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Metastability in Interacting Nonlinear

Stochastic Differential Equations II:

Large-N Behaviour

Nils Berglund, Bastien Fernandez and Barbara Gentz

Abstract

We consider the dynamics of a periodic chain ofN coupled overdamped particles under
the influence of noise, in the limit of large N . Each particle is subjected to a bistable
local potential, to a linear coupling with its nearest neighbours, and to an independent
source of white noise. For strong coupling (of the order N2), the system synchronises,
in the sense that all particles assume almost the same position in their respective local
potential most of the time. In a previous work, we showed that the transition from
strong to weak coupling involves a sequence of symmetry-breaking bifurcations of the
system’s stationary configurations. We analysed, for arbitrary N , the behaviour for
coupling intensities slightly below the synchronisation threshold. Here we describe
the behaviour for any positive coupling intensity γ of order N2, provided the particle
number N is sufficiently large (as a function of γ/N2). In particular, we determine
the transition time between synchronised states, as well as the shape of the “critical
droplet” to leading order in 1/N . Our techniques involve the control of the exact
number of periodic orbits of a near-integrable twist map, allowing us to give a detailed
description of the system’s potential landscape, in which the metastable behaviour is
encoded.
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1 Introduction

In this paper, we continue our analysis of the metastable dynamics of a periodic chain of
coupled bistable elements, initiated in [BFG06a]. In contrast with similar models involv-
ing discrete on-site variables, or “spins”, whose metastable behaviour has been studied
extensively (see for instance [dH04, OV05]), our model involves continuous local variables,
and is therefore described by a set of interacting stochastic differential equations.

The analysis of the metastable dynamics of such a system requires an understanding of
its N -dimensional “potential landscape”, in particular the number and location of its local
minima and saddles of index 1. In [BFG06a], we showed that the number of stationary
configurations increases from 3 to 3N as the coupling intensity γ decreases from a critical
value γ1 of order N2 to 0. This transition from strong to weak coupling involves a sequence
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of successive symmetry-breaking bifurcations, and we analysed in detail the first of these
bifurcations, which corresponds to desynchronisation.

In the present work, we consider in more detail the behaviour for large particle number
N . In the limit N → ∞, the system tends to a Ginzburg–Landau stochastic partial dif-
ferential equation (SPDE), studied for instance in [EH01, Rou02]. The Ginzburg–Landau
SPDE describes in particular the behaviour near bifurcation points of more complicated
equations, such as the stochastic Swift–Hohenberg equation [BHP05]. For large but finite
N , it turns out that a technique known as “spatial map” analysis allows us to obtain a
precise control of the set of stationary points, for values of the coupling well below the
synchronisation threshold. More precisely, given a strictly positive coupling intensity γ
of order N2, there is an integer N0(γ/N

2) such that for all N > N0(γ/N
2), we know

precisely the number, location and type of the potential’s stationary points. This allows
us to characterise the transition times and paths between metastable states for all these
values of γ and N .

This paper is organised as follows. Section 2 contains the precise definition of our
model, and the statement of all results. After introducing the model in Section 2.1 and
describing general properties of the potential landscape in Section 2.2, we explain the
heuristics for the limit N → ∞ in Section 2.3. In Section 2.4, we state the detailed results
on number and location of stationary points for large but finite N , and in Section 2.5
we present their consequences for the stochastic dynamics. Section 3 contains the proofs
of these results. The proofs rely on a detailed analysis of the orbits of period N of a
near-integrable twist map, which are in one-to-one correspondence with stationary points
of the potential. Appendix A recalls some properties of Jacobi’s elliptic functions needed
in the analysis, while Appendix B contains some more technical proofs of results stated in
Section 3.6.
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2 Model and Results

2.1 Definition of the Model

Our model of interacting bistable systems perturbed by noise is defined by the following
ingredients:

• The periodic one-dimensional lattice is given by Λ = Z /NZ , where N > 2 is the
number of particles.

• To each site i ∈ Λ, we attach a real variable xi ∈ R , describing the position of the ith
particle. The configuration space is thus X = R

Λ.
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• Each particle feels a local bistable potential, given by

U(ξ) =
1

4
ξ4 − 1

2
ξ2 , ξ ∈ R . (2.1)

The local dynamics thus tends to push the particle towards one of the two stable
positions ξ = 1 or ξ = −1.

• Neighbouring particles in Λ are coupled via a discretised-Laplacian interaction, of
intensity γ/2.

• Each site is coupled to an independent source of noise, of intensity σ. The sources of
noise are described by independent Brownian motions {Bi(t)}t>0.

The system is thus described by the following set of coupled stochastic differential
equations, defining a diffusion on X :

dxσi (t) = f(xσi (t)) dt+
γ

2

[
xσi+1(t) − 2xσi (t) + xσi−1(t)

]
dt+ σ dBi(t) , i ∈ Λ , (2.2)

where the local nonlinear drift is given by

f(ξ) = −∇U(ξ) = ξ − ξ3 . (2.3)

For σ = 0, the system (2.2) is a gradient system of the form ẋ = −∇Vγ(x), with potential

Vγ(x) =
∑

i∈Λ

U(xi) +
γ

4

∑

i∈Λ

(xi+1 − xi)
2 . (2.4)

2.2 Potential Landscape and Metastability

The dynamics of the stochastic system depends essentially on the “potential landscape”
Vγ . As in [BFG06a], we use the notations

S = S(γ) = {x ∈ X : ∇Vγ(x) = 0} (2.5)

for the set of stationary points, and Sk(γ) for the set of k-saddles, that is, stationary points
with k unstable directions and N − k stable directions.

Understanding the dynamics for small noise essentially requires knowing the graph
G = (S0, E), in which two vertices x⋆, y⋆ ∈ S0 are connected by an edge e ∈ E if and only
if there is a 1-saddle s ∈ S1 whose unstable manifolds converge to x⋆ and y⋆. The system
behaves essentially like a Markovian jump process on G. The mean transition time from
x⋆ to y⋆ is of order e2H/σ2

, where H is the potential difference between x⋆ and the lowest
saddle leading to y⋆ (see [FW98]).

It is easy to see that S always contains at least the three points

O = (0, . . . , 0) , I± = ±(1, . . . , 1) . (2.6)

Depending on the value of γ, the origin O can be an N -saddle, or a k-saddle for any odd
k. The points I± always belong to S0, in fact we have

Vγ(x) > Vγ(I
+) = Vγ(I

−) = −N
4

∀x ∈ X \ {I−, I+} (2.7)

for all γ > 0, so that I+ and I− represent the most stable configurations of the system.
The three points O, I+ and I− are the only stationary points belonging to the diagonal

D = {x ∈ X : x1 = x2 = · · · = xN} . (2.8)
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N x Type of symmetry

4L A (x1, . . . , xL, xL, . . . , x1,−x1, . . . ,−xL,−xL, . . . ,−x1)

B (x1, . . . , xL, . . . , x1, 0,−x1, . . . ,−xL, . . . ,−x1, 0)

4L+ 2 A (x1, . . . , xL+1, . . . , x1,−x1, . . . ,−xL+1, . . . ,−x1)

B (x1, . . . , xL, xL . . . , x1, 0,−x1, . . . ,−xL,−xL, . . . ,−x1, 0)

2L+ 1 A (x1, . . . , xL,−xL, . . . ,−x1, 0)

B (x1, . . . , xL, xL, . . . , x1, x0)

Table 1. Symmetries of the stationary points bifurcating from the origin at γ = γ1. The
situation depends on whether N is odd (in which case we write N = 2L + 1) or even (in
which case we write N = 4L or N = 4L+2, depending on the value of N (mod 4)). Points
labelled A are 1-saddles near the desynchronisation bifurcation at γ = γ1, those labelled
B are 2-saddles (for odd N , this is actually a conjecture). More saddles of the same index
are obtained by applying elements of the symmetry group GN to A and B.

On the other hand, being a polynomial of degree 4 in N variables, the potential Vγ can
have up to 3N stationary points.

The potential Vγ(x), as well as the sets S(γ) and Sk(γ), are invariant under the trans-
formation group G = GN of order 4N (4 if N = 2), generated by the following three
symmetries:

• the rotation around the diagonal given by R(x1, . . . , xN ) = (x2, . . . , xN , x1);
• the mirror symmetry S(x1, . . . , xN ) = (xN , . . . , x1);
• the point symmetry C(x1, . . . , xN ) = −(x1, . . . , xN ).

In [BFG06a], we proved the following results:

• There is a critical coupling intensity

γ1 =
1

1 − cos(2π/N)
(2.9)

such that for all γ > γ1, the set of stationary points S consists of the three points O
and I± only. The graph G has two vertices I±, connected by a single edge.

• As γ decreases below γ1, an even number of new stationary points bifurcate from
the origin. Half of them are 1-saddles, while the others are 2-saddles. These points
satisfy symmetries as shown in Table 1. The potential difference between I± and the
1-saddles behaves like N(1/4 − (γ1 − γ)2/6) as γ ր γ1.

• New bifurcations of the origin occur for γ = γM = (1 − cos(2πM/N))−1, with 2 6

M 6 N/2, in which saddles of order higher than 2 are created.

The number of stationary points emerging from the origin at the desynchronisation
bifurcation at γ = γ1 depends on the parity of N . If N is even, there are exactly 2N new
points (N saddles of index 1, and N saddles of index 2). If N is odd, we were only able to
prove that the number of new stationary points is a multiple of 4N , but formulated the
conjecture that there are exactly 4N stationary points (2N saddles of index 1, and 2N
saddles of index 2). We checked this conjecture numerically for all N up to 101. As we
shall see in Section 2.4, the conjecture is also true for N sufficiently large.
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2.3 Heuristics for the Large-N Limit

We want to determine the structure of the set S of stationary points for large particle
number N , and large coupling intensity γ. For this purpose, we introduce the rescaled
coupling intensity

γ̃ =
γ

γ1
=

2π2

N2
γ

[
1 + O

(
1

N2

)]
. (2.10)

Then, the desynchronisation bifurcation occurs for γ̃ = 1. We will consider values of γ̃
which may be smaller than 1, but are bounded away from zero. The reason why the set
of stationary points can be controlled in this regime is that as N → ∞, the deterministic
system ẋ = −∇Vγ(x) behaves like a Ginzburg–Landau partial differential equation (PDE).
Indeed, assume that the N sites of the chain are evenly distributed on a circle of radius
1, and that there exists a smooth function u(ϕ, t), ϕ ∈ S

1, interpolating the coordinates
of x(t) in such a way that

u
(
2π

i

N
, t

)
= xi(t) ∀i ∈ Λ . (2.11)

Then in the limit N → ∞, the discrete Laplacian in (2.2) converges to a constant times
the second derivative of u(·, t), and we obtain the PDE

∂tu(ϕ, t) = f(u(ϕ, t)) + γ̃∂ϕϕu(ϕ, t) . (2.12)

Stationary solutions of (2.12) satisfy the equation

γ̃u′′(ϕ) = −f(u(ϕ)) , (2.13)

describing the motion of a particle of mass γ̃ in the inverted potential −U(ϕ). The
prefactor γ̃ can be removed by scaling ϕ: Setting u0(φ) = u(

√
γ̃φ), we see that u0 satisfies

the equation
u′′0 = −f(u0) = u3

0 − u0 . (2.14)

All periodic solutions of this equation are known (cf. Section 3.3), and can be expressed
in terms of Jacobi’s elliptic functions1 as

u0(φ) = a(κ) sn

(
φ− φ0√
1 + κ2

, κ

)
, (2.15)

where

• φ0 is an arbitrary phase;
• κ ∈ [0, 1) is an auxiliary parameter controlling the shape of the function: For small κ,

the function is close to a sine, while it approaches a square wave as κր 1;
• the amplitude a(κ) is given by

a(κ)2 =
2κ2

1 + κ2
; (2.16)

• the period of u0(ϕ) is 4
√

1 + κ2 K(κ), where K denotes the complete elliptic integral
of the first kind.

1For the reader’s convenience, we recall the definitions and main properties of Jacobi’s elliptic integrals

and functions in Appendix A.
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Figure 1. (a) Schematic bifurcation diagram of the limiting PDE (2.13). Whenever the
rescaled coupling intensity γ̃ decreases below 1/M2, M = 1, 2, . . . , a one-parameter family
of stationary solutions bifurcates from the identically zero solution u ≡ 0. (b) Relations
between the shape parameter κ, the amplitude a and the rescaled coupling intensity γ̃ for
winding number M = 1.

We are looking for periodic solutions of (2.14) of period 2π/
√
γ̃. Such solutions exist

whenever the shape parameter κ satisfies the condition

4
√

1 + κ2 K(κ) =
2πM√

γ̃
(2.17)

for some integer M , which plays the rôle of a winding number controlling the number of
sign changes of u0. Equation (2.17) imposes a relation between shape parameter κ and
rescaled coupling intensity γ̃, shown in Figure 1 in the case M = 1. On the other hand,
the phase φ0 is completely free.

The left-hand side of (2.17) being bounded below by 2π, solutions of given winding
number M exist provided γ̃ 6 1/M2. The smaller γ̃, the more different types of periodic
solutions exist. A new one-parameter family of stationary solutions, parametrised by φ0,
bifurcates from the identically zero solution every time γ̃ becomes smaller than 1/M2,
M = 1, 2, . . . (Figure 1a).

Finally, note that for stationary points x satisfying (2.11), with u given by (2.15), the
value of the renormalised potential Vγ(x)/N converges, in the limit N → ∞, to an integral
which can be computed explicitly (see Section 3.3) in terms of the parameter κ:

lim
N→∞

Vγ(x)

N
= − 1

3(1 + κ2)

[
2 + κ2

1 + κ2
− 2

E(κ)

K(κ)

]
, (2.18)

where E denotes the complete elliptic integral of the second kind.
If we were to add noise to the PDE (2.12), we would obtain a Ginzburg–Landau SPDE.

In that case, we expect that the configurations of highest energy reached in the course of
a typical transition from u ≡ −1 to u ≡ 1 are of the form (2.15), with winding number
M = 1. As a consequence, the potential difference in (2.18) should be governing the typical
time of such transitions. However, proving this would involve an infinite-dimensional
version of Wentzell–Freidlin theory, moreover in a degenerate situation, which is beyond
the scope of the present work. We will henceforth consider situations with large, but finite
particle number.
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2.4 Main Results: Stationary Points for Large but Finite N

We examine now the structure of the set S(γ) for large, but finite particle number N .
Instead of the limiting differential equation (2.13), stationary points satisfy the difference
equation

γ

2

[
xn+1 − 2xn + xn−1

]
= −f(xn) , n ∈ Λ . (2.19)

The key idea of the analysis is to interpret n as discrete time, and to consider (2.19) as
defining xn+1 in terms of xn and xn−1. Setting vn = xn− xn−1 allows to rewrite (2.19) as
the system

xn+1 = xn + vn+1 ,

vn+1 = vn − 2γ−1f(xn) .
(2.20)

The map (xn, vn) 7→ (xn+1, vn+1) is an area-preserving twist map (“twist” meaning that
xn+1 is a monotonous function of vn), for the study of which many tools are avail-
able [Mei92]. Stationary points of the potential Vγ are in one-to-one correspondence with
periodic points of period N of this map. If we further scale v by a factor ε =

√
2/γ, we

obtain the equivalent map

xn+1 = xn + εyn+1 ,

yn+1 = yn − εf(xn) .
(2.21)

The regime of large particle number N and finite rescaled coupling intensity γ̃ corresponds
to large γ, and thus to small ε. The map (2.21) is a discretisation of the system of
ordinary differential equations ẋ = y, ẏ = −f(x), which is equivalent to the continuous
limit equation (2.14). There should thus be some similarity between the orbits of the
map (2.21) and of the system (2.14). In particular, one easily checks that the energy

E(x, ẋ) =
1

2
ẋ2 − U(x) , (2.22)

which is conserved in the continuous limit, changes only slightly, by an amount of order
ε2, for the map (2.21) (setting y = ẋ). The map is thus close to integrable, which makes
its analysis accessible to perturbation theory.

Our main result, obtained by analysing the map (2.21), is that the bifurcation diagram
looks like the one shown in Figure 2. Namely,

• For γ̃ > 1, I+, I− and O are the only stationary points.
• Below γ̃ = 1, an explicitly known number of saddles of index 1 and 2 bifurcate from

the origin.
• For any 2 6 M 6 N/2, an explicitly known number of saddles of index 2M − 1 and

2M bifurcate from the origin at γ̃ = γ̃M , where

γ̃M =
γM
γ1

=
1 − cos(2π/N)

1 − cos(2πM/N)
=

1

M2
+ O

(
1

N2

)
. (2.23)

• For any fixed M , if N is sufficiently large compared to M , the above list of stationary
points is complete for γ̃ > γ̃M . In particular, there are no secondary bifurcations of
existing branches of stationary points, and no stationary points created by saddle–node
bifurcation for these values of γ̃.
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Figure 2. Partial bifurcation diagram for a case where N = 4L is a multiple of four,
and some associated graphs G. Only one stationary point per orbit of the symmetry
group G is shown. Dash–dotted curves with k dots represent k-saddles. The symbols at
the left indicate the zero-coupling limit of the stationary points’ coordinates, for instance
12L(−1)2L stands for a point whose first 2L coordinates are equal to 1, and whose last 2L
coordinates are equal to −1. The numbers associated with the branch created at γ̃3 are
L1 = ⌊2L/3⌋, L2 = 2(L−L1), L3 = ⌊2L/3 + 1/2⌋ and L4 = 2(L−L3)− 1 (in case N is a
multiple of 12, there are more vanishing coordinates).

The main difficulty is to rule out the appearance of other stationary points away from
the origin. Indeed, for perturbed integrable maps it is easy to obtain a lower bound on the
number of periodic points, using the Poincaré–Birkhoff theorem, but it is hard to obtain
an upper bound. One might imagine a scenario where stationary points appear far from
the origin, which ultimately offer a more economic path for the transition from I− to I+.

We now give the precise formulation of the results. We first describe the behaviour
between the first two bifurcation values γ̃1 and γ̃2. Below, gcd(a, b) denotes the greatest
common divisor of two integers a and b, and Ox = {gx : g ∈ G} denotes the group orbit
of a point x ∈ X under the symmetry group G.

Theorem 2.1. There exists N1 < ∞ such that when N > N1 and γ̃2 < γ̃ < γ̃1 = 1, the
set S of stationary points of the potential Vγ has cardinality

|S| = 3 +
4N

gcd(N, 2)
=

{
3 + 2N if N is even ,

3 + 4N if N is odd ,
(2.24)
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There exist points A = A(γ̃) and B = B(γ̃) in X such that S can be decomposed as2

S0 = OI+ = {I+, I−} ,
S1 = OA = {±A,±RA, . . . ,±RN−1A} ,
S2 = OB = {±B,±RB, . . . ,±RN−1B} ,
S3 = OO = {O} . (2.25)

The potential difference between the 1-saddles and the well bottoms (which is the same for
all 1-saddles and well bottoms) satisfies

Vγ(A(γ̃)) − Vγ(I
±)

N
=

1

4
− 1

3(1 + κ2)

[
2 + κ2

1 + κ2
− 2

E(κ)

K(κ)

]
+ O

(
κ2

N

)
, (2.26)

where κ = κ(γ̃) is defined implicitly by

γ̃ =
π2

4K(κ)2(1 + κ2)
. (2.27)

The detailed proofs are given in Section 3.
The second result, which is also proved in Section 3, concerns the behaviour for sub-

sequent bifurcation values γ̃M , M > 2.

Theorem 2.2. For any M > 2, there exists NM < ∞ such that when N > NM and
γ̃M+1 < γ̃ < γ̃M , the set S of stationary points of the potential Vγ has cardinality

|S| = 3 +
M∑

m=1

4N

gcd(N, 2m)
. (2.28)

There exist points A(m) and B(m) in X , m = 1, . . . ,M , such that S can be decomposed as

S0 = OI+ = {I+, I−} ,
S2m−1 = OA(m) , m = 1, . . . ,M ,

S2m = OB(m) , m = 1, . . . ,M ,

S2M+1 = OO = {O} , (2.29)

The potential difference between the saddles A
(m)
j (γ̃) and the well bottoms satisfies a similar

relation as (2.26), but with κ = κ(m2γ̃).

Remark 2.3. The proof actually yields information on the coordinates of the points
A = A(γ̃) and B = B(γ̃):

• The coordinates of A and B satisfy the symmetries indicated in Table 1.
• If N is even, the coordinates of A and B are given by

Aj(γ̃) = a(κ(γ̃)) sn

(
4K(κ(γ̃))

N

(
j − 1

2

)
, κ(γ̃)

)
+ O

(
1

N

)
,

Bj(γ̃) = a(κ(γ̃)) sn

(
4K(κ(γ̃))

N
j, κ(γ̃)

)
+ O

(
1

N

)
, (2.30)

where the amplitude a(κ) is the one defined in (2.16).

2If N is even, the orbits OA and OB contain N instead of 2N points, because R
N/2 = −1l.
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Figure 3. (a) Coordinates of the 1-saddles A in the case N = 32, shown for two different
values of the coupling γ̃′ > γ̃′′. (b) Coordinates of the 3-saddles A(2) in the case N = 32,
shown for the coupling intensities γ̃′/4 and γ̃′′/4.

• If N is odd, the coordinates of A and B are given by

Aj(γ̃) = a(κ(γ̃)) sn

(
4K(κ(γ̃))

N
j, κ(γ̃)

)
+ O

(
1

N

)
,

Bj(γ̃) = a(κ(γ̃)) cn

(
4K(κ(γ̃))

N
j, κ(γ̃)

)
+ O

(
1

N

)
. (2.31)

• The components of A(m) and B(m) are given by similar expressions, with γ̃ replaced
by m2γ̃, j − 1

2 replaced by m(j − 1
2 ) and j replaced by mj.

• Note that the total number of stationary points accounted for by these results is of
the order N2, which is much less than the 3N points present at zero coupling. Many
additional stationary points thus have to be created as the rescaled coupling intensity
γ̃ decreases sufficiently, either by pitchfork-type second-order bifurcations of already
existing points, or by saddle-node bifurcations. However, the values γ̃(N) for which
these bifurcations occur have to satisfy limN→∞ γ̃(N) = 0.
The existence of second-order bifurcations follows from stability arguments. For in-
stance, for even N , the point A(γ̃) converges to (1, 1, . . . , 1,−1,−1, . . . ,−1) as γ̃ → 0,
which is a local minimum of Vγ instead of a 1-saddle. The A-branch thus has to bifur-
cate at least once as the coupling decreases to zero (Figure 4). For odd N , by contrast,
the point A(γ̃) converges to (1, 1, . . . , 1, 0,−1,−1, . . . ,−1) as γ̃ → 0, which is also a
1-saddle. We thus expect that the point A(γ̃) does not undergo any bifurcations for
0 6 γ̃ < 1 if N is odd.

2.5 Stochastic Case

We return now to the behaviour of the system of stochastic differential equations

dxσi (t) = f(xσi (t)) dt+
γ

2

[
xσi+1(t) − 2xσi (t) + xσi−1(t)

]
dt+ σ dBi(t) , i ∈ Λ . (2.32)

Our main goal is to characterise the noise-induced transition from the configuration I− =
(−1,−1, . . . ,−1) to the configuration I+ = (1, 1, . . . , 1). In particular, we are interested in
the time needed for this transition to occur, and by the shape of the critical configuration,
i.e., the configuration of highest energy reached during the transition.

In [BFG06a, Theorem 2.7], we obtained that in the synchronisation regime γ̃ > 1,
for any initial condition x0 in a ball B(I−, r) of radius r < 1/2 around I−, any particle

10
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Figure 4. Partial bifurcation diagram for a case where N = 4L is a multiple of four,
showing the expected bifurcation behaviour of the critical 1-saddle in the zero-coupling

limit.

number N > 2 and any constant δ > 0, the first-hitting time τ+ = τhit(B(I+, r)) of a ball
B(I+, r) of radius r around I+ satisfies

lim
σ→0

P
x0

{
e(N/2−δ)/σ2

< τ+ < e(N/2+δ)/σ2}
= 1 (2.33)

and

lim
σ→0

σ2 log E
x0 {τ+} =

N

2
. (2.34)

This means that in the synchronisation regime, the transition between I− and I+ takes a
time of the order eN/2σ

2
. Furthermore, for any fixed radius R ∈ (r, 1/2), the first-hitting

time τO = τhit(B(O, r)) of a ball around the origin satisfies

lim
σ→0

P
x0

{
τO < τ+

∣∣ τ+ < τ−
}

= 1 , (2.35)

where τ− = inf{t > τ exit(B(I−, R)) : xt ∈ B(I−, r)} is the time of first return to the small
ball B(I−, r) after leaving the larger ball B(I−, R). This means that during a transition,
the system is likely to pass close to the origin, i.e., the origin, being the only saddle of Vγ ,
is the critical configuration of the transition.

We can now prove a similar result in the desynchronised regime γ̃ < 1.

Theorem 2.4. For γ̃ < 1, let

h(γ̃) =
Vγ(A(γ̃)) − Vγ(I

±)

N
=

1

4
− 1

3(1 + κ2)

[
2 + κ2

1 + κ2
− 2

E(κ)

K(κ)

]
+ O

(
κ2

N

)
, (2.36)

where κ = κ(γ̃) is defined implicitly by (2.27). Fix an initial condition x0 ∈ B(I−, r).
Then for any 0 < γ̃ < 1, and any δ > 0, there exists N0(γ̃) such that for all N > N0(γ̃),

lim
σ→0

P
x0

{
e(2Nh(γ̃)−δ)/σ2

< τ+ < e(2Nh(γ̃)+δ)/σ2}
= 1 (2.37)

and
lim
σ→0

σ2 log E
x0 {τ+} = 2Nh(γ̃) . (2.38)

11
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Figure 5. Value of the rescaled potential barrier height h(γ̃) = (Vγ(A) − Vγ(I±))/N as
a function of the rescaled coupling intensity γ̃. For comparison, we also show the rescaled
barrier height (Vγ(A(2))−Vγ(I±))/N for a stationary point of the higher winding number
M = 2.

Furthermore, let

τA = τhit
( ⋃

g∈G

B(gA, r)
)
, (2.39)

where A = A(γ̃) satisfies (2.30) (or (2.31) if N is odd). Then for any N > N0(γ̃),

lim
σ→0

P
x0

{
τA < τ+

∣∣ τ+ < τ−
}

= 1 . (2.40)

The relations (2.37) and (2.38) mean that the transition time between the synchronised
states I− and I+ is of order e2Nh(γ̃)/σ2

, while relation (2.40) implies that the set of critical
configurations is given by the group orbit of A under G.

The large-N limit of the rescaled potential difference h(γ̃) is shown in Figure 5. The
limiting function is increasing, with a discontinuous second-order derivative at γ̃ = 1. For
small γ̃, h(γ̃) grows like the square-root of γ̃. This is compatible with the weak-coupling
behaviour h = (1/4 + 3/2γ + O(γ2))/N obtained in [BFG06a], if one takes into account
the scaling of γ̃.

The critical configuration, that is, the configuration with highest energy reached in the
course of the transition from I− to I+, is any translate of the configuration A(γ̃) shown
in Figure 3a. If N is even, it has N/2 positive and N/2 negative coordinates, while for odd
N , there are (N − 1)/2 positive, one vanishing, and (N − 1)/2 negative coordinates. The
sites with positive and negative coordinates are always adjacent. The potential difference
between the 1-saddles A and the 2-saddles B is actually very small, so that transition
paths become less localised as the particle number N increases, reflecting the fact that the
system becomes translation-invariant in the large-N limit.

12



3 Proofs

3.1 Strategy of the Proof

The proof of Theorems 2.1 and 2.2 is based on the fact that stationary points of the
potential satisfy the relation

f(xn) +
γ

2

[
xn+1 − 2xn + xn−1

]
= 0 , (3.1)

where f(x) = x − x3. As mentioned in Section 2.4, this relation can be rewritten as a
two-dimensional area-preserving twist map

xn+1 = xn + vn+1 ,

vn+1 = vn − 2γ−1f(xn) .
(3.2)

whose periodic points correspond to stationary points of the potential. In fact, we are
going to analyse a slightly different equivalent map, which has the advantage to use the
symmetries of the model in a more efficient way.

The proof is organised as follows:

• In Section 3.2, we introduce the alternative twist map, adapted to symmetries.
• In Section 3.3, we compute the expression of the map in action–angle variables, taking

advantage of the existence of an almost conserved quantity.
• In Section 3.4, we compute the generating function of the map in action–angle vari-

ables. This reduces the problem of finding periodic orbits to a variational problem
(which is simpler than the original one).

• The main difficulty is that the system is almost degenerate along the translation mode.
In Section 3.5, we introduce Fourier variables in order to decouple the translation mode
from the other, “oscillating” modes.

• In Section 3.6, we deal with the oscillating modes, by showing with the help of Banach’s
contraction principle that for each value of the translation mode, there is exactly one
value of the oscillating modes yielding a stationary point.

• In Section 3.7, we deal with the translation mode, by reducing the problem to one di-
mension, and showing that the generating function is dominated by its leading Fourier
mode in this direction. This yields the exact number of stationary points.

• Finally, in Section 3.8 we consider the stability of the stationary points.

3.2 Symmetric Twist Map

The twist map (3.2) does not exploit the symmetries of the original system in an optimal
way. In order to do so, it is more advantageous to introduce the variable

un =
xn+1 − xn−1

2
(3.3)

instead of vn. Then a short computation shows that

xn+1 = xn + un − γ−1f(xn) ,

un+1 = un − γ−1
[
f(xn) + f(xn+1)

]
.

(3.4)

The map T1 : (xn, un) 7→ (xn+1, un+1) is also an area-preserving twist map. Although
it looks more complicated than the map (3.2), it has the advantage that its inverse is

13



obtained by changing the sign of u, namely

xn = xn+1 − un+1 − γ−1f(xn+1) ,

un = un+1 + γ−1
[
f(xn+1) + f(xn)

]
.

(3.5)

This implies that if we introduce the involutions

S1 : (x, u) 7→ (−x, u) and S2 : (x, u) 7→ (x,−u) , (3.6)

then the map T1 and its inverse are related by

T1 ◦ S1 = S1 ◦ (T1)
−1 and T1 ◦ S2 = S2 ◦ (T1)

−1 , (3.7)

as a consequence of f being odd. This implies that the images of an orbit of the map
under S1 and S2 are also orbits of the map.

For large N , it turns out to be useful to introduce the small parameter

ε =

√
2

γ
=

√
2

γ1γ̃
=

2π

N
√
γ̃

(
1 + O

(
1

N2

))
, (3.8)

and the scaled variable w = u/ε. This transforms the map T1 into a map T2 : (xn, wn) 7→
(xn+1, wn+1) defined by

xn+1 = xn + εwn −
1

2
ε2f(xn) ,

wn+1 = wn −
1

2
ε
[
f(xn) + f(xn+1)

]
.

(3.9)

T2 is again an area-preserving twist map satisfying

T2 ◦ S1 = S1 ◦ (T2)
−1 and T2 ◦ S2 = S2 ◦ (T2)

−1 . (3.10)

3.3 Action–Angle Variables

For small ε, we expect the orbits of this map to be close to those of the differential equation

ẋ = w ,

ẇ = −f(x) ,
(3.11)

which is equivalent to the second-order equation ẍ = −f(x) describing the motion of a
particle in the inverted double-well potential −U(x), compare (2.14). Solutions of (3.11)
can be expressed in terms of Jacobi elliptic functions. Indeed, the function

C(x,w) =
1

2
(x2 + w2) − 1

4
x4 (3.12)

being a constant of motion, one sees that w satisfies

w = ±
√

(a(C)2 − x2)(b(C)2 − x2)/2 , (3.13)

where

a(C)2 = 1 −
√

1 − 4C ,

b(C)2 = 1 +
√

1 − 4C . (3.14)

14



This can be used to integrate the equation ẋ = w, yielding

b(C)√
2
t = F

(
Arcsin

(
x(t)

a(C)

)
, κ(C)

)
, (3.15)

where κ(C) = a(C)/b(C), and F(φ, κ) denotes the incomplete elliptic integral of the first
kind. The solution of the ODE can be written in terms of standard elliptic functions as

x(t) = a(C) sn

(
b(C)√

2
t, κ(C)

)
,

w(t) =
√

2C cn

(
b(C)√

2
t, κ(C)

)
dn

(
b(C)√

2
t, κ(C)

)
.

(3.16)

We return now to the map T2 defined in (3.9). The explicit solution of the continuous-
time equation motivates the change of variables Φ1 : (x,w) 7→ (ϕ,C) given by

ϕ =

√
2

b(C)
F

(
Arcsin

(
x

a(C)

)
, κ(C)

)
,

C =
1

2
(x2 + w2) − 1

4
x4 .

(3.17)

One checks that Φ1 is again area-preserving. The inverse Φ−1
1 is given by

x = a(C) sn

(
b(C)√

2
ϕ, κ(C)

)
,

w =
√

2C cn

(
b(C)√

2
ϕ, κ(C)

)
dn

(
b(C)√

2
ϕ, κ(C)

)
.

(3.18)

The elliptic functions sn, cn and dn being periodic in their first argument, with period
4K(κ), it is convenient to carry out a further area-preserving change of variables Φ2 :
(ϕ,C) 7→ (ψ, I), defined by

ψ = Ω(C)ϕ , I = h(C) , (3.19)

where

Ω(C) =
b(C)√

2

π

2K(κ(C))
, h(C) =

∫ C

0

dC ′

Ω(C ′)
. (3.20)

Using the facts that C and b = b(C) can be expressed as functions of κ = κ(C) by
C = κ2/(1 + κ2)2 and b2 = 2/(1 + κ2), one can check that

h(C) =
4

3π

(1 + κ2) E(κ) − (1 − κ2)K(κ)

(1 + κ2)3/2

∣∣∣∣
κ=κ(C)

∈
[
0,

2
√

2

3π

]
. (3.21)

We denote by Φ = Φ2 ◦ Φ1 the transformation (x,w) 7→ (ψ, I) and by T = Φ ◦ T2 ◦ Φ−1

the resulting map.

Proposition 3.1. The map T = T (ε) has the form

ψn+1 = ψn + εΩ(In) + ε3f(ψn, In, ε) (mod 2π) ,

In+1 = In + ε3g(ψn, In, ε) ,
(3.22)
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where Ω(I) = Ω(h−1(I)). The functions f and g are π-periodic in their first argument,
and are real-analytic for 0 6 I 6 h(1/4)−O(ε3). Furthermore, T satisfies the symmetries

T ◦ Σ1 = Σ1 ◦ T−1 and T ◦ Σ2 = Σ2 ◦ T−1 , (3.23)

where Σ1(ψ, I) = (−ψ, I) and Σ2(ψ, I) = (π − ψ, I).

Proof: First observe that Φ1 and Φ are analytic whenever (x,w) is such that C < 1/4.
The map T will thus be analytic whenever (ψn, In) is such that C(xn, wn) < 1/4 and
C(xn+1, wn+1) < 1/4. A direct computation shows that

C(xn+1, wn+1) − C(xn, wn) =
ε3

4

[
xnwn + 2xnw

3
n − 4x3

nwn + 3x5
nwn

]
+ O(ε4) . (3.24)

This implies that In+1 = In+O(ε3), and allows to determine g(ψ, I, 0). It also shows that
T is analytic for In < h(1/4) − O(ε3). Furthermore, writing an = a(C(xn, wn)), we see
that (3.24) implies an+1 − an = O(ε3) and similarly for bn, κn. This yields

ϕ(xn+1, wn+1) − ϕ(xn, wn) =

√
2

bn

∫ xn+1/an

xn/an

du√
(1 − κ2

nu
2)(1 − u2)

+ O(ε3)

= ε+ O(ε3) , (3.25)

which implies the expression for ψn+1. We remark that the fact that T is area-preserving
implies the relation

1 =
∂(ψn+1, In+1)

∂(ψn, In)
= 1 + ε3

[
∂ψf(ψ, I, 0) + ∂Ig(ψ, I, 0)

]
+ O(ε4) , (3.26)

which allows to determine f(ψ, I, 0). The fact that f and g are π-periodic in their first
argument is a consequence of the fact that T2(−x,−w) = −T2(x,w). Finally the rela-
tions (3.23) follow from the symmetries (3.10), with Σi = Φ ◦ Si ◦ Φ−1.

A perturbation expansion at I = 0 shows in particular that

Ω(I) = 1 − 3

4
I + O(I2) . (3.27)

An important observation is that Ω(I) is a monotonously decreasing function, taking
values in [0, 1]. The monotonicity of Ω makes T a twist map for sufficiently small ε, which
has several important consequences on existence of periodic orbits.

We call rotation number of a periodic orbit of period N the quantity

ν =
1

2πN

[ N∑

n=1

(ψn+1 − ψn) (mod 2π)

]
. (3.28)

Note that because of periodicity, ν is necessarily a rational number of the form ν = M/N ,
for some positive integer M . We denote by T

N
ν the set of points ψ in the torus T

N

satisfying (3.28). It is sometimes more convenient to visualise T
N
ν as the set of real

N -tuples (ψ1, . . . , ψN ) such that

ψ1 < ψ2 < · · · < ψN < ψ1 + 2πNν . (3.29)
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In the sequel, we shall use the shorthand stationary point with rotation number ν instead
of stationary point corresponding to a periodic orbit of rotation number ν.

The expression (3.22) for T implies that

ν =
Ω(I0)

2π
ε+ O(ε2) . (3.30)

The following properties follow from the Poincaré–Birkhoff theorem, whenever ε > 0 is
sufficiently small:

• For each positive integer M satisfying

M 6
Nε

2π
(1 + O(ε)) , (3.31)

the twist map T admits at least two periodic orbits of period N and rotation number
ν = M/N . Note that Condition (3.31) is compatible with the fact that O bifurcates
for γ = γM , M = 1, 2, . . . , ⌊N/2⌋.

• Any periodic orbit of period N of the map T is of the form

ψn = ψ0 + 2πνn+ O(ε2) ,

In = Ω
−1

(
2π

ε
ν

)
+ O(ε2) ,

(3.32)

for some ψ0 and some ν = M/N , where M is a positive integer satisfying (3.31).

Going back to original variables, we see that these periodic orbits are of the form

xn = an sn

(
2K(κn)

π
ψn, κn

)
,

wn =
√

2Cn cn

(
2K(κn)

π
ψn, κn

)
dn

(
2K(κn)

π
ψn, κn

)
,

(3.33)

where an = a(Cn), κn = κ(Cn) and

Cn = Ω−1

(
2πM

Nε

)
+ O(ε) = Ω−1

(
M

√
γ̃

)
+ O(ε) . (3.34)

This allows in particular to compute the value of the potential at the corresponding sta-
tionary point.

Proposition 3.2. Let ε > 0 be sufficiently small, and let x⋆ be a stationary point of the
potential Vγ, corresponding to an orbit with rotation number ν = M/N . Then

Vγ(x
⋆)

N
= − 1

3(1 + κ2)

[
2 + κ2

1 + κ2
− 2

E(κ)

K(κ)

]
+ O(εκ2) , (3.35)

where κ = κ(C), and C satisfies Ω(C)2 = M2γ̃.

Proof: The expression (2.4) for the potential implies that

Vγ(x
⋆)

N
=

1

N

N∑

n=1

(
U(xn) +

1

2
w2
n + O(ε2)

)
=

1

N

N∑

n=1

(w2
n − Cn + O(ε2))

=
C

N

N∑

n=1

[
2 cn2

(
2K(κ)

π
ψn, κ

)
dn2

(
2K(κ)

π
ψn, κ

)
− 1 + O(ε)

]

= C

[
2

∫ 2π

0
cn2

(
2K(κ)

π
ψ, κ

)
dn2

(
2K(κ)

π
ψ, κ)

)
dψ − 1 + O(ε)

]
, (3.36)
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where C = Ω−1(M
√
γ̃) and κ = κ(C). The integral can then be computed using the

change of variables 2K(κ)ψ/π = F(φ, κ). Finally, recall that C = κ2/(1 + κ2)2.

One can check that Vγ(x
⋆)/N is a decreasing function of κ, which is itself a decreasing

function of M2γ̃. As a consequence, Vγ(x
⋆)/N is increasing in M2γ̃. This implies in

particular that the potential is larger for larger winding numbers M .

Remark 3.3. The leading term in the expression (3.35) for the value of the potential
is the same for all orbits of a given rotation number ν. Since stationary points of the
potential of different index cannot be at exactly the same height, the difference has to
be hidden in the error terms. In [BFG06a], we showed that near the desynchronisation
bifurcation, the potential difference between 1-saddles and 2-saddles is of order (1− γ̃)N/2.
For large N , we expect this difference to be exponentially small in 1/N , owing to the
fact that near-integrable maps of a form similar to (3.22) are known to admit adiabatic
invariants to that order (cf. [BK96, Theorem 2]).

3.4 Generating Function

In this section, we transform the problem of finding periodic orbits of the near-integrable
map T into a variational problem. The fact that T is a twist map allows us to express In
(and thus In+1) as a function of ψn and ψn+1. A generating function of T is a function
G(ψn, ψn+1) such that

∂1G(ψn, ψn+1) = −In , ∂2G(ψn, ψn+1) = In+1 . (3.37)

It is known that any area-preserving twist map admits a generating function, unique up
to an additive constant. Since T depends on the parameter ε, the generating function
G naturally also depends on ε. However, we will indicate this dependence only when we
want to emphasise it.

Proposition 3.4. The map T admits a generating function of the form

G(ψ1, ψ2) = εG0

(
ψ2 − ψ1

ε
, ε

)
+ 2ε3

∞∑

p=1

Ĝp

(
ψ2 − ψ1

ε
, ε

)
cos

(
p(ψ1 + ψ2)

)
, (3.38)

where the functions G0(u, ε) and Ĝp(u, ε) are real-analytic for u > O(1/|log ε|), and satisfy

G′
0(u, 0) = Ω

−1
(u) ,

Ĝp
(
u, 0

)
=

1

4pπ

∫ 2π

0
g
(
ψ,Ω

−1
(u), 0

)
sin(−2pψ) dψ . (3.39)

Proof: Fix (ψ2, I2) = T (ψ1, I1). The fact that T (ψ1 + π, I1) = (ψ2 + π, I2) implies

G(ψ1 + π, ψ2 + π) = G(ψ1, ψ2) + c (3.40)

for some constant c. If we set G(ψ1, ψ2) = G̃(ψ2 − ψ1, ψ1 + ψ2), we thus have

G̃(u, v + 2π) = G̃(u, v) + c . (3.41)

This allows us to expand G as a Fourier series

G(ψ1, ψ2) =
∞∑

p=−∞

G̃p(ψ2 − ψ1, ε) ei p(ψ1+ψ2) +
c

2π
(ψ1 + ψ2) . (3.42)
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Next we note that the symmetry (3.23) implies T (−ψ2, I2) = (−ψ1, I1), and thus

∂1G(ψ1, ψ2) = −∂2G(−ψ2,−ψ1) . (3.43)

Plugging (3.42) into this relation yields

c = 0 and G̃−p(u, ε) = G̃p(u, ε) , (3.44)

which allows to represent G as a real Fourier series as well. Computing the derivatives
I1 = −∂1G(ψ1, ψ2) and I2 = ∂2G(ψ1, ψ2) yields

I2 − I1 = 2

∞∑

p=−∞

i pG̃p(ψ2 − ψ1, ε) ei p(ψ1+ψ2) , (3.45)

which shows in particular that G̃p(u, ε) = O(ε3) for p 6= 0, as a consequence of (3.22).

This implies I1 = G̃′
0(ψ2 − ψ1, ε) + O(ε3), and thus u = G̃′

0(εΩ(u) + O(ε3), ε). Renaming

G̃0(u, ε) = εG0(u/ε, ε) and G̃p(u, ε) = ε3Ĝp(u/ε, ε) yields (3.38). Evaluating (3.45) for

ε = 0 and taking the Fourier transform yields the expression (3.39) for Ĝp(u, 0).

The relations (3.39) allow to determine the expression for the generating function of
the map T , given by (3.22). In particular, one finds

G0(u, 0) = uΩ
−1

(u) − Ω−1(u) , (3.46)

so that

G0(Ω(C), 0) = h(C)Ω(C) −C

= − 1

3(1 + κ2)

[
2 + κ2

1 + κ2
− 2

E(κ)

K(κ)

]
, (3.47)

with κ = κ(C). Note that this quantity is identical with the leading term in the ex-
pression (3.35) for the average potential per site. This indicates that we have chosen the
integration constant in the generating function in such a way that Vγ and GN take the
same value on corresponding stationary points.

The main use of the generating function lies in the following fact. Consider the N -point
function

GN (ψ1, . . . , ψN ) = G(ψ1, ψ2) +G(ψ2, ψ3) + · · · +G(ψN , ψ1 + 2πNν) , (3.48)

defined on (a subset of) the set T
N
ν . The defining property (3.37) of the generating function

implies that for any periodic orbit of period N of the map T , one has

∂

∂ψn
GN (ψ1, . . . , ψN ) = −In + In = 0 , for n = 1, . . . , N . (3.49)

In other words, N -periodic orbits of T with rotation number ν are in one-to-one corre-
spondence with stationary points of the N -point function GN on T

N
ν .

The symmetries of the original potential imply that the N -point generating function
satisfies the following relations on T

N
ν :

GN (ψ1, . . . , ψN ) = GN (ψ2, . . . , ψN , ψ1 + 2πNν) ,

GN (ψ1, . . . , ψN ) = GN (−ψN , . . . ,−ψ1) ,

GN (ψ1, . . . , ψN ) = GN (ψ1 + π, . . . , ψN + π) . (3.50)

19



At this point, we are in the following situation. We have first transformed the initial
problem of finding the stationary points of the potential Vγ into the problem of finding
periodic orbits of the map T1, or, equivalently, of the map T . This problem in turn has
been transformed into the problem of finding the stationary points of GN . Obviously,
the whole procedure is of interest only if the stationary points of GN are easier to find
and analyse than those of Vγ . This, however, is the case here since the N -point function
is a small perturbation of a function depending only on the differences ψn+1 − ψn. In
other words, GN can be interpreted as the energy of a chain of particles with a uniform
nearest-neighbour interaction, put in a weak external periodic potential.

3.5 Fourier Representation of the Generating Function

The main difficulty in analysing the stationary points of the N -point generating function
GN comes from the fact that it is almost degenerate under translations of the form ψn 7→
ψn + c ∀n. The purpose of this section is to decouple the translation mode from the other
variables, by introducing Fourier variables.

We fix ν = M/N . Any stationary point of GN on T
N
ν admits a Fourier expansion of

the form

ψn = 2πνn+
N−1∑

q=0

ψ̂qω
qn , (3.51)

where ω = e2π i /N , and the Fourier coefficients are uniquely determined by

ψ̂q =
1

N

N∑

n=1

ω−qn(ψn − 2πνn) = ψ̂−q . (3.52)

Note that ψ̂q = ψ̂q+N for all q. Stationary points of GN correspond to stationary points of

the function GN , obtained by expressing GN in terms of Fourier variables (ψ̂0, . . . , ψ̂N−1).
In order to do so, it is convenient to write

ψn+1 − ψn
ε

= ∆ + ε2αn(ψ̂1, . . . , ψ̂N−1) ,

ψn + ψn+1 = 2ψ̂0 + 2πν(2n+ 1) + ε2βn(ψ̂1, . . . , ψ̂N−1) , (3.53)

where ∆ = 2πν/ε and

αn(ψ̂1, . . . , ψ̂N−1) =
1

ε3

N−1∑

q=1

ψ̂q(ω
q − 1)ωqn ,

βn(ψ̂1, . . . , ψ̂N−1) =
1

ε2

N−1∑

q=1

ψ̂q(ω
q + 1)ωqn . (3.54)

Note that αn is of order 1 in ε for any stationary point because of the expression (3.22)
of the twist map. Taking the inverse Fourier transform shows that |ψ̂q(ωq − 1)| = O(ε3)

and |ψ̂q| = O(ε2) for q 6= 0, and thus βn is also of order 1.
Expressing GN in Fourier variables yields the function

GN (ψ̂0, . . . , ψ̂N−1) =
∞∑

p=−∞

e2 i pψ̂0 gp(ψ̂1, . . . , ψ̂N−1) , (3.55)
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where (we drop the ε-dependence of G0 and Ĝp)

g0(ψ̂1, . . . , ψ̂N−1) = ε
N∑

n=1

G0(∆ + ε2αn) ,

gp(ψ̂1, . . . , ψ̂N−1) = ε3
N∑

n=1

Ĝp(∆ + ε2αn)ω
pM(2n+1) ei ε2pβn for p 6= 0 . (3.56)

We now examine the symmetry properties of the Fourier coefficients gp. Table 2 shows
how the Fourier variables transform under some symmetry transformations, where we only
consider transformations leaving T

N
ν invariant. As a consequence, the first two symmetries

in (3.50) translate into

gp(ψ̂1, . . . , ψ̂N−1) = ω2pMgp(ωψ̂1, . . . , ω
N−1ψ̂N−1) ,

gp(ψ̂1, . . . , ψ̂N−1) = ω−2pMg−p(−ωN−1ψ̂N−1, . . . ,−ωψ̂1) . (3.57)

We now introduce new variables χq, q 6= 0, defined by

χq = − iω−qψ̂0/2πνψ̂q = −χ−q . (3.58)

The χq are defined in such a way that they are real for stationary points satisfying, in
original variables, the symmetry xj = −xn0−j for some n0. For later convenience, we
prefer to consider q as belonging to

Q =

{
−

⌊
N − 1

2

⌋
, . . . ,

⌊
N

2

⌋}
\

{
0
}

(3.59)

rather than {1, . . . , N − 1}. We set χ = {χq}q∈Q and

G̃N (ψ̂0, χ) = GN (ψ̂0, {ψ̂q = iωqψ̂0/2πνχq}q∈Q)

=

∞∑

p=−∞

e2 i pψ̂0 g̃p(ψ̂0, χ) , (3.60)

where
g̃p(ψ̂0, χ) = gp({ψ̂q = iωqψ̂0/2πνχq}q∈Q) . (3.61)

Lemma 3.5. The function G̃N (ψ̂0, χ) is 2πν-periodic in its first argument.

Proof: By (3.57), we have

g̃p(ψ̂0 + 2πν, χ) = ω−2pM g̃p(ψ̂0, χ) (3.62)

Since e2 i p·2πν = ω2pM , replacing ψ̂0 by ψ̂0 + 2πν in (3.60) leaves G̃N invariant.

R xj 7→ xj+1 ψn 7→ ψn+1 ψ̂q 7→ ωqψ̂q + 2πνδq0

CS xj 7→ −xN+1−j ψn 7→ −ψN+1−n ψ̂q 7→ −ω−qψ̂N−q − 2πν(N + 1)δq0

C xj 7→ −xj ψn 7→ ψn + π ψ̂q 7→ ψ̂q + πδq0

Table 2. Effect of some symmetries on original variables, angle variables, and Fourier variables.
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Since G̃N also has period π, it has in fact period

π

N
K , K = gcd(N, 2M) . (3.63)

Our strategy now proceeds as follows:

1. Show that for each ψ̂0, and sufficiently small ε, the equations ∂G̃N/∂χq = 0, q ∈ Q,
admit exactly one solution χ = χ⋆(ψ̂0). This is done in Section 3.6 with the help of
Banach’s fixed-point theorem.

2. Show that for χ = χ⋆(ψ̂0), the equation ∂G̃N/∂ψ̂0 = 0 is satisfied by exactly 4N/K
values of ψ̂0. This is done in Section 3.7 by estimating the Fourier coefficients of
∂G̃N/∂ψ̂0 with the help of complex analysis.

3.6 Uniqueness of χ

In this section, we show that the equations

∂G̃N
∂χq

= 0 , q ∈ Q , (3.64)

admit exactly one solution χ = χ⋆(ψ̂0) for each value of ψ̂0. The proof is based on a
standard fixed-point argument: First we show in Lemma 3.6 that (3.64) is equivalent
to the fixed-point equation ρ = T ρ for a quantity ρ related to χ. Then we show in
Proposition 3.8 that T is contracting in an appropriate norm, provided ε is sufficiently
small.

It is useful to introduce the scaled variables

ρq = ρq(χ) = − 2

ε3
χq sin(πq/N) (3.65)

and the function Γ
(a,b)
ℓ (ρ), ρ = {ρq}q∈Q, defined for ℓ ∈ Z and a, b > 0 by

Γ
(a,b)
ℓ (ρ) =

∑

q1,...,qa∈Q
q′1,...,q

′

b∈Q

1{
∑

i qi+
∑

j q
′

j=ℓ}

a∏

i=1

ρqi

b∏

j=1

ε

tan(πq′j/N)
ρq′j . (3.66)

By convention, any term in the sum for which q′j = N/2 for some j is zero, that is, we set
1/ tan(π/2) = 0. A few elementary properties following immediately from this definition
are:

• Γ
(0,0)
ℓ (ρ) = δℓ0;

• Γ
(a,b)
ℓ (ρ) = 0 for |ℓ| > (a+ b)N/2;

• If ρq = 0 for q 6∈ KZ , then Γ
(a,b)
ℓ (ρ) = 0 for ℓ 6∈ KZ ;

• If ρ′q = ρ−q for all q, then Γ
(a,b)
ℓ (ρ′) = (−1)bΓ

(a,b)
−ℓ (ρ).

The following result states that the conditions (3.64) are equivalent to a fixed-point
equation.

Lemma 3.6. Let

Hp,q(∆) = Ĝ′
p(∆) − εpĜp(∆)

tan(πq/N)
, (3.67)
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with the convention that Hp,N/2(∆) = Ĝ′
p(∆). Then the stationarity conditions (3.64) are

fulfilled if and only if ρ = ρ(χ) satisfies the fixed-point equation

ρ = T ρ = ρ(0) + Φ(ρ, ε) , (3.68)

where the leading term is given by

ρ(0)
q =





1

G′′
0(∆)

∑

k∈Z : kN+q∈2MZ

(−1)k+1 ei kψ̂0N/M H(kN+q)/2M,q(∆) if q ∈ KZ ,

0 if q 6∈ KZ ,

(3.69)

and the remainder is given by Φq(ρ, ε) = Φ
(1)
q (ρ, ε) + Φ

(2)
q (ρ, ε), with

Φ(1)
q (ρ, ε) =

1

G′′
0(∆)

∑

k∈Z

(−1)k+1 ei kψ̂0N/M
∑

a>1

ε2a

(a+ 1)!
G

(a+2)
0 (∆)Γ

(a+1,0)
kN+q (ρ) ,

Φ(2)
q (ρ, ε) =

1

G′′
0(∆)

∑

k∈Z

(−1)k+1 ei kψ̂0N/M
∑

a+b>1

ε2(a+b)

a!b!

∑

p 6=0

H(a)
p,q (∆)pbΓ

(a,b)
kN−2pM+q(ρ) .

(3.70)

The proof is a straightforward but lengthy computation, which we postpone to Ap-
pendix B.

Note the following symmetries, which follow directly from the definition of ρ(0) and
the properties of Γ

(a,b)
ℓ :

• For all q ∈ Q, ρ
(0)
−q = ρ

(0)
q , because H−p,−q(∆) = Hp,q(∆), and thus ρ

(0)
q ∈ R ;

• If ρq = 0 for q 6∈ KZ , then Φq(ρ, ε) = 0 for q 6∈ KZ ;
• If ρ′q = ρ−q for all q, then Φq(ρ

′, ε) = Φ−q(ρ, ε);

Remark 3.7. The condition kN + q ∈ 2MZ , appearing in the definition of ρ(0), can only
be fulfilled if q ∈ NZ +2MZ = KZ . If this is the case, set N = nK, 2M = mK, q = ℓK,
with n and m coprime. Then the condition becomes mp− kn = ℓ. By Bezout’s theorem,
the general solution is given in terms of any particular solution (p0, k0) by

p = p0 + nt , k = k0 +mt , t ∈ Z . (3.71)

Thus there will be exactly one p with 2|p| < n. If N is very large, and M is fixed, then
n = N/K is also very large. Since the Ĝp(∆), being Fourier coefficients of an analytic
function, decrease exponentially fast in |p|, the sum in (3.69) will be dominated by the
term with the lowest possible |p|.

We now introduce the following weighted norm on C
Q:

‖ρ‖λ = sup
q∈Q

eλ|q|/2M |ρq| , (3.72)

where λ > 0 is a free parameter. One checks that the functions G0(∆) and Ĝp(∆) are
analytic for Re∆ > O(1/ log|ε|). Thus it follows from Cauchy’s theorem that there exist
positive constants L0, r < ∆ −O(1/ log|ε|) and λ0 such that

|G(a)
0 (∆)| 6 L0

a!

ra
and |Ĝ(a)

p (∆)| 6 L0
a!

ra
e−λ0|p| (3.73)

for all a > 0 and p ∈ Z . For sufficiently small ε, it is possible to choose r = ∆/2.
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Proposition 3.8. There exists a numerical constant c1 > 0 such that for any ∆ > 0, any
λ < λ0 and any R0 > c1L0[∆|G′′

0(∆)|]−1, there is a strictly positive ε0 = ε0(∆, λ, λ0, R0)
such that for all ε < ε0, the map T admits a unique fixed point ρ⋆ in the ball Bλ(0, R0) =
{ρ ∈ C

Q : ‖ρ‖λ < R0}. Furthermore, the fixed point satisfies

• ρ⋆q = 0 whenever q 6∈ KZ ;
• ρ⋆−q = ρ⋆q, and thus ρ⋆q ∈ R for all q.

The proof is again a straightforward but lengthy computation, so we postpone it to
Appendix B.

A direct consequence of this result is that for any ψ̂0, and sufficiently small ε, there is
a unique ρ⋆ = ρ⋆(ψ̂0) (and thus a unique χ⋆(ψ̂0)) satisfying the equations ∂G̃N/∂χq = 0
for all q ∈ Q. Indeed, we take R0 sufficiently large that our a priori estimates on the χq
imply that ρ ∈ B0(0, R0). Then it follows that ρ is unique. Furthermore, for any λ < λ0,
making ε sufficiently small we obtain an estimate on ‖ρ⋆‖λ.

3.7 Stationary Values of ψ̂0

We now consider the condition ∂G̃N/∂ψ̂0 = 0. As pointed out at the end of Section 3.5,
G̃N (ψ̂0, χ) is a πK/N -periodic function of ψ̂0. For the same reasons, χ⋆(ψ̂0) is also πK/N -
periodic. Hence it follows that the function ψ̂0 7→ G̃N (ψ̂0, χ

⋆(ψ̂0)) has the same period as
well, and thus admits a Fourier series of the form

G̃N (ψ̂0, χ
⋆(ψ̂0)) =

∞∑

k=−∞

ĝk e2 i kψ̂0N/K , (3.74)

with Fourier coefficients

ĝk =
1

2π

∫ 2π

0

∞∑

p=−∞

e2 i(p−kN/K)ψ̂0 g̃p(ψ̂0, χ
⋆(ψ̂0)) dψ̂0 (3.75)

(we have chosen [0, 2π] as interval of integration for later convenience). Using the change
of variables ψ̂0 7→ −ψ̂0 in the integral, and the various symmetries of the coefficients (in
particular (3.57)), one checks that ĝ−k = ĝk. Therefore (3.74) can be rewritten in real
form as

G̃N (ψ̂0, χ
⋆(ψ̂0)) = ĝ0 + 2

∞∑

k=1

ĝk cos
(
2kψ̂0N/K

)
. (3.76)

Now ∂G̃N/∂ψ̂0 vanishes if and only if the total derivative of G̃N (ψ̂0, χ
⋆(ψ̂0)) with respect to

ψ̂0 is equal to zero. This function obviously vanishes for ψ̂0 = ℓπK/2N , ℓ = 1, . . . , 4N/K,
and we have to show that these are the only roots.

We first observe that the Fourier coefficients ĝk can be expressed directly in terms of
the generating function (3.38), written in the form

G̃(u, v, ε) = εG0(u, ε) + ε3
∑

p 6=0

Ĝp(u, ε) e2 i pv . (3.77)

In the sequel, α⋆n(ψ̂0) and β⋆n(ψ̂0) denote the quantities introduced in (3.54), evaluated at

ψ̂q = iωqψ̂0/2πνχ⋆q(ψ̂0).
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Lemma 3.9. The Fourier coefficients ĝk are given in terms of the generating function by

ĝk =
N

2π

∫ 2π

0
e−2 i kψ̂0N/K Λ0(ψ̂0) dψ̂0 , (3.78)

where

Λ0(ψ̂0) = G̃
(
∆ + ε2α⋆0(ψ̂0), ψ̂0 + πν +

1

2
ε2β⋆0(ψ̂0), ε

)
. (3.79)

Proof: The coefficient ĝk can be rewritten as

ĝk =
1

2π

N∑

n=1

∫ 2π

0
e−2 i kψ̂0N/K Λn(ψ̂0) dψ̂0 , (3.80)

where

Λn(ψ̂0) = εG0(∆ + ε2α⋆n(ψ̂0))

+ ε3
∑

p 6=0

p e2 i pψ̂0 Ĝp(∆ + ε2α⋆n(ψ̂0))ω
pM(2n+1) ei ε2pβ⋆

n(ψ̂0) . (3.81)

Using the periodicity of χ⋆, one finds that α⋆n(ψ̂0 + 2πν) = α⋆n+1(ψ̂0) and similarly for β⋆n,
which implies Λn(ψ̂0) = Λ0(ψ̂0 + 2πνn). Inserting this into (3.80) and using the change
of variables ψ̂0 7→ ψ̂0 − 2πν in the nth summand allows to express ĝk as the (2kN/K)th
Fourier coefficient of Λ0. Finally, Λ0(ψ̂0) can also be written in the form (3.79).

Relation (3.78) implies that the ĝk decrease exponentially fast with k, like e−2λ0kN/K .
Hence the Fourier series (3.76) is dominated by the first two terms, provided N is large
enough. In order to obtain the existence of exactly 4N/K stationary points, it is thus
sufficient to prove that ĝ1 is also bounded below by a quantity of order e−2λ0N/K .

Proposition 3.10. For any ∆ > 0, there exists ε1(∆) > 0 such that whenever ε < ε1(∆),

sign(ĝ1) = (−1)1+2M/K . (3.82)

Furthermore,
|ĝk|
|ĝ1|

6 exp

{
−3k − 5

4
λ0(∆)

N

K

}
∀k > 2 , (3.83)

where λ0(∆) is a monotonously increasing function of ∆, satisfying λ0(∆) =
√

2π∆ +
O(∆2) as ∆ ց 0, and diverging logarithmically as ∆ ր 1.

Proof: First recall that ∆ = 2πν/ε = 2πM/Nε, where M is fixed. Thus taking ε small
for given ∆ automatically yields a large N . Combining the expression (3.22) for the
twist map and the defining property (3.37) of the generating function with the relations
u = (ψn+1 − ψn)/ε and v = ψn + ψn+1, one obtains the relation

∂vG̃(u, v, ε) =
ε3

2

[
g
(

1
2(v − εu),Ω

−1
(u), ε

)
+ O(ε2)

]
. (3.84)

It follows from (3.24) and the definition (3.20) of h(C) that

g(ψ, I, 0) =
1

Ω(I)

xw

4
[1 + 2w2 − 4x2 + 3x4]

=
1

Ω(I)

xw

4
[1 + 4C − 6x2 + 4x4] , (3.85)
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−π/2 3π/2

Im z

− iλ0z1 z2

Γ

Figure 6. The integration contour Γ used in the integral (3.89).

where x and w have to be expressed as functions of ψ and I via (3.17) and (3.19). In
particular, we note that

w =

√
2C

a

π

2K(κ)

dx

dψ
= Ω(I)

dx

dψ
, (3.86)

where we used (3.20) again. This allows us to write

g(ψ, I, 0) =
1

8

d

dψ

[
(1 + 4C)x2 − 3x4 +

4

3
x6

]
. (3.87)

A similar argument would also allow to express the first-order term in ε of g(ψ, I, ε) as a
function of x = x(ψ, I). Also note the equality

∆ = Ω(I) + O(ε) =
πb(C)

2
√

2 K(κ)
+ O(ε) =

1√
1 + κ2 K(κ)

+ O(ε) , (3.88)

which follows from the relation (3.30) between ν and Ω(I).
The properties of elliptic functions imply that for fixed I, ψ 7→ x(ψ, I) is periodic in

the imaginary direction, with period 2λ0 = πK(
√

1 − κ2)/K(κ), and has poles located
in ψ = nπ + (2m + 1) i λ0, n,m ∈ Z . As a consequence, the definition of the map
T = Φ ◦ T2 ◦ Φ−1 implies in particular that g(ψ, I, ε) is a meromorphic function of ψ,
with poles at the same location, and satisfying g(ψ + 2 iλ0, I, ε) = g(ψ, I, ε). These
properties yield informations on periodicity and location of poles for Λ0(ψ̂0), in particular
Λ0(ψ̂0 + 2 iλ0) = Λ0(ψ̂0) + O(ε2).

Let Γ be a rectangular contour with vertices in −π/2, −π/2− 2 iλ0, 3π/2− 2 iλ0, and
3π/2, followed in the anticlockwise direction (Figure 6), and consider the contour integral

J =
1

2π

∮

Γ
e−2 i kzN/K Λ0(z) dz . (3.89)

The contributions of the integrals along the vertical sides of the rectangle cancel by peri-
odicity. Therefore, by Lemma 3.9 and the approximate periodicity of Λ0 in the imaginary
direction,

J = − 1

N

[
ĝk − e−2kλ0N/K

(
ĝk + O(Nε5)

)]
. (3.90)

On the other hand, the residue theorem yields

J = 2π i
∑

zj

e−2 i kzjN/K Res(Λ0(z), zj) , (3.91)
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where the zj denote the poles of the function Λ0(z), lying inside Γ. There are two such
poles, located in z1 = − iλ0−πν+ε∆+O(ε2), and z2 = z1+π, and they both yield the same
contribution, of order e−λ0kN(1+O(ε2))/K , to the sum. Comparing (3.90) and (3.91) shows
that ĝk/N is of the same order. Finally, the leading term of ĝ1 can be determined explicitly
using (3.87) and Jacobi’s expression (A.11) for the Fourier coefficients of powers of elliptic
functions, and is found to have sign (−1)1+2M/K for sufficiently large N . Choosing ε small
enough (for fixed εN) guarantees that ĝ1 dominates all ĝk for k > 2.

Corollary 3.11. For ε < ε1(∆), the N -point generating function G̃N admits exactly
4N/K stationary points, given by ψ̂0 = ℓπK/2N , ℓ = 1, . . . , 4N/K, and χ = χ⋆(ψ̂0).

Proof: In the points ψ̂0 = ℓπK/2N , the derivative of the function ψ̂0 7→ G̃N (ψ̂0, χ
⋆(ψ̂0))

vanishes, while its second derivative is bounded away from zero, as a consequence of
Estimate (3.83). Thus these points are simple roots of the first derivative, which is bounded
away from zero everywhere else.

3.8 Index of the Stationary Points

We finally examine the stability type of the various stationary points, by first determin-
ing their index as stationary points of the N -point generating function GN , and then
examining how this translates into their index as stationary points of the potential Vγ .

Proposition 3.12. Let (ψ̂0, χ
⋆(ψ̂0)) be a stationary point of G̃N with rotation number

ν = N/M . Let x⋆ = x⋆(ψ̂0) be the corresponding stationary point of the potential Vγ, and
let K = gcd(N, 2M).

• If 2M/K is odd, then the points x⋆(0), x⋆(Kπ/N), . . . are saddles of even index of Vγ ,
while the points x⋆(Kπ/2N), x⋆(3Kπ/2N), . . . are saddles of odd index of Vγ.

• If 2M/K is even, then the points x⋆(0), x⋆(Kπ/N), . . . are saddles of odd index of Vγ ,
while the points x⋆(Kπ/2N), x⋆(3Kπ/2N), . . . are saddles of even index of Vγ.

Proof: We first determine the index of (ψ̂0, χ
⋆(ψ̂0)) as stationary point of G̃N . Using the

fact that G′′
0(∆) is negative (Ω

−1
(∆) being decreasing), one sees that the Hessian matrix

of G̃N is a small perturbation of a diagonal matrix with N − 1 negative eigenvalues. The
Nth eigenvalue, which corresponds to translations of ψ̂0, has the same sign as the second
derivative of ψ̂0 7→ G̃N (ψ̂0, χ

⋆(ψ̂0)), which is equal to (−1)2M/K sign cos(2ψ̂0N/K). Thus
(ψ̂0, χ

⋆(ψ̂0)) is an N -saddle of G̃N if this sign is negative, and an (N−1)-saddle otherwise.
The same is true for the index of ψ = (ψ1, . . . , ψN ) as a stationary point of GN .

Let R be the so-called residue of the periodic orbit of T associated with the stationary
point. This residue is equal to (2 − Tr(DTN ))/4, where DTN is the Jacobian of TN at
the orbit, and indicates the stability type of the periodic orbit: The orbit is hyperbolic if
R < 0, elliptic if 0 < R < 1, and inverse hyperbolic if R > 1. It is known [MM83] that the
residue R is related to the index of ψ be the identity

R = −1

4

det(HessGN (ψ))
∏N
j=1(−∂12G(ψj , ψj+1))

. (3.92)

In our case, −∂12G(ψj , ψj+1) is always negative, so that R is positive if ψ is an (N − 1)-
saddle, and negative if ψ is an N -saddle.

Now x⋆(ψ̂0) also corresponds to a periodic orbit of the map (3.2), whose generating
function is H(xn, xn+1) = 1

2(xn−xn+1)
2+ 2

γU(xn). The corresponding N -point generating
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function is precisely (2/γ)Vγ . Since the residue is invariant under area-preserving changes
of variables, we also have

R = − 1

2γ

det(Hess Vγ(x
⋆))

∏N
j=1(−∂12H(x⋆j , x

⋆
j+1))

. (3.93)

In this case, the denominator is positive. Therefore, Hess Vγ(x
⋆) has an even number of

positive eigenvalues if ψ is an N -saddle, and an odd number of positive eigenvalues if ψ is
an (N − 1)-saddle.

We can now complete the proofs of Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1. We first recall the following facts, established in [BFG06a].
Whenever γ̃ crosses a bifurcation value γ̃M , say from larger to smaller values, the index
of the origin changes from 2M − 1 to 2M + 1. Thus the bifurcation involves a centre
manifold of dimension 2, with 2M−1 unstable andN−2M−1 stable directions transversal
to the manifold. Within the centre manifold, the origin repels nearby trajectories, and
attracts trajectories starting sufficiently far away. Therefore, all stationary points lying
in the centre manifold, except the origin, are either sinks or saddles for the reduced two-
dimensional dynamics. For the full dynamics, they are thus saddles of index (2M − 1) or
2M (c.f. [BFG06a, Section 4.3]), at least for γ̃ close to γ̃M .

We now return to the twist map in action-angle variables (3.22). The frequency Ω(I)
being maximal for I = 0, as ε increases, new orbits appear on the line I = 0, which
corresponds to the origin in x-coordinates. Orbits of rotation number ν = M/N can only
exist if εΩ(0) = ε > 2πν + O(ε2), which is compatible with the condition γ̃ < γ̃M .

Consider the case of a winding number M = 1, that is, of orbits with rotation number
ν = 1/N , which are the only orbits existing for γ̃2 < γ̃ < γ̃1. We note that γ̃ > γ̃2

implies ∆ = 2π/Nε > 1/2 −O(ε), and thus there exists N1 < ∞ such that the condition
N > N1 automatically implies that ε is small enough for Corollary 3.11 to hold. Now,
Proposition 3.12 yields:

• If N is even, then K = gcd(N, 2) = 2, and there are 2N stationary points. The points
x⋆(0), x⋆(2π/N), . . . must be 2-saddles, while the points x⋆(π/N), x⋆(3π/N), . . . are
1-saddles;

• If N is odd, then K = gcd(N, 2) = 1, and there are 4N stationary points. The points
x⋆(0), x⋆(π/N), . . . must be 1-saddles, while the points x⋆(π/2N), x⋆(3π/2N), . . . are
2-saddles.

Going back to original variables, we obtain the expressions (2.30) and (2.31) for the co-
ordinates of these stationary points. The fact that they keep the same index as γ̃ moves
away from γ̃M is a consequence of Relation (3.93) and the fact that the corresponding sta-
tionary points of G̃N also keep the same index. Finally, Relation (2.26) on the potential
difference is a consequence of Proposition 3.2. This proves Theorem 2.1.

Proof of Theorem 2.2. For larger winding number M , one can proceed in an analo-
gous way, provided N is sufficiently large, as a function of M , for the conditions on ε to
hold. This proves Theorem 2.2.

Finally, Theorem 2.4 is proved in an analogous way as Theorems 2.7 and 2.8 in
[BFG06a], using results from [FW98] (see also [Kif81, Sug96]).
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A Jacobi’s Elliptic Integrals and Functions

Fix some κ ∈ [0, 1]. The incomplete elliptic integrals of the first and second kind are
defined, respectively, by3

F(φ, κ) =

∫ φ

0

dt√
1 − κ2 sin2 t

, E(φ, κ) =

∫ φ

0

√
1 − κ2 sin2 t dt . (A.1)

The complete elliptic integrals of the first and second kind are given by

K(κ) = F(π/2, κ) , E(κ) = E(π/2, κ) . (A.2)

Special values include K(0) = E(0) = π/2 and E(1) = 1. The integral of the first kind
K(κ) diverges logarithmically as κր 1.

The Jacobi amplitude am(u, κ) is the inverse function of F(·, κ), i.e.,

φ = am(u, κ) ⇔ u = F(φ, κ) . (A.3)

The three standard Jacobi elliptic functions are then defined as

sn(u, κ) = sin(am(u, κ)) ,

cn(u, κ) = cos(am(u, κ)) , (A.4)

dn(u, κ) =

√
1 − κ2 sin2(am(u, κ)) .

Their derivatives are given by

sn′(u, κ) = cn(u, κ) dn(u, κ) ,

cn′(u, κ) = − sn(u, κ) dn(u, κ) , (A.5)

dn′(u, κ) = −κ2 sn(u, κ) cn(u, κ) .

The function sn satisfies the periodicity relations

sn(u+ 4K(κ), κ) = sn(u, κ) ,

sn(u+ 2 i K(
√

1 − κ2), κ) = sn(u, κ) , (A.6)

and has simple poles in u = 2nK(κ) + (2m + 1) i K(
√

1 − κ2), n,m ∈ Z , with residue
(−1)m/κ. The functions cn and dn satisfy similar relations. Since am(u, 0) = u, one has
sn(u, 0) = sinu, cn(u, 0) = cos u and dn(u, 0) = 1. As κ grows from 0 to 1, the elliptic
functions become more and more squarish. This is also apparent from their Fourier series,
given by

2K(κ)

π
sn

(
2K(κ)

π
ψ, κ

)
=

4

κ

∞∑

p=0

q(2p+1)/2

1 − q2p+1
sin

(
(2p+ 1)ψ

)
,

2K(κ)

π
cn

(
2K(κ)

π
ψ, κ

)
=

4

κ

∞∑

p=0

q(2p+1)/2

1 + q2p+1
cos

(
(2p + 1)ψ

)
, (A.7)

2K(κ)

π
dn

(
2K(κ)

π
ψ, κ

)
= 1 + 4

∞∑

p=0

qp

1 + q2p
cos

(
2pψ

)
,

3One should beware of the fact that some sources use m = κ
2 as parameter.
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where q = q(κ) is the elliptic nome defined by

q = exp

{
−πK(

√
1 − κ2)

K(κ)

}
. (A.8)

The elliptic nome has the asymptotic behaviour

q(κ) =





κ2

16
+
κ4

32
+ O

(
κ6

)
for κց 0 ,

exp

{
π2

log[(1 − κ2)/16]

}[
1 + O

(
1 − κ2

log2[(1 − κ2)/16]

)]
for κր 1 .

(A.9)

We also use the following identities, derived in [Jac69, p. 175]. For k > 1,

(
2K(κ)

π

)2k

sn2k

(
2K(κ)

π
ψ, κ

)
= ĉ2k,0 +

∞∑

p=1

ĉ2k,p
qp

1 − q2p
cos

(
2pψ

)
, (A.10)

where the ĉ2k,0 are positive constants (independent of ψ), and the other Fourier coefficients
are given for the first few k by

ĉ2,p = − 4

κ2
(2p) ,

ĉ4,p =
4

3!κ4

[
(2p)3 − 4(2p)(1 + κ2)

(
2K(κ)

π

)2]
, (A.11)

ĉ6,p = − 4

5!κ6

[
(2p)5 − 20(2p)3(1 + κ2)

(
2K(κ)

π

)2

+ 8(2p)(8 + 7κ2 + 8κ4)

(
2K(κ)

π

)4]
.

B Proofs of the Fixed-Point Argument

In this appendix, we give the somewhat technical proofs of the fixed-point argument given
in Section 3.6. We start by proving Lemma 3.6, stating a fixed-point equation equivalent
to the stationarity conditions ∂G̃N/∂χq = 0, q ∈ Q.

Proof of Lemma 3.6. The definitions (3.54) of αn and βn imply, for any a, b > 0,

αan =
∑

q1,...,qa∈Q

a∏

i=1

ρqiω
qi(n+1/2) ei ψ̂0qi/M ,

βbn =
∑

q′1,...,q
′

b∈Q

b∏

j=1

− i ερq′j
tan(πq′j/N)

ωq
′

j(n+1/2) ei ψ̂0q′j/M . (B.1)

It is more convenient to compute ∂G̃N/∂ρ−q rather than ∂G̃N/∂χq. We thus have to
compute the derivatives of g̃p with respect to ρ−q for all p. For p = 0, we have

∂g̃0
∂ρ−q

= ε3
N∑

n=1

G′
0(∆ + ε2αn)

∂αn
∂ρ−q

, (B.2)
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where (B.1) shows that ∂αn/∂ρ−q = ω−q(n+1/2) e− i ψ̂0q/M . We expand G′
0(∆ + ε2αn) into

powers of ε2, and plug in (B.1) again. In the resulting expression, the sum over n vanishes
unless

∑
i qi − q is a multiple of N , say kN . This yields

∂g̃0
∂ρ−q

= Nε3
∑

k∈Z

(−1)k ei kψ̂0N/M
∑

a>0

ε2a

a!
G

(a+1)
0 (∆)Γ

(a,0)
kN+q(ρ) . (B.3)

We consider the terms a = 0 and a = 1 separately:

• Since Γ
(0,0)
kN+q(ρ) = δkN,−q vanishes for all k, the sum actually starts at a = 1.

• The fact that Γ
(1,0)
ℓ (ρ) vanishes whenever |ℓ| > N/2 implies that only the term k = 0

contributes, and yields a contribution proportional to −ρq.
Shifting the summation index a by one unit, we get

∂g̃0
∂ρ−q

= Nε5
[
G′′

0(∆)ρq +
∑

k∈Z

(−1)k ei kψ̂0N/M
∑

a>1

ε2a

(a+ 1)!
G

(a+2)
0 (∆)Γ

(a+1,0)
kN+q (ρ)

]
. (B.4)

A similar computation for p 6= 0 shows that

∂g̃p
∂ρ−q

e2 i pψ̂0 = Nε5
∑

k∈Z

(−1)k ei kψ̂0N/M
∑

a,b>0

ε2(a+b)

a!b!
H(a)
p,q (∆)pbΓ

(a,b)
kN+q−2pM . (B.5)

Solving the stationarity condition

0 =
∂G̃N
∂ρ−q

=
∞∑

p=−∞

e2 i pψ̂0
∂g̃p
∂ρ−q

(B.6)

with respect to ρq, and singling out the term a = b = 0 in (B.5) to give the leading term
ρ(0) then yields the result.

The following estimates yield sufficient conditions for the operator T to be a contraction
inside a certain ball, for the norm ‖·‖λ introduced in (3.72).

Proposition B.1. There exist numerical constants c0, c1 > 0, such that for any λ < λ0,
and any N such that N e−λ0N/2M 6 1/2, the estimates

‖T ρ‖λ 6
c1L0

∆|G′′
0(∆)|

[
1 +

M

∆3

(
‖ρ‖λ + ε∆Mη(λ0, λ)

)
ε‖ρ‖λ

]
, (B.7)

‖T ρ− T ρ′‖λ 6
c1L0

|G′′
0(∆)|

M

∆4

[(
‖ρ‖λ ∨ ‖ρ′‖λ

)
+ ε∆Mη(λ0, λ)

]
ε‖ρ− ρ′‖λ (B.8)

hold with η(λ0, λ) = (eλ /λ0) ∨ (1/(λ0 − λ)), provided ρ and ρ′ satisfy

ε
(
‖ρ‖λ ∨ ‖ρ′‖λ

)
6 c0

∆2

M

(
1 ∧ λ0 − λ

M
∧ λ

M

)
. (B.9)

Proof: The lower bound

|tan(πq/N)|
ε

>
π|q|
Nε

=
∆

2M
|q| (B.10)
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directly implies

|H(a)
p,q (∆)| 6 L0

a!

ra+1

[
1 +

2M |p|
|q|

]
e−λ0|p| . (B.11)

The assumption on N allows |ρq| to be bounded by a geometric series of ratio smaller than
1/2, which is dominated by the term k = 0, yielding

‖ρ(0)‖λ 6
c2L0

∆|G′′
0(∆)| e−(λ0−λ)|q|/2M

6
c2L0

∆|G′′
0(∆)| , (B.12)

where c2 > 0 is a numerical constant. The fact that Γ
(a,b)
ℓ (ρ) contains less than Na+b−1

terms, together with (B.10), implies the bound

|Γ(a,b)
ℓ (ρ)| 6 Na+b−1

(
2M

∆

)b

e−λ|ℓ|/2M‖ρ‖a+bλ . (B.13)

Assuming that ‖ρ‖λ 6 c0∆
2/Mε for sufficiently small c0, it is straightforward to obtain

the estimate

‖Φ(1)(ρ, ε)‖λ 6
c3L0

|G′′
0(∆)|

2M

∆4
ε‖ρ‖2

λ . (B.14)

In the sequel, we assume that q > 0, since by symmetry of the norm under permutation of
ρq and ρ−q the same estimates will hold for q < 0. The norm of Φ(2)(ρ, ε) is more delicate
to estimate. We start by writing

|Φ(2)
q (ρ, ε)| 6

L0

|G′′
0(∆)|

1

N

∑

a+b>1

(
ε2N‖ρ‖λ

)a+b 1

ra+1

(
2M

∆

)b

Sq(b) , (B.15)

where

Sq(b) =
1

b!

∑

p 6=0

|p|b
(

1 +
2M |p|
q

)
e−(λ0−λ)|p|

∑

k∈Z

exp

{
− λ

2M
(2M |p| + |kN + q − 2Mp|)

}
.

(B.16)
We decompose Sq(b) = S+

q (b) + S−
q (b), where S+

q (b) and S−
q (b) contain, respectively, the

sum over positive and negative p. In the sequel, we shall only treat the term S+
q (b). The

sum over k in (B.16) is dominated by the term for which kN is the closest possible to
2Mp − q, and can be bounded by a geometric series. The result for p > 0 is

∑

k∈Z

exp

{
− λ

2M
(2Mp+ |kN + q − 2Mp|)

}
6 c4

(
e−λp ∧ e−λq/2M

)
. (B.17)

We now distinguish between two cases.

• If q 6 2M , we bound the sum over k by e−λp, yielding

S+
q (b) 6

c4
b!

4M

q

∑

p>1

pb+1 e−λ0p 6 4Mc5
b+ 1

λb0
. (B.18)

Since eλq/2M 6 eλ, it follows that

|Φ(2)
q (ρ, ε)| 6

c6L0

|G′′
0(∆)|

2M2 eλ

r2∆λ0
ε2‖ρ‖λ e−λq/2M . (B.19)
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• If q > 2M , we split the sum over p at q/2M . For 2Mp 6 q, we bound (1 + 2Mp/q)
by 2 and the sum over k by e−λq/2M . For 2Mp > q, we bound the the sum over k by
e−λp 6 e−λq/2M . This shows

S+
q (b) 6 2c7M

b+ 1

(λ0 − λ)b
e−λq/2M , (B.20)

and thus

|Φ(2)
q (ρ, ε)| 6

c8L0

|G′′
0(∆)|

2M2

r2∆(λ0 − λ)
ε2‖ρ‖λ e−λq/2M . (B.21)

Now (B.21) and (B.19), together with (B.12), imply (B.7). The proof of (B.8) is similar,
showing first the estimate

∣∣∣∣
a∏

i=1

ρqi −
a∏

i=1

ρ′qi

∣∣∣∣ 6 a
(
‖ρ‖λ ∨ ‖ρ′‖λ

)a−1
e−λ

∑a
i=1|qi|/2M‖ρ− ρ′‖λ (B.22)

by induction on a, and then

∣∣Γ(a,b)
ℓ (ρ)−Γ

(a,b)
ℓ (ρ′)

∣∣ 6 (a+b)
[
N(‖ρ‖λ∨‖ρ′‖λ)

]a+b−1
(

2M

∆

)b

e−λ|ℓ|/2M‖ρ−ρ′‖λ . (B.23)

It is now easy to complete the proof of Proposition 3.8.

Proof of Proposition 3.8. Estimate (B.7) for ‖T ρ‖λ implies that if

ε 6
R0

∆Mη(λ0, λ)
∧ ∆3

2MR2
0

(
∆|G′′

0(∆)|
c1L0

R0 − 1

)
, (B.24)

then T (Bλ(0, R0)) ⊂ Bλ(0, R0). If in addition

ε 6 c0
∆2

MR0

(
1 ∧ λ0 − λ

M
∧ λ

M

)
, (B.25)

then Estimate (B.8) for ‖T ρ−T ρ′‖λ applies for ρ, ρ′ ∈ Bλ(0, R0). It is then immediate to
check that T is a contracting in Bλ(0, R0), as a consequence of (B.24). Thus the existence
of a unique fixed point in that ball follows by Banach’s contraction lemma. Finally, the
assertions on the properties of ρ⋆ follow from the facts that they are true for ρ(0), that
they are preserved by T and that ρ⋆ = limn→∞ T nρ(0).
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