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Metastability in Interacting Nonlinear

Stochastic Differential Equations I:

From Weak Coupling to Synchronisation

Nils Berglund, Bastien Fernandez and Barbara Gentz

Abstract

We consider the dynamics of a periodic chain of N coupled overdamped particles under
the influence of noise. Each particle is subjected to a bistable local potential, to a linear
coupling with its nearest neighbours, and to an independent source of white noise.
We show that as the coupling strength increases, the number of equilibrium points
of the system changes from 3N to 3. While for weak coupling, the system behaves
like an Ising model with spin-flip dynamics, for strong coupling (of the order N2), it
synchronises, in the sense that all oscillators assume almost the same position in their
respective local potential most of the time. We derive the exponential asymptotics
for the transition times, and describe the most probable transition paths between
synchronised states, in particular for coupling intensities below the synchronisation
threshold. Our techniques involve a centre-manifold analysis of the desynchronisation
bifurcation, with a precise control of the stability of bifurcating solutions, allowing
us to give a detailed description of the system’s potential landscape, in which the
metastable behaviour is encoded.
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1 Introduction

Lattices of interacting deterministic multistable systems display a wide range of interesting
behaviours, due to the competition between local dynamics and coupling between different
sites. While for weak coupling, they often exhibit spatial chaos (independent dynamics
at the different sites), for strong coupling they tend to display an organised collective be-
haviour, such as synchronisation (see, for instance [BM96, CMPVV96, Joh97, NMKV97],
and [PRK01, CF05] for reviews).

An important problem is to understand the effect of noise on such systems. Noise
can be used to model the effect of unresolved degrees of freedom, for instance the in-
fluence of external heat reservoirs (see, e.g., [FKM65, SL77, EPRB99, RBT00, RBT02]),
which can induce currents through the chain. The long-time behaviour of the system is
described by its invariant measure (assuming such a measure exists); however, for weak
noise, the dynamics often displays metastability, meaning that the relaxation time towards
the invariant measure is extremely long.
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Metastability has been studied extensively for particle systems with stochastic dynam-
ics. In these models, the transition from one metastable state to another usually involves
the gradual creation of a critical droplet through small fluctuations, followed by a rapid
transition to the new state. The distributions of transition times, as well as the shapes
of critical droplets, have been investigated in detail (see in particular [dH04, OV05] for
reviews, and references therein).

In these lattice models, the local variables take only a finite number of discrete values,
which are independent of the interaction with other sites. In the present paper, we consider
by contrast a model with continuous on-site variables. This leads to a system of interacting
stochastic differential equations (also called interacting diffusions, see, for instance, [DG88]
for a review of asymptotic properties in the mean-field case). It turns out that while this
system has a similar behaviour to stochastic lattice models for weak coupling, the dynamics
is totally different for strong coupling: There are only 3 equilibrium configurations left,
while the activation energy becomes extensive in the number N of particles. For large N ,
the system’s behaviour is closer to the behaviour of a Ginzburg–Landau partial differential
equation with noise (see, e.g. [EH01, Rou02]). The transition between the strong-coupling
and the weak-coupling regimes involves, as we shall see, a sequence of symmetry-breaking
bifurcations. Such bifurcations have been studied, for instance, in [QC04] for the weak-
coupling regime, and in [McN99, McN02, Wat93a, Wat93b] for systems of coupled phase
oscillators.

Our major aim is to determine the dependence of the transition times between meta-
stable states, as well as the critical configurations, on the coupling strength, on the whole
range from weak to strong coupling. This analysis requires a precise knowledge of the sys-
tem’s “potential landscape”, in particular the number and location of its local minima and
saddles of index 1 [FW98, Sug96, Kol00, BEGK04, BGK05]. In order to obtain this infor-
mation, we will exploit the symmetry properties of the system, using similar techniques
as the ones developed in the context of phase oscillators in [AS92, DGS96a, DGS96b],
for instance. Our study also involves a centre-manifold analysis of the desynchronisation
bifurcation, which goes beyond existing results on similar bifurcations because a precise
control of the bifurcating stationary points’ stability is required.

This paper is organised as follows. Section 2 contains the precise description of the
model and the statement of all results. After introducing the model and describing its
behaviour for weak and strong coupling, we examine the effect of symmetries on the bifur-
cation diagram in Section 2.5, illustrated in Section 2.6 by a few special cases with small
particle number N . Section 2.7 discusses the desynchronisation bifurcation for general
N , Section 2.8 considers further bifurcations of the origin, and Section 2.9 presents the
consequences of these results for the stochastic dynamics of the system.

The subsequent sections contain the proofs of our results. The proof of synchronisation
at strong coupling is presented in Section 3, while Section 4 introduces Fourier variables,
which are used to prove the results for N = 2 and N = 3, and for the centre-manifold
analysis of the desynchronisation bifurcation for general N . Section 5 contains the proofs of
the results on the stochastic dynamics. Appendix A gives a brief description of the analysis
of the weak-coupling regime, which uses standard techniques from symbolic dynamics, and
Appendix B contains a short description of the analysis of the case N = 4.

The follow-up paper [BFG06b] analyses in more detail the behaviour for large particle
number N . In that regime, we are able to control the number of stationary points in a
much larger domain of coupling intensities, including values far from the synchronisation
threshold.
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2 Model and Results

2.1 Definition of the Model

Our model of interacting bistable systems perturbed by noise is defined by the following
ingredients:

• The periodic one-dimensional lattice is given by Λ = Z /NZ , where N > 2 is the
number of particles.

• To each site i ∈ Λ, we attach a real variable xi ∈ R , describing the position of the ith
particle. The configuration space is thus X = R

Λ.
• Each particle feels a local bistable potential, given by

U(x) =
1

4
x4 − 1

2
x2 , x ∈ R . (2.1)

The local dynamics thus tends to push the particle towards one of the two stable
positions x = 1 or x = −1.

• Neighbouring particles in Λ are coupled via a discretised-Laplacian interaction, of
intensity γ/2.

• Each site is coupled to an independent source of noise, of intensity σ
√

N (this scaling
is appropriate when studying the large-N behaviour for strong coupling, and is im-
material for small N). The sources of noise are described by independent Brownian
motions {Bi(t)}t>0 on a probability space (Ω,F , P).

The system is thus described by the following set of coupled stochastic differential
equations, defining a diffusion on X :

dxσ
i (t) = f(xσ

i (t)) dt +
γ

2

[
xσ

i+1(t) − 2xσ
i (t) + xσ

i−1(t)
]
dt + σ

√
N dBi(t) , (2.2)

where the local nonlinear drift is given by

f(x) = −∇U(x) = x − x3 . (2.3)

For σ = 0, the system (2.2) is a gradient system of the form ẋ = −∇V (x), with potential

V (x) = Vγ(x) =
∑

i∈Λ

U(xi) +
γ

4

∑

i∈Λ

(xi+1 − xi)
2 . (2.4)

Note that the local potential U(x) is invariant under the transformation x 7→ −x,
implying that the local dynamics has no preference between positive or negative x. An
interesting question is how the results are affected by adding a symmetry-breaking term
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to U(x). This question will be the subject of further research. Some preliminary studies
indicate that several results, such as the presence of synchronisation for strong coupling,
the structure of the desynchronisation bifurcation, and the qualitative behaviour for weak
coupling, are not much affected by the asymmetry, although many details of the bifurcation
diagrams are of course quite different.

2.2 Potential Landscape and Metastability

The dynamics of the stochastic system depends essentially on the “potential landscape”
V . More precisely, let

S = S(γ) = {x ∈ X : ∇Vγ(x) = 0} (2.5)

denote the set of stationary points of the potential. A point x ∈ S is said to be of
type (n−, n0, n+) if the Hessian matrix of V at x has n− negative, n+ positive and n0 =
N − n− − n+ vanishing eigenvalues (counting multiplicity). For each k = 0, . . . , N , let
Sk = Sk(γ) denote the set of stationary points x ∈ S which are of type (N − k, 0, k). For
k > 1, these points are called saddles of index k, or simply k-saddles, while S0 is the set
of strict local minima of V .

The stochastic system (2.1) admits an invariant probability measure with density pro-
portional to e−2V (x)/σ2

, implying that asymptotically, the system spends most of the time
near the deepest minima of V . However, the invariant measure does not contain any
information on the dynamics between these minima, nor on the way the equilibrium dis-
tribution is approached. Loosely speaking, for small noise intensity σ the stochastic system
behaves in the following way [FW98]:

• A sample path {xσ(t)}t, starting in a point x0 belonging to the deterministic basin of
attraction A(x⋆) of a stationary point x⋆ ∈ S0, will first reach a small neighbourhood
of x⋆, in a time close to the time it would take a deterministic solution to do so.

• During an exponentially long time span, xσ(t) remains in A(x⋆), spending most of
that time near x⋆, but making occasional excursions away from the stationary point.

• Sooner or later, xσ(t) makes a transition to (the neighbourhood of) another stationary
point y⋆ ∈ S0. During this transition, the sample path is likely to pass close to a saddle
s ∈ S1, whose unstable manifolds converge to x⋆ and y⋆. In fact, the whole sample
path during the transition is likely to remain close to these unstable manifolds.

• After a successful transition, the sample path again spends an exponentially long time
span in the basin of y⋆, until a similar transition brings it to another point of S0 (which
may or may not be different from x⋆).

If we ignore the excursions of the sample paths inside domains of attraction, and consider
only the transitions between local minima of the potential, the stochastic process resembles
a Markovian jump process on S0, with exponentially small transition probabilities, the only
relevant transitions being those between potential minima connected by a 1-saddle.

Understanding the dynamics for small noise thus essentially requires knowing the graph
G = (S0, E), in which two vertices x⋆, y⋆ ∈ S0 are connected by an edge if and only if there
is a 1-saddle s ∈ S1 whose unstable manifolds converge to x⋆ and y⋆. The mean transition
time from x⋆ to y⋆ is of order e2H/σ2

, where H is the potential difference between x⋆ and
the lowest saddle leading from x⋆ to y⋆.

In our case, the potential V (x) being a polynomial of degree 4 in N variables, the set
S of stationary points admits at most 3N elements. On the other hand, it is easy to see
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that S always contains at least the three points

O = (0, . . . , 0) , I± = ±(1, . . . , 1) . (2.6)

Depending on the value of γ, the origin O can be an N -saddle, or a k-saddle for any odd
k. The points I± always belong to S0, in fact we have for all γ > 0

Vγ(x) > Vγ(I+) = Vγ(I−) = −N

4
∀x ∈ X \ {I−, I+} . (2.7)

Thus I− and I+ are the most stable configurations of the system, and also the local minima
between which transitions take the longest time.

Among the many questions we can ask for the stochastic system, we shall concentrate
on the following:

• How long does the system typically take to make a transition from I− to I+, and how
does the transition time depend on coupling strength γ and noise intensity σ?

• How does the typical path for such a transition look like?

2.3 Weak-Coupling Regime

In the uncoupled case γ = 0, we simply have

S(0) = {−1, 0, 1}Λ , |S(0)| = 3N . (2.8)

Furthermore, Sk(0) is the set of stationary points having exactly k coordinates equal to 0
(thus |Sk(0)| =

(
N
k

)
2N−k). In particular, S0(0) = {−1, 1}Λ has cardinality 2N .

Hence the graph G is an N -dimensional hypercube: Two vertices x⋆, y⋆ ∈ S0(0) are
connected if and only if they differ in exactly one component. Note that V0(x

⋆) = −N/4 for
all local minima x⋆, and V0(s) = −(N − 1)/4 for all 1-saddles s, implying that all nearest-
neighbour transitions of the uncoupled system take the same time (of order e1/2Nσ2

) on
average.

For small positive coupling intensity 0 < γ ≪ 1, the implicit-function theorem guar-
antees that all stationary points depend analytically on γ, without changing their type.
In addition, the following result is a direct consequence of standard results on invariant
horseshoes:

Proposition 2.1. For any N , there exists a critical coupling γ⋆(N) such that the sta-
tionary points x⋆(γ) ∈ S(γ) depend continuously on γ, without changing their type, for all
0 6 γ < γ⋆(N). The critical coupling γ⋆(N) satisfies

inf
N>2

γ⋆(N) >
1

4
. (2.9)

The proof is briefly discussed in Appendix A, where we also provide slightly better
lower bounds on infN>2 γ⋆(N). We expect the critical coupling to be quite close to 1/4,
however. In particular, we will show below that γ⋆(2) = 1/3, γ⋆(3) = 0.2701 . . . , and
γ⋆(4) = 0.2684 . . .
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Figure 1. Example of an optimal transition path from I− to I+ for weak coupling. The
upper half of the figure shows the local minima and 1-saddles visited during the transition,
displayed vertically. For instance, the second column means that the first 1-saddle visited
is a perturbation of order γ of the stationary point (−1,−1, 0,−1,−1,−1,−1,−1) present
in absence of coupling. The lower half of the figure shows the value of the potential seen
along the transition path.

Since any stationary point x⋆(γ) = (x⋆
1(γ), . . . , x⋆

n(γ)) ∈ S(γ) satisfies x⋆(γ) = x⋆(0) +
O(γ), where each x⋆

i (0) is a stationary point of the local potential U , one has

Vγ(x⋆(γ)) = Vγ(x⋆(0)) + O(γ2)

= V0(x
⋆(0)) +

γ

4

N∑

i=1

(x⋆
i+1(0) − x⋆

i (0))
2 + O(γ2) . (2.10)

To first order in γ, the potential’s increase due to the coupling depends on the number
of interfaces in the unperturbed configuration x⋆(0) ∈ S(0) (recall from (2.8) that the
components of x⋆(0) only take values in {−1, 0, 1}). The dynamics of the stochastic system
is thus essentially the one of an Ising-spin system with Glauber dynamics. Starting from
the configuration I−, the system reaches with equal probability any configuration with
one positive and N − 1 negative spins. Then, however, it is less expensive to switch a spin
neighbouring the positive one than to switch a far-away spin, which would create more
interfaces. Thus the optimal transition from I− to I+ consists in the growth of a “droplet
of + in a sea of − ” (Figure 1). To first order in the coupling intensity, all visited 1-saddles
except the first and last one have the same potential value −N/4 + 1/4 + (3/2)γ +O(γ2).
The energy required for the transition is thus

V
(
(−1,−1, . . . ,−1, 0, 1, 1, . . . , 1) + O(γ)

)
− V

(
I−

)
=

1

4
+

3

2
γ + O(γ2) , (2.11)

which is independent of the system size. Note that the situation is different for lattices
of dimension larger than 1, in which the energy increases with the surface of the droplet
(cf. [dH04]).
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(a) (b)I+
I�

I+
O
I�Figure 1

1

Figure 2. (a) Structure of the graph G in the small-coupling regime 0 < γ < γ⋆(N).
Only edges belonging to optimal paths are shown: In the Ising-model analogy, these paths
correspond to the flip of neighbouring spins. (b) The graph G in the synchronisation
regime γ > γ1.

2.4 Synchronisation Regime

For strong coupling γ, the situation is completely different than for weak coupling. Indeed,
we have

Proposition 2.2. Let

γ1 = γ1(N) =
1

1 − cos(2π/N)
=

N2

2π2

[
1 −O

(
1

N2

)]
. (2.12)

Then S(γ) = {O, I+, I−} if and only if γ > γ1. Moreover, the origin O is a 1-saddle if
and only if γ > γ1, and in that case its unstable manifold is contained in the diagonal

D = {x ∈ X : x1 = x2 = · · · = xN} . (2.13)

We say that the deterministic system is synchronised for γ > γ1, in the sense that the
diagonal is approached as t → ∞ for any initial state, meaning that all coordinates xi are
asymptotically equal. In other words, the system behaves as if all particles coagulate in
order to form one large particle of mass N . The graph G contains only two vertices I±,
connected by a single edge (Figure 2b). By extension, in the stochastic case we will say
that the system is synchronised whenever all coordinates xi remain close to each other
most of the time with high probability. Transitions between I− and I+ occur in a small
neighbourhood of the diagonal.

In this case, the energy required for the transition is

V
(
O

)
− V

(
I−

)
=

N

4
, (2.14)

which is extensive in the system size. Transitions are thus much less frequent in the
synchronisation regime than in the low-coupling regime.

It is remarkable that as the coupling γ grows from 0 to γ1, the number of stationary
points decreases from 3N to 3. The main purpose of this work is to elucidate in which
way this transition occurs, and how it affects the transition paths and times.
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2.5 Symmetry Groups

The deterministic system ẋ = −∇Vγ(x) is equivariant (that is, ∇Vγ(gx) = g∇Vγ(x) for
all x ∈ X ) under three different types of symmetries g:

• Cyclic permutations (corresponding to rotations around the diagonal), generated by

R(x1, . . . , xN ) = (x2, . . . , xN , x1) , (2.15)

as a consequence of the particles being identical.
• Reflection symmetries RkS, where

S(x1, . . . , xN ) = (xN , xN−1, . . . , x1) , (2.16)

as a consequence of the interaction being isotropic.
• The inversion

C(x1, . . . , xN ) = −(x1, . . . , xN ) , (2.17)

as a consequence of the local potential being even.

The symmetries R and S generate the dihedral group DN , which has order 2N , for N > 3,
and the group Z 2 for N = 2. For N > 3, the symmetries R, S and C generate a group of
order 4N , which we shall denote G = GN = DN × Z 2. For N = 2 the symmetry group is
the Klein four-group G2 = Z 2 × Z 2, which as order 4.

The set of stationary points S(γ), as well as each set Sk(γ) of k-saddles, are invariant
under G. Thus G acts as a group of transformations on X , on S(γ), and on each Sk(γ).
We will use a few concepts from elementary group theory:

• For x ∈ X , the orbit of x is the set Ox = {gx : g ∈ G}.
• For x ∈ X , the isotropy group or stabiliser of x is the set Cx = {g ∈ G : gx = x}.
• The fixed-point set of a subgroup H of G is the set Fix(H) = {x ∈ X : hx = x ∀h ∈ H}.

The following facts are well known:

• For any x, the isotropy group Cx is a subgroup of G and |Cx||Ox| = |G|.
• For any g ∈ G and x ∈ X , we have Cgx = gCxg−1, so that the isotropy groups of all

the points of a given orbit are conjugate.
• For any subgroup H of G and any g ∈ G, Fix(gHg−1) = g Fix(H).

These facts allow us to limit the study to one point of each orbit, to one subgroup
in each conjugacy class, and to one type of conjugated fixed-point set. For small N , this
reduction often suffices to completely determine all stationary points of the system, while
for larger N , it at least helps to classify the stationary points.

2.6 Small Lattices

We now consider some particular cases for illustration. The following applies to the three
stationary points that are always present:

• For the origin O, OO = {O}, CO = G and Fix(CO) = {O}.
• For the global minima I±, OI+ = OI− = {I−, I+}, CI± = DN and Fix(CI±) = D.

In the case N = 2, we have R = S and the symmetry group is G2 = {id, S, C,CS}.
In the uncoupled case, the set of stationary points S(0) is partitioned into four orbits,
as shown in Table 1. Figure 3 indicates how the stationary points evolve as the coupling
increases (the proof is given in Proposition 4.2). We see that stationary points keep the
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0 1=3 1=2 (1; 1)(0; 0)(1;�1)(1; 0)
[�2℄[�1℄[�2℄[�4℄

(x; x)(0; 0)(x;�x)(x; y) AAa
I�O

I+Aa AAa I� I+AI� I+OI�Figure 1

1

Figure 3. Bifurcation diagram for the case N = 2 and associated graphs G. Only one
stationary point is shown for each orbit of the symmetry group G. The cardinality of the
orbit is shown in square brackets. Full lines represent local minima of the potential, while
dash–dotted lines with k dots represent k-saddles.

z⋆ Oz⋆ Cz⋆ Fix(Cz⋆)

(0, 0) {(0, 0)} G2 = Z 2 × Z 2 {(0, 0)}
(1, 1) {(1, 1), (−1,−1)} Z 2 = {id, S} {(x, x)}x∈R = D
(1,−1) {(1,−1), (−1, 1)} {id, CS} {(x,−x)}x∈R

(1, 0) {±(1, 0),±(0, 1)} {id} {(x, y)}x,y∈R = X

Table 1. Stationary points z⋆ ∈ S(0), their orbits, their isotropy groups and the corre-
sponding fixed-point sets in the case N = 2.

same type of symmetry as γ increases, and sometimes merge with a stationary point of
higher symmetry.

Below the bifurcation diagram, we show the corresponding graphs G. The two-dimen-
sional hypercube (i.e., the square), present for weak coupling, transforms into a graph
with two vertices, connected by two edges, as the 1-saddles labeled Aa undergo a pitchfork
bifurcation at γ = 1/3 = γ⋆(2). For 1/3 < γ < 1/2, the points with (x,−x)-symmetry,
labeled A, are 1-saddles, representing the points with maximal potential height on the
two optimal transition paths from I− to I+. At γ = 1/2 = γ1(2), the 1-saddles undergo
another pitchfork bifurcation, this time with the origin, which becomes the only transition
gate in the strong-coupling regime.

The value of the potential on the bifurcating branches is found to be

Vγ(A) = −1

2
(1 − 2γ)2 ,

Vγ(Aa) = −1

2
(1 − 2γ)2 +

1

4
(1 − 3γ)2 . (2.18)

For N = 3, at zero coupling the set S(0) of stationary points is partitioned into six
orbits, as shown in Table 2. Their evolution as the coupling increases is shown in Figure 4
(for a proof, see Proposition 4.3). The new feature in this case is that two orbits disappear
in a saddle–node bifurcation at γ = γ⋆(3) = 0.2701 . . . , instead of merging with stationary
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0 ? 2=3 (1; 1; 1)(0; 0; 0)(0; 0; 1)(1;�1; 0)(1; 1;�1)(1; 1; 0)
[�2℄[�1℄[�6℄[�6℄[�6℄[�6℄

(x; x; x)(0; 0; 0)(x; x; y)(x;�x; 0)(x; x; y)(x; x; y)
I�OB A�a�bI+�bA �aI� I+ AI� I+OI�Figure 1

1

Figure 4. Bifurcation diagram for the case N = 3 and associated graphs G. Only one
stationary point is shown for each orbit of the symmetry group G. The saddle–node

bifurcation value is γ⋆ = γ⋆(3) = (
√

3 + 2
√

3 −
√

3)/3 = 0.2701 . . .

z⋆ Oz⋆ Cz⋆ Fix(Cz⋆)

(0, 0, 0) {(0, 0, 0)} G3 {(0, 0, 0)}
(1, 1, 1) {(1, 1, 1), (−1,−1,−1)} D3 {(x, x, x)}x∈R = D
(1,−1, 0) {±(1,−1, 0),±(−1, 0, 1),±(0, 1,−1)} {id, CRS} {(x,−x, 0)}x∈R

(0, 0, 1) {±(0, 0, 1),±(0, 1, 0),±(1, 0, 0)} {id, RS} {(x, x, y)}x,y∈R

(1, 1,−1) {±(1, 1,−1),±(1,−1, 1),±(−1, 1, 1)} {id, RS} {(x, x, y)}x,y∈R

(1, 1, 0) {±(1, 1, 0),±(1, 0, 1),±(0, 1, 1)} {id, RS} {(x, x, y)}x,y∈R

Table 2. Stationary points z⋆ ∈ S(0), their orbits, their isotropy groups and the corre-
sponding fixed-point sets in the case N = 3.

points of higher symmetry. This accounts for the rather drastic transformation of the
graph G from a 3-cube for γ < γ⋆(3) to a graph with two vertices joined by 6 edges for
γ⋆(3) < γ < 2/3 = γ1(3). The potential on the A-branches has value

Vγ(A) = −1

2

(
1 − 3

2
γ
)2

. (2.19)

Figure 5 shows the results of a similar analysis for N = 4. The determination of
this bifurcation diagram, which relies partly on the numerical study of the roots of some
polynomials, is outlined in Appendix B. As in the previous cases, a certain number of
stationary points emerge from the origin as the coupling intensity decreases below the
synchronisation threshold. In the present case, the desynchronisation bifurcation occurs
at γ = γ1(4) = 1, and there are four 1-saddles, labeled A, and four 2-saddles, labeled
B, emerging from the origin. Two more symmetry-breaking bifurcations affect the A-
branches, finally resulting in 1-saddles without any symmetry. A second branch, labeled
A(2), bifurcates from the origin at γ = 1/2. We do not show the corresponding stationary

10
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Figure 5. Bifurcation diagram for the case N = 4 and associated graphs G (only edges
corresponding to optimal transition paths are shown). Only one stationary point is shown
for each orbit of the symmetry group G. The saddle–node bifurcation values are γ⋆ =
γ⋆(4) = 0.2684 . . . and γ̃2 = 0.4004 . . . , while γ̃1 = (3

√
2 − 2)/7 = 0.3203 . . .

points in the graphs, because they appear always to correspond to non-optimal transition
paths.

The examples discussed here give some flavour of how the transition from weak coupling
to synchronisation occurs in the general case. In the sequel, we will mainly describe
the desynchronisation bifurcation occurring at γ = γ1(N), which can be analysed for
arbitrary N .

2.7 Desynchronisation Bifurcation

We consider now the behaviour at the desynchronisation bifurcation, that is as the coupling
γ decreases below γ1, for general values of N > 3.

The stationary points bifurcating from the origin at γ1 all have certain symmetries,
which depend on N (mod 4), namely:

• If N is even, then all bifurcating stationary points admit a mirror symmetry, as well
as a mirror symmetry with sign change, the two symmetry axes being perpendicular.
The details depend on whether N ∈ 4N or N ∈ 4N + 2, because this affects the
number of components which may lie on the symmetry axes.

• If N is odd, then all bifurcating stationary points admit either a mirror symmetry or
a mirror symmetry with sign change.

We introduce an integer L such that N can be written as N = 4L, N = 4L + 2 or

11



N x Cx Fix(Cx)

4L A D2 (x1, . . . , xL, xL, . . . , x1,−x1, . . . ,−xL,−xL, . . . ,−x1)

B D
′
2 (x1, . . . , xL, . . . , x1, 0,−x1, . . . ,−xL, . . . ,−x1, 0)

4L + 2 A D2 (x1, . . . , xL+1, . . . , x1,−x1, . . . ,−xL+1, . . . ,−x1)

B D
′
2 (x1, . . . , xL, xL . . . , x1, 0,−x1, . . . ,−xL,−xL, . . . ,−x1, 0)

2L + 1 A 〈CRS〉 (x1, . . . , xL,−xL, . . . ,−x1, 0)

B 〈RS〉 (x1, . . . , xL, xL, . . . , x1, x0)

Table 3. Symmetries of the stationary points bifurcating from the origin at γ = γ1. The

isotropy groups for even N are D2 = 〈CS, RN/2S〉 and D
′

2 = 〈CRS, RN/2+1S〉, where
〈g1, . . . , gm〉 denotes the group generated by {g1, . . . , gm}.

N = 2L + 1. The situation is summarised in Table 3 and Figure 6.
For even N , we have the following result.

Theorem 2.3 (Desynchronisation bifurcation, even particle number). Assume
that N is even. Then there exists δ = δ(N) > 0 such that for γ1 − δ < γ < γ1, the set of
stationary points S(γ) has cardinality 2N + 3, and can be decomposed as follows:

S0 = OI+ = {I+, I−} ,

S1 = OA = {A,RA, . . . , RN−1A} ,

S2 = OB = {B,RB, . . . , RN−1B} ,

S3 = OO = {O} . (2.20)

The components of A = A(γ) and B = B(γ) satisfy

Aj(γ) =
2√
3

√
1 − γ/γ1 sin

(
2π

N

(
j − 1

2

))
+ O

(
1 − γ/γ1

)
,

Bj(γ) =
2√
3

√
1 − γ/γ1 sin

(
2π

N
j

)
+ O

(
1 − γ/γ1

)
, (2.21)

except in the case N = 4, where

A(γ) =
√

1 − γ (1, 1,−1,−1) and B(γ) =
√

1 − γ (1, 0,−1, 0) . (2.22)

Furthermore, for any γ ∈ [0, γ1), there exist stationary points A(γ) and B(γ), satisfying
the symmetries indicated in Table 3 with x1, . . . , xL+1 > 0, and such that

lim
γ→0

A(γ) = (1, 1, . . . , 1, 1,−1,−1, . . . ,−1,−1) ,

lim
γ→0

B(γ) = (1, 1, . . . , 1, 0,−1,−1, . . . ,−1, 0) . (2.23)

Finally, the value of the potential on the 1-saddles is given by

Vγ(A)

N
=






−1

4
(1 − γ)2 if N = 4 ,

−1

6

(
1 − γ/γ1

)2
+ O

(
(1 − γ/γ1)

3
)

if N > 6 ,

(2.24)
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Figure 6. Symmetries of the stationary points A and B bifurcating from the origin at
γ = γ1. Full lines represent symmetry axes, broken lines represent symmetry axes with
sign change.

while the value of the potential on the 2-saddles satisfies

0 6
Vγ(B) − Vγ(A)

N
6 O

(
(1 − γ/γ1)

N/2
)

. (2.25)

A few remarks are in order here.

• We do not claim that A(γ) and B(γ) are continuous in γ everywhere, though we expect
them to be so. What we do prove is that for any γ, there is at least one stationary
point with the appropriate symmetry and positive coordinates x1, . . . , xL+1. We also
know that A and B depend continuously on γ for γ near 0 and near γ1. We cannot
exclude, however, the presence of saddle–node bifurcations in between.

• We know that the points A(γ) are local minima near γ = 0. Thus these stationary
points must undergo at least one secondary bifurcation as γ decreases. For symmetry
reasons, we expect that, as in the case N = 4 (see Figure 5), there are two successive
symmetry-breaking bifurcations affecting the 1-saddles: First, the mirror symmetry
with sign change is destroyed, then the remaining mirror symmetry is destroyed as
well.

• The error terms in (2.24) and (2.25) may depend on N . The technique we employ
here does not allow for an optimal control of the N -dependence of these error terms
and of δ(N). However, in the follow-up paper [BFG06b], we obtain such a control in
the limit of large N , using different techniques.

In the case of odd particle number N , we are not able to obtain such a precise control
on the number of 1-saddles and 2-saddles created in the desynchronisation bifurcation.

Theorem 2.4 (Desynchronisation bifurcation, odd particle number). Assume
that N is odd. Then there exists δ = δ(N) > 0 such that for γ1 − δ < γ < γ1, the set of
stationary points S(γ) has cardinality 4ℓN + 3, for some ℓ > 1. All stationary points are

13
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Figure 7. Components of the stationary points A and B bifurcating from the origin at
γ = γ1, shown for the three different cases N = 4L, N = 4L + 2 and N = 2L + 1.

saddles of index 0, 1, 2 or 3, with

S0 = OI+ = {I+, I−} ,

S3 = OO = {O} , (2.26)

and |S1| = |S2| = 2ℓN . All 1-saddles and 2-saddles x have components of the form

xj(γ) =
2√
3

√
1 − γ/γ1 sin

(
2π

N

(
j − k

2ℓ

))
+ O

(
1 − γ/γ1

)
(2.27)

for some k ∈ {0, 1, . . . , 2ℓ − 1}. Furthermore, for any γ ∈ [0, γ1), there exist stationary
points A(γ) and B(γ), satisfying the symmetries indicated in Table 3. The components
x1, . . . , xL of A(γ) are strictly positive, and

lim
γ→0

A(γ) = (1, . . . , 1,−1, . . . ,−1, 0) . (2.28)

The value of the potential on these points satisfies

Vγ(A)

N
= −1

6

(
1 − γ/γ1

)2
+ O

(
(1 − γ/γ1)

3
)

,

|Vγ(B) − Vγ(A)|
N

6 O
(
(1 − γ/γ1)

N
)

. (2.29)

In fact, we expect that ℓ = 1, and that the points with symmetry of type A are 1-
saddles, while the points with symmetry of type B are 2-saddles. This would lead to the
following conjecture.

14



Conjecture 2.5 (Desynchronisation bifurcation, odd particle number). For odd
N and γ1 − δ < γ < γ1, the set of stationary points S(γ) has cardinality 4N + 3, and can
be decomposed as follows:

S0 = OI+ = {I+, I−} ,

S1 = OA = {A,RA, . . . , RN−1A,−A,−RA, . . . ,−RN−1A} ,

S2 = OB = {B,RB, . . . , RN−1B,−B,−RB, . . . ,−RN−1B} ,

S3 = OO = {O} . (2.30)

The components of A = A(γ) and B = B(γ) satisfy

Aj(γ) =
2√
3

√
1 − γ/γ1 sin

(
2π

N
j

)
+ O

(
1 − γ/γ1

)
,

Bj(γ) =
2√
3

√
1 − γ/γ1 cos

(
2π

N
j

)
+ O

(
1 − γ/γ1

)
. (2.31)

This conjecture would follow as the consequence of a much simpler conjecture on the
behaviour of certain coefficients in a centre-manifold expansion, which can be computed
iteratively, see Section 4.3. We know that is is true for N = 3, and it can be checked
by direct computation for the first few values of N . Numerically, we checked the validity
of the conjecture for N up to 101. In the follow-up paper [BFG06b], we show that the
conjecture is also true for sufficiently large N .

2.8 Subsequent Bifurcations

The origin undergoes further bifurcations at

γ = γM =
1

1 − cos(2πM/N)
, 2 6 M 6 ⌊N/2⌋ , (2.32)

in which the index of the origin O increases by 2 (except for the case where N is even
and M = N/2, where the index increases by 1), and new saddles A(M) and B(M) of
index 2M − 1 and 2M are created. Consequently these saddles are not important for the
stochastic dynamics, and we shall not provide a detailed analysis here. We briefly mention
a few properties of these bifurcations, which we will prove in the follow-up work [BFG06b]
to hold for sufficiently large N/M :

• The number of newly created stationary points is given by 4N/ gcd(N, 2M), where
gcd(N, 2M) denotes the greatest common divisor of N and 2M .

• The number of sign changes of xj as a function of j for these new stationary points is
equal to 2M . M can therefore be considered as a winding number .

• If N and M are coprime, the new stationary points x satisfy the symmetries shown
in Table 3, while for other M they belong to larger isotropy subgroups.

Example 2.6. For N = 8, the origin bifurcates four times as γ decreases from +∞ to
0. We show the symmetries of the bifurcating stationary points in Table 4. They are
obtained in the following way:

• Compute the eigenvectors of the Hessian of the potential at the origin;
• Determine the corresponding isotropy subgroups of G8;
• Write the equation ż = −∇V (z) restricted to the fixed-point set of each isotropy

subgroup, and study the bifurcations of the origin in each restricted system.
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M γM gcd(N, 2M) A(M) B(M)

1 2 +
√

2 2 (x, y, y, x,−x,−y,−y,−x) (x, y, x, 0,−x,−y,−x, 0)

2 1 4 (x, x,−x,−x, x, x,−x,−x) (x, 0,−x, 0, x, 0,−x, 0)

3 2 −
√

2 2 (x,−y,−y, x,−x, y, y,−x) (x,−y, x, 0,−x, y,−x, 0)

4 1/2 8 (x,−x, x,−x, x,−x, x,−x)

Table 4. Fixed-point sets of the stationary points bifurcating from the origin for N = 8,
for different winding numbers M . Points of winding number M = 1 and M = 3 actually
have the same fixed point spaces, but we change the signs of the components in such a
way that x and y always have the same sign for the actual stationary points.

For instance, for winding number M = 1 and orbits of type A, we obtain

ẋ = (1 − 3
2γ)x + 1

2γy − x3 ,

ẏ = 1
2γx + (1 − 1

2γ)y − y3 .
(2.33)

The origin bifurcates for γ = 2 ±
√

2. An analysis of the linearised system shows that
for γ slightly smaller than 2 +

√
2, the new stationary points must lie in the quadrants

{(x, y) : x > 0, y > 0} and {(x, y) : x < 0, y < 0}. These quadrants, however, are invariant
under the flow of ẋ = −∇V (x), since, e.g., ẋ > 0 if x = 0 and y > 0, and ẏ > 0 if y = 0
and x > 0. Hence the points created in the bifurcation remain in these quadrants. The
points created at γ = 2 −

√
2, which correspond to the winding number M = 3, lie in the

complementary quadrants {(x, y) : x > 0, y < 0} and {(x, y) : x > 0, y < 0}.
For γ = 0, the only points with the appropriate symmetry are

A(1)(0) = (1, 1, 1, 1,−1,−1,−1,−1) , B(1)(0) = (1, 1, 1, 0,−1,−1,−1, 0) ,

A(2)(0) = (1, 1,−1,−1, 1, 1,−1,−1) , B(2)(0) = (1, 0,−1, 0, 1, 0,−1, 0) ,

A(3)(0) = (1,−1,−1, 1,−1, 1, 1,−1) , B(3)(0) = (1,−1, 1, 0,−1, 1,−1, 0) ,

A(4)(0) = (1,−1, 1,−1, 1,−1, 1,−1) . (2.34)

Note that the cases M = 2 and M = 4 are obtained by concatenation of multiple copies
of stationary points existing for N = 4 and N = 2, respectively.

2.9 Stochastic Case

We return now to the behaviour of the system of stochastic differential equations

dxσ
i (t) = f(xσ

i (t)) dt +
γ

2

[
xσ

i+1(t) − 2xσ
i (t) + xσ

i−1(t)
]
dt + σ

√
N dBi(t) . (2.35)

Recall that our main goal is to characterise the noise-induced transition from the con-
figuration I− = (−1,−1, . . . ,−1) to the configuration I+ = (1, 1, . . . , 1). In particular,
we are interested in the time needed for this transition to occur, and in the shape of the
critical configuration, i.e., the configuration of highest energy reached in the course of the
transition.

Since the probability of a stochastic process in continuous space hitting a given point is
typically zero, we have to work with small neighbourhoods of the relevant configurations.
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Figure 8. The normalised potential differences HN (γ) for N = 2 and N = 3. The broken
curve for N = 2 shows the potential difference (V (A) − V (I−))/2, which is smaller than
HN (γ) for γ/γ1 < 2/3 (compare (2.18)), because for these parameter values, the 1-saddle
is the point labeled Aa. For general particle number N , we know that HN (γ) behaves like
1/4 − cN(1 − γ/γ1)

2 as γ ր γ1, and that HN (0) = 1/4N .

Given a Borel set A ⊂ X , and an initial condition x0 ∈ X \ A, we denote by τhit(A) the
first-hitting time of A

τhit(A) = inf{t > 0: xσ(t) ∈ A} . (2.36)

Similarly, for an initial condition x0 ∈ A, we denote by τ exit(A) the first-exit time from A

τ exit(A) = inf{t > 0: xσ(t) /∈ A} . (2.37)

We can now formulate our main results, which are similar in spirit to Theorems 3.2.1
and 4.2.1 of [dH04].

Theorem 2.7 (Stochastic case, synchronisation regime). Assume that the coupling
strength satisfies γ > γ1 = (1 − cos(2π/N))−1. We fix radii 0 < r < R < 1/2, and denote
by τ+ = τhit(B(I+, r)) the first-hitting time of a ball of radius r around I+. Then for any
initial condition x0 ∈ B(I−, r), any N > 2 and any δ > 0,

lim
σ→0

P
x0

{
e(1/2−δ)/σ2

< τ+ < e(1/2+δ)/σ2}
= 1 (2.38)

and

lim
σ→0

σ2 log E
x0 {τ+} =

1

2
. (2.39)

Furthermore, let τO = τhit(B(O, r)), and let

τ− = inf{t > τ exit(B(I−, R)) : xt ∈ B(I−, r)} (2.40)

be the time of first return to the small ball B(I−, r) after leaving the larger ball B(I−, R).
Then

lim
σ→0

P
x0

{
τO < τ+

∣∣ τ+ < τ−
}

= 1 . (2.41)

Relations (2.38) and (2.39) mean that the transition from I− to I+ typically takes a
time of order e1/2σ2

. Note that this time is independent of the system size N , owing to the
fact that in (2.35) we have chosen a noise intensity scaling with

√
N , while the potential

difference to overcome is equal to N/4. Relation (2.41) means that provided a transition
from B(I−, r) to B(I+, r) is observed, the process is likely to pass close to the saddle at the
origin on its way from one potential well to the other one. The origin is thus the critical
configuration in the synchronisation regime.
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Theorem 2.8 (Stochastic case, desynchronised regime). Assume γ < γ1. Let r,R
and τ+ and τ− be defined as in Theorem 2.7, and fix an initial condition x0 ∈ B(I−, r).
Then there exists a function HN (γ), satisfying

HN (γ) =
1

4
− cN

(
1 − γ/γ1

)2
+ O

(
(1 − γ/γ1)

3
)

as γ ր γ1 , (2.42)

where c2 = c4 = 1/4 and cN = 1/6 for N = 3 and all N > 5, such that

lim
σ→0

P
x0

{
e(2HN (γ)−δ)/σ2

< τ+ < e(2HN (γ)+δ)/σ2}
= 1 , (2.43)

and
lim
σ→0

σ2 log E
x0 {τ+} = 2HN (γ) . (2.44)

Furthermore, assume that either N is even, or N is odd and Conjecture 2.5 holds. Let

τA = τhit
( ⋃

g∈G

B(gA(γ), r)
)

. (2.45)

Then there exists a δ = δ(N) > 0 such that for γ1 − δ < γ < γ1

lim
σ→0

P
x0

{
τA < τ+

∣∣ τ+ < τ−
}

= 1 . (2.46)

Relations (2.43) and (2.44) mean that the transition from I− to I+ typically takes a
time of order e2HN (γ)/σ2

, while relation (2.46) shows that the set of critical configurations
is the orbit of A(γ).

We conclude the statement of results with a few comments:

• The very precise results in [BEGK04, BGK05] allow in principle for a more precise
control of the expected transition time τ+ than the exponential asymptotics given
in (2.39) and (2.44). However, these results cannot be applied directly to our case,
because they assume some non-degeneracy conditions to hold for the potential (the
saddles and well bottoms should all be at different heights). Therefore, we reserve
such a finer analysis for further study.

• We have seen that the potential difference between the 1-saddles A and the 2-saddles
B becomes smaller and smaller as the particle number increases. As a consequence,
the speed of convergence of the probability in (2.46) strongly depends on r and N
when N is large. This reflects the fact that the system becomes translation-invariant
in the large-N limit.

• As the coupling intensity γ decreases, the critical configurations become more and more
inhomogeneous along the chain, and we expect them to converge to configurations of
the form (1, . . . , 1, 0,−1, . . . ,−1) in the uncoupled limit. In addition, several local
minima and saddles should appear by saddle–node bifurcations along the optimal
transition path, thereby increasing the number of metastable states of the system.
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3 Lyapunov Functions and Synchronisation

We now turn to the proofs of the statements made in Section 2, and start by introducing
a few notations. The “interaction part” of the potential is proportional to

W (x) =
1

2

∑

i∈Λ

(xi − xi+1)
2 =

1

2
‖x − Rx‖2 = 〈x,Σx〉 , (3.1)

where Σ is the symmetric matrix Σ = 1l − 1
2(R + RT). Hence, the potential Vγ(x) can be

written as

Vγ(x) = −1

2
〈x, (1l − γΣ)x〉 +

1

4

∑

i∈Λ

x4
i . (3.2)

The eigenvectors of Σ are of the form vk = (1, ωk, . . . , ω(N−1)k)T, k = 0, . . . , N − 1, where
ω = e2π i /N , with eigenvalues 1− cos(2πk/N). This implies in particular that the Hessian
of the potential at the origin, which is given by γΣ − 1l, has eigenvalues −λk, where

λk = λ−k = 1 − γ

(
1 − cos

2πk

N

)
= 1 − γ

γk
. (3.3)

The origin is a 1-saddle for γ > γ1. As γ decreases, the index of the origin increases by 2
each time γ crosses one of the γk, until it becomes an N -saddle at γ = γ⌊N/2⌋.

We now show that for γ > γ1 (i.e., λ1 < 0), W (x) is a Lyapunov function for the
deterministic system ẋ = −∇Vγ(x).

Proposition 3.1. For any initial condition x0, the solution x(t) of ẋ = −∇Vγ(x) satisfies

d

dt
W (x(t)) 6 2

(
1 − γ/γ1

)
W (x(t)) − 1

N
W (x(t))2 . (3.4)

As a consequence, if γ is strictly larger than γ1, then x(t) converges exponentially fast to
the diagonal, and thus the only equilibrium points of the system are O and I±.

Proof: We first observe that the relation

f(xi) − f(xi+1) = (xi − xi+1)
[
1 − (x2

i + xixi+1 + x2
i+1)

]
(3.5)

allows us to write
d

dt
(x − Rx) = Π(x, γ)(x − Rx) , (3.6)

where Π(x, γ) = 1l− γΣ−D(x). Here D(x) is a diagonal matrix, whose ith entry is given
by x2

i + xixi+1 + x2
i+1, and can be bounded below by 1

4 (xi − xi+1)
2. It follows

d

dt
W (x(t)) = 〈x − Rx,

d

dt
(x − Rx)〉

= 〈x − Rx,Π(x, γ)(x − Rx)〉

6 〈x − Rx, (1l − γΣ)(x − Rx)〉 − 1

4

∑

i∈Λ

(xi − xi+1)
4

6 λ1‖x − Rx‖2 − 1

4N
‖x − Rx‖4 (3.7)

by Cauchy-Schwartz. This implies (3.4). If γ > γ1, then W (x(t)) converges to zero as
t → ∞ for all initial conditions, which implies that all stationary points x⋆ must satisfy
W (x⋆) = 0, and thus lie on the diagonal. The only stationary points on the diagonal,
however, are O and I±.
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Proposition 2.2 is essentially a direct consequence of this result. The assertion on the
unstable manifold follows from the invariance of the diagonal and the fact that O is a
1-saddle if and only if γ > γ1. For γ < γ1, we will show independently that there exist
stationary points outside the diagonal. Note however that relation (3.4) shows that these
points must lie in a small neighbourhood of the diagonal for γ sufficiently close to γ1.

Let us also point out that the growth of the potential away from the diagonal can be
controlled in the following way.

Proposition 3.2. For any x‖ ∈ D and x⊥ orthogonal to the diagonal, the potential
satisfies

V (x‖ + x⊥) > V (x‖) +
1

2

( γ

γ1
− 1

)
‖x⊥‖2 . (3.8)

Proof: Using the fact that Σx‖ = 0, we obtain for any λ ∈ R

V (x‖ + λx⊥) = −1

2
(‖x‖‖2 + λ2‖x⊥‖2) +

1

4

N∑

i=1

([x‖ + λx⊥]i)
4 +

γ

2
λ2〈x⊥,Σx⊥〉 . (3.9)

The scalar product 〈x⊥,Σx⊥〉 can be bounded above by ‖x⊥‖2/γ1. Moreover, applying
Taylor’s formula to second order in λ, and using the fact that the sum of the components
of x⊥ vanishes, the sum in (3.9) can be bounded below by the sum of [x‖]

4
i . This yields

the result, as U(x‖) = Vγ(x‖).

4 Fourier Representation

Let ω = e2π i /N . The Fourier variables are defined by the linear transformation

yk =
1

N

∑

j∈Λ

ωjkxj , k ∈ Λ∗ = Z /NZ . (4.1)

The inverse transformation is given by

xj =
∑

k∈Λ∗

ωjkyk , (4.2)

as a consequence of the fact that
∑N

j=1 ωj(k−ℓ) = Nδkℓ. Note that yk = y−k, so that we
might use the real and imaginary parts of yk as dynamical variables, instead of yk and
y−k. The following result is obtained by a direct computation.

Proposition 4.1. In Fourier variables, the equation of motion ẋ = −∇V (x) takes the
form

ẏk = λkyk −
∑

k1,k2,k3∈Λ∗

k1+k2+k3=k

yk1
yk2

yk3
, (4.3)

where the λk are those defined in (3.3). Furthermore, the potential is given in terms of
Fourier variables by

V̂γ(y) = −N

2

∑

k∈Λ∗

λk|yk|2 +
N

4

∑

k1,k2,k3,k4∈Λ∗

k1+k2+k3+k4=0

yk1
yk2

yk3
yk4

. (4.4)
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R xj 7→ xj+1 yk 7→ ωkyk

RS = SR−1 xj 7→ xN−j yk 7→ yk = y−k

C xj 7→ −xj yk 7→ −yk

Table 5. Effect of a set of generators of the symmetry group GN on Fourier variables.

The effect of the symmetries on the Fourier variables is fully determined by the action
of three generators of the symmetry group G, as shown in Table 5.

A particular advantage of the Fourier representation is that certain invariant sets of
phase space take a simple form in these variables. For instance, for any ℓ,

xℓ−j = xj ∀j ⇒ ωℓkyk = yk ∀k ⇒ yk = ωℓk/2rk ∀k (4.5)

where the rk are all real. Similarly, for any ℓ,

xℓ−j = −xj ∀j ⇒ ωℓkyk = −yk ∀k ⇒ yk = i ωℓk/2rk ∀k (4.6)

where the rk are all real.

4.1 The Case N = 2

For N = 2, we have ω = −1, and the Fourier variables are simply y0 = (x1 + x2)/2,
y1 = (x2 − x1)/2. The equations (4.3) become

ẏ0 = y0

[
1 − (y2

0 + 3y2
1)

]
,

ẏ1 = y1

[
λ1 − (3y2

0 + y2
1)

]
,

(4.7)

with λ1 = 1 − 2γ. The potential is given by

V̂γ(y) = −y2
0 − λ1y

2
1 +

1

2
(y4

0 + 6y2
0y

2
1 + y4

1) . (4.8)

Proposition 4.2. The bifurcation diagram for N = 2 is the one given in Figure 3, and
the value of the potential on the bifurcating branches is given by

V (A) = −1

2
λ2

1 , V (Aa) =
1

16
(λ2

1 − 6λ1 + 1) . (4.9)

Proof: In addition to the origin, there can be three types of stationary points:

• If y1 = 0, y0 6= 0, then necessarily y0 = ±1, yielding the stationary points I± in
original variables.

• If y0 = 0, y1 6= 0, there are two additional points A,RA, given by y1 = ±
√

λ1 whenever
λ1 > 0, i.e., γ < 1/2. In original variables, these have the expression (±

√
λ1,∓

√
λ1),

so that they have the (x,−x)-symmetry.
• If y0, y1 6= 0, there are four additional points, given by 8y2

0 = 3λ1 − 1, 8y2
1 = 3 − λ1,

provided λ1 > 1/3, i.e., γ < 1/3.

It is straightforward to check the stability of these stationary points from the Jacobian
matrix of (4.7), and to compute the value of the potential, using (4.8).
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4.2 The Case N = 3

For N = 3, we choose Λ∗ = {−1, 0, 1}. The equations in Fourier variables read

ẏ0 = y0 − (y3
0 + y3

1 + y1
3 + 6y0|y1|2) ,

ẏ1 = λ1y1 − 3(y1|y1|2 + y0y1
2 + y2

0y1) ,
(4.10)

with λ1 = 1 − 3
2γ.

Proposition 4.3. The bifurcation diagram for N = 3 is the one given in Figure 4, where
the saddle–node bifurcations occur for

γ = γ⋆(3) =

√
3 + 2

√
3 −

√
3

3
≃ 0.2701 . . . . (4.11)

On the 1-saddles, the potential has value

V (A) = −1

2
λ2

1 . (4.12)

Proof: Using polar coordinates y1 = r1 eiϕ1 , the equations (4.10) become

ẏ0 = y0(1 − y2
0 − 6r2

1) − 2r3
1 cos 3ϕ1 ,

ṙ1 = r1

[
λ1 − 3(r2

1 + y0r1 cos 3ϕ1 + y2
0)

]
,

ϕ̇1 = 3y0r1 sin 3ϕ1 .

(4.13)

In addition to the origin, there can be three types of stationary points:

• If r1 = 0, y0 6= 0, then necessarily y0 = ±1, yielding the points I±.
• If y0 = 0, r1 6= 0, we obtain six stationary points given by r1 =

√
λ1/3 and cos 3ϕ1 = 0,

provided λ1 > 0, that is, γ < 2/3. These points have one of the symmetries (x,−x, 0),
(x, 0,−x) or (0, x,−x).

• If sin 3ϕ1 = 0, it is sufficient by symmetry to consider the case ϕ1 = 0 (i.e., y1 real).
These points have the (x, x, y)-symmetry. Setting y0 = u + v, r1 = u− v, we find that
stationary points should satisfy the relations

λ1/3 = 3u2 + v2 ,

0 = 24u2v + (1 − λ1)u + (1 − 5
3λ1)v .

(4.14)

Taking the square of the second equation and eliminating u yields a cubic equation
for v2. In fact, the variable z = v2 − (1 + λ1)/12 satisfies

z3 − λz + µ = 0 , λ =
λ1

48
, µ =

1 − 3λ1 + 6λ2
1 − 2λ3

1

1728
. (4.15)

This equation has three roots for λ1 slightly smaller than 1, and one root for λ1 = 0.
Bifurcations occur whenever the condition 27µ2 = 4λ3 is fulfilled, which turns out to
be equivalent to (1 − λ1)

2g(λ1) = 0, where

g(λ1) = 4λ4
1 − 16λ3

1 + 12λ2
1 − 4λ1 + 1 . (4.16)

Since g(0) = 1 and g(1) = −3, and it is easy to check that g′ < 0 on [0, 1], there can be
only one bifurcation point in this interval, whose explicit value leads to the bifurcation
value (4.11).
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4.3 Centre-Manifold Analysis of the Desynchronisation Bifurcation

Assume N > 3. We consider now the behaviour for γ close to γ1, i.e., for λ1 close to 0.
Setting z = (y0, y2, y−2, . . . ), the equation (4.3) in Fourier variables is of the form

ẏk = λkyk + gk(y1, y1, z) , (4.17)

where
gk(y1, y1, z) = −

∑

k1,k2,k3∈Λ∗

k1+k2+k3=k

yk1
yk2

yk3
. (4.18)

For small λ1, the system admits an invariant centre manifold of equation

yk = hk(y1, y1, λ1) , k 6= ±1 , (4.19)

where the hk satisfy the partial differential equations

λkhk + gk(y1, y1, {hj}j) =
∂hk

∂y1

[
λ1y1 + g1(y1, y1, {hj}j)

]
+

∂hk

∂y1

[
λ1y1 + g1(y1, y1, {hj}j)

]
.

(4.20)
We fix a cut-off order K. For our purposes, K = 2N will be sufficient. We are looking for
an expansion of the form

hk(y1, y1, λ1) =
∑

n,m>0
36n+m<K

hk
nm(λ1)y1

ny1
m + O(|y1|K) . (4.21)

First it is useful to examine the effect of symmetries on the coefficients.

Lemma 4.4. The coefficients in the expansion of the centre manifold satisfy

• hk
nm(λ1) ∈ R ;

• hk
nm(λ1) = h−k

mn(λ1);
• hk

nm(λ1) = 0 if n − m 6= k (mod N);
• hk

nm(λ1) = 0 if n + m is even.

Proof: The centre manifold has the same symmetries as the equations (4.3). Thus

• The R-symmetry requires ωkhk(y1, y1, λ1) = hk(ωy1, ωy1, λ1), yielding the condition
(ωk − ωn−m)hk

nm(λ1) = 0 so that hk
nm(λ1) vanishes unless n − m = k (mod N);

• The RS-symmetry requires hk(y1, y1, λ1) = hk(y1, y1, λ1), and yields the reality of the
coefficients;

• The C-symmetry requires −hk(y1, y1, λ1) = hk(−y1,−y1, λ1), yielding the condition
((−1)n+m + 1)hk

nm(λ1) = 0, so that hk
nm(λ1) vanishes unless n + m is odd;

• The condition h−k(y1, y1, λ1) = hk(y1, y1, λ1) yields the symmetry under permutation
of n and m.

From now on, we will write n − m ≡ k instead of n − m = k (mod N). Lemma 4.4
allows us to simplify the notation, setting

hk(y1, y1, λ1) =
∑

n,m>0, 36n+m<K
n−m≡k

hnm(λ1)y1
ny1

m + O(|y1|K) . (4.22)
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It is convenient to set h1(y1, y1, λ1) = y1 and h−1(y1, y1, λ1) = y1. Then (4.22) holds for
k = ±1 as well if we set hnm = δn1δm0 whenever n − m ≡ 1, and hnm = δn0δm1 whenever
n − m ≡ −1. The equation on the centre manifold can be written as

ẏ1 = λ1y1 −
∑

k1+k2+k3=1

hk1
(y1, y1, λ1)hk2

(y1, y1, λ1)hk3
(y1, y1, λ1)

= λ1y1 −
∑

n,m>0, 36n+m<K
n−m≡1

cnm(λ1)y
n
1 y1

m + O(|y1|K) , (4.23)

where

cnm(λ1) =
∑

ni>0: n1+n2+n3=n
mi>0: m1+m2+m3=m

hn1m1
(λ1)hn2m2

(λ1)hn3m3
(λ1) ∈ R . (4.24)

Note that cnm(λ1) = 0 whenever n + m is even. In polar coordinates y1 = r1 eiϕ1 ,
Equation (4.23) becomes

ṙ1 = λ1r1 −
∑

n,m>0, 36n+m<K
n−m≡1

cnm(λ1)r
n+m
1 cos

(
(n − m − 1)ϕ1

)
+ O(rK

1 ) ,

ϕ̇1 = −
∑

n,m>0, 36n+m<K
n−m≡1

cnm(λ1)r
n+m−1
1 sin

(
(n − m − 1)ϕ1

)
+ O(rK−1

1 ) .
(4.25)

In general, c21 = 3h2
10h01 = 3 is the only term contributing to the third-order term of

ṙ1. The only exception is the case N = 4, in which c03 = h3
10 = 1 also contributes to the

lowest order, yielding

ṙ1 =

{
λ1r1 − 3r3

1 + O(r5
1) if N 6= 4 ,

λ1r1 − (3 + cos 4ϕ1)r
3
1 + O(r5

1) if N = 4 .
(4.26)

This shows that all stationary points bifurcating from the origin lie at a distance of order√
λ1 from it: They satisfy r1 =

√
λ1/(3 + cos 4ϕ1) + O(λ

3/2
1 ) in the case N = 4, and

r1 =
√

λ1/3 + O(λ
3/2
1 ) otherwise.

The terms with n − m = 1 do not contribute to the angular derivative ϕ̇1. In the
particular case N = 4, we have

ϕ̇1 = sin(4ϕ1)r
2
1 + O(r4

1) , (4.27)

yielding 8 stationary points, of alternating stability. Otherwise, we have to distinguish
between two cases:

• If N is even, the lowest-order coefficient contributing to ϕ̇1 is c0,N−1, giving

ϕ̇1 = c0,N−1(λ1)r
N−2
1 sin(Nϕ1) + O(rN−1

1 ) . (4.28)

Thus if we prove that c0,N−1(λ1) 6= 0, we will have obtained the existence of exactly
2N stationary points, of alternating stability, bifurcating from the origin.
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• If N is odd, then n+m is even whenever n−m = ±N +1, which implies by Lemma 4.4
that cnm = 0 for these (n,m). The lowest-order coefficient contributing to ϕ̇1 is thus
c0,2N−1, giving

ϕ̇1 = c0,2N−1(λ1)r
2N−2
1 sin(2Nϕ1) + O(r2N−1

1 ) . (4.29)

Thus if we prove that c0,2N−1(λ1) 6= 0, we will have obtained the existence of exactly
4N stationary points, of alternating stability, bifurcating from the origin.

Remark 4.5. Let r1 and r′1 be solutions of the equation ṙ1 = 0 obtained for two different
values of ϕ1, say ϕ1 = 0 and ϕ1 = π/N . For even N , using the fact that the terms
up to order N − 2 in the first equation in (4.25) do not depend on ϕ1, one can see that

r′1 − r1 = O(λ
(N−3)/2
1 ). For odd N , one obtains in a similar way r′1 − r1 = O(λ

(2N−3)/2
1 ).

In order to compute sign of the coefficients c0,N−1 or c0,2N−1, we need at least to know
the coefficients h0m for odd m up to N −3 or 2N −3, respectively. By continuity, however,
it is sufficient to compute them for λ1 = 0. We henceforth set hnm = hnm(0).

Lemma 4.6. For all odd m > 0 such that m 6≡ ±1, h0m = hm0 satisfies

λmh0m =
∑

mi>0: m1+m2+m3=m

h0m1
h0m2

h0m3

−
∑

v>0: v≡m+1
mi>0: m1+m2+m3+v=m

h0m1
h0m2

h0m3
h1v

−
∑

v>0: v≡m
ni>0: n1+n2+n3+v=m+1

vhn10hn20hn30h0v . (4.30)

Furthermore, if either N is even and 1 6 m 6 N − 3, or N is odd and 1 6 m 6 2N − 3,
then

λmh0m =
∑

mi>0: m1+m2+m3=m

h0m1
h0m2

h0m3
. (4.31)

Proof: By invariance of the centre manifold, hk(y1, y1, 0) has to satisfy the equation

λkhk = −gk(y1, y1, {hj}j) +
∂hk

∂y1
g1(y1, y1, {hj}j) +

∂hk

∂y1
g1(y1, y1, {hj}j) . (4.32)

Plugging in the series (4.18) of gk and (4.22) of hk, this can be seen to be equivalent to

λn−mhnm =
∑

ni>0: n1+n2+n3=n
mi>0: m1+m2+m3=m

hn1m1
hn2m2

hn3m3

−
∑

u,v>0: u−v≡n−m
ni>0: n1+n2+n3+u=n+1
mi>0: m1+m2+m3+v=m

uhn1m1
hn2m2

hn3m3
huv

−
∑

u,v>0: u−v≡n−m
ni>0: n1+n2+n3+v=m+1
mi>0: m1+m2+m3+u=n

vhn1m1
hn2m2

hn3m3
huv . (4.33)
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In the special case n = 0, the second sum vanishes unless u = 1, and n1 = n2 = n3 = 0.
In the third sum, we must have v > 0 and u = m1 = m2 = m3 = 0. Finally, the fact that
λ−m = λm yields (4.30).

Assume now that N is even and m 6 N − 3. In the second sum, v cannot exceed
m, but then the condition v ≡ m + 1 would require m > N − 1. Thus the second sum
vanishes. In the third sum, v cannot exceed m + 1, and thus v = m. However, in that
case n1 + n2 + n3 = 1, so that two ni must be zero. Since h00 = 0, the third sum vanishes
as well.

If N is odd and m 6 2N − 3, then the second sum in (4.30) allows for v = m + 1−N .
Then, however, we would have m1 +m2 +m3 = N −1, which is even. Thus at least one of
the mi is even, yielding a vanishing summand. The third sum in (4.30) allows for v = m
and v = m − N . In the first case, however, the summand vanishes for the same reason
as before, while in the second case, we would have n1 + n2 + n3 = N + 1, which is even.
Thus at least one of the ni is even, yielding again a vanishing summand.

Proposition 4.7. If N is even, then
{

c0,N−1 > 0 if N ∈ 4N ,

c0,N−1 < 0 if N ∈ 4N + 2 .
(4.34)

As a consequence, for λ1 > 0 sufficiently small, the system admits exactly 2N stationary
points on the centre manifold. The points with ϕ1 = 2kπ/N have one stable and one
unstable direction if N ∈ 4N , and two stable directions if N ∈ 4N + 2, and vice versa for
the points with ϕ1 = (2k + 1)π/N .

Proof: By (4.24), it is sufficient to compute h0m = hm0 for odd m between 1 and N − 3.
Recall that λ0 = 1, and λk = λ−k < 0 for 3 6 k 6 N − 2. Using h01 = 1 as starting point,
it is easy to show by induction that sign(h0,2ℓ+1) = (−1)ℓ, because all summands have the
same sign at each iteration. Likewise, all summands of c0,N−1 have sign (−1)N/2.

Proof of Theorem 2.3. We consider the case N = 4L, the proof being similar for
N = 4L + 2.

• First note that the set B = {y : yk ∈ R ∀k} is invariant under the dynamics (it
corresponds to xN−j = xj ∀j). The intersection of B with the centre manifold is
one-dimensional, and can be parametrised by r1 ∈ R (while ϕ1 = 0). Since ṙ1 =
λ1r1−3r3

1 +O(r4
1), the system admits at least three stationary points O and ±B′ in B

for small positive λ1. The stationary point B′ is stable in the r1-direction, and unstable
in the ϕ1-direction. Since there are N − 3 stable and 1 unstable directions transversal
to the centre manifold, B′ is a 2-saddle. The same holds for the cyclic permutations
RB′, . . . , RN−1B′, which correspond to ϕk = 2kπ/N , and thus lie in the fixed-point
sets of conjugate symmetry groups. Applying the inverse Fourier transformation (4.2),
we find that the coordinates of B′ in X satisfy

B′
j = ωjy1 + ω−jy1 + O(λ1) = 2 cos

(
2πj

N

)√
λ1

3
+ O(λ1) . (4.35)

Setting B = R−N/4B′ yields the expression (2.21) for the coordinates.
• A similar argument shows the existence of N stationary points A,RA, . . . , RN−1A,

corresponding to ϕ1 = (2k + 1)π/N , which are 1-saddles because they are stable in
the ϕ1-direction. In X , their coordinates satisfy one of the symmetries xn0−j = −xj,
n0 = 1, . . . , N .
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• For λ1 small enough, the equation ϕ̇1 = 0 admits exactly 2N solutions, so that there
are no further stationary points on the centre manifold. Proposition 3.1 shows that
for any η > 0, we can find a δ > 0 such that if γ > γ1 − δ, there can be no stationary
points outside an η-neighbourhood of the diagonal. Together with a local analysis near
the diagonal, and the fact that the centre manifold is locally repulsive, this proves that
there are exactly 2N + 3 stationary points.

• Consider now the set

A+ = {x ∈ X : xj = −xN+1−j = xN/2+1−j ∀j, x1, . . . , xL > 0} . (4.36)

We claim that this set is positively invariant under the flow of ẋ = −∇V (x). Without
the condition x1, . . . , xL > 0, the invariance follows from equivariance. Now if xj = 0
for some j while the other xi are positive, one easily sees that −∂xj

V = (xj−1 +
xj+1)γ/2 is positive, showing the invariance of A+. Since the potential is increasing
at infinity, there must be at least one stationary point in A+, which we denote A(γ).
As γ → 0, the only stationary point in A+ is the point (1, . . . , 1,−1, . . . ,−1). We
proceed similarly for B(γ).

• Finally, the value of the potential at the stationary points can be computed with the
help of the expression (4.4) for the potential in Fourier variables. The only terms
contributing to leading order in λ1 are the term λ1|y1|2 in the first sum, and terms
of the form y2

1y
2
−1 in the second sum. The remaining terms are of smaller order. The

relation on the difference Vγ(B)− Vγ(A) is a consequence of Remark 4.5. This proves
the theorem.

In the case of odd N , the situation is more difficult, because not all summands in the
recursion defining the h0m are of the same sign. A partial result is

Lemma 4.8. If N is odd, then

sign(h0,2ℓ+1) = (−1)ℓ for ℓ = 0, 1, . . . ,
N − 1

2
− 1 . (4.37)

Proof: As before, using the fact that λk = λ−k < 0 for 1 6 k 6 N − 1.

Conjecture 4.9. For ℓ = (N − 1)/2, . . . , N − 2, h0m has sign (−1)ℓ+1, and

c0,2N−1 > 0 . (4.38)

Numerically, we have checked the validity of this conjecture for all odd N up to 101.
The proof of Theorem 2.4 is similar to the above proof of Theorem 2.3, without using

any information on the sign of c0,2N−1. Conjecture 2.5 then follows from Conjecture 4.9
by including this information in the proof.

5 Stochastic case

Once the potential landscape is sufficiently well known, the proofs of the results on the
stochastic dynamics are standard, so we shall only sketch the main ideas. We refer to
[FW98, Sug96, Kif81] for further details.

Consider first the synchronisation regime γ > γ1. Let A(I−) be the basin of attraction
of I−. It’s boundary is the stable manifold of the origin O. By definition, the minimal
value of the potential V on ∂A(I−) is reached at the origin (see also Proposition 3.2).
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Consider further the bounded set K0 = {x ∈ A(I−) : V (x) < 0}. This set is positively
invariant under the dynamics of ẋ = −∇V (x), and bounded away from ∂A(I−), except
near the origin. We can thus introduce a further positively invariant bounded set K, such
that

• K0 ⊂ K ⊂ A(I−);
• ∂K is smooth and bounded away from the ∂A(I−) and ∂K0, except near the origin;
• V (x) > 0 for all x ∈ ∂K \ {O}.

Let finally K′ be a small deformation of K, obtained by removing a small neighbourhood
of the origin, of size of order r, in such a way that ∂K′ remains smooth. Then K′ has the
following properties:

• On its boundary, the vector field −∇V (x) is directed inward;
• V (x) is positive, bounded away from zero, on ∂K′, except in an r-neighbourhood of

the origin. Hence the minimal value of V on ∂K′ is assumed near O.

We can now apply results from [FW98, Chapter 4] on the dynamics in a positively invariant
neighbourhood of an asymptotically stable equilibrium point. In particular, Theorems 4.1
and 4.2 in [FW98] show that the first-exit time τ ′ from K′ satisfies relations similar to (2.38)
and (2.39), and that the first-exit location is concentrated near the origin.

The remainder of the proof uses results from [FW98, Chapter 6] (see also [Kif81]).
The main idea is that once a sample path has reached a neighbourhood of the saddle
at the origin, it is much more likely to either return to I− or reach I+ than to reach
values with higher potential. This implies (2.41). Also, the time needed to go from a
small neighbourhood of O to I+ is negligible, on the exponential scale, with respect to
the first-exit time τ ′ from K′. Hence the total time required for the transition satisfies the
same asymptotics as τ ′.

The proof for γ < γ1 is similar. We first note that the 1-saddle A, as well as its sym-
metric images, is necessarily connected to I− and I+ by paths with everywhere decreasing
potential (they are given by the unstable manifolds of A, which lie in invariant subspace
of points with a mirror symmetry). The boundary of the basin of attraction A(I−) is
now the closure of the union of the stable manifolds of all gA, g ∈ G. The set K0 is
now defined by the condition V (x) < V (A), and we have to remove small neighbourhoods
around each 1-saddle to apply the results from [FW98, Chapter 4]. The remainder of the
proof is similar.

A Small Coupling and Symbolic Dynamics

In this appendix we sketch the proof of Proposition 2.1 on the continuation of equilibrium
points from the uncoupled limit. The equation f(xn) + γ

2 (xn+1 − 2xn + xn−1) satisfied by
the stationary points can be rewritten as (xn+1, yn+1) = H(xn, yn) where H is the map of
the plane defined by

H(x, y) =
(
2x − 2

γ
f(x) − y, x

)
. (A.1)

This map is invertible and its inverse can be simply obtained as H−1 = S ◦ H ◦ S where
S(x, y) = (y, x). In addition, we have H(−x,−y) = −H(x, y).

We proceed to a similar construction as in [Kee87] to show that, when γ 6 1/4, the
map H has a horseshoe on which it is conjugated to the full shift on 3 symbols. We start
by defining a collection of strips in the square [−1, 1]2 with good dynamical properties.
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(a) (b)
y = g(x) y = g(x)� 2y = g�1� (x)

z0V� V0 V+
H(V�)H(V0)
H(V+) z0

Figure 1

1

Figure 9. Images of the boundary of the square [−1, 1]× [−1, 1] under the map H , shown
(a) for γ = 1/4, and (b) for γ = 0.258 . . . The “vertical” strips V−, V0 and V+ are mapped
on “horizontal” strips H(V−), H(V0) and H(V+). Their intersections define the elements of
the first-level partition, for instance I−.− = V− ∩H(V−) is the lower-left squarish domain.
Intersections of the light curves, obtained by iterating the map twice, define the elements
Iω

−1ω0.ω1ω2
of the second-level partition.

The map x 7→ g(x) := 2x − 2γ−1f(x) + 1 leaves −1 invariant and is strictly increasing
on [−1,−z0] where z0 :=

√
(1 − γ)/3. If in addition, the condition g(−z0) > 1 holds, then

g is a bijection on [−1, g−1
− (1)] where g−1

− is the inverse of g with range [−1,−z0] and we
have

H
({

(x,−1): g−1
− (−1) 6 x 6 g−1

− (1)
})

=
{
(x, g−1

− (x)) : − 1 6 x 6 1
}

. (A.2)

Similarly, provided that the condition g(−z0) > 3 is satisfied, we have

H
({

(x, 1): g−1
− (1) 6 x 6 g−1

− (3)
})

=
{
(x, g−1

− (x + 2)): − 1 6 x 6 1
}

. (A.3)

The condition g(−z0) > 3 is indeed equivalent to γ 6 1/4. By monotonicity, it results
that under the condition γ 6 1/4 the “vertical” strip

V− :=
{
(x, y) : g−1

− (y) 6 x 6 g−1
− (y + 2), −1 6 y 6 1

}
, (A.4)

is mapped onto the “horizontal” strip S(V−). By symmetry we also have that H(V+) =
S(V+) where V+ = −V− is the opposite vertical strip.

Furthermore, g is strictly decreasing on [−z0, z0] and the conditions g(−z0) > 1 and
g(z0) 6 −1 imply that this map is a bijection on [g−1

+ (1), g−1
+ (−1)] where g−1

+ is the inverse
of g with range [z0,−z0]. The inverse g−1

+ has the symmetry g−1
+ (2 − x) = −g−1

+ (x) and
the condition g(z0) 6 −1 is equivalent to g(−z0) > 3. Similarly as before this implies that
under the condition γ 6 1/4, the symmetric vertical strip

V0 :=
{
(x, y) : g−1

+ (y + 2) 6 x 6 g−1
+ (y), −1 6 y 6 1

}
, (A.5)

is mapped onto the horizontal strip S(V0).
With these strips provided, the rest of the construction is standard. Given any finite

word ω−(n+1) · · ·ωn ∈ {−, 0,+}2(n+1) (n > 0) consider the set

Iω−n···ω0.ω1···ωn+1
=

n+1⋂

k=−n

Hk(Vωk
) . (A.6)

29



These sets are all non-empty by the properties of the strips above. Then, for any infinite
sequence {ωn} ∈ {−, 0,+}Z , the intersection

⋂
k∈Z

Hk(Vωk
) is also nonempty. Since the

sets Iω−n···ωn+1
are pairwise disjoint, we conclude that the map H has at least (and thus

exactly) 3Z points for which the forward and backward orbit is contained in [−1, 1]2. In
particular it has exactly 3N points of (not necessarily minimal) period N for any N . This
shows that γ⋆(N) > 1/4 for any N > 2.

The condition g(−z0) > 3 which ensures that the strips have the desired properties is
not optimal and can be improved. To see this, we consider the strips V ′

ωk
instead of Vωk

in (A.6) where V ′
− is defined by

V ′
− :=

{
(x, y) : − 1 6 x 6 −z0, g(x) − 2 6 y 6 g(x)

}
, (A.7)

where V ′
+ = −V ′

− and where

V ′
0 :=

{
(x, y) : − z0 6 x 6 z0, g(x) − 2 6 y 6 g(x)

}
, (A.8)

Note that we have V ′
ωk

⊃ Vωk
.

Similarly as before, a sufficient condition for the existence of 3Z points with bounded
orbit under H is that the nine basic sets Iω0.ω1

are pairwise disjoint. By symmetries,
the latter is equivalent to the condition that the right boundary of V ′

− crosses the upper
horizontal strip S(V ′

+). A simple analysis shows that this is equivalent to the inequality
(weaker than g(−z0) > 3)

g(−z0) − 2 > g−1
− (2 − z0) (A.9)

which holds provided γ 6 0.258 . . . , i.e., we have γ⋆(N) > 0.258 . . . for any N > 2.
As γ increases, some symbolic sequences will be pruned, resulting in saddle-node bi-

furcations of stationary points. The first configurations to disappear are asymmetric ones,
such as (1, 1, . . . , 1,−1) and (1, 1, . . . , 1, 0) and their images under the symmetry group G.

B The case N = 4

In this appendix, we briefly describe how we obtained the bifurcation diagram of Figure 5
for the case N = 4.

We start by determining the isotropy groups of the stationary points present in the
uncoupled case γ = 0, and their fixed-point sets. They are of 10 different types, 8 of which
we show in Table 6. The two types we do not show are the fixed-point set {0, 0, 0, 0}, which
obviously contains only the origin, and the orbits labeled Aaα, which have no symmetry,
and thus a fixed-point set equal to X .

Table 6 also shows the form taken by the equation ẋ = −∇V (x) when restricted
to the fixed-point set. These equations are then analysed in order to determine their
equilibrium points. The analysis of the dynamics in one-dimensional fixed-point sets is
straightforward, while the two-dimensional equations require a bit more work, but do not
present particular difficulties. Let us briefly describe the case of the three-dimensional
fixed-point set (x, y, x, z). In rotated variables u = (y + z)/2, v = (y − z)/2, the equations
become

ẋ = (1 − γ)x + γu − x3 ,

u̇ = γx + (1 − γ)u − u(u2 + 3v2) ,

v̇ = (1 − γ)v − v(3u2 + v2) .

(B.1)
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Orbit label Fixed-point set Reduced dynamics

I± (x, x, x, x) ẋ = x − x3

A (x, x,−x,−x) ẋ = (1 − γ)x − x3

B (x, 0,−x, 0) ẋ = (1 − γ)x − x3

A(2) (x,−x, x,−x) ẋ = (1 − 2γ)x − x3

Aa (x, x, y, y) ẋ = (1 − 1
2γ)x + 1

2γy − x3

ẏ = 1
2γx + (1 − 1

2γ)y − y3

(x, y, x, y) ẋ = (1 − γ)x + γy − x3

ẏ = γx + (1 − γ)y − y3

(x,−x, y,−y) ẋ = (1 − 3
2γ)x − 1

2γy − x3

ẏ = −1
2γx + (1 − 3

2γ)y − y3

∂a, ∂b, . . . (x, y, x, z) ẋ = (1 − γ)x + 1
2γy + 1

2γz − x3

ẏ = γx + (1 − γ)y − y3

ż = γx + (1 − γ)z − z3

Table 6. Orbits, corresponding fixed-point sets and reduced dynamics in the case N = 4.

Equilibrium points with v = 0 correspond to the fixed-point set (x, y, x, y), and have
already been analysed. We thus assume v 6= 0, which implies 3u2 + v2 = 1− γ and allows
to eliminate v. We are left with two equations for the stationary points, namely

(1 − γ)x + γu − x3 = 0 ,

γx − 2(1 − γ)u + 8u3 = 0 .
(B.2)

If x = 0, then necessarily u = 0 and we are left with the already studied points of the form
(0, y, 0,−y). We thus assume x 6= 0 and eliminate u from the system. It is convenient to
introduce the variable w = 2(1 − γ − x2) instead of x. Then u = −wx/2γ, and w has to
satisfy the fourth-order equation

w4 − 2(1 − γ)w3 + 2γ2(1 − γ)w + 2γ4 = 0 . (B.3)

The condition v2 > 0 yields the additional requirement w3 − 2(1− γ)w2 + 8
3γ2(1− γ) > 0.

Together with (B.3), this can be seen to be equivalent to the condition

3γ2

w
6 1 − γ . (B.4)

Numerically, one observes the following properties:

• If 0 < γ < 0.2684 . . . , Equation (B.3) has four distinct real roots, two of them being
positive and two negative.

• For 0.2684 . . . < γ < 0.4004 . . . , Equation (B.3) has two real roots, which are both
positive.

The negative roots always fulfill Condition (B.4). Examining (B.3) perturbatively in γ,
one finds that they are of the form w = −γ+O(γ2) and w = −γ2 +O(γ3), and correspond
to the branches labelled ∂a and ∂b in the bifurcation diagram of Figure 5.
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The positive roots, on the other hand, do not always fulfill Condition (B.4). In fact,
one solution exists for 0 < γ < (3

√
2 − 2)/7, while the other one bifurcates with the

A(2)-branch for γ = 2/5. A perturbative analysis for small γ shows that they converge,
respectively, to the points (1, 0, 1,−1) and (0, 1, 0, 0) as γ → 0.

Finally, one can also compute the determinant of the Hessian of the potential around
the stationary points of the form (x, y, x, z). This determinant can be put into the form

1

2w2

[
3w − 4(1 − γ)

][
(1 − γ)w − 3γ2

][
3(1 − γ)w2 + 4(1 − 2γ)w + 6γ2(1 − γ)

]
. (B.5)

The roots of this expression correspond to bifurcation points, and can be combined
with (B.3) to check that all bifurcation points have been found (and yields more pre-
cise estimates of the bifurcation values). This expression can also be used to check the
index of the stationary points.

This analysis is not completely rigorous because we have not analysed in detail the
branch labeled Aaα, which has no symmetry at all. The bifurcation diagram is based on
the fact that the only bifurcation of already known branches producing stationary points
without symmetry is the bifurcation of the Aa-branch at γ = 1/3. A local analysis shows
that this is indeed a pitchfork bifurcation, producing the right number of new stationary
points.
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