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In this paper, a new technique to detect broken rotor bars in polyphase induction machines is presented. Like most techniques, we employ the Fourier Transform of one stator current to make detection. But where the other methods use the Fourier Transform modulus, we propose an alternative approach by analyzing its phase. As shown by results, the Fourier Transform phase allows to detect one broken rotor bar when the motor operates under a low load. In order to improve the diagnosis and to permit the detection of incipient broken rotor bar, we complete the analysis with the Hilbert Transform. This transform provides good results and a partially broken rotor bar can be detected when the load torque is equal or greater than 25%. The main advantage of these methods is that it does not require a healthy motor reference to take the final decision on the rotor cage state.

Introduction

Nowadays, no one can deny the important role of the asynchronous motor in industry applications. It is wellknown that an interruption of a manufacturing process due to a mechanical or electrical problem induces a significant financial loss for the firm. Interruptions can be caused by rotor faults (broken rotor bars or cracked rotor end ring), stator faults (opening of a stator phase or inter-turn short circuits) , rotor-stator eccentricity (static and dynamic eccentricity) and bearing failures [START_REF] Bonnet | Analysis of Rotor Failures in Squirrel Cage Induction Machines[END_REF], [START_REF] Bonnet | Cause and Analysis of Stator and Rotor Failures in Three-Phase Squirrel-Cage Induction Motors[END_REF]. In order to avoid such problems, we have to detect these faults to prevent a major failure from occurring.

Broken rotor bars rarely cause immediate failures, especially in large multi-pole (slow speed) motor. However, if there are enough broken rotor bars, the motor may not start as it may not be able to develop sufficient accelerating torque. Regardless, the presence of broken rotor bars precipitates deterioration in other components that can result in time-consuming and expensive fixes.

Various techniques have been developed to detect broken rotor bars in induction motors. We can quote vibration measurement [START_REF] Pöyhönen | Independent Component Analysis of Vibrations for Fault Diagnosis of an Induction Motor[END_REF], temperature measurement [START_REF] Yahoui | Measurement of physical signals in the rotating part of an electrical machine by means of optical fibre transmission[END_REF], coils to monitor the motor axial flux [START_REF] Kliman | Noninvasive detection of broken rotor bars in operating induction motors[END_REF], Park's Vector currents monitoring [START_REF] Benbouzid | A review of induction motors signature analysis as a medium for faults detection[END_REF], artificial intelligence based techniques [START_REF] Filippetti | Recent developments of induction motor drives fault diagnosis using AI techniques[END_REF]. However, the most popular techniques are based on the monitoring of the stator current spectrum (called Motor Current Signature Analysis) because of its non-intrusive feature [START_REF] Thomson | Current Signature Analysis to Detect Induction Motor Faults[END_REF][START_REF] Kliman | Induction motor fault detection via passive current monitoring[END_REF][START_REF] Fiser | Detecting Side-band Frequency Components in Stator Current Spectrum on Induction Motor for Diagnosis Purpose[END_REF][START_REF] Didier | On the Modelling of Induction Motor Including the First Space Harmonics for Diagnosis Purposes[END_REF]. In this technique, the amplitude of the lateral bands created by the rotor fault around the supply frequency are monitored. An augmentation of these amplitudes allows dimensioning the failure's degree. Others use the instantaneous power spectrum of one stator phase to calculate a global fault index [START_REF] Didier | Rotor Cage Fault Detection in Induction Motor using global modulation index on the Instantaneous Power Spectrum[END_REF]. The disadvantage of all these methods is that the knowledge of the healthy motor stator current is necessary to take a decision about the rotor state.

In this paper, we propose a broken rotor bar detection method using the line current Discrete Fourier Transform (DFT) phase. This technique does not require the healthy motor current knowledge, which is a major advantage compared to the classical ones. We will show that the basically calculated phase gives good results when the motor operates near its nominal load. For weak load, the results obtained are not robust enough especially for the detection of an incipient rotor fault. This problem will be solved by using the Hilbert Transform applied to the line current spectrum modulus. Thanks to this method, the diagnosis of a partially broken rotor bar could be carried out without reference even if the motor operates at low load (25% of the rated torque).

Current monitoring

Consider an ideal three-phase supply and an asynchronous motor connected in wye. Thus the instantaneous current circulating in one phase is defined as:

i s0 (t) = √ 2I s sin(ω s t -ϕ) (1) 
with regard to the instantaneous voltage:

v(t) = √ 2V s sin(ω s t) (2) 
The term ϕ represents the phase angle between the voltage and the line current. We can see in Eq. ( 1) that the power spectrum of the current will contain only one fundamental component at frequency f s = ω s /2π. When one bar breaks, a rotor asymmetry is thus created. The result is the appearance of a backward rotating field at the slip frequency sf s (s represents the slip and f s the supply frequency). This induces, in the stator current spectrum, an additional component at frequency f - bb1 = (1 -2s)f s . This cyclic current variation causes a speed oscillation at twice the slip frequency 2sf s [START_REF] Filipetti | Impact of speed ripple on rotor faukt diagnosis of induction machine[END_REF]. This speed oscillation induces, in the stator current spectrum, an upper component at f + bb1 = (1 + 2s)f s , and so on. By extension, the broken rotor bar creates additional components in the spectrum modulus at frequencies given by [START_REF] Filipetti | Impact of speed ripple on rotor faukt diagnosis of induction machine[END_REF]:

f ± bb k = (1 ± 2ks)f s k = 1, 2, 3, . . . (3) 
The effects of a broken rotor bar can be seen in Fig. 1. We represent the line current spectrum in the case of a healthy rotor in Fig. 1(a), and with one broken rotor bar in Fig. 1(b). We can see that the appearance of a rotor fault increase the amplitude of the component situated at frequencies f ± bb k . The amplitude of these frequencies are dependent of three factors. The first is the motor's load inertia, the second is the motor's load torque (current in the rotor bars) and the third is the severity of the rotor fault. For example, the magnitude of these components will be more important with three broken bars than with a fissured one. If we analyze Fig. 1(a), we notice that the current spectrum contains a component at the frequency f - bb1 = (1 -2s)f s . This frequency is created by the asymmetry existing in all induction motors and is usually used as reference for the rotor fault diagnosis. The classical broken bar detection methods usually use the monitoring of the line current Fourier Transform modulus. They are based on the appearance or the increase of the components amplitude at frequencies defined in Eq. (3). Appearance or increase are two terms which induce the comparison with a reference which is often the Fourier Transform modulus of the current line absorbed with a healthy rotor as we explained previously.

In this work, the spectrum reference given by the line current of the healthy motor is not necessary anymore. Thus, we propose to detect a broken rotor bar without a priori knowledge of the motor state. 

Discrete Fourier Transform (DFT) phase analysis

The DFT is naturally obtained by a discretisation at the sampling frequency of the Discrete Time Fourier Transform (DTFT) given by:

X(f ) = N -1 n=0 x(n)e -2jπnf (4) 
In the case where x(n) = e 2jπnf0 , the DTFT of x(n) is written:

X(f ) = N -1 n=0 e 2jπnf0 e -2jπnf = sin(N π(f -f 0 )) sin(π(f -f 0 )) e -j2π(N -1)(f -f0) (5) 
In this expression, we find the Dirichlet function sin(N πf ) sin(πf ) e -j2π(N -1)f introduced by the DTFT of the rectangular window.

Let us consider the following line current expression:

i s (t) = i s0 (t) + K l k=1 √ 2I s m - c k 2 cos(2π(f s -k f f )t -ϕ - k ) (6) 
+ Kr k=1 √ 2I s m + c k 2 cos(2π(f s + k f f ) t -ϕ + k )
where m - c k and m + c k represent the modulation index of the left component k and the modulation index of the right component k with regards to the supply frequency f s in the spectrum modulus. Their values are a function of the fault level present in the rotor cage as we showed in [START_REF] Didier | Rotor Cage Fault Detection in Induction Motor using global modulation index on the Instantaneous Power Spectrum[END_REF]. Terms ϕ - k and ϕ + k represent the dephasing of the component (left or right) according to the origin (0 rad). Terms K l and K r respectively represent the number of components at the left and at the right of the carrier frequency present in the line current spectrum for a healthy or faulty rotor. The frequency f f represents the modulation frequency introduced by the natural asymmetry or by the rotor fault (f f = 2sf s ). The corresponding line current spectra are given in Figs. 1. Classically, the diagnosis methods use the DFT modulus of the line current defined in Eq. ( 6) to detect a fault. We have chosen to use the phase because it gives a better representation of the information contained in the line current. Indeed, the components at frequencies f ± bb k (Eq. ( 3)) are present, and their amplitudes are a function of the fault level, as we can see in Figs. [START_REF] Bonnet | Cause and Analysis of Stator and Rotor Failures in Three-Phase Squirrel-Cage Induction Motors[END_REF].

In fact, on each side of the 50 Hz, we observe the presence of phase jumps between +π and -π. These phase jumps are another representation of the components present in the line current spectrum modulus. Furthermore, in this representation, we can observe a phase jump at the 50 Hz frequency.

The presence of this jump is due to the fact that the frequencies contained in the line current spectrum are not a multiple integer of the resolution frequency ∆f used (∆f = F e /N where F e and N respectively represent the sampling frequency and the total number of points used for the calculation of the line current spectrum).

Indeed, in the case where f s and f f are multiple integers of ∆f (f s = x ∆f and f f = x ∆f with x an integer) the line current spectrum phase is illustrated in the Fig. 3(a) for f f = 6 Hz (parameters used in this case are indexed in Table 1). We obtain the dephasing of all sinusoids contained in the line current expression i s (t). However, in the case where the frequencies f s and f f are not multiple integers of ∆f , we obtain the representation given in Fig. 3(b) (by preserving the same parameters). As we can see in Fig. 3(c), if the modulation indexes increase, which means the appearance of a defect in the rotor cage, the jumps present at frequencies (1 ± 2ks)f s increase too (in this case, parameters used are given in Table 2). 

) (K l = K r = 2). k 1 - 1 + 2 - 2 + m c k 0.003 0.002 0.0015 0.0005 ϕ k -π/4 π/3 -π/7 π/8
Table 2: Parameters used for the Fig. 3

(c) (K l = K r = 2). k 1 - 1 + 2 - 2 + m c k 0.004 0.003 0.002 0.001 ϕ k -π/4 π/3 -π/7 π/8
In order to understand why the phase of the line current spectrum takes this form along the frequency axis, we propose to study a simple signal. The Discrete Time Fourier Transform (DTFT) of the line current spectrum given at Eq. ( 6), if we consider only its fundamental component with ϕ = 0 (frequency f s ), can be expressed as:

I s (f ) = √ 2I s N -1 n=0 sin(2πf s t) e -2jπnf (7) 
= √ 2I s N -1 n=0 e j2πfsn -e -j2πfsn 2j e -2jπnf = |I s (f )|e -ΨI s (f ) = √ 2I s sin(N π(f -f s )) 2j sin(π(f -f s )) e -j2π(N -1)(f -fs) - √ 2I s sin(N π(f + f s )) 2j sin(π(f + f s )) e -j2π(N -1)(f +fs)
In this expression, we find two Dirichlet functions positioned at frequencies -f s and +f s . As said previously, the DFT is a sampling of the DTFT. So, in the case where f s is not a multiple integer of ∆f , we do not find a simple component at frequency f s in the line current spectrum modulus but parasitic undulations as shown in Fig. 4(a). Indeed, instead of sampling the DTFT when it equals 0 (case f s = x ∆f ), the values obtained are the values of the Dirichlet functions. The same phenomenon occurs for the real and imaginary parts of the spectrum I s (f ). They are not null and depend on values taken by the real and imaginary parts of the DTFT of the line current (Fig. 4(b)).

As the phase of the DFT Ψ F T (f ) varies according to the sign of the real and imaginary parts of I s (f ) (Eq. ( 8)), we obtain the form given in Fig. 4(c) with a positive jump at the frequency f s like in Figs. 2(a) and 2(b). In the ideal case, we would have obtained a component of value -π/2 located at the frequency f s like in Fig. 3(a).

Ψ F T (f ) = arctan I F T (I(f )) R F T (I(f )) (8) 
Nevertheless, the phase jump at 50 Hz is very advantageous for the fault detection because we are no longer disturbed by the fundamental component energy problem present in the spectrum modulus. This is interesting for the study of high power motors which have a weak slip (for example, the slip of a 2MW induction motor is near to 0.3%, which gives a frequency f f of 0.3 Hz if the fundamental frequency f s is equal to 50 Hz). Now, let us consider the particular frequency (1 -2s)f s . This frequency, in the case of a healthy rotor, corresponds to the natural rotor eccentricity. So, as shown in Fig. 2(a), there is no phase jump at frequency 7)) with f s = x Fe N .

(1 + 2s)f s because there is no broken rotor bar (in fact a component exists but it is masked by the noise).

That is checked for all load levels studied. On the opposite, when a broken bar is present in the rotor cage (Fig. 2(b)), we can see that the phase jump at frequency (1 + 2s)f s is present (like the other components at frequencies given by Eq. ( 3)).

A simple criterion can be deduced from this observation:

• if there is no phase jump at the frequency (1 + 2s)f s , there is no default;

• if there is a phase jump at the frequency (1 + 2s)f s , there is default.

In order to make a more robust detection and to limit the detection of false alarms, a threshold α has been introduced in the criterion. This threshold compares the variance

σ c of Ψ F T (f ) in the interval B c = [(1 + 2s)f s -δ 2 , (1 + 2s)f s + δ 2 ]
where the fault component is located, with the variance σ n of Ψ F T (f ) in the interval

B n = [(1 + 2s)f s + δ 2 , (1 + 4s)f s -δ 2 ]
which contains noise. The term δ represents the frequency band width used for the calculus of σ c (Fig. 5). So the criterion can be reformulated as:

       if σ c σ n > α ⇒ Default if σ c σ n ≤ α ⇒ No Default (9)
Since the detection is based on the appearance of a significant phase jump at the frequency (1 + 2s)f s , the first step of the algorithm is to estimate the slip of the induction motor. To do that, we recommend to use the component at frequency (1 -2s)f s because, in the case of a healthy rotor, only this component is detectable. Moreover, the detection is easier at the left of the 50 Hz due to the greatest amplitude of components. Therefore, the proposed algorithm for the broken bars detection is:

1. Detection of the maxima (or minima, it depends on the phase shape) at the left of the 50 Hz; In fact, we can limit the frequency band used for the maxima research between [F 0 , 50] Hz. The frequency F 0 depends on the maximum slip of the induction motor (at full load). For our motor, the rotation speed at full load is Ω = 2804rpm, so s = 6.53% and 2sf s = 6.53 Hz. Consequently, we choose F 0 = 40 Hz.

Let us note that in order to suppress the little peaks in the signal, a median filter is used. This filter has a smoother effect which helps the detection of maxima (or minima). The results of this method are presented in section 5.

To ensure the robustness of the method explained before, and to detect more precisely the incipient rotor faults, we propose another approach to improve the broken rotor bar diagnosis.

Hilbert Transform (HT) phase analysis

As explained in the previous section, the DFT phase, although the method gives good results, has two disadvantages. The first is that noise level is important, which makes the maxima detection and the peaks discrimination at the right of the 50 Hz (at low load) difficult. The second is that the shape of the phase is not fixed (see Figs. 8 et 10). Indeed, in the case where studied frequencies are different from ∆f , the real and imaginary parts can take random values. In order to stabilize the phase shape, we must find a solution to control the real and imaginary part values of the DFT spectrum. In fact, the idea is to obtain a phase always equal to -π/2 at the left of f s and equal to π/2 at the right of f s , with no variation excepted at the broken bar frequencies. In other words, the real part must be null excepted at frequencies f ± bb k and f s . The solution is to interpret the Discrete Fourier Transform modulus as the real part of a new signal called "analytic signal". Indeed, as we can see in Fig. 6(a), the modulus contains very weak values and dirac impulsions at studied frequencies. So, the shape of the real part is well-known at each frequency point and the Signal Noise Ratio (SNR) is increased.

The analytic signal is obtained by a Hilbert Transform of the line current spectrum modulus. If we consider a time signal s(t), the analytic signal s(t) can be expressed as:

s(t) = s(t) + jρ(t). ( 10 
)
where

ρ(t) = H(s(t)) = s(t) * 1 πt (11) 
The HT H(s(t)) is defined as the convolution product of the signal s(t) (which becomes the real part of s(t)) by a filter whose the impulse response is h(t) = 1 πt . The analytic signal s(t) is calculated by using different methods [START_REF] Poularikas | The Transforms and Applications Handbook[END_REF]. One of these methods is the use of the Fourier Transform. Indeed, the Fourier Transform of the signal ρ(t), which represents the Hilbert Transform of the signal s(t), is given by the following equation:

ρ(t) F ----→ -jsgn(f )S(f ) (12)
where the function sgn(f ) and S(f ) represent respectively the signum function (distribution) given by Eq. ( 13) and the Fourier Transform of s(t).

sgn(f ) =    +1 for f > 0 0 for f = 0 -1 for f < 0 (13)
Consequently, the analytic signal s(t) can be obtained by using the Fourier Transform with the expression:

s(t) F ----→ S(f ) + j[-j sgn(f )]S(f ) = [1 + sgn(f )]S(f ) = x(f )S(f ) (14) 
with

x(f ) = [1 + sgn(f )] =    2 for f > 0 1 for f = 0 0 for f < 0 (15)
The Fourier image of the analytic signal is doubled at positive frequencies and cancelled at negative frequencies with respect to S(f ). The advantage of this transformation is that the result remains in the same domain as the signal analyzed (time for example). The particularity of this paper is that we do not apply the HT on the time signal i s (t) but on its spectrum modulus |I s (f )|. Hence, the analytic signal of this modulus provides:

I s (f ) = |I s (f )| + j I HT (f ) (16) 
with

I HT (f ) = H(|I s (f )|) (17) 
We represent in Eq. ( 18) the diagram used to obtain the analytic signal I s (f ) with the Fourier Transform.

|I s (f )| F ----→ S(z)  R( e Is(f ))   . x(z) I s (f ) F -1 ← ----x(z)S(z)   I( e Is(f )) I HT (f ) (18) 
The analytic signal phase Ψ HT (f ) can be calculated with the expression:

Ψ HT (f ) = arctan I( I s (f )) R( I s (f )) = arctan I HT (f ) |I s (f )| (19) 
The real part |I s (f )|, the imaginary part I HT (f ) and the phase Ψ HT (f ) of the analytic signal are shown in Figs. 6 in case of one broken rotor bar.

In conclusion, the Hilbert Transform applied to the spectrum modulus gives a phase restricted to the interval π 2 , π 2 . Moreover, the knowledge of the imaginary part form Eq. ( 11) allows to predict the exact form of the analytic signal phase.

Thanks to the noise reduction, the phase jumps are more pronounced which permits an easier detection. The noise level is lower than in Ψ F T (f ) because of the redefinition of |I s (f )| and I HT (f ) thanks to the Hilbert Transform. The algorithm is the same as for the DFT phase detection.

Experimental results

The test-bed used in the experimental investigation is composed of one three phase induction motor, 50 Hz, 2poles, 3kW. In order to test the effectiveness of the suggested methods, several identical rotors can be exchanged without affecting the electrical and magnetic features. The squirrel cage has 28 rotor bars (Figs. 7). The voltage and the line current measurements were made at the nominal rate. For those two variables, the sampling frequency F e was 2k Hz and each data length was equal to 2 18 values. We decided to study the case of a partially broken rotor bar (approximately 50% of the bar is bored) and one broken rotor bar. Indeed, the detection of an incipient rotor fault remains, nowadays, still difficult. The results obtained using the Discrete Fourier Transform phase are given in Table 3 (for example we note H-L100 the case of a healthy rotor with 100% load and 05b-L25 the case of a partially broken rotor bar with 25% load). We represent in Figs. 8 and 10 the DFT phase when the torque applied to the machine is equal to 100% and 25% of the rated torque.

We chose to take α equal to 3. This value was selected according to the experimental results carried out. The analysis of the results shows us that the detection of one broken rotor bar is possible at a load torque higher than 25%. On the other hand, the detection of an incipient rotor defect (a partially broken rotor bar) can be made only if the load torque applied to the machine is at least equal to 50%.

This non-detection is mainly due to the important noise present in the phase signal. Indeed, we can notice that noise increases when the load applied to the machine decreases (Figs. 10( . For these operating modes, the variance σ n is important, which makes the detection of the rotor defect more difficult because the ratio σ c /σ n is too weak so that the algorithm of decision considers that the rotor cage does not present a defect.

When the asynchronous machine operates with no load, the algorithm of detection does not take any decision. That means that the jump located at the frequency (1 -2s)f s is not detectable due to its low amplitude. The current which crosses the rotor bars is not important enough to create a consequent jump at this frequency. Thus, the algorithm cannot evaluate the slip of the asynchronous machine and so the two frequency bands B c and B n .

If we consider that an asynchronous machine operates most of its time at its rated torque, we can be satisfied with the results given by the analyses of the Discrete Fourier Transform phase.

We show in Table 4 the results obtained with the analytical signal phase. For these analysis, we chose the α coefficient equal to 10. This value is different for the two methods because the SNR of the Hilbert Transform phase is greater than the DFT phase one.

We can note that the two rotor defects (a broken bar and a partially broken bar) are detected when the load torque is contained between 25% and 100% of the rated torque. The non-detection of the jump at frequency (1 -2s)f s is always present when the machine is unloaded.

If we do not consider this particular case, we thus obtain better results compared to those given in Table 3. This better detection is due to the fact that noise contained in the analytical signal phase is far less important when the machine operates under low load torque. Figs. 11( 

)f s + δ 2 , (1 + 4s)f s -δ 2 ]
gives a more sensitive detection algorithm in case on incipient rotor defect. Indeed, in this case, the calculation of variances σ c and σ n is more optimal than the previous method. Furthermore, it is obvious that the maxima are more easily detectable as we can see in Figs. 9 and 11. 

Conclusion

The proposed methods in this article are based on the analysis of the line current spectrum. We showed that information contained in the spectrum modulus (components at frequencies (1 ± 2ks)f s ) is also visible in the DFT phase at the same frequencies, in the form of phase jumps. Indeed, these phase jumps also depend on the presence or the absence of broken bars in the rotor cage. The results obtained with the DFT phase are satisfying in case of one broken rotor bar, but the importance of the noise level prevents the detection of a partially broken rotor bar. In order to reduce the noise in the phase signal and to make the detection more reliable, a second method is put forward. This one uses the modulus of the line current Discrete Fourier Transform as the real part of a new complex signal obtained by the Hilbert Transform. This method provides better results since we detect a partially broken rotor bar for a load level equals to 25%. Besides, the Hilbert Transform method is less sensible to number of samples variation than the DFT. This property could make easier the implantation on a DSP.

The essential point described in this article is the detection without a priori knowledge of the healthy motor. It is distinguished from the traditional methods which need this reference.
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 1 Figure 1: Line current spectrum modulus for a healthy rotor (a) and a rotor with one broken bar (b)
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 2 Figure 2: Line current spectrum phase for a healthy rotor (a) and a rotor with one broken bar (b)
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 3 Figure 3: Current spectrum phase of Eq. (6): Parameters of Table 1 (a) and (b) and Parameters of Table 2 (c).
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Figure 4 :

 4 Figure 4: Discrete Fourier Transform of line current (Eq. (7)) with f s = x Fe N .

2 .

 2 Selection of the 50 Hz nearest maximum ((1 -2s)f s component); 3. Computation of σ c and σ n with respect to the (1 + 2s)f s component;

Figure 5 :

 5 Figure 5: Variance calculus intervals on the line current spectrum phase in the frequency band [50 -60] Hz

Figure 6 :

 6 Figure 6: Real part (a), imaginary part (b) and phase (c) of the analytic signal Ĩs (t) (for one broken rotor bar).

Figure 7 :

 7 Figure 7: Test-bed and rotor with one broken bar

  a), 10(b) and 10(c) in comparison with Figs. 8(a), 8(b) and 8(c))

  a), 11(b) and 11(c) illustrate the use of Hilbert Transform applied to the line current spectrum modulus compared to the Figs. 10(a), 10(b) and 10(c). The weak noise contained in the frequency band [(1 + 2s

Figure 8 :

 8 Figure 8: Fault detection with the line current spectrum phase analysis under 100% load.

Figure 9 :

 9 Figure 9: Fault detection with the analytic signal phase analysis under 100% load.

Figure 10 :

 10 Figure 10: Fault detection with the line current spectrum phase analysis under 25% load.

Figure 11 :

 11 Figure 11: Fault detection with the analytic signal phase analysis under 25% load.
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The key point is that both techniques work with any knowledge of healthy rotor. But for an acceptable response, the load must be at least 25% in order to have a minimum current in the rotor to make the phase jump at (1 -2s)f s distingable.

In case of limited number of samples (for example 4096 samples), the broken rotor bar can still be detected by the analytic signal phase method. By contrast, the Discrete Fourier Transform method provides bad results since the fault is not detected. This is due to the deficient resolution induced by the reduction of the sample number. The HT method is insensitive to this variation thanks to its principle, but a reduction of the phase jumps amplitude is visible. Consequently, we can conclude that a minimal number of samples is required to make a good detection. For example, in our case, the detection of one broken rotor bar for a full load operation is possible with 4096 samples, but at 50% load, 8192 samples are needed to make rotor fault detection.