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Abstract

Algorithm UCB1 for multi-armed bandit problem has already been ex-
tended to Algorithm UCT which works for minimax tree search. We have
developed a Monte-Carlo program, MoGo, which is the first computer Go
program using UCT. We explain our modifications of UCT for Go appli-
cation, among which efficient memory management, parametrization, or-
dering of non-visited nodes and parallelization. MoGo is now a top-level
Computer-Go program on 9 × 9 Go board.

1 Introduction

The history of Go stretches back some 4000 years and the game still enjoys a great popu-
larity all over the world. Although its rules are simple (see http://www.gobase.org for a
comprehensive introduction), its complexity has defeated the many attempts done to build
a good Computer-Go player since the late 70’s [3]. Presently, the best Computer-Go players
are at the level of weak amateurs; Go is now considered one of the most difficult challenges
for AI, replacing Chess in this role.

Go differs from Chess in many respects. First of all, the size and branching factor of the
tree are significantly larger. Typically the Goban ranges from 9 × 9 to 19 × 19 (against
8 × 8 for the Chess board); the number of potential moves is a few hundreds against a few
dozens for Chess. Secondly, no efficient evaluation function approximating the minimax
value of a position is available. For these reasons, the powerful alpha-beta search used by
Computer-Chess players (see [9]) failed to provide good enough Go strategies.

Recent progress has been done regarding the evaluation of Go positions, based on Monte-
Carlo approaches [4] (more on this in section 4.1). However, this evaluation procedure has
a limited precision; playing the move with highest score in each position does not end up
in winning the game. Rather, it allows one to restrict the number of relevant candidate
moves in each step. Still, the size of the (discrete) search space makes it hardly tractable to
use some standard Reinforcement Learning approach [10], to enforce the exploration versus
exploitation (EvE) search strategy required for a good Go player.

Another EvE setting from Game Theory, the multi-armed bandit problem, is thus consid-
ered in this paper. The multi-armed bandit problem models the gambler, choosing the next
machine to play based on the past selections and rewards, in order to maximize the total
reward [2]. The UCB1 algorithm proposed by Auer et al. in the multi-armed bandit frame-



work [1] was recently extended to tree-structured search space by Kocsys et al. (algorithm
UCT) [7].

The MoGo player presented in this paper combines the UCT algorithm with the Monte-
Carlo evaluation function. The improvements in the Monte-Carlo evaluation function are
not presented here. Instead, we focus on several algorithmic issues: dynamic tree structure
[5], parametrization of UCT, parallelized implementation. MoGo has been ranked as the
first Go program out of 142 on 9× 9 Computer Go Server (CGOS1) since August 2006; and
it won two tournaments (9x9 and 13x13) on the international Kiseido Go Server2.

Our approach is based on the Monte-Carlo Go and multi-armed bandit problems. The
interested reader can refer to the appendix respectively in Section 4.1 and 4.2. UCT, which
applies multi-armed bandit techniques to minimax tree search, is presented for completeness
in appendix Section 4.3. We there briefly discuss some reasons of the efficiency of UCT in
Go. Section 2 describes MoGo, focussing on our contribution about the implementation
of UCT in large sized search spaces: an efficient memory management, solutions about
better ordering of non-visited nodes, and a simple parallelization of UCT. Several significant
experimental results are presented in appendix.

2 Main Work

In this section we present our program MoGo using UCT algorithm. Section 2.1 presents
our application of UCT. Section 2.2 presents the modification on the exploring order of non-
visited nodes. At last, Section 2.3 presents parallelization. We don’t discuss the patterns
used in the random simulations, focusing on the exploration-exploitation dilemna. All the
results presented here are performed with classical random simulations, what we call ”pure
random mode”. Much better results are obtained with patterns, but it is not the point here.

2.1 Application of UCT for Computer-Go

MoGo contains mainly two parts, namely the tree search part and the random simulation
part. Each node of the tree represents a Go board situation, with child-nodes representing
next situations after corresponding move.

The application of UCT for Computer-Go is based on the hypothesis that each Go board
situation is a bandit problem, where each legal move is an arm with unknown reward but of
a certain distribution. We suppose that there are only two kinds of arms, the winning ones
and the losing ones. We set respectively reward 1 and 0. We ignore the case of draw, which
is too rare in Go.

In the tree search part, we use a parsimonious version of UCT by introducing the same
dynamic tree structure as in CrazyStone [5] in order to economize memory. The tree is then
created incrementally by adding one node after each simulation as explained in the following.
This is different from the one presented in [7], and is more efficient because less nodes are
created during simulations. In other words, only nodes visited more than twice are saved,
which economizes largely the memory and accelerates the simulations. The pseudocode is
given in Table 1.

During each simulation, MoGo starts from the root of the tree that it saves in memory. At
each node, MoGo selects one move according to the UCB1 formula [1] (see appendix 4.2
formula (1) for more details). MoGo then descends to the selected child node and selects
a new move (still according to UCB1) until such a node has not yet been created in the
tree. This part corresponds to the code from line 1 to line 5. The tree search part ends by
creating this new node (in fact one leaf) in the tree. This is finished by createNode. Then
MoGo calls the random simulation part, the corresponding function getV alueByMC at line
7, to give a score of the Go board at this leaf.

1http://cgos.boardspace.net/
2http://www.weddslist.com/kgs/past/19/index.html



1: function playOneSequenceInMoGo(rootNode)
2: node[0] := rootNode; i := 0;
3: do
4: node[i+1] := descendByUCB1(node[i]); i := i + 1;
5: while node[i] is not first visited;
6: createNode(node[i]);
7: node[i].value := getValueByMC(node[i]);
8: updateValue(node,-node[i].value);
9: end function;

Table 1: Pseudocode of UCT for MoGo

In the random simulation part, one random game is played from the corresponding Go board
till the end, where score is calculated quickly and precisely according to the rules of Go.
The nodes visited during this random simulation are not saved. The random simulation
done, the score received, MoGo updates the value at each node of the tree visited by the
sequence of moves before the random simulation part.

Remark 1 In the update of the score, we use the 0/1 score instead of the territory score,
since the former is much more robust. Then the real minimax value of each node should
be either 0 or 1. In practice, however, UCT approximates each node by a weighted average
value in [0, 1]. This value is usually considered as the probability of winning.

2.2 Modification of exploring order for rarely-visited nodes

UCT works very well when the node is frequently visited as the trade-off between exploration
and exploitation is well handled by UCB1 formula. However, for the nodes far from the
root, which are visited rarely, UCT tends to be too much exploratory. This is due to the
fact that all the possible moves in one position are supposed to be explored before using
the UCB1 formula. This assumption is good when the number of options is low, but this is
definitely not the case in Go. Thus, the values associated to moves in deep nodes are not
meaningful, since the child-nodes of these nodes are not all explored yet and, sometimes
even worse, the visited ones are selected in fixed order.

UCT does not give any solution to choose between moves that are not explored yet. We
have set a first-play urgency (FPU) in the algorithm. For each move, we define its urgency
by the value of formula named UCB1-TUNED in [1] (see appendix 4.2 formula (1) for more
details) if the node has been visited. The FPU was by default in our first experiments (for
unvisited nodes) set to 10000 for each legal move. Any node, after being visited at least
once, has its urgency updated according to UCB1 formula. Thus, consistently with the
UCB1 algorithm, the FPU 10000 ensures the exploration of each move once before further
exploitation of any previously visited move. On the other way, smaller FPU ensures earlier
exploitations if the first simulations give positive results. Smaller FPU improved the level of
MoGo according to our experiment as shown in Table 4. This permits UCT to make more
exploitations for deep nodes.

2.3 Parallelization

As UCT strongly improves when computation time increases, we made MoGo run on a
multi-processor machine with shared memory. The modifications to the algorithm are quite
straightforward. All the processors share the same tree, and the access to the tree is locked
by mutexes. As UCT is deterministic, all the threads could take exactly the same path in
the tree, except for the leaf. The behavior of the multithreaded UCT as presented here is
then different from the monothreaded UCT, but experimentaly, with the same number of
simulations, there is very little difference between the two results3. Then, as UCT benefits
from the computational power increase, the multithreaded UCT is efficient.

3we had only access to a 4 processors computer, the behavior can be very different with much
more processors.



3 Conclusion

The success of MoGo shows the efficiency of UCT compared to alpha-beta search in the
sense that nodes are automatically studied with better order, especially in the case of very
limited search time. We have discussed the advantages of UCT relevant to Computer-Go.
It is worth mentionning that since MoGo, a growing number of top level Go programs now
use UCT.

We have discussed improvements that could be made to UCT algorithm. In particular,
UCT does not help to choose a good ordering for non-visited moves, nor is it so effective
for rarely explored moves. We proposed some methods adjusting the first-play urgency to
solve this problem, and futher improvements are expected in this direction.

A straightforward parallelization of UCT on shared-memory computer is made and has given
some positive results. Parallelization on a cluster of computers can be interesting but the
way to achieve that is yet to be found.

It worth mentionning that the multi-armed bandit problem we tackled is non-stationnary as
adding child nodes changes the probability of winning for each move. Indeed, without child
node, the probability of winning for each move is the probability of the random simulation.
With a growing number of child nodes, the probability for a move depends on the predicted
sequence in the tree. However, each attempt to deal with this non-stationnarity has given
weaker results. We believe that the random simulations gives very noisy results, and the
attempts for dealing with non-stationnarity increase the effect of noise.
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4 Appendix

4.1 Monte Carlo Go

Monte Carlo Go, first appeared in 1993 [4], has attracted more and more attention in
the last years. Monte Carlo Go has been surprisingly efficient, especially on 9 × 9 game;
CrazyStone, developed by Rémi Coulom [5], a program using stochastic simulations with
very little knowledge of Go, is the best known4.

Two principle methods in Monte Carlo Go are also used in our program. First we evaluate
Go board situations by simulating random games until the end of game, where the score
could be calculated easily and precisely. Second we combine the Monte Carlo evaluation
with minimax tree search. We use the tree structure of CrazyStone [5] in our program.

Remark 2 We speak of a tree, in fact what we have is often an oriented graph. However,
the terminology ”tree” is widely used. As to the Graph History Interaction Problem (GHI)
explained in [6], we ignore this problem considering it not very serious, especially compared
to other difficulties in Computer-Go.

4.2 Bandit Problem

A K-armed bandit, is a simple machine learning problem based on an analogy with a
traditional slot machine (one-armed bandit) but with more than one arm. When played,
each arm provides a reward drawn from a distribution associated to that specific arm. The
objective of the gambler is to maximize the collected reward sum through iterative plays.
It is classically assumed that the gambler has no initial knowledge about the arms, but
through repeated trials, he can focus on the most rewarding arms.

The questions that arise in bandit problems are related to the problem of balancing re-
ward maximization based on the knowledge already acquired and attempting new actions
to further increase knowledge, which is known as the exploitation-exploration dilemma in
reinforcement learning. Precisely, exploitation in bandit problems refers to select the cur-
rent best arm according to the collected knowledge, while exploration refers to select the
sub-optimal arms in order to gain more knowledge about them.

A K-armed bandit problem is defined by random variables Xi,n for 1 ≤ i ≤ K and n ≥ 1,
where each i is the index of a gambling machine (i.e., the ”arm” of a bandit). Successive plays
of machine i yield rewards Xi,1,Xi,2,... which are independent and identically distributed
according to a certain but unknown law with unknown expectation µi. Here independence
holds also for rewards across machines; i.e., Xi,s and Xj,t are independent (probably not
identically distributed) for each 1 ≤ i < j ≤ K and each s, t ≥ 1. Algorithms choose the
next machine to play depending on the obtained results of the previous plays. Let Ti(n) be
the number of times machine i has been played after the first n plays. Since the algorithm
does not always make the best choice, its expected loss is studied. Then the regret after n
plays is defined by

µ∗n −

K
∑

j=1

µjE[Tj(n)] where µ∗ = max
1≤i≤K

µi

E[ ] denotes expectation. In the work of Auer and Al. [1], a simple algorithm UCB1 is
given, which ensures the optimal machine is played exponentially more often than any other
machine uniformly when the rewards are in [0, 1]. Note

X̄i,s =
1

s

s
∑

j=1

Xi,j , X̄i = X̄i,Ti(n) ,

then we have:

4CrazyStone won the gold medal for the 9× 9 Go game during the 11th Computer Olympiad at
Turin 2006, beating several strong programs including GnuGo, Aya and GoIntellect.



Algorithm 1 Deterministic policy: UCB1

• Initialization: Play each machine once.

• Loop: Play machine j that maximizes X̄j +
√

2 log n
Tj(n) , where n is the overall number

of plays done so far.

One formula with better experimental results is suggested in [1]. Let

Vj(s) =

(

1

s

s
∑

γ=1

X2
j,γ

)

− X̄2
j,s +

√

2 log n

s

be an estimated upper bound on the variance of machine j, then we have a new value to
maximize:

X̄j +

√

log n

Tj(n)
min{1/4, Vj(Tj(n))} . (1)

According to Auer and Al., the policy maximizing (1) named UCB1-TUNED, considering
also the variance of the empirical value of each arms, performs substantially better than
UCB1 in all his experiments. This corresponds to our early results and then we use always
the policy UCB1-TUNED in our program5.

4.3 UCT: UCB1 for Tree Search

UCT is the extension of UCB1 to minimax tree search. The idea is to consider each node as
an independent bandit, with its child-nodes as independent arms. Instead of dealing with
each node once iteratively, it plays sequences of bandits within limited time, each beginning
from the root and ending at one leaf.

In the problems of minimax tree search, what we are looking for is often the optimal branch
at the root node. It is sometimes acceptable if one branch with a score near to the optimal
one is found, especially when the depth of the tree is very large and the branching factor is
big, like in Go, as it is often too difficult to find the optimal branch within short time.

In this sense, UCT outperforms alpha-beta search. Indeed we can outlight three major ad-
vantages. First, it works in an anytime manner. We can stop at any moment the algorithm,
and its performance can be somehow good. This is not the case of alpha-beta search.

Second, UCT is robust as it automatically handles uncertainty in a smooth way. At each
node, the computed value is the mean of the value for each child weighted by the frequency
of visits. Then the value is a smoothed estimation of max, as the frequency of visits depends
on the difference between the estimated values and the confidence of this estimates. Then,
if one child-node has a much higher value than the others, and the estimate is good, this
child-node will be explored much more often than the others, and then UCT selects most
of the time the ’max’ child node. However, if two child-nodes have a similar value, or a low
confidence, then the value will be closer to an average.

Third, the tree grows in an asymmetric manner. It explores more deeply the good moves.
What is more, this is achieved in an automatic manner. However, the theoretical analysis of
UCT is in progress [8]. We just give some remarks on this aspect at the end of this section.
It is obvious that the random variables involved in UCT are not identically distributed nor
independent. This complicates the analysis of convergence. In fact we can define the bias
for the arm i by:

δi,t =

∣

∣

∣

∣

∣

µ∗
i −

1

t

t
∑

s=1

Xi,s

∣

∣

∣

∣

∣

,

where µ∗
i is the minimax value of this arm. It is clear that at leaf level δi,t = 0. We can also

prove that

δi,t ≤ KD log t

t
,

5We will however say UCB1 for short.



with K constant and D the depth of the arm. This corresponds to the fact that the bias
is amplified when passing from deep level to the root, which prevents the algorithm from
finding quickly the optimal arm at the root node.

An advantage of UCT is that it adapts automatically to the ’real’ depth. For each branch
of the root, its ’real’ depth is the depth from where δi,t = 0 holds true. For these branches,

the bias at the root is bounded by Kd log t
t

with the real depth d < D. The values of these
branches converging faster than the other, UCT spends more time on other interesting
branches.

5 Results

We list in this section several experiment results who reflect characteristics of the algorithm.
All the tests are made by letting MoGo play against GnuGo 3.6 with default mode. Komi
are set to 7.5 points, as in the current tournament.

5.1 Dependence of Time

The performance of our program depends on the given time (equally the number of sim-
ulations) for each move. Table 2 shows its level improves as this number increases. The
outstanding performance of MoGo on double-processors and quadri-processors also supports
this claim.

Seconds Winning Rate Winning rate Total
per move for Black Games for White Games Winning Rate

5 13/50 13/50 26%
20 103/250 106/250 41.8%
60 107/200 99/200 51.5%

Table 2: Pure random mode with different times.

Parametrized UCT

We parametrize the UCT implemented in our program by two new parameters, namely p
and FPU . First we add one coefficient p to formula UCB1-TUNED (1), which by default
is 1. This leads to the following formula: choose j that maximizes:

X̄j + p

√

log n

Tj(n)
min{1/4, Vj(nj)}

p decides the balance between exploration and exploitation. To be precise, the smaller
the p is, the deeper the tree is explored. According to our experiment shown in Table 3,
UCB1-TUNED is almost optimal in this sense.

The second is the first-play urgency (FPU) as explained in 2.2. Some results are shown in
Table 4. We believe that changing exploring order of non-visited nodes can bring further
improvement. We finally use 1.1 as the initiate FPU for MoGo on CGOS.

Results on competitive events

Since July 2006, MoGo has been playing on 9 × 9 Computer Go Server (http://cgos.
boardspace.net/9x9.html). It is ranked as the first program since August and won
two tournaments (9x9 and 13x13) on Kgs (http://www.weddslist.com/kgs/past/index.
html).



Winning Rate Winning rate Total
p for Black Games for White Games Winning Rate

0.05 1/50 2/50 3%
0.55 15/50 18/50 33%
0.80 17/50 20/50 37%
1.0 18/50 21/50 39%
1.1 40/100 40/100 40%
1.2 60/150 66/150 42%
1.5 15/50 13/50 28%
3.0 18/50 12/50 30%
6.0 11/50 9/50 20%

Table 3: Coefficient p decides the balance between exploration and exploitation. (Pure
random Mode)

Simulations FPU Winning rate Winning rate Total
per move for Black Games for White Games Winning Rate

70000 1.4 20/50 19/50 39%
70000 1.2 23/50 17/50 40%
70000 1.1 114/250 103/250 43.4%
70000 1.0 146/300 127/300 45.5%
70000 0.9 71/150 49/150 40%
70000 0.8 20/50 16/50 36%

Table 4: Influence of first-play urgency (FPU).


