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Minimizing the second eigenvalue of the

Laplace operator with Dirichlet boundary

conditions

Antoine HENROT, Edouard OUDET

Abstract

In this paper, we are interested in the minimization of the second eigen-
value of the Laplacian with Dirichlet boundary conditions amongst convex
plane domains with given area. The natural candidate to be the optimum
was the “stadium”, convex hull of two identical tangent disks. We refute
this conjecture. Nevertheless, we prove existence of a minimzer. We also
study some qualitative properties of the minimizer (regularity, geometric
properties).

1. Introduction

Let Ω be a bounded open subset in the plane and let us denote by
0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) . . . its eigenvalue for the Laplacian operator
with homogeneous Dirichlet boundary condition. Problems of minimization
of eigenvalues, or combination of eigenvalues, brought about many deep
works since the early part of the twentieth century. It was indeed in the
1920’s that Faber [12] and Krahn [21] solved the well-known Rayleigh’s
conjecture: the ball minimizes λ1 among every open sets of given measure.
The same question for λ2 was solved (to our knowledge) by Szegö, cf [27] (it
seems nevertheless that the result was already contained in one of the paper
of Krahn [22]): the open set which minimizes λ2 is the union of two identical
balls. For sake of completeness, the proof is given in section 2. Looking for
the minimizer of λ2 among connected domains has no solution. Actually, it
is easy to see (cf section 2) that the domains obtained by joining the two balls
with a thin pipe provide a minimizing sequence whose second eigenvalue
converges to the second eigenvalue of the two balls, so the infimum is not
achieved.

Now, the problem becomes again interesting if we ask the question to
find the convex domain, of given area, which minimizes λ2. Existence of a
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minimizer Ω∗ is easy to obtain (see [9] and Theorem 4). In a paper of 1973
[31], Troesch did some numerical experiments which led him to conjecture
that the solution was a stadium: convex hull of two identical tangent disks.
It is actually the convex domain which is the closer to the solution without
convexity constraint. In this paper, we refute this conjecture:

Theorem 1. The stadium, convex hull of two identical tangent disks, does
not realize the minimum of λ2 among plane convex domains of given area.

Let us remark that the method of the proof also gives an answer to a
question set by Giuseppe Buttazzo: if we minimize λ1(Ω) among open sets
Ω of given area c, contained in a fixed box D and if D is too small to contain
a ball of area c, are the free parts of the boundary of Ω pieces of spheres?
The answer is NO, using the same argument, see proof of Theorem 8.

Coming back to the second eigenvalue, the minimizer looks like very
much a stadium! In section 3, we give the following properties of the mini-
mizer:

Theorem 2. The following facts hold:

Regularity The minimizer Ω∗ is at least C1 and at most C2.
Simplicity If we assume Ω∗ of class C1,1 then the second eigenvalue of Ω∗

is simple.
Geometry If we assume Ω∗ of class C1,1 then it has two (and only two)

straight lines in its boundary and these lines are parallels.

Some of these results were already announced in the Note [18]. To be com-
plete, it would be nice to prove also that Ω∗ has two orthogonal axis of
symmetry. Numerical experiments, see [25] seem to show that it is the case,
but we failed in proving it. For other recent results on minimization prob-
lems for functions of eigenvalues, we refer e.g. to [5], [32] and the review
papers [2], [4], [17]. Finally, we point out that the results in section 2 are
mostly valid in any dimension while the results of the section 3 are more
specifically two-dimensional.

2. General results

We first recall some classical results involving eigenvalues of the Laplace-
Dirichlet operator, we refer to classical books like Courant-Hilbert, [8] or
Dautray-Lions, vol.5, [11].

Let Ω be a bounded open subset in R
N , we denote by 0 < λ1(Ω) ≤

λ2(Ω) ≤ λ3(Ω) . . . its eigenvalue for the Laplacian operator with homo-
geneous Dirichlet boundary condition and u1, u2, u3, . . . the corresponding
eigenfunction. They solve

{

−∆uk = λkuk in Ω
uk = 0 on ∂Ω

(1)
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The sequence (uk)k≥1 is a Hilbert basis of the space L2(Ω). Each eigen-
function uk is analytic inside Ω, its behavior on the boundary is governed
by classical regularity results for elliptic partial differential equations. For
example, if the boundary of Ω is of class C1,1, it can be proved that uk is
C1 up to the boundary, see [13] or [14]. For a functional point of view, the
functions uk belong to the Sobolev space H1

0 (Ω) defined as the closure of
the space D(Ω) of infinitely differentiable functions with compact support
for the norm

‖u‖H1 :=

(
∫

Ω

u2(x) dx +

∫

Ω

|∇u(x)|2 dx

)1/2

.

The first eigenfunction u1 is non-negative in Ω. Moreover, if Ω is connected,
u1 is positive and λ1(Ω) is simple (this is a consequence of the Krein-Rutman
Theorem). Since u2 is orthogonal to u1, it has to change of sign in Ω. The
sets

Ω+ = {x ∈ Ω, u2(x) > 0} and Ω− = {x ∈ Ω, u2(x) < 0}

are called the nodal domains of u2. According to the Courant-Hilbert The-
orem, these two nodal domains are connected subsets of Ω. The set

N = {x ∈ Ω, u2(x) = 0}

is called the nodal line of u2. When Ω is a plane convex domain, this nodal
line hits the boundary of Ω at exactly two points, see Melas [24], or Alessan-
drini [1]. For general simply connected plane domains Ω, it is still a con-
jecture, named after Larry Payne, the ”Payne conjecture”. The classical
min-max formula of Courant-Fischer for eigenvalues implies the following
monotonicity for inclusion:

Ω1 ⊂ Ω2 =⇒ λk(Ω1) ≥ λk(Ω2) .

At last, the eigenvalues have a simple behavior with respect to homothety:
if tΩ denotes the image of Ω by an homothety with ratio t, the eigenvalues
of tΩ satisfy:

λk(tΩ) =
λk(Ω)

t2
.

As a consequence, in two-dimensions, looking for the minimizer of λk(Ω)
with a volume constraint is equivalent to look for a minimizer of the product
|Ω|λk(Ω). In the sequel, we will use one or the other of these formulations.
At last, we will generically denote by n the exterior unit normal vector to
the boundary of Ω.

We first recall the result about the minimization of the second eigenvalue:

Theorem 3 (Krahn-Szegö). The minimum of λ2(Ω) among bounded open
sets of R

N with given volume is achieved by the union of two identical balls.
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Proof : Let Ω be any bounded open set, and let us denote by Ω+ and Ω−

its nodal domains. Since u2 satisfies
{

−∆u2 = λ2u2 in Ω+

u2 = 0 on ∂Ω+

λ2(Ω) is an eigenvalue for Ω+. But, since u2 is positive in Ω+, it is the first
eigenvalue (and similarly for Ω−):

λ1(Ω+) = λ1(Ω−) = λ2(Ω) . (2)

We now introduce Ω∗
+ and Ω∗

− the balls of same volume as Ω+ and Ω−

respectively. According to the Rayleigh-Faber-Krahn inequality

λ1(Ω
∗
+) ≤ λ1(Ω+), λ1(Ω

∗
−) ≤ λ1(Ω−) . (3)

Let us introduce a new open set Ω̃ defined as

Ω̃ = Ω∗
+ ∪ Ω∗

− .

Since Ω̃ is disconnected, we obtain its eigenvalues by gathering and reorder-
ing the eigenvalues of Ω∗

+ and Ω∗
−. Therefore,

λ2(Ω̃) ≤ max(λ1(Ω
∗
+), λ1(Ω

∗
−)) .

According to (2), (3) we have

λ2(Ω̃) ≤ max(λ1(Ω+), λ1(Ω−)) = λ2(Ω) .

This shows that the minimum of λ2 is to be obtained among the union of
balls. But, if the two balls would have different radii, we would decrease the
second eigenvalue by shrinking the largest one and dilating the smaller one
(without changing the total volume). Therefore, the minimum is achieved
by the union of two identical balls. ut

As we said in the Introduction, a connectedness constraint does not re-
ally change the situation. Indeed, let us consider the following domain (see
Figure 1) Ωε, obtained by joining the union of the two previous balls Ω by
a thin pipe of width ε. We say that Ωε γ-converges to Ω if the resolvant
operators Tε associated to the Laplace-Dirichlet operator on Ωε simply con-
verge to the corresponding operator T on Ω, see e.g. [10]. By compactness
argument, see [7], [19] it can be proved that this simple convergence im-
plies the convergence in norm of operators and therefore the convergence of
eigenvalues. Now, it is easy to verify, see [6], [19], that in the above situation
Ωε γ-converges to Ω what yields λ2(Ωε) → λ2(Ω) and therefore:

inf{λ2(Ω), Ω ⊂ R
N , Ω connected , |Ω| = c} = min{λ2(Ω), Ω ⊂ R

N , |Ω| = c}

what shows that this infimum is not achieved (actually, we can prove that
the union of two balls is the unique minimizer of λ2 up to displacements
and zero-capacity subsets).
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Ωε

Fig. 1. A minimizing sequence of connected domains

In the sequel of this paper, we are dealing with convex domains. First
of all, we give an existence result for the problem of minimization of any
eigenvalue among convex domains of given volume. This result is probably
already known, but we give here a proof for sake of completeness. The
two-dimensional version of this result is already contained in a paper of
Cox-Ross, [9], where the proof uses a clever and explicit estimate between
the difference of the eigenvalues of two distinct domains with respect to
their geometry. Our proof below is less explicit, but more general.

Theorem 4. Let c be a positive constant and k any integer. Then there
exists a convex domain Ω∗ such that

λk(Ω∗) = min{λk(Ω), Ω ⊂ R
N , Ω convex , |Ω| = c} .

Proof : We use the classical method of calculus of variations. Let Ωn be a
minimizing sequence. First of all, we claim that the diameters of the Ωn are
bounded. Indeed, let us define the width of Ωn as the maximum diameter
of any section of Ωn with an hyperplane orthogonal to the segment which
realizes the diameter. Then, by convexity property and the fact that all
the domains Ωn have a given volume, if the diameters of Ωn would not be
bounded, the width of Ωn would have to go to zero. Therefore, we could
find a sequence of parallelepipeds (or cylinders), containing Ωn and with, at
least, one dimension going to zero. But for such parallelepipeds, the value
of λ1 is known and it goes to +∞. Therefore, by the monotonicity property,
we would have λk(Ωn) → +∞.

Since the diameters are bounded, we can assume (up to a translation)
that the whole sequence is contained in a fixed ball, say B. We use now
standard arguments of optimal design, see e.g. [19], [26], [6]. By classical
property of the Hausdorff convergence, there exists a convex domain Ω∗

and a subsequence, still denoted by Ωn such that Ωn converges to Ω∗ for
the Hausdorff metric (of the complementaries in B). Each domains being
convex, it is easy to see that the characteristic functions of Ωn converge to
the characteristic function of Ω∗ in L1(B). In particular, |Ωn| → |Ω∗| and
|Ω∗| = c. At last, we can also prove using stability arguments, see [19], [16]
or [20] that the sequence Ωn γ-converges to Ω∗. This implies, see above, the



6 Antoine HENROT, Edouard OUDET

convergence of the eigenvalues and then Ω∗ achieves the minimum of λk.
ut

We now give a result that is somewhat related to the genericity of do-
mains with simple eigenvalues. It will imply that for the optimal domain Ω∗,
the corresponding eigenvalue λ2(Ω

∗) is simple. We state the next Lemma
in the context of convex domains, but it is true without this geometric
restriction.

Lemma 1. Let Ω be a convex domain of class C1,1. We assume that Ω has
a multiple eigenvalue of order m:

λk+1(Ω) = λk+2(Ω) = . . . = λk+m(Ω) k ≥ 1.

Then, we can always find a deformation field V ∈ C1,1(RN , RN ), preserving
the volume and the convexity and such that, if we set

Ωt = (Id + tV )(Ω)

we have, for t > 0 small enough

λk+1(Ωt) < λk+1(Ω) = λk+m(Ω) < λk+m(Ωt) .

Remark 1. The previous result has the following consequence about min-
imization of eigenvalues: if Ω∗ is a domain minimizing the k-th eigenvalue
(with or without convexity constraint) and if λk(Ω∗) is not simple, neces-
sarily we have

λk−1(Ω
∗) = λk(Ω∗). (4)

Actually, numerical experiments show that this relation holds in every case,
see [25]: the domain which minimizes λk(Ω) , k ≥ 2 (with a volume con-
straint but without convexity constraint) always satisfies (4). Coming back
to a convex domain Ω∗ minimizing λ2, we know that λ1(Ω

∗) is simple and
therefore (4) cannot hold. Consequently:

Theorem 5. Let Ω∗ be a convex domain minimizing the second eigenvalue
λ2 (among convex domains of given volume). Assume that Ω∗ is of class
C1,1. Then λ2(Ω

∗) is simple.

Proof of the Lemma : We use the classical tool of derivative with respect
to the domain (or Hadamard formulae), see e.g. [30], [29], [19]. Let us deform
the domain Ω thanks to a deformation field V as described in the state-
ment of the Lemma. In the case of a multiple eigenvalue, this eigenvalue
is no longer Frechet differentiable, but nevertheless it admits directional
derivatives, i.e. the differential quotients

λk+p(Ωt) − λk+p(Ω)

t
, for p = 1, . . . ,m
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have a limit when t goes to 0. Moreover, these limits are the eigenvalues of
the m × m matrix

M =

(

−

∫

∂Ω

∂ui

∂n

∂uj

∂n
V.n dσ

)

k+1≤i,j≤k+m

(5)

where ∂ui

∂n denotes the normal derivative of the i-th eigenfunction ui and
V.n is the normal displacement of the boundary induced by the deformation
field V . For a proof of the above-mentioned result, we refer to [15] or [28].

Let us now choose two points A and B located on strictly convex parts
of ∂Ω. Let us consider a deformation field V such that V.n = 1 in a small
neighborhood of A (on the boundary of Ω∗) of size ε, V.n = −1 in a small
neighborhood of B (with same measure) and V regularized outside in a
neighborhood of size 2ε in such a way that |Ωt| = |Ω| (it is always possible
since the derivative of the volume is given by dVol =

∫

∂Ω
V.n dσ which

vanishes with an appropriate choice of the regularization). Moreover, for
t small enough, Ωt will remain convex since we have deformed Ω only on
a strictly convex part of its boundary (more precisely, we can take the
convexification of Ωt without changing first order terms in the derivative, see
below the proof of Theorem 7 for details). According to the above-mentioned
results about the directional derivatives, the Lemma will be proved if we can
find two points A,B such that the symmetric matrix M has both positive
and negative eigenvalues. Now, when ε goes to 0, it is clear that the matrix
M behaves like the m × m matrix

MA,B =

(

−
∂ui

∂n
(A)

∂uj

∂n
(A) +

∂ui

∂n
(B)

∂uj

∂n
(B)

)

k+1≤i,j≤k+m

. (6)

Let us denote by φA (resp. φB) the vector of components ∂ui

∂n (A), (resp.
∂ui

∂n (B)), i = k+1, . . . , k+m. A straightforward computation gives, for any
vector X ∈ R

m:

XT MA,B X = (X.φB)
2 − (X.φA)

2
.

Therefore, the signature of the quadratic form defined by MA,B is (1, 1)
as soon as the vectors φA and φB are non colinears. Now, assuming these
two vectors to be colinear for every choice of points A, B would give the
existence of a constant c such that, on a strictly convex part γ of ∂Ω:

∂uk+1

∂n
= c

∂uk+2

∂n
.

But, uk+1 − c uk+2 would satisfy






−∆(uk+1 − c uk+2) = λk+1(uk+1 − c uk+2) in Ω
uk+1 − c uk+2 = 0 on ∂Ω ∩ γ
∂(uk+1−c uk+2)

∂n = 0 on ∂Ω ∩ γ .

Now, by Hölmgren uniqueness theorem, the previous p.d.e. system is solv-
able only by uk+1− c uk+2 = 0 (first in a neighborhood of γ and then in the
whole domain by analyticity) which gives the desired contradiction. ut
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3. Description of the convex minimizer

In this section, we will denote by Ω∗ a plane convex domain which min-
imizes λ2 the second Dirichlet eigenvalue of the Laplacian among convex
domains of given area c. As explained at the beginning of the previous sec-
tion, it is also (up to an homothety) a minimizer of the product |Ω|λ2(Ω).
We will denote by u2 (or u when no misunderstanding can occur) the cor-
responding eigenfunction normalized by

∫

Ω∗
u2(x)dx = 1.

3.1. A first regularity result

We begin by proving that the minimizer is C1: it cannot have a corner.
We give the proof for the second eigenvalue, but it is clear that this proof can
be extended to the problem of minimizing other eigenvalues with a convex
constraint. Indeed, it is a particular case of a general result as it will be
shown in [3]. In this paper, D. Bucur proves C1 regularity for the boundary
of an optimal domain Ω∗ of a functional J , provided that this functional be
Lipschitz continuous for a distance related to the γ-convergence. It is not
obvious (but true) to verify that λ2 satisfies this property. Our proof below
is more simple, but less general. Let us also mention that L. Caffarelli, P.L.
Lions on the one hand and G. Carlier, T. Lachand-Robert on the other hand
have obtained more precise regularity results (C1,α or C1,1 regularity) for
some other problems of minimization with convexity constraints (works to
appear).

Theorem 6. The minimizer Ω∗ is (at least) C1.

Proof : Let us assume, for a contradiction, that Ω∗ has two distinct sup-
porting lines at some point x0 of its boundary. Without loss of generality, we
can assume that x0 is the origin. We are going to prove that we can decrease
the product |Ω|λ2(Ω) by cutting a small cap of size ε. Let us introduce the
following notations see Figure 2. We denote by α < π the opening an-
gle of the two supporting lines, η is the (normalized) inward bissector, Cε

the cap defined as Cε = {x ∈ Ω∗, x.η ≤ ε}, Ωε is the (convex) domain
that we obtain in removing the cap Cε: Ωε = Ω∗ \ Cε. We will also need
Bε = {x ∈ Ω∗, ε < x.η ≤ 2ε}, C2ε = Cε∪Bε and Ω2ε = Ωε \Bε = Ω∗ \C2ε.
We use a variational method to estimate λ2(Ωε). We denote by u1 and u2

the two first normalized eigenfunctions of Ω∗. The key point is the following:
by classical barrier arguments (comparison with the eigenvalue of a circular
sector), it is well known that u1 and u2 have a gradient which vanishes at
the corner:

lim
x→0,x∈Ω∗

|∇ui(x)| = 0, for i = 1, 2 . (7)

Let β > 0 be a small number (which will be chosen at the end), according
to (7) and the mean value theorem, we can choose ε small enough such that

∀x ∈ C2ε |ui(x)| ≤ β|x|, for i = 1, 2 . (8)
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X
0
=0

Cε

Bε

Ω
2ε η

Ωε=Ω
2ε∪  Bε

Fig. 2. Removing a cap

In particular, for i = 1, 2:

∫

C2ε

|ui(x)|2 dx ≤ β2

∫

C2ε

|x|2 dx ≤
4αβ2ε4

cos4 α/2
. (9)

We now introduce a C1 cut-off function χε with







χε(x) = 1 if x ∈ Ω2ε

0 ≤ χε(x) ≤ 1 if x ∈ Bε

χε(x) = 0 if x ∈ Cε

and two functions belonging to the Sobolev space H1
0 (Ωε):

u1
ε = χεu1 u2

ε = χεu2 .

Since u1
ε and u2

ε are linearly independent, we can consider the two-dimen-
sional subspace V of H1

0 (Ωε) spanned by these two functions. According to
the Min-max Courant-Fischer formula, we have

λ2(Ωε) ≤ max
v∈V

∫

Ωε
|∇v|2 dx

∫

Ωε
v2 dx

= max
(a1,a2)∈R2

∫

Ωε
|∇(a1u

1
ε + a2u

2
ε)|

2 dx
∫

Ωε
(a1u1

ε + a2u2
ε)

2 dx
.

Now, we have for i = 1, 2:

∫

Ωε

(ui
ε)

2 dx ≥

∫

Ω2ε

(ui)
2 dx = 1 −

∫

C2ε

(ui)
2 dx ≥ 1 −

4αβ2ε4

cos4 α/2
(10)

the last inequality coming from (9). In the same way, using the orthogonality
of u1, u2 in L2(Ω∗), we get

∫

Ωε

u1
εu

2
ε dx =

∫

Ω2ε

u1u2 dx +

∫

Bε

(χε)
2u1u2 dx =

= −

∫

C2ε

u1u2 dx +

∫

Bε

(χε)
2u1u2 dx
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what yields
∣

∣

∣

∣

∫

Ωε

u1
εu

2
ε dx

∣

∣

∣

∣

≤ 2

∫

C2ε

|u1u2| dx ≤
8αβ2ε4

cos4 α/2
. (11)

We estimate now the integrals with the gradient:
∫

Ωε

|∇ui
ε|

2 dx ≤

∫

Ω∗

|∇ui|
2 dx +

∫

Bε

|∇χε|
2u2

i dx .

As usual, from the construction of a cut-off function, there exists a constant
C such that |∇χε|

2 ≤ C
ε2 and therefore, using one more time (9)

∫

Ωε

|∇ui
ε|

2 dx ≤ λi +
4Cαβ2ε2

cos4 α/2
:= λi + C1β

2ε2 . (12)

In the same way,
∣

∣

∣

∣

∫

Ωε

∇u1
ε.∇u2

ε dx

∣

∣

∣

∣

≤

∫

Bε

|∇u1||∇u2| dx +

∫

Bε

|∇χε|
2|u1u2| dx

what yields (using |∇ui| ≤ β on Bε and |Bε| ≤ 3ε2 tan(α/2))
∣

∣

∣

∣

∫

Ωε

∇u1
ε.∇u2

ε dx

∣

∣

∣

∣

≤ β2ε2(
4Cα

cos4 α/2
+ 3 tan(α/2)) := C2β

2ε2 . (13)

Taking into account (10), (11), (12) and (13), we get

λ2(Ωε) ≤ max
(a1,a2)∈R2

λ1a
2
1 + λ2a

2
2 + β2ε2

(

C1(a
2
1 + a2

2) + 2C2|a1a2|
)

a2
1 + a2

2 −
4αβ2ε4

cos4 α/2 (a2
1 + a2

2 + 4|a1a2|)

what yields (dividing by a2
1 + a2

2 and using 2|a1a2| ≤ a2
1 + a2

2)

λ2(Ωε) ≤
λ2 + β2ε2(C1 + C2)

1 − 12αβ2ε4

cos4 α/2

.

In the same time, |Ωε| = |Ω∗| − |C2ε| = |Ω∗| − 4ε2 tan(α/2) + o(ε2) and
therefore

|Ωε|λ2(Ωε) ≤ |Ω∗|λ2 + ε2
(

β2(C1 + C2)|Ω
∗| − 4λ2 tan(α/2)

)

+ o(ε2) .

Then it is clear that, for ε small enough, we will have |Ωε|λ2(Ωε) < |Ω∗|λ2

as soon as β2 < 4λ2 tan(α/2)
(C1+C2)|Ω∗| what gives the desired contradiction. ut

In the sequel, we need to assume that the minimizer Ω∗ is a little bit
more regular, in order to be able to perform derivative computations w.r.t.
the domain. Let us mention that we will prove below that it is at most C2.

(H) We assume the minimizer Ω∗ to be of class C1,1.

By classical regularity results, see [13] or [14], this will imply that the eigen-
function u is C1 up to the boundary.
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3.2. Optimality conditions

Of course, our main ingredient in the following proofs will be optimality
conditions satisfied on the boundary of Ω∗. We use again the classical tool
of derivative with respect to the domain for the eigenvalues. The difficulty
is to take care of the convexity constraint when deforming the original do-
main Ω∗ by a vector field V . Indeed, if we perform a small deformation
of a strictly convex part of the boundary of Ω∗, this part will not remain
necessarily convex, but we can use the fact that the difference between the
deformed boundary ant its convex hull is so small, that for first order terms,
the formulae of derivative still holds (see below for more details). On the
contrary, for segments included in the boundary, it is no longer true. There-
fore, we need to make a distinction between the strictly convex parts of the
boundary and the segments included in the boundary. Let us mention that
the first part of this Theorem hold for any dimension while the second part
is strictly two-dimensional.

Theorem 7.

– There exists a positive constant α such that the gradient of the eigen-
function u is constant on every strictly convex part of the boundary of
Ω∗:

for every γ strictly convex part of ∂Ω∗ ,∀x ∈ γ |∇u(x)| = α . (14)

Moreover α is given by

α2 =
λ2

|Ω∗|
. (15)

– If Σ is a segment included in the boundary of Ω∗, let t, t ∈ [a, b], a
parametrization of the segment (the boundary is assumed to be oriented
in the clockwise sense), then there exists a non negative function w de-
fined on [a, b] with triple roots at a and b, such that

|∇u(t)|2 = α2 + w′′(t) . (16)

Proof : We begin by considering γ a strictly convex part of the boundary
of Ω∗. We assume that γ is parametrized by a strictly convex function ϕ
defined on an interval I. We fix a regular function h compactly supported on
a sub-interval J and we denote by Ωε the domain (not necessarily convex)
whose boundary is (locally) bounded by the graph of the function ϕε :=
ϕ + εh. Let us introduce ϕ∗∗

ε the convex regularization of ϕε (it is the
largest convex function less than or equal to ϕε) and Ω∗

ε the convex domain
whose boundary is (locally) bounded by the graph of the function ϕ∗∗

ε . The
key point of the following proof is an estimate given in the Lemma 2 of [23],
when the function ϕ is strictly convex :

‖ϕ∗∗
ε − ϕε‖∞ = o(ε) when ε → 0 . (17)
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We now use the quantitative estimate between eigenvalues given in [9] (Lem-
ma 2.1):

|λ2(Ω
∗
ε ) − λ2(Ωε)| ≤ C‖ϕ∗∗

ε − ϕε‖∞ = o(ε) (18)

(with C a positive constant). Moreover, according to Hadamard formula for
simple eigenvalues, see [19], [30]:

λ2(Ωε) = λ2(Ω) − ε

∫

∂Ω∗

|∇u(σ)|2h(σ)n2(σ) dσ + o(ε) (19)

(n2(σ) is the second component of the exterior unit normal vector). From
(18), (19) we get:

λ2(Ω
∗
ε ) = λ2(Ω) − ε

∫

∂Ω∗

|∇u(σ)|2h(σ)n2(σ) dσ + o(ε) . (20)

In the same way,

||Ω∗
ε | − |Ωε|| ≤

∫

J

|ϕ∗∗
ε − ϕε| = o(ε)

while, by Hadamard formula for areas

|Ωε| = |Ω| + ε

∫

∂Ω∗

h(σ)n2(σ) dσ + o(ε) .

Therefore, we also have

|Ω∗
ε | = |Ω| + ε

∫

∂Ω∗

h(σ)n2(σ) dσ + o(ε) . (21)

Finally (20), (21) give

λ2(Ω
∗
ε )|Ω∗

ε | = λ2(Ω)|Ω|+ ε

∫

∂Ω∗

[λ2(Ω)− |Ω||∇u(σ)|2]h(σ)n2(σ) dσ + o(ε) .

In the previous relation, we can use either h or −h, therefore the minimality
of Ω∗ gives the desired result (14), (15).

Now, let us consider the case of a segment Σ. The general formula, for
the derivative of the function Ω 7→ λ2(Ω)|Ω| at “point” Ω∗, according to a
perturbation field V is

d(λ2(Ω)|Ω|), (Ω∗, V ) =

∫

∂Ω∗

[λ2(Ω) − |Ω||∇u(σ)|2]h(σ)n2(σ) dσ (22)

In formula (22), the only perturbations V which are allowed are such that
the deformed domain (Id + τV )(Ω∗) is still convex (for small τ). It is the
case if and only if t 7→ V.n(t) is a concave function on [a, b]. Let us denote
by v = V.n such a concave function. Replacing in (22) and using (14), (15)
yields on the segment Σ:

∫ b

a

(

λ2 − |∇u(σ)|2A(Ω∗)
)

v dt ≥ 0 . (23)
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Introducing w2(t) = |∇u(t)|2 − α2 it can be also rewritten:

∫ b

a

w2(t)v(t) dt ≤ 0 . (24)

This relation (24) must be true for every (regular) concave function v. In
particular, in the case v(t) = 1 and v(t) = t, both functions v and −v are
concave, therefore

∫ b

a

w2(t) dt = 0

∫ b

a

tw2(t) dt = 0 . (25)

Now, let us introduce the functions

w1(t) =

∫ t

a

w2(s) ds and w(t) =

∫ t

a

w1(s) ds =

∫ t

a

(t − s)w2(s) ds .

According to (25), we have w1(a) = w1(b) = w(a) = w(b) = 0. Integrating
twice by parts, it comes

∫ b

a

w2(t)v(t) dt =

∫ b

a

w(t)v′′(t) dt

this last integral must be non positive (according to (24)) for every function
v concave, i.e. for every function v such that v′′ ≤ 0, this yields w ≥ 0. At
last a and b are triple roots of w because w′′(a) = w2(a) = 0 by continuity
of the gradient (|∇u|2 −α2 vanishes identically on the strictly convex parts
of ∂Ω∗). ut

A first consequence of the optimality conditions is the fact that the
minimizer Ω∗ cannot be the ”stadium” (convex hull of two identical tangent
discs) as it was suggested in the paper of Troesch, [31]. More precisely, we
prove:

Theorem 8. The minimizer Ω∗ has no arc of circle in its boundary.

Proof : Let us assume that ∂Ω∗ contains an arc of circle γ. We put the
origin at the center of the corresponding circle and we introduce the function
w(x, y) = x∂u

∂y − y ∂u
∂x . Then, we easily verify that

(i) −∆w = λ2w in Ω
(ii) w = 0 on γ
(iii) ∂w

∂n = 0 on γ.

Now we conclude, using Hölmgren uniqueness theorem, that w must vanish
in a neighborhood of γ, so in the whole domain by analyticity. This leads
to a contradiction because u would be radially symmetric in Ω∗.

Remark 2. The previous result holds in every dimension: the minimizer
cannot contain any piece of sphere. The proof is the same using the functions
xi

∂u
∂xj

− xj
∂u
∂xi

since u is radially symmetric as soon as all these functions

vanish.
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3.3. Geometry of the minimizer and another regularity result

Now, if the stadium is not a minimizer for λ2, it seems that the real
minimizer probably looks like a stadium. Some numerical experiments which
will appear in [25] confirms that fact. We recall that we have proved in [18]
the following properties:

Theorem 9. The minimizer Ω∗ has two segments in its boundary and these
segments are parallels.

Remark : In the proof of Theorem 9 (see [18]), we only use the optimality
conditions. In other words, Theorem 9 is valid for any critical point of the
domain functional λ2(Ω)|Ω|.

As a consequence of the above Theorem, we give another regularity result.
We recall that we proved in subsection 3.1 that the minimizer Ω∗ was at
least C1. We prove here the counterpart of this result: the minimizer Ω∗ is
at most C2!

Theorem 10. The minimizer Ω∗ cannot be C2,ε, for any ε > 0.

Here by C2,ε, we mean classical Hölder regularity: the second derivative of
the local maps would be Hölderian of ratio ε.
Proof : Let us assume that Ω∗ is C2,ε, for some ε > 0. Then, by classical
Schauder regularity results for elliptic p.d.e., see e.g. [13] or [14], this will
imply that the eigenfunction u is C2 up to the boundary. We choose the
coordinates axes so that the x-axis is parallel to the two segments. Con-
sequently the function ∂u

∂x vanishes on the two segments. We want to look

more precisely at the nodal lines of ∂u
∂x . According to Hopf’s Lemma, each

boundary point X, located on the segments, where ∂2u
∂x∂y vanishes, is a start-

ing point of such a nodal line (e.g. if ∂u
∂x > 0 in a neighborhood of X, since

−∆∂u
∂x = λ2

∂u
∂x > 0, we have ∂

∂n

(

∂u
∂x

)

< 0). Now, if u is C2, ∂2u
∂x∂y has to

vanish at the extremities of the segments by continuity: if A is such an
extremity

∂2u

∂x∂y
(A) =

∂2u

∂τ∂n
(A) = lim

B→A

∂2u

∂τ∂n
(B) = 0

where B is taken on a strictly convex part of ∂Ω∗. Moreover, according to

the optimality conditions (16), ∂2u
∂x∂y = ∂

∂x

(

∂u
∂y

)

has to vanish at least twice

inside the segments. Consequently, there are four nodal lines of ∂u
∂x starting

on each segments. Closing these nodal lines, we define at least three nodal
domains of ∂u

∂x strictly contained in Ω∗. Now ∂u
∂x being an eigenfunction

associated to λ2, the Courant-Fischer nodal domain Theorem would lead
to the fact that λ2 is at least the third eigenvalue of a strict subdomain of
Ω∗, which is a contradiction with the monotonicity of eigenvalues. ut
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