µ E Λ (f 2 ) -(E Λ (f p )) 2 p +µ E Λ (f p ) 1 p 2 -µ E Λ (f p ) 1 p p 2 p
under suitable mixing condition (the same as the one used in the case of log-Sobolev inequality), allows to prove the following result (see [START_REF] Guionnet | Lectures on logarithmic sobolev inequalities[END_REF] for details).

Theorem 10. Suppose a local specification is mixing and satisfies L-O inequality with the index β ∈ (0, 1). Then the corresponding Gibbs measure µ satisfies

µ f 2 -µ (f p ) 2 p ≤ C(2 -p) β µ |∇f | 2 with a constant C ∈ (0, ∞) independent of a function f .

O-S inequality and Decay to equilibrium

In this section we prove that the semi-group naturally associated to a measure µ satisfying an Orlicz-Sobolev inequality decays exponentially fast in L Φ (µ). This result is new and strengthens a well know fact for the Poincaré inequality and decay in L 2 (µ). We start with a modified Orlicz-Sobolev inequality. As before, throughout below we consider the following setup. Let dµ(x) = e V (x) dx be a probability measure on R n associated to the differentiable potential V . Let L = ∆ -∇V • ∇ be a symmetric in L 2 (µ) diffusion generator and (P t ) t≥0 its associated semi-group.

Theorem 11. Consider a Young function Φ satisfying xΦ ′ (x) ≤ BΦ(x) for every x and some constant B. Then, the following are equivalent (i) There exists a constant C Φ such that for any smooth function f : R n → R,

f -µ(f ) 2 Φ ≤ C Φ |∇f | 2 Φ ′′ f -µ(f ) f -µ(f ) Φ dµ. (6) 
(ii) There exists a constant M ∈ (0, ∞) such that for any smooth function f : R n → R, for any t ≥ 0,

P t f -µ(f ) 2 Φ ≤ e -M t f -µ(f ) 2 Φ .
Furthermore, (i) implies (ii) with M = 2/(BC Φ ), and (ii) implies (i) with

C Φ = 2/M .
Remark 12. Note that if Φ satisfies the ∆ 2 -condition Φ(2x) ≤ CΦ(x) for every x, then

xΦ ′ (x) ≤ 2x x Φ ′ (t)dt = Φ(2x) -Φ(x) ≤ (C -1)Φ(x).
Thus the condition on the Young function Φ is satisfied as soon as the ∆ 2condition is satisfied.

Proof. Without loss of generality for a smooth non zero function f , we can assume that µ(f

) = 0. Let N (t) = P t f Φ .
By definition of the Luxembourg norm, we have Φ Ptf N (t) dµ = 1. A differentiation and the chain rule formula Φ ′ (g)Lgdµ = -Φ ′′ (g)|∇g| 2 dµ give

N ′ (t) N (t) Φ ′ P t f N (t) P t f N (t) dµ = LP t f N (t) Φ ′ P t f N (t) dµ = - 1 N 2 (t) Φ ′′ P t f N (t) |∇P t f | 2 dµ.
We will first show that (i) ⇒ (ii). Since Φ is a Young function, it is convex and for any x, xΦ ′ (x) ≥ 0. It follows at first that N ′ (t) ≤ 0. Furthermore, by hypothesis xΦ ′ (x) ≤ BΦ(x). Thus, using the property that Φ Ptf N (t) dµ = 1, we get by (i) that

B N ′ (t) N (t) ≤ - 1 N 2 (t) Φ ′′ P t f N (t) |∇P t f | 2 dµ ≤ - 1 N 2 (t) 1 C Φ N 2 (t) = - 1 C Φ ,
which gives the expected result. Now we show that (ii)

⇒ (i). Let u(t) = e M t P t f -µ(f ) 2 Φ . Point (ii) exactly means that u ′ (t) ≤ 0. Hence M e M t N 2 (t) + 2e M t N ′ (t)N (t) ≤ 0 which leads to M N 2 (t) ≤ -2N ′ (t)N (t) = 2 Φ ′′ Ptf N (t) |∇P t f | 2 dµ Φ ′ Ptf N (t) Ptf N (t) dµ ≤ 2 Φ ′′ P t f N (t) |∇P t f | 2 dµ.
In the last inequality we used the fact that, since Φ is convex and Φ(0) = 0, for every x, xΦ ′ (x) ≥ Φ(x) and Φ Ptf N (t) dµ = 1. The latter inequality applied at t = 0 gives the expected result. This ends the proof.

Remark 13. When Φ(x) = x 2 , f 2 Φ = f 2 2 and Φ ′′ (x) = 2.
Thus Theorem 11 recover the well known equivalence between the exponential decay of the semi-group in L 2 -norm and the Poincaré inequality.

The behavior of Φ ′′ seems to play an important role. In particular, under additional strict positivity assumption we prove the following result involving the Orlicz-Sobolev inequalities.

Corollary 14. Consider a Young function Φ and set Φ 2 (x) = Φ(x 2 ). Assume that xΦ ′ 2 (x) ≤ BΦ 2 (x) for every x and some constant B, and Φ ′′ 2 ≥ ℓ > 0. Assume that there exists a constant C Φ such that for any smooth function f : R n → R,

(f -µ(f )) 2 Φ ≤ C Φ |∇f | 2 dµ.
Then, for any smooth function f , for any t ≥ 0,

(P t f -µ(f )) 2 Φ ≤ e -M t (f -µ(f )) 2 Φ . with M = 2ℓ BC Φ Proof.
It is enough to check that for any function f , we have

f -µ(f ) 2 Φ 2 = (f -µ(f )) 2 Φ ≤ C Φ |∇f | 2 dµ ≤ C Φ ℓ |∇f | 2 Φ ′′ 2 f -µ(f ) f -µ(f ) Φ dµ,
and to apply Theorem 11.

In Corollary 6 we proved that a family of Orlicz-Sobolev inequalities hold for Φ β (x) = |x|[log(1 + |x|)] β , β ∈ [0, 1]. Actually we cannot apply the previous result to this family of norms, simply because Φ ′′ β,2 (0) = 0 and thus there is no bound of the type Φ ′′ β,2 ≥ ℓ > 0 (here Φ β,2 (x) = x 2 log(1 + x 2 ) β ). However we can get rid of this problem by means of equivalence of norms.

Proposition 15. Let α ∈ [1, 2], β = 2(1 -1 α ) ∈ [0, 1] and for γ ≥ 1, Φ γ β (x) = |x| log(γ + |x|) β . Let dµ n α (x) = Z -n α exp{-n i=1 |x i | α }dx be a probability measure on R n , L = ∆ + ∇V • ∇ with V = n i=1 |x i | α be a symmetric (in L 2 (µ α )
) diffusion generator and (P t ) t≥0 its associated semigroup. Let C be the coefficient appearing in the Orlicz-Sobolev inequality of Corollary 6.

Then, for any γ > 1, any β ∈ [0, 1], any integer n, any function f and any t ≥ 0,

(P t f -µ n α (f )) 2 Φ γ β ≤ e -c 1 t (f -µ n α (f )) 2 Φ γ β , with c 1 = (log γ) β 4 β C(1+e(log γ) β )
. While for any β ∈ [0, 1], any integer n, any function f and any t ≥ 0,

(P t f -µ n α (f )) 2 Φ 1 β ≤    (f -µ n α (f )) 2 Φ 1 β for t ≤ 4 β Ce t 4 β C e -t 4 β Ce (f -µ n α (f )) 2 Φ 1 β for t ≥ 4 β Ce.
Proof. Fix γ > 1, an integer n and β ∈ [0, 1]. Then note that from the equivalence of Orlicz norms corresponding for different γ, (see point (i) of Lemma 16 below (with γ = 1)), and Corollary 6, for any sufficiently smooth function f , one has

(f -µ n α (f )) 2 Φ γ β ≤ 1 + e(log γ) β (f -µ n α (f )) 2 Φ 1 β ≤ C 1 + e(log γ) β |∇f | 2 dµ n α .
On the other hand, by point (ii) and (iii) of Lemma 16 below we can apply Corollary 14 with B = 4 1+β and ℓ = 2(log γ) β . It follows that

(P t f -µ n α (f )) 2 Φ γ β ≤ exp - (log γ) β 4 β C(1 + e(log γ) β ) t (f -µ n α (f )) 2 Φ γ β
which gives the first part of the result.

For the second part, we use twice the latter inequality together with point (i) of Lemma 16 below to get for any γ ≥ 1,

(P t f -µ n α (f )) 2 Φ 1 β ≤ (P t f -µ n α (f )) 2 Φ γ β ≤ e -c 1 t (f -µ n α (f )) 2 Φ γ β ≤ 1 + e(log γ) β e -c 1 t (f -µ n α (f )) 2 Φ 1 β with c 1 = (log γ) β 4 β C(1+e(log γ) β )
. The result follows from an optimization over γ ≥ 1 and the decrease of N (t) proved before.

Lemma 16. For β ∈ [0, 1] and γ ≥ 1, let Φ γ β (x) = |x| log(γ + |x|) β and Φ γ β,2 (x) = Φ γ β (x 2 ). Then, (i) for any 1 ≤ γ ≤ γ ′ , • Φ γ β,2 ≤ • Φ γ ′ β,2 ≤ C γ,γ ′ • Φ γ β,2 . with C γ,γ ′ ≡ 1 + (1 + (e -γ) + ) log γ ′ γ β 1 2 , where (x) + := max(x, 0). (ii) For any x, Φ γ β,2 ′′ (x) ≥ 2(log γ) β . (iii) For any x, Φ γ β,2 (2x) ≤ 4 1+β Φ γ β,2 (x) 
. Proof. First, (i) follows from Lemma 44, provided in the Appendix, since for any 1 ≤ γ ≤ γ ′ one has

Φ γ ′ β (x) = |x| log γ ′ γ + log γ + γ γ ′ |x| β ≤ log γ ′ γ β |x| + Φ γ β (x).
We also made use of the bound (19) for Φ = Φ γ β , τ = 1 and M = (e -γ) + . Now, we may easily check that Φ γ β,2 ′′ is non-decreasing and thus greater than Φ γ β,2 ′′ (0) = 2(log γ) β . This gives (ii).

Using γ + 4x 2 ≤ (γ + x 2 ) 4 (recall that γ ≥ 1), we get

Φ γ β,2 (2x) = 4x 2 (log(γ + 4x 2 )) β ≤ 4x 2 (log(γ + x 2 ) 4 ) β = 4 1+β Φ γ β,2 (x).
The proof is complete.

Monotone Functionals

In Proposition 15 the semi-group is not decaying exponentially to equilibrium in particular for Φ 1 1 . We shall see in this section that a modification (a time-averaging) of the functional will satisfies an exponential decay.

The following inequality was shown in [BG99, Proposition 4.1]

2 3 (f -µ 2 (f )) 2 Φ 1 1 ≤ sup a∈R Ent µ 2 ((f + a) 2 ) ≤ 5 2 (f -µ 2 (f )) 2 Φ 1 1 .
Thus, the previous result gives that for t ≥ 4Ce,

Ent µ 2 ((P t f ) 2 ) ≤ 15t 16C e -t 4eC sup a∈R Ent µ 2 ((f + a) 2 ),
where C is the logarithmic Sobolev constant of µ 2 . Now, using the Rothaus inequality (see [START_REF] Rothaus | Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities[END_REF])

sup a∈R Ent µ 2 ((f + a) 2 ) ≤ Ent µ 2 (f -µ 2 (f )) 2 + 2µ 2 (f -µ 2 (f )) 2 , we have Ent µ 2 ((P t f ) 2 ) ≤ 15t 16C e -t 4eC Ent µ 2 (f -µ 2 (f )) 2 + 2µ 2 (f -µ 2 (f )) 2
(7) which can be improved for f ≥ 0 using Kulback's inequality Var µ 2 (f ) ≤ Ent µ 2 (f 2 ). As far as we know the bound (7) was not known. Indeed, the logarithmic Sobolev inequality is usually used in case of diffusion semi-group (see e.g. [ABC + 00]) to prove exponential decay of entropy, i.e. that for any t, Ent µ (P t f ) ≤ e -t C Ent µ (f ).

On the other hand there does not exist any constant k < ∞ such that for any function

f , sup a∈R Ent µ ((f + a) 2 ) ≤ kEnt µ (f 2 ), or equivalently (f -µ(f )) 2 Φ 1 1 ≤ kEnt µ (f 2
). Indeed, on the space {0, 1} with the symmetric Bernoulli measure, consider the function f (0) = -1 and f (1) = 1 for which (f -µ(f )) 2 ≡ 1 I and Ent µ (f 2 ) = 0.

Thus we will consider the functional

A(f ) ≡ Ent µ 2 (f 2 ) + µ 2 (f -µ 2 (f )) 2 .
Then the bound (7), for all t > T with some T ∈ (0, ∞), can be written as follows

A(P t f ) ≤ e -mt A(f )
with some m ∈ (0, ∞). With ω ∈ (0, m), define

A ω (f ) ≡ sup s∈[0,T ] A(P s f )e ωs
and for ω ∈ [0, m] define

B ω (f ) ≡ 1 T T 0 A(P s f )e ωs ds.
Proposition 17. Suppose, with some m, T ∈ (0, ∞), for all t ≥ T , one has

A(P t f ) ≤ e -mt A(f ).
Then the functionals A ω and B ω are exponentially decaying, that is for any

t ≥ 0 A ω (P t f ) ≤ e -ωt A ω (f ) and B ω (P t f ) ≤ e -ωt B ω (f ).
Proof. If t ≥ T , the statements are clear. For A ω and 0 ≤ t ≤ T note that To complete the proof it is sufficient to note that In particular we have thus shown that if an (a priori non-convex) functional decays monotonously exponentially fast for large times, then by averaging over "a characteristic time of relaxation" we can get a globally monotone functional.

A ω (P t f ) = sup

Orlicz-Sobolev and Φ-Sobolev inequalities

In this section we provide a link between the Orlicz-Sobolev inequality and the Φ-Entropy bound introduced by Chafaï [Cha04] and the additive Φ-Sobolev inequality studied in [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF].

Given a closed interval I of R and a convex function Φ : I → R, a probability measure µ on R n satisfies a Φ-Sobolev inequality if there exists a constant C Φ such that for every smooth function f : R n → I,

Ent Φ µ (f ) ≤ C Φ Φ ′′ (f )|∇f | 2 dµ (Ent Φ -S)
where

Ent Φ µ (f ) := Φ(f )dµ -Φ f dµ
In [START_REF] Chafaï | Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities[END_REF], it is proved that such an inequality is equivalent to the exponential decay of Ent Φ µ (P t f ). On the other hand, given a non-decreasing function ϕ : (0, +∞) → R continuously differentiable, we define Φ(x) = xϕ(x) and we assume that Φ can be extended to 0 and is convex. A probability measure µ on R n satisfies an additive Φ-Sobolev inequality if there exists a constant C Φ such that for every smooth function f : R n → R,

Φ(f 2 )dµ -Φ f 2 dµ ≤ C Φ |∇f | 2 dµ. (Φ-S)
We start with the following general fact.

Proposition 18. Let Φ(x) = xϕ(x) be a C 2 Young function, with ϕ : (0, +∞) → R non-decreasing. Assume that the probability measure µ on R n satisfies for any smooth function f ,

Φ(f 2 )dµ -Φ f 2 dµ ≤ C Φ |∇f | 2 dµ,
for some constant C Φ independent of f . Then, for any smooth function g, for any a > 0,

Φ ′′ (a)Var µ (g) ≤ C Φ 2a |∇g| 2 dµ.
In particular, if Φ ′′ = 0, µ satisfies a Poincaré inequality with constant

C p ≤ inf a>0 C Φ 2aΦ ′′ (a)
. The previous result states that the Poincaré inequality holds as far as the additive Φ-Sobolev inequality holds and Φ ′′ = 0.

Proof. Given a smooth non negative function f on R n , the additive Φ-Sobolev inequality applied to √ f leads to

Φ(f )dµ -Φ f dµ ≤ C Φ 4 |∇f | 2 f dµ.
Now, given a smooth bounded function g with µ(g) = 0 and a > 0, a+εg ≥ 0 for ε small enough. Then the previous inequality applied to a + εg and a Taylor expansion at the second order for Φ gives the result when ε tends to 0.

Remark 19. In [Cha04, section 1.2], the same result is proved for the Φ-Entropy bound (Ent Φ -S).

On the other hand, Φ ′′ ≡ 0 is equivalent to ϕ(x) = a -(b/x), (a, b) ∈ R × R + . In that case the additive Φ-Sobolev inequality is trivial. Now we give a link between the modified Orlicz-Sobolev inequality (6) and the Φ-Entropy bound (Ent Φ -S).

Proposition 20. Let Φ be a Young function. Assume that the probability measure µ on R n satisfies a Φ-Entropy bound (Ent Φ -S) with constant C Φ . Then, it satisfies a modified Orlicz-Sobolev inequality (6) with the same constant C Φ .

Proof. For every smooth function f : R n → R apply the Φ-Entropy bound

(Ent Φ -S) to (f -µ(f ))/ f -µ(f ) Φ to get Φ f -µ(f ) f -µ(f ) Φ dµ -Φ f -µ(f ) f -µ(f ) Φ dµ ≤ C Φ Φ ′′ f -µ(f ) f -µ(f ) Φ |∇f | 2 f -µ(f ) 2 Φ dµ.
Since Φ(0) = 0 and Φ f -µ(f ) f -µ(f ) Φ dµ = 1, we get the expected result.

Remark 21. As a consequence of this result and using Theorem 11, we get that if Ent Φ µ (P t f ) decays exponentially fast in time, then P t f -µ(f ) Φ decays exponentially fast.

Next we give a similar result involving the additive Φ-Sobolev inequality (Φ-S) and the Orlicz-Sobolev inequality (O-S). Note that for a Young function Φ, the assumption Φ(x)/x ր ∞ when x goes to infinity and Φ ′ (0) > 0 insure that the equation xΦ ′ (x) = 1 has a unique solution, see [RR91, section 2.4].

Proposition 22. Let Φ be a C 2 Young function with Φ ′ (0) > 0. Assume that Φ(x) = xϕ(x) for a non-decreasing function ϕ defined on (0, ∞) and such that lim +∞ ϕ = +∞. Denote by k 0 be the unique solution of k 0 Φ ′ (k 0 ) = 1. Let µ be a probability measure on R n . Assume that there exists a constant C Φ such that for every smooth function f : R n → R,

Φ(f 2 )dµ -Φ f 2 dµ ≤ C Φ |∇f | 2 dµ.
Then, for any smooth function f : R n → R, for any a > 0,

(f -µ(f )) 2 Φ ≤ C Φ k 0 1 2aΦ ′′ (a) + 1 Φ ′ (0) |∇f | 2 dµ.
Remark 23. Note that since lim x→+∞ ϕ = +∞, there exists a > 0 such that Φ ′′ (a) > 0.

On the other hand, it is easy to get rid of the assumption Φ ′ (0) > 0. Indeed, assume that Φ ′ (0) = 0 and defined Φ λ (x) = Φ(x) + λ|x| for λ > 0. Then, on one hand Φ ′ λ (0) = λ > 0. On the other hand, if an additive Φ-Sobolev inequality holds, then a Φ λ -Sobolev inequality holds, with the same constant. So the previous Proposition applies to Φ λ : for any smooth function f , for any a > 0,

(f -µ(f )) 2 Φ λ ≤ C Φ k 0 (λ) 1 2aΦ ′′ (a) + 1 λ |∇f | 2 dµ. Since Φ ≤ Φ λ , (f -µ(f )) 2 Φ ≤ (f -µ(f )) 2 Φ λ
. This leads to

(f -µ(f )) 2 Φ ≤ C Φ k 0 (λ) 1 2aΦ ′′ (a) + 1 λ |∇f | 2 dµ,
for any λ > 0, any a > 0 and any function f . Note that k 0 (λ) → 0 when λ tends to ∞.

Proof. Let Φ(x) := Φ(k 0 x), so its complementary function is ( Φ) * (x) = Φ * (x/k 0 ) where Φ * is the complementary function of Φ. Now ( Φ, ( Φ) * ) is a normalized complementary pair of Young functions. Following [START_REF] Rao | Theory of Orlicz spaces[END_REF] define the following modified Luxembourg norm

||f || Φ = inf{λ; Φ f λ dµ ≤ Φ(1)}.
Note that ||1 I|| Φ = 1. By [RR91, Proposition 1 in section 3.3], we know that

|g|dµ ≤ ||g|| Φ ||1 I|| ( Φ) * = ||g|| Φ ∀g ∈ L Φ (µ). ( 8 
)
It is important to introduce this modified norm in order to have the latter inequality with a factor 1 in front of the r.h.s and not 2 as in the standard inequality (17). Now let f : R n → R be a smooth function. From the additive φ-Sobolev inequality applied to

√ k 0 (f -µ(f ))/||(f -µ(f )) 2 || 1/2 Φ , we get Φ (f -µ(f )) 2 ||(f -µ(f )) 2 || Φ dµ -Φ (f -µ(f )) 2 ||(f -µ(f )) 2 || Φ dµ ≤ C Φ k 0 |∇f | 2 ||(f -µ(f )) 2 || Φ dµ. Since Φ (f -µ(f )) 2 ||(f -µ(f )) 2 || Φ dµ = Φ(1), it follows that Φ(1) -Φ gdµ N Φ (g) ≤ C Φ k 0 |∇g| 2 ||g|| Φ dµ,
where g := (f -µ(f )) 2 . A Taylor expansion of Φ up to the second order, between 1 and

gdµ ||g|| Φ
, and convexity of Φ, give that

Φ(1) -Φ gdµ ||g|| Φ = 1 - gdµ ||g|| Φ Φ ′ gdµ ||g|| Φ + 1 2 1 - gdµ ||g|| Φ 2 Φ ′′ (θ) ≥ 1 - gdµ ||g|| Φ Φ ′ gdµ ||g|| Φ ≥ 1 - gdµ ||g|| Φ Φ ′ (0),
where θ ∈ (0, 1) (recall that from (8),

|g|dµ ||g|| Φ ≤ 1). This leads to ||(f -µ(f )) 2 || Φ ≤ C Φ k 0 Φ ′ (0) |∇f | 2 dµ + Var µ (f ).
Since lim x→+∞ ϕ(x) = +∞, there exists a > 0 such that Φ ′′ (a) > 0. Choose such an a. ¿From Proposition 18, µ satisfies a Poincaré inequality with constant less than C Φ /(2aΦ ′′ (a)). On the other hand

||(f -µ(f )) 2 || Φ = k 0 (f -µ(f )) 2 Φ/ Φ(1)
and Φ ′ (0) = k 0 Φ ′ (0). Thus, for any smooth function f : R n → R,

(f -µ(f )) 2 Φ/ Φ(1) ≤ C Φ k 0 1 2aΦ ′′ (a) + 1 Φ ′ (0) |∇f | 2 dµ.
The result follows from the fact that (f

-µ(f )) 2 Φ ≤ (f -µ(f )) 2 Φ/ Φ(1)
since Φ ≤ Φ/ Φ(1) (recall that Φ(1) + ( Φ) * (1) = 1). For all a > 0 such that Φ ′′ (a) = 0, the result is trivial. This ends the proof.

Proposition 22 allows us to give a criterium for the Φ-Sobolev inequality to hold. This completes [BCR05b, Theorem 26].

Theorem 24. Let Φ(x) = xϕ(x) be a C 2 Young function with ϕ non decreasing, concave, with ϕ(0) > 0 and such that lim +∞ ϕ = +∞. Denote by k 0 the unique solution of k 0 Φ ′ (k 0 ) = 1. Assume that there exist constants γ, κ and such that for all x, y > 0 one has

xϕ ′ (x) ≤ γ and ϕ(xy) ≤ κ + ϕ(x) + ϕ(y),
and a constant λ ≥ 2 such that for every x ≥ 2λ, one has λϕ(x/ϕ(x)) ≥ ϕ(x).

Let µ be a probability measure on R n satisfying the Poincaré inequality with constant C P and C Φ the optimal constant such that for every smooth function f : R n → R one has

Φ(f 2 )dµ -Φ f 2 dµ ≤ C Φ |∇f | 2 dµ. (9) 
Then, for any a > 0,

k 0 aΦ ′′ (a)ϕ(0) 8λ(ϕ(0) + 2aΦ ′′ (a)) B(Φ) ≤ C Φ ≤ (18γC p + 24(1 + M ϕ(8) )) B(Φ)
where B(Φ) is the smallest constant so that for every

A ⊂ R n with µ(A) < 1 2 µ(A)ϕ 2 µ(A) ≤ B(Φ)Cap µ (A).
Proof. The upper bound on C Φ follows from [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF]Theorem 26].

Assume that the additive Φ-Sobolev inequality (9) holds. Then, by Proposition 22, for every smooth function f : R n → R, every a > 0,

(f -µ(f )) 2 Φ ≤ C Φ k 0 1 2aΦ ′′ (a) + 1 ϕ(0) |∇f | 2 dµ.
Then, by Theorem 1 we get,

1 8 B(Φ) ≤ C Φ k 0 1 2aΦ ′′ (a) + 1 ϕ(0) (10) 
where B(Φ) is the smallest constant so that for every

A ⊂ R n with µ(A) < 1 2 1 Φ -1 1 µ(A) = 1 I A Φ ≤ B(Φ)Cap µ (A).
By our assumption on ϕ,

Φ x ϕ(x) = x ϕ(x/ϕ(x)) ϕ(x)
≥ 1 λ x for all x ≥ 2λ. Thus, since λ ≥ 2 and ϕ is non-decreasing, for all y ≥ 2 Φ -1 (y) ≤ λy ϕ(λy) ≤ λ y ϕ(2y) .

It follows that B(Φ) ≤ λB(Φ). This together with (10) achieves the proof.

Φ-S and O-S Inequalities in Infinite Dimensions

It is not difficult to check that Φ(x) = |x| log(η + |x|) β , β ∈ (0, 1], η > 1,
satisfies the hypothesis of Theorem 24. Following a remark of [START_REF] Barthe | Interpolated inequalities between exponential and gaussian, orlicz hypercontarctivity and isoperimetry[END_REF] we note that

µ Φ(f 2 ) -Φ(µ(f 2 )) = inf t>0 µ Φ(f 2 ) -Φ(t) -Φ ′ (t)(µ(f 2 ) -t)
By convexity of Φ one has Φ(f 2 ) -Φ(t) -Φ ′ (t)(µ(f 2 ) -t) ≥ 0 which implies the following Mild Perturbation Property (MPP) for additive Φ-Sobolev inequality.

Proposition 25. Let dµ = ρdν with δU ≡ sup(log ρ) -inf(log ρ) < ∞ and assume that

Φ(f 2 )dν -Φ f 2 dν ≤ C |∇f | 2 dν. Then Φ(f 2 )dµ -Φ f 2 dµ ≤ Ce δU |∇f | 2 dµ.
The additive Φ-Sobolev inequality, with the Φ as described above, was in particular established for products of µ α measures with suitable α ∈ (1, 2). Using MPP one can construct a compatible family of finite dimensional expectations E Λ (with partially ordered indices Λ) for which additive Φ-Sobolev inequality also holds. By definition for the corresponding Gibbs measure µ(E Λ ) = µ and one has the following simple conditioning property

µ Φ(f 2 ) -Φ(µ(f 2 )) = µ E Λ Φ(f 2 ) -Φ E Λ (f 2 ) +µ Φ E Λ (f 2 ) -Φ µ E Λ (f 2 ) .
With these two facts in mind, under suitable mixing condition, one can follow closely the strategy originally invented for the proof of Logarithmic Sobolev Inequality (cf. [START_REF] Guionnet | Lectures on logarithmic sobolev inequalities[END_REF]) to proof the following result Theorem 26. Suppose a local specification is mixing and satisfies Φ-Sobolev inequality. Then the unique Gibbs measure µ satisfies

µ Φ(f 2 ) -Φ(µ(f 2 )) ≤ Cµ |∇f | 2
with a constant C independent of a function f . This provides a large family of nontrivial examples of (non-product) measures on infinite dimensional spaces satisfying additive Φ-Sobolev inequality.

We remark that by inserting into such the inequality a function f /||f || 2 and setting F (x) ≡ log(η +|x|)

β -log(η +1) β , we arrive at the following

F -Sobolev inequality,
Corollary 27.

f 2 F f 2 µ(f 2 ) dµ ≤ Cµ |∇f | 2 dµ (F-S)
for the Gibbs measure µ.

Finally we note that by the same arguments as the ones used to prove Proposition 22, we get the following Orlicz-Sobolev inequality for infinite dimensional Gibbs measures

Corollary 28. (f -µ(f )) 2 Φ ≤ cµ |∇f | 2 with a constant c independent of a function f .

Orlicz-Sobolev and Nash-type inequalities

In this section we prove that the Orlicz-Sobolev inequality is equivalent, up to some constants, to a Nash-type inequality. This give new results on the decay to equilibrium of the semi-group (see next section).

Theorem 29. Let Φ and Ψ(x) = x 2 ψ(|x|) be two N -functions with ψ : R + → R + increasing, satisfying ψ(0) = 0 and lim +∞ ψ = +∞. Assume that the probability measure µ on R n satisfies for any smooth function f :

R n → R (f -µ(f )) 2 Φ ≤ C Φ |∇f | 2 dµ.
Then, for any function f ,

Var µ (f )θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≤ 4C Φ |∇f | 2 dµ. ( 11 
)
where θ = Φ * -1 • Ψ • ψ -1 (here Φ * is the complementary pair of Φ; Φ * -1 and ψ -1 stand for the inverse function of Φ * and ψ respectively).

Remark 30. Note that by our assumption on ψ, ψ -1 is well defined on R + onto R + . Furthermore, in order to deal with explicit functions, one can easily see that under the assumption of the Theorem, Ψ(x)

≤ 1 ψ(1) (x + x 2 ) in such a way that Var µ (f )/ f -µ(f ) 2
Ψ ≥ c for some constant c (see Lemma 44). Thus one has only to consider the behavior of θ (or equivalently to Φ, Ψ and ψ) away from 0.

Remark 31. We will call the inequality

Var µ (f )θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≤ C |∇f | 2 dµ, a Nash-type inequality since for Φ(x) = |x| (d)/(d-2) , Ψ(x) = ψ(x) = x (and thus θ(x) = c d |x| 2 d for some constant c d ), it reads for any f with µ(f ) = 0 as f 1+ 2 d 2 ≤ C ′ ∇f 2 f 2 d 1 which is the standard Nash inequality ([Nas58]).
Proof. The proof is a generalization of [BCLSC95, Proposition 10.3], see also [START_REF] Roberto | A path method[END_REF]. Let f be a function with µ(f ) = 0 and f Ψ = 1 in such a way that Ψ(f )dµ = 1. Fix a parameter t > 0. Denote by Φ * the complementary function of Φ. From (17

), if (f, g) ∈ L Φ × L Φ * , |f g|dµ ≤ 2 f Φ f Φ * . Hence, Var µ (f ) = f 2 1 I |f |<t dµ + f 2 1 I |f |≥t dµ ≤ Ψ(f )ψ(|f |)1 I |f |<t dµ + 2 f 2 Φ 1 I |f |≥t Φ * ≤ ψ(t) Ψ(f )dµ + 2C Φ Φ * -1 (1/µ(|f | ≥ t)) |∇f | 2 dµ.
Now by Chebychev inequality (recall that Φ is an even function) we have

µ(|f | ≥ t) = µ(Ψ(f ) ≥ Ψ(t)) ≤ 1 Ψ(t) Ψ(f )dµ = 1 Ψ(t)
.

It follows that for any t > 0,

Var µ (f ) ≤ ψ(t) + 2C Φ Φ * -1 (Ψ(t)) |∇f | 2 dµ. Now choose t such that ψ(t) = 1 2 Var µ (f ). We get Φ * -1 (Ψ(t))Var µ (f ) ≤ 4C Φ |∇f | 2 dµ.
This gives the expected result by homogeneity.

Example 32. Let α ∈ [1, 2], β = 2(1 -1 α ) ∈ [0, 1] and define the probability measure on R n : dµ n α (x) = Z -n α exp{-n i=1 |x i | α }dx. For any γ ≥ 1 define Φ γ β (x) = |x|(log(γ + |x|) β and Φ γ β,2 (x) = Φ γ β (x 2
). From Corollary 6, point (i) of Lemma 16 and the general fact that f 2

Φ γ β = f 2 Φ γ β,2
, there exists a constant C (independent of n) such that for any smooth function f : R n → R,

(f -µ n α (f )) 2 Φ γ β ≤ C(1 + e(log γ) β ) |∇f | 2 dµ n α .
Using similar computation than in the proof of Inequality (4), it is not difficult to see that for any ε > 0, there exists a constant C ε (depending also on β and γ) such that for any x ≥ ε,

C -1 ε log(1 + x) β ≤ Φ γ β * -1 (x) ≤ C ε log(1 + x) β .
Now define for x ≥ 0 and δ ∈ (0, 1), ψ(x) = (log(1 + x)) δ . One can easily see that Ψ(x) := x 2 /ψ(x) is a N -function. We deduce that there exists C ′ ε > 0 such that for any x ≥ ε,

C ′ ε -1 x β δ ≤ θ(x) ≤ C ′ ε x β δ where θ := Φ γ β * -1 • Ψ • ψ -1 .
Theorem 29 implies that there exists a constant C ′ (independent on n and possibly depending on β, δ) such that for any function f : R n → R,

Var µ n α (f ) 1+ β δ ≤ C ′ f -µ n α (f ) 2β δ Ψ |∇f | 2 dµ n α .
If we choose instead ψ(x) = e (log(1+x)) δ -1 for δ ∈ (0, 1), Ψ(x) = x 2 / ψ(x) is again a N -function. It follows in this case that there exists a constant C ′′ ε > 0 such that for any x ≥ ε,

C ′ ε -1 log(1 + x) β δ ≤ θ(x) ≤ C ′ ε log(1 + x) β δ where θ := Φ γ β * -1 • Ψ • ψ -1 . In turn, Theorem 29 implies that Var µ n α (f ) log 1 + 1 2 Var µ n α (f ) f -µ n α (f ) 2 Ψ β δ ≤ C ′′ |∇f | 2 dµ n α
for some constant C ′′ independent on n and f .

It is natural to ask for the equivalence between the Orlicz-Sobolev inequality and the Nash-type inequality in Theorem 29. It seems (almost for us) to be difficult to prove directly this equivalence. However it is possible to achieve that with the help of an intermediate inequality as follows.

As a first step, we consider the following equivalent form of the Nash-type inequality.

Lemma 33. Let Ψ be a N -function and θ be an increasing function. Assume that there exist a constant λ > 0 such that for any x ≥ 0, θ(x/9) ≥ λθ(x). Let µ be a probability measure on R n .

Then, the following are equivalent: (i) There exists a constant C such that for any smooth function f : R n → R one has

Var µ (f )θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≤ C |∇f | 2 dµ.
(ii) There exists a constant C ′ such that for any smooth function f : R n → R one has

Var µ (f )θ 1 2 Var µ (f ) f 2 Ψ ≤ C ′ |∇f | 2 dµ. (12) 
Furthermore, (i) ⇒ (ii) with C ′ ≤ C/λ and (ii)

⇒ (i) with C ≤ C ′ .
Proof. The implication (ii) implies (i) is obvious. We will show that (i) ⇒ (ii). By (17), for any function f

, |f |dµ ≤ 2 f Ψ 1 I Ψ * = 2 Ψ * -1 (1) f Ψ . It follows that f -µ(f ) Ψ ≤ f Ψ + µ(|f |) Ψ = f Ψ + 1 Ψ -1 (1) µ(|f |) ≤ 1 + 2 Ψ -1 (1)Ψ * -1 (1) f Ψ ≤ 3 f Ψ .
In the last line we used the general bound x ≤ Ψ -1 (x)Ψ * -1 (x). Since θ is increasing and θ(x/9) ≥ λθ(x), it follows that

Var µ (f )θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≥ Var µ (f )θ 1 18
Var µ (f )

f 2 Ψ ≥ λVar µ (f )θ 1 2 Var µ (f ) f 2 Ψ .
Applying point (ii) completes the proof.

The second step is to link the Nash-type inequality in its simplified form to an inequality between measure and capacity.

Theorem 34. Let Φ and Ψ(x) = x 2 ψ(|x|) be two N -functions with ψ increasing, satisfying ψ(0) = 0 and lim +∞ ψ = +∞.

let θ = Φ * -1 • Ψ • ψ -1 . Assume that (i) x → Ψ • ψ -1 (x 2
) is a Young function, (ii) there exists a constant λ > 0 such that for any x ≥ 0, θ(x/16) ≥ λθ(x), (iii) there exists λ ′ ≥ 4 such that for all x ≥ 2 one has Φ * -1 (λ ′ x) ≤ λ ′ Φ * -1 (x)/4.

the probability measure µ on R n satisfies for any smooth function f :

R n → R Var µ (f )θ 1 2 Var µ (f ) f 2 Ψ ≤ C |∇f | 2 dµ,
for some constant C. Then, for any Borel set A such that µ(A) < 1 2 ,

1 Φ -1 (1/µ(A)) ≤ 8λ ′ C λ Cap µ (A).
Proof. Fix A ⊂ R n such that µ(A) < 1 2 , and let g : R n → R such that g ≥ 1 I A and µ(g = 0) ≥ 1 2 . Then for any k ∈ Z we define g k = (g -2 k ) + ∧ 2 k . Let H(x) := Ψ • ψ -1 (x 2 ). Note that √ xH -1 (x) = Ψ -1 (x). Thus, by (16) and we have

g k Ψ = g k 1 I g k =0 Ψ ≤ 2 g k 2 1 I g k =0 H = 2 g k 2 H -1 (1/µ(g k = 0)) . Note that µ(g k = 0) = µ(g ≤ 2 k ) ≥ µ(g = 0) ≥ 1 2 . Thus, µ(g k ) 2 = µ(g k 1 I {g k =0} ) 2 ≤ µ(g 2 k )µ(g k = 0) ≤ 1 2 µ(g 2 k )
which in turn implies g k 2 2 ≤ 2Var µ (g k ). This together with µ(

g k = 0) ≤ µ(g ≥ 2 k ) give g k 2 Ψ ≤ 8 Var µ (g k ) [H -1 (1/µ(g ≥ 2 k ))] 2 .
Applying the Nash-type inequality to g k and the monotonicity of θ, we get

Var µ (g k )θ 1 16 [H -1 (1/µ(g ≥ 2 k ))] 2 ≤ Var µ (g k ) 1 2 Var µ (g k ) g k 2 Ψ ≤ C |∇g| 2 dµ.
On the other hand,

Var µ (g k ) ≥ 1 2 g k 2 2 ≥ 2 2k-1 1 I {g k ≥2 k } 2 2 = 2 2k-1 µ(g k ≥ 2 k ) = 2 2k-1 µ(g ≥ 2 k+1
).

Let Ω k = {x : g(x) ≥ 2 k }, k ∈ Z. It follows from condition (ii) on θ that for any k ∈ Z

λ2 2k-1 µ(Ω k+1 )θ H -1 1 µ(Ω k ) 2 ≤ 2 2k-1 µ(Ω k+1 )θ 1 16 H -1 1 µ(Ω k ) 2 ≤ C |∇g| 2 dµ.
Now note that by definition of H and θ, θ H -1 (x) 2 = Φ * -1 (x). Hence,

λ2 2k-1 µ(Ω k+1 )Φ * -1 (1/µ(Ω k )) ≤ C |∇g| 2 dµ ∀k ∈ Z.
At this stage we may use [BCR05b, Lemma 23] we recall below with a k = µ(Ω k ) and F = Φ * -1 . Since Φ * is a Young function, the slope function x → Φ * (x)/x is non decreasing. This is equivalent to say that x → F (x)/x is non increasing. Thus the assumptions of Lemma 35 are satisfied, thanks to point (iii). It follows that

λ2 2k-1 µ(Ω k )Φ * -1 (1/µ(Ω k )) ≤ λ ′ C |∇g| 2 dµ ∀k ∈ Z.
Furthermore, by (13), Φ * -1 (x) ≥ x/Φ -1 (x). Hence,

λ2 2k-1 1 Φ -1 (1/µ(Ω k )) ≤ λ ′ C |∇g| 2 dµ ∀k ∈ Z.
Now take the largest k such that 2 2k ≤ 1. For that index, A ⊂ {g ≥ 2 k } = Ω k . By monotonicity it follows that (using 1 ≤ 2 2(k+1 ))

1 Φ -1 (1/µ(A)) ≤ 2 2(k+1) 1 Φ -1 (1/µ(Ω k )) ≤ 8λ ′ λ C |∇g| 2 dµ.
The result follows by definition of the capacity.

Lemma 35 ([BCR05b]

). Let F : [2, +∞) → [0, +∞) be a non-decreasing function such that x → F (x)/x is non increasing and there exists λ ′ ≥ 4 such that for all x ≥ 2 one has F (λ ′ x) ≤ λ ′ F (x)/4. Let (a k ) k∈Z be a nonincreasing (double-sided) sequence of numbers in [0, 1/2]. Assume that for all k ∈ Z with a k > 0 one has

2 2k a k+1 F (1/a k ) ≤ C,
then for all k ∈ Z with a k > 0 one has

2 2k a k F (1/a k ) ≤ λ ′ C.
We are now in position to give the following reciprocal of Theorem 29.

Corollary 36. Let Φ and Ψ(x) = x 2 ψ(|x|) be two N -functions with ψ increasing, satisfying ψ(0) = 0 and lim +∞ ψ = +∞.

let θ = Φ * -1 • Ψ • ψ -1 . Assume that (i) x → Ψ • ψ -1 (x 2
) is a Young function, (ii) there exists a constant λ > 0 such that for any x ≥ 0, θ(x/16) ≥ λθ(x), (iii) there exists λ ′ ≥ 4 such that for all x ≥ 2 one has Φ * -1 (λ ′ x) ≤ λ ′ Φ * -1 (x)/4. (iv) the probability measure µ on R n satisfies for any smooth function f :

R n → R Var µ (f )θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≤ C |∇f | 2 dµ,
for some constant C. Fix k ∈ (0, +∞) such that for any f with

f 2 ∈ L Φ (µ), µ(f ) 2 Φ ≤ k f 2 Φ .
Then, for any function f ,

(f -µ(f )) 2 Φ ≤ 64(1 + k)λ ′ λ 2 C |∇f | 2 dµ.
Proof. Apply Lemma 33, then Theorem 34, and finally Theorem 1 (together with Remark 2).

6 Decay to equilibrium and Nash-type inequality

Throughout this section we consider a probability measure dµ = e -V (x) dx on R n associated to a differentiable potential V (or a limit of such measures). Let L = ∆ -∇V •∇ be a symmetric in L 2 (µ) diffusion generator and (P t ) t≥0 its associated semi-group. In this setup we prove that Nash-type inequalities are equivalent to the decay to equilibrium of the semi-group in suitable Orlicz spaces associated to the measure µ.

Theorem 37. Let Φ and Ψ be two N -functions and θ an increasing function. Assume that the probability measure µ on R n satisfies, for any smooth function f : R n → R,

Var µ (f )θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≤ C |∇f | 2 dµ,
for some constant C. Then, for any t > 0,

Var µ (P t f ) ≤ m(t) f -µ(f ) 2
Ψ , where m : R + → R + is the solution of the differential equation

m ′ = - 2 C Φ θ m 2 on (0, ∞) such that m(0) = +∞, or equivalently m satisfies for any t ≥ 0, ∞ m(t) 1 xθ(x/2) dx = 2t C Φ . Proof. Let f be such that µ(f ) = 0 and f Ψ = 1. Set u(t) = Var µ (P t f ). A differentiation gives u ′ (t) = -2 |∇P t f | 2 dµ ≤ - 2 C Φ u(t)θ 1 2 u(t) P t f 2 Ψ .
Note that by convexity,

P t f Ψ ≤ f Ψ = 1. Since θ is increasing we get u ′ (t) ≤ - 2 C Φ u(t)θ u(t) 2 .
By integration this gives

u(0) u(t) dx xθ(x/2) ≥ 2 C Φ t. Now, since ∞ m(t) dx xθ(x/2) = 2 C Φ t,
we have that u ≤ m and the result follows by homogeneity.

Note that m is not explicit in general. However we can apply the Theorem to explicit examples.

Example 38. Let α ∈ [1, 2], β = 2(1 -1 α ) ∈ [0, 1]
and define the probability measure on R n : dµ n α (x) = Z -n α exp{-n i=1 |x i | α }dx. For any γ ≥ 1 define Φ γ β (x) = |x| log(γ +|x|) β . For x ≥ 0 and δ ∈ (0, 1), let also ψ(x) = log(1+x) δ and Ψ(x) := x 2 /ψ(x). We proved in Example 32 that the following Nashtype inequality holds: any f satisfies

Var µ n α (f ) 1+ β δ ≤ C f -µ n α (f ) β δ Ψ |∇f | 2 dµ n α .
On the other hand, for θ

= x β δ , ∞ m(t) dx xθ(x/2) = 2 β δ δ β 1 m(t) β δ
.

Hence, by Theorem 37

Var µ n α (P t f ) ≤ 2 δC 2β δ β 1 t δ β f -µ(f ) 2 Ψ .
In other words, P t is a continuous operator from L Ψ onto L 2 with

P t L Ψ →L 2 ≤ 2 δC 2β δ β 1 t δ β . Example 39. As before, let α ∈ [1, 2], β = 2(1 -1 α ) ∈ [0, 1] and dµ n α (x) = Z -n α exp{-n i=1 |x i | α }dx be a probability measure on R n . For any γ ≥ 1 define Φ γ β (x) = |x| log(γ + |x|) β .
Let also ψ(x) = e log(1+x) δ -1 for δ ∈ (0, 1) and Ψ(x) = x 2 / ψ(x). We proved in Example 32 that there exists a constant C such that for any f ,

Var µ n α (f ) log 1 + 1 2 Var µ n α (f ) f -µ n α (f ) 2 Ψ β δ ≤ C |∇f | 2 dµ n α .
For θ(x) := log(1 + x) 

dx x θ(x/2) ≤ ∞ m(t) dx x log( x 2 ) β δ = δ β -δ log m(t) 2 δ-β δ provided that δ < β (if δ ≥ β then m is not defined!). Hence, m(t) ≤ δC 2(β-δ) 1 t δ β-δ . Theorem 37 implies that for small values of t, Var µ n α (P t f ) ≤ 2e C ′ /t δ δ-β f -µ(f ) 2 Ψ with C ′ := δC 2(β-δ) δ β-δ .
Now for completeness we prove a converse of Theorem 37.

Theorem 40. Let Ψ be a N -function. Assume that for any t > 0,

Var µ (P t f ) ≤ m(t) f -µ(f ) 2 Ψ .
Then, for any smooth function f :

R n → R Var µ (f ) θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≤ 2 |∇f | 2 dµ, for θ(x) := sup t>0 1 t log 2x m(t) . Proof. We follow [Cou96, Proposition II.2]. Assume that µ(f ) = 0 and that f Ψ = 1. Let ∞ 0 λdE λ be a spectral resolution of -L. Then P t = ∞ 0 e -λt dE λ . Since ∞ 0 µ(f •dE λ f ) µ(f 2 ) = 1, Jensen inequality yields exp ∞ 0 (-2λt) µ(f • dE λ f ) µ(f 2 ) ≤ ∞ 0 e -2λt µ(f • dE λ f ) µ(f 2 ) .
This exactly means that

exp -2t µ(f • (-L)f ) µ(f 2 ) ≤ P t f 2 µ(f 2 ) .
Now, using our assumption, P t f 2 ≤ m(t). Hence

µ(f 2 ) 2t log µ(f 2 ) m(t) ≤ µ(f • (-L)f ) = |∇f | 2 dµ.
The result follows by homogeneity and translation invariance of the Dirichlet form.

Next we recall a result, due to Grigor'yan, which shows the link between m ′ (m -1 ) and θ.

We use the following definition, (cf. [START_REF] Coulhon | Ultracontractivity and Nash type inequalities[END_REF]). We say that a differentiable function m : (0, ∞) → R * + satisfies condition (D) if the derivative of its logarithm has polynomial growth, i.e. M (t) = -log m(t) is such that

M ′ (u) ≥ γM ′ (t), ∀t > 0, ∀u ∈ [t, 2t],
for some γ > 0 (for instance if m behaves like t -d or e -ct δ , 0 ≤ δ ≤ 1 for t large, it satisfies condition (D)).

Proposition 41 ([Gri94]

). Let m be a decreasing differentiable bijection of R * + satisfying condition (D) for some γ > 0. Then, for all x > 0,

θ(x) = sup t>0 1 t log 2x m(t) ≥ -γ m ′ m -1 (2x) x .
The above results imply the following equivalence of the Nash-type inequality and the decay to equilibrium of the semi-group.

Theorem 42. Let m be a C 1 decreasing bijection of R * + satisfying condition (D) with γ > 0. Assume that m ′ is an increasing bijection from R

* + onto R * -. Let θ(|x|) = -m ′ m -1 (2|x|) /x. Let Φ and Ψ(x) = x 2 ψ(|x|) be two N -functions with ψ increasing, satisfying ψ(0) = 0 and lim +∞ ψ = +∞. Assume that θ = Φ * -1 • Ψ • ψ -1 .
Then the following are equivalent (i) for any t > 0,

Var

µ (P t f ) ≤ m(t) f -µ(f ) 2 Φ , (ii) for any smooth function f : R n → R Var µ (f )θ 1 2 Var µ (f ) f -µ(f ) 2 Ψ ≤ C Φ |∇f | 2 dµ, Moreover (i) ⇒ (ii) with C Φ = 2/γ while (ii) ⇒ (i) if C Φ = 2.
Proof. To show that (i) implies (ii) it is enough to apply Theorem 40 and proposition 41. The second part is a direct application of Theorem 37. 

Appendix : Young functions and Orlicz spaces

In this section we collect some results on Orlicz spaces. We refer the reader to [START_REF] Rao | Theory of Orlicz spaces[END_REF] for demonstrations and complements. Among the Young functions, we will consider those continuous with finite values such that Φ(x)/x → ∞ as x → ∞ (for stability reasons w.r.t. duality). When additionally Φ(x) = 0 ⇔ x = 0 and Φ ′ (0 + ) = 0, Φ is called a N -function.

For any lower semi-continuous Young function Φ (in particular if Φ has finite values), the conjugate of Φ * is Φ. The pair (Φ, Ψ) is said to be a complementary pair if Ψ = Φ * (or equivalently Φ = Ψ * ). When Φ(1) + Φ * (1) = 1, the pair (Φ, Φ * ) is said to be normalized. The conjugate of an N -function is an N -function.

Let Φ be an N -function. Then, for any a > 0, a < Φ -1 (a)(Φ * ) -1 (a) ≤ 2a.

(13)

The simplest example of N-function is Φ(x) = |x| p p , p > 1, in which case, Φ * (x) = |x| q q , with 1/p + 1/q = 1. The function Φ(x) = |x| α ln(1 + |x|) β is also a Young function for α ≥ 1 and β ≥ 0 and an N -function when α > 1 or β > 0. Now let (X , µ) be a measurable space, and Φ a Young function. The space L Φ (µ) = {f : X → R measurable; ∃α > 0, X Φ(αf ) < +∞} is called the Orlicz space associated to Φ. When Φ(x) = |x| p , then L Φ (µ) is the standard Lebesgue space L p (µ).

There exist two equivalent norms which give to L Φ (µ) a structure of Banach space. Namely, Luxemburg norm

f Φ = inf{λ > 0; X Φ f λ dµ ≤ 1}
and the Orlicz norm

N Φ (f ) = sup{ X |f g|dµ; X Φ * (g)dµ ≤ 1} .
Note that we invert the notation with respect to [START_REF] Rao | Theory of Orlicz spaces[END_REF]. We will use the notation G Φ , or more simply G when no confusion, the set G Φ = {|g| :

X Φ * (g)dµ ≤ 1}. Note in particular that G Φ is a space of non negative functions. Moreover

f Φ ≤ N Φ (f ) ≤ 2 f Φ . ( 14 
)
By definition of the norm and the previous result, it is easy to see that for any measurable subset A of X ,

1 I A Φ = 1 Φ -1 1 µ(A)
.

(15)

Then, the following result generalizes Hölder inequality. Let Φ 1 , Φ 2 and Φ 3 be three Young functions satisfying for all x ≥ 0, Φ -1 1 (x)Φ -1 2 (x) ≤ Φ -1 3 (x). Then, for any (f, g)

∈ L Φ 1 (µ) × L Φ 2 (µ), f g Φ 3 ≤ 2 f Φ 1 g Φ 2 . ( 16 
)
In particular, when Φ 3 (x) = |x|, we get X |f g|dµ ≤ 2 f Φ 1 g Φ 2 . In the case of complementary pairs of Young functions, we have the following more precise result, see [RR91, Proposition 1 in section 3]:

X |f g|dµ ≤ 2 f Φ g Φ * . (17) 
Finally, for any constant c > 0, it is easy to see that for any function f ,

c f Φ(•/c) = f Φ . ( 18 
)

Comparison of norms

Let us notice that any Young function Φ satisfies |x| = O (Φ(x)) as x goes to ∞. It leads to the following lemma.

Lemma 44. Any Orlicz space may be continuously embedded in L 1 . More precisely, let D and τ in (0, ∞) such that |x| ≤ τ Φ(x) for any |x| ≥ D.

Then, for any f ∈ L Φ ,

f 1 ≤ (D + τ ) f Φ . (19) 
Consequently, if Φ and Ψ are two Young functions satisfying, for some constants A, B ≥ 0, Φ(x) ≤ A|x| + BΨ(x), then

f Φ ≤ max 1, A Id L Ψ →L 1 + B f Ψ . ( 20 
)
Remark 45. When Φ(x)/x → ∞ as x → ∞, we may choose τ = 1 or any other positive constant. We get in particular the estimate

µ(f ) 2 Φ ≤ (D + 1) 1 I Φ f 2 Φ , ( 21 
)
where D is such that |x| ≤ Φ(x) for any |x| ≥ D.

Proof of lemma 44. Let f ∈ L Φ (µ). We may assume by homogeneity that f Φ = 1. Then Φ(f ) dµ = 1 and so As for bound (19), assume now that f Ψ = 1 and hence Ψ(f ) dµ = 1 as well. For any λ ≥ 1,

Φ f λ dµ ≤ A λ f 1 + B Ψ f λ dµ ≤ A λ Id L Ψ →L 1 f Ψ + B λ Ψ(f )dµ ≤ 1 provided λ ≥ A Id L Ψ →L 1 + B.
Note that for the second inequality we used convexity of Ψ.

s∈[ 0 0 A

 00 ,T ] A(P s+t f )e ωs = e -ωt sup s∈[t,T +t] A(P s f )e ωs = e -ωt max sup s∈[t,T ] A(P s f )e ωs , sup s∈[T,T +t] A(P s f )e ωs . Since for s ∈ [T, T + t] A(P s f )e ωs ≤ e -mT A(P s-T f ) ≤ e -mT +ωT A(P s-T f )e ω(s-T ) we get for t ∈ [0, T ] and ω ≤ m sup s∈[T,T +t] A(P s f )e ωs ≤ sup s∈[0,T ] A(P s f )e ωs . This together with the previous considerations concludes the arguments for exponential decay of the first functional. In case of B ω , for 0 ≤ t ≤ T , we have T B ω (P t f ) ≡ T (P s+t f )e ωs ds = e -ωt T +t t A(P s f )e ωs ds. Next we note that T +t t A(P s f )e ωs ds = T t A(P s f )e ωs ds + T +t T A(P s f )e ωs ds.

0 A

 0 s f )e ωs ds ≤ e -mT +ωT T +t T A(P s-T f )e ω(s-T ) ds = e -mT +ωT t 0 A(P s f )e ω(s) ds ≤ t (P s f )e ω(s) ds.

  ∀A such that µ(A)< 1 2 , Cap µ (A)≥C ψ ψ(µ(A)) ⇐=== = [BCR05b,Theorem12] Φ(x)=xϕ(x) and Ψ(x)=xϕ( 2 x ) additive Φ-Sobolev (Φ-S): Φ(f 2 )dµ-Φ( f 2 dµ)≤c |∇f | 2 dµ ⇐=

φFigure 1 :

 1 Figure 1: Implications Network. Here f := f -µ(f ).

Definition 43 (

 43 Young function). A function Φ : R → [0, ∞] is a Young function if it is convex, even, such that Φ(0) = 0, and lim x→+∞ Φ(x) = +∞. The Legendre transform Φ * of Φ defined by Φ * (y) = sup x≥0 {x|y| -Φ(x)} is a lower semi-continuous Young function. It is called the complementary function or conjugate of Φ.

≤

  Dµ (|f | ≤ D) + τ {|f |≥D} Φ(f )dµ ≤ D + τ.

  Now we deal with small values of t, small in such a way that m(t) ≥ 2. For such t's we have

	∞ m(t) dx/[x θ(x/2)]. ∞	β δ , we define m(t) as the unique solution of 2t/C =
	m(t)	
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