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When a seismic wavefield impinges on the foundation of a building, the building vibrates and gen-erates waves in 
the subsoil. In a city, different buildings interact with each other through the scat-tered waves. The detailed 
description of the wave propagation in this coupled city–soil system is a complex problem. Instead of solving this 
problem for a particular city configuration, a statistical description of the city is applied and the limit of a city of 
infinite size is considered. This leads to a model of the coupled city–soil system, where the buildings are modelled 
as resonant scatterers that are uniformly distributed at the surface of a deterministic, horizontally layered elastic 
half-space that represents the soil. The equations that govern the interaction between the city and the soil now 
become a set of stochastic equations. Based on these equations, the Dyson and Bethe–Salpeter for the 
configurationally averaged field and field correlation are formulated. The solution of the sin-gle scatterer problem 
is used to obtain an approximate solution of these equations that allows us to quantify the change of the mean site 
response through the presence of the city and the ratio of the coherent and incoherent response. Furthermore, the 
influence of the city on the duration of the seismic records is estimated by the approximate solution of the non-
stationary Bethe–Salpeter equation. The results obtained for the configurationally averaged field quantities are 
validated by means of results for the seismic response of a deterministic model of a city quarter of Mexico City.

1. Introduction

Seismic records from dense urban arrays have shown a large dispersion attributed to highly

varying local site conditions around stations [1]. Furthermore, seismic records from the lake

bed of Mexico City are characterized by a long duration and beating phenomena [2]. For

the case of the September 1985 Michoacan earthquake in Mexico City, Chavez-Garcia and

Bard [1] have critically reviewed some of the models proposed to explain the observed site

response. Although most of these models account for the spatial variability of the soil response,

the large duration remains unexplained. In order to more satisfactorily explain the features of

these seismic records, several authors have investigated the influence of the presence of the

city on the seismic site response.
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Wirgin and Bard [3] were among the first to propose a numerical model for the quantification

of the city-site effect. Clouteau and Aubry [4] have applied a periodic city model, where the

periodicity is assumed to be much larger than the correlation length. Guéguen et al. [5] have

used an independent scattering approximation to estimate the city-site effect for a group of

180 buildings of the Roma Norte quarter of Mexico City. Mezher et al. [6] and Mezher [7]

have performed calculations that fully account for the multiple wave scattering between the

buildings for a group of 77 buildings of the same quarter. Tsogka and Wirgin [8] and Groby

et al. [9] have studied a 2D model with 10 buildings without [8] and with [9] internal energy

dissipation. Boutin and Roussillon [10] have proposed a simplified analytical procedure, where

the presence of the city on the site is modelled by means of an equivalent layer.

A seismic wavefield excites the buildings in the city that will interact with each other through

the scattered waves. The city-site effect is therefore a problem of multiple wave scattering by

discrete scatterers, as considered by Foldy [11] and discussed extensively by Waterman and

Truell [12]. Moreover, as the incident wavefield excites the buildings in the frequency range

of their resonance frequencies, it is a case of resonant multiple wave scattering [13]. Instead of

solving this complex problem for a particular city configuration, a statistical model of the city

is applied and the limit of a city of infinite size is considered within the frame of the present

paper.

The city is modelled as a collection of resonant finite size scatterers, uniformly distributed at

the soil’s surface, which is represented by a horizontally layered elastic half-space. This leads

to a set of stochastic equations that governs the interaction between the city and the soil. From

these equations, the Dyson and Bethe–Salpeter equations [14–17] for the configurationally

averaged field and field correlation are derived in a similar way as done by Weaver [18, 19] for

the interaction of a plate with a set of randomly distributed single degree of freedom systems.

The solution of the single scatterer problem is used to obtain an approximate solution of these

equations that allows us to quantify the city-site effect in terms of the mean field and the

dispersion around the mean site response. The solution of the non-stationary Bethe–Salpeter

equation allows us to verify whether the presence of the city increases the duration of the

seismic site response.

The results are validated by means of numerical results obtained by Mezher et al. [6] from

a deterministic analysis of the response of a complete city quarter of the Roma Norte district

of Mexico City.

2. The governing equations of motion

2.1 The soil domain

The soil domain is modelled as an elastic, horizontally layered half-space, denoted by D

(figure 1). The soil’s boundary ∂ D consists of the surface S at z = 0 and the boundary S∞
at infinity. The city is modelled as a collection of oscillators, uniformly distributed over the

soil’s surface S. The interface between the buildings and the soil is denoted by Ŵ and consists

of the union ∪Ŵ j of all interfaces Ŵ j between a building j and the soil. The soil’s traction

free surface S f is found as S\Ŵ. In the following, we will derive the equations that govern

the interaction between the city and the soil for an incident wavefield ui . The latter is the

wavefield in the soil when no buildings are present.

The total displacement field u in the soil has to satisfy the following homogeneous Navier

equations of motion in the frequency domain:

−divσ(u) − ρω2u = 0 in D (1)
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Figure 1. Model of a city interacting with an elastic half-space.

where σ(u) is the stress tensor in the soil, which is computed from the strain tensor ǫ by means

of Hooke’s law as σi j = ci jklǫkl . For an isotropic elastic material, the Hooke tensor c depends

on the Lamé constants λ and µ only.

The total displacement field u in the soil domain � is decomposed into the incident wavefield

ui and the diffracted wavefield ud:

u = ui + ud (2)

The incident wavefield ui satisfies the homogeneous Navier equation in D and the traction-free

boundary condition at the surface S. The diffracted wavefield ud satisfies the homogeneous

Navier equation together with the radiation conditions at S∞, the traction-free boundary con-

ditions at the free surface S f and the following boundary conditions at each interface Ŵ j

between a building and the soil:

ud + ui = uf j on Ŵ j

t(u) + tb j = 0 on Ŵ j (3)

where uf j represents the foundation displacements of building j . The soil tractions t(u) at

the interface are calculated as σ(u)n, where n is the outward unit normal vector to Ŵ j . If all

buildings are located at the free surface S, t(ui) = 0 on Ŵ j and therefore t(u) = t(ud).

2.2 The building model

For each building, the building tractions tb are calculated from the interaction forces F between

the building and the soil as:

tb = Π(x − xb)F for x and xb on S (4)

where Π(x − xb) is a 3 × 3 matrix of which each element 	kl contains the stress distribution

in a direction ek due to a unit resultant force in a direction el for a building at a position xb. In

the following, the foundations of all buildings are assumed to be rigid and to have the same

size, so that the same matrix Π is used for each building.

In the low-frequency range that is relevant in earthquake engineering, the dynamic response

of a building in the horizontal direction is satisfactorily modelled by means of a single degree

of freedom (DOF) oscillator that takes into account the motion of the building in the first

horizontal mode [20]. This leads to a building model, where the building mass m is coupled

to a foundation at the soil’s surface by means of a spring-damper connection with a dynamic

stiffness k + iωc in the frequency domain. The interaction force Fx between the building and

the soil in the horizontal direction ex , is calculated from the displacement ubx of the building
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mass and the foundation displacement ufx :

Fx = −(k + iωc)[ubx − ufx ] (5)

where k denotes the stiffness and c the damping coefficient that determines the internal energy

dissipation in the building. The equation of motion of the building is:

−(k + iωc)[ubx − ufx ] = −mω2ubx (6)

The equations of motion are now used to eliminate the building displacements ubx from

equation (5) for the interaction forces. The relation between the force Fx and the displacement

ufx is the building impedance iωZ and is rewritten as follows in terms of the resonance

frequency ωres =
√

k/m and the damping ratio ζ = c/2
√

km of a building fixed at its base:

Fx = −mω2

(
ω2

res + 2iζωresω

ω2
res + 2iζωresω − ω2

)

ufx (7)

As the building mass is distributed along the building height, only about 81% of the entire

building mass participates in the first horizontal mode of the structure [20]. This effect can be

accounted for replacing the mass m in equation (7) by 0.81m and adding an additional term

−0.19mω2ufx that accounts for the remaining part.

According to the first boundary condition in equation (3), the foundation displacement

ufx can be replaced by the total soil displacement ux (xb) at the center of gravity xb of the

foundation as the foundation is assumed to be rigid and the rocking motion of the buildings is

neglected.

In the following, the buildings are assumed to have the same dynamic characteristics in

both horizontal directions ex and ey and the same impedance iωZ is used to relate Fy and

u y(xb) for each building. The vector F is calculated from the soil displacements u(xb) as:

F = iωZu(xb) (8)

where iωZ is a 3 × 3 diagonal matrix that contains the horizontal building impedance iωZ

on its first two diagonal elements.

2.3 The probabilistic city model

The city is modelled as a limiting large number (N → ∞) of buildings, randomly distributed

on the entire soil surface S with a uniform surface density ρsc. If all buildings have the same

foundation size Sb, the surface density is calculated as η/Sb, where η represents the ratio of

the built and total soil surface.

The building resonance frequency ωres in equation (7) is modelled as a random variable

�res. The resonance frequency and the position of the buildings are assumed to be independent

random variables. The eigenfrequency ωres/2π of a building is approximately inversely pro-

portional to the building height, as indicated by building codes [21], and can be estimated from

the number n of floors as 10/n [Hz]. The building mass m is estimated from the foundation

size and the number of floors and is therefore determined by �res as well. The damping ratio

ζ is assumed to have the same deterministic value for all buildings, as conventionally given

in building codes [21].
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2.4 The city–soil interaction

The second boundary condition in equation (3) can be rewritten by means of the building

impedance iωZ j for each building j as:

σ(ud)n +
N∑

j=1

Π(x − xb j )iωZ j u(xb j ) = 0 on Ŵ = ∪Ŵ j (9)

Equation (9) can be transformed into an integral equation for the diffracted wavefield by means

of the representation theorem in elastodynamics:

ud(x) = −
∫

S

UG(x, x′)

( N∑

j=1

Π(x′ − xb j )iωZ j u(xb j )

)

dx′ (10)

where UG(x, x′) is the Green’s displacement tensor. Each element U G
i j (x, x′) of the Green’s

tensor represents the displacement at a position x′ in a direction e j due to a unit impulse load

at a position x in a direction ei . The Green’s tensor is used to define the following operator

UG :

(UGf)(x) =
∫

S

UG(x, x′)f(x′) dx′ (11)

Equation (2) is used to replace the diffracted wavefield ud(x) by the total wavefield u(x) minus

the incident wavefield ui(x). Furthermore, the displacement u(xb j ) at xb j is rewritten as an

integral on the entire surface S of the product of the total wavefield u(x) and a Dirac delta

function that selects the right position xb j :

u(x) = ui(x) −
∫

S

UG(x, x′)
N∑

j=1

Π(x′ − xb j )iωZ j

∫

S

δ(x′′ − xb j )u(x′′) dx′′ dx′ (12)

The previous equation (12) is a Lippmann–Schwinger equation and is written in an operator

notation as follows:

u = ui − UG
δu (13)

where the operator 
δ is given by:

(
δv)(x′) =
N∑

j=1

Π(x′ − xb j )iωZ j

∫

S

δ(x′′ − xb j )v(x′′) dx′′

This operator is referred to as the impurity potential operator [17]. As both the position xb j

and the eigenfrequency �res of each building are modelled as random variables, the operator


δ is a stochastic operator. A solution is obtained through the construction of the scattering

operator T [17], which allows the calculation of the diffracted wavefield ud from the incident

wavefield ui:

u = ui + UGT ui (14)

The construction of the scattering operator in the case of a homogeneous elastic half-space

containing a bounded heterogenity is discussed by Savin [22] and Savin and Clouteau [23].

In the following, however, we do not intend to construct the scattering operator T for a given

city configuration. Instead, we will consider a statistical description of the city and calculate

approximating solutions for the configurationally averaged field and field correlation, based

on the scattering operator T for a single building. The solution of the single scatterer problem

also allows us to calculate the scattering cross-section σ of the building and to estimate the

mean free path l.
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3. The soil–structure interaction problem for a single building

3.1 The scattering operator for a single building

In order to solve the soil–structure interaction problem for a single building, the diffracted

wavefield ud in equation (2) is further decomposed into the locally diffracted wavefield ud0

[24], which cancels the incident wavefield at the soil–structure interface Ŵ, and the wavefield

usc radiated by the foundation motion. The radiated wavefield usc is further decomposed into

a number of radiation modes udm that represent the wavefield scattered in the soil by the m-th

displacement mode of the interface Ŵ. In the present case, only the translational rigid body

displacement modes of the foundation are considered:

u = ui + ud0 +
∑

m=x,y,z

cmudm = ui + ud0 + Udc (15)

where udm(xb) = em and therefore Ud(xb) = I. With this particular choice of the interface

displacement modes, the generalized coordinates c are the previously defined foundation

displacements uf. In the case of a surface foundation and a wavefield ui that is uniform along

the interface Ŵ, the following matrix equation of motion is derived from the formulation of

the traction equilibrium at the interface in the weak sense [24]:

[iωZ + Ks] uf = Ksui(xb) (16)

where iωZ is the previously defined building impedance. The soil impedance Ks is calculated

from the tractions t(udm) for the scattered wavefields udm :

Ksmn =
∫

Ŵ

t(udn) · udm dx (17)

When only translational rigid body modes of the foundation are considered, the soil impedance

Ks is diagonal. The total matrix [iωZ + Ks] in equation (16) is diagonal as well, and the

displacements ufm in different directions em decouple. The solution of equation (16) allows

us to calculate the forces F from the incident wavefield ui by means of equation (8):

F = iωZ [iωZ + Ks]
−1 Ksui(xb) = iωZ′ui(xb) (18)

where iωZ′ denotes the modified impedance. In the case where the internal damping ratio ζ

is zero, the modified horizontal impedance iωZ ′ can be rewritten in terms of the resonance

frequency ωssi of the building coupled to the soil and the damping ratio ζssi that only accounts

for radiation and material damping in the soil:

Fx = −mω2

[

ω2
ssi + 2iζssiωssiω

ω2
ssi + 2iζssiωssiω − ω2

(

1 + 2iζssi
ωssiω

ω2
j

)

]

uix (xb) (19)

where ωssi and ζssi are calculated from the building mass m and stiffness k and the soil

impedance Ksxx that is rewritten as ks + iωcs :

ω2
ssi =

kks

m(k + ks)
, ζssi =

ωssics

2ks

(20)

Accounting for soil–structure interaction shifts the building resonance frequency ωres to a

slightly lower value ωssi and introduces an energy dissipation due to radiation and material

damping in the soil.

Equation (18) for the force F allows us to calculate the building tractions at the interface

by means of equation (4). The total wavefield u in the entire soil domain D is now calculated
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from the incident wavefield ui:

u = ui − UG
Π(x − xb)iωZ′ui(xb) (21)

This identifies the scattering operator T [17] for a single building as:

(

T j v
)

(x) = −Π(x − xb)

∫

S

iωZ′
jδ(x′ − xb)v(x′) dx′ (22)

In the following, this scattering operator will also be used in the case where the wavefield

ui is not uniform along the interface. This implies that the kinematic interaction between the

foundation and the incident wavefield is neglected.

3.2 The scattering cross-section of a single building

The solution of the single scatterer problem allows us to calculate the scattering cross-section

of a building. In the independent scattering approximation, this scattering cross-section can

be used to estimate the mean free path.

The scattering cross-section is estimated under the hypothesis of Rayleigh scattering of

surface waves by means of the optical theorem. The total scattering cross-section σ is expressed

as the ratio of the power Pout lost both by absorption and scattering and the power density pi

of the incident field. As recalled in appendix A, the general form of Pout for any obstacle of

boundary Ŵ embedded in a purely elastic medium is given by:

Pout = ωℑ
( ∫

Ŵ

[t(ud) · ui
∗ − ud · t(ui)

∗]d S

)

(23)

where a superscript ∗ denotes the complex conjugate. Since, for a superficial foundation,

t(ui) = 0 and assuming that the foundation size is small compared to the wavelength, the

power Pout is calculated as:

Pout = ωℑ(F · ui
∗) F =

∫

Ŵ

t(u)d S (24)

where F is the previously defined interaction force. Equations (18) and (19) are used to

calculate the total scattering cross-section as a function of the incident wavefield ui as:

σ =
Pout

pi

=
1

zi

ω4 2mζssiωssiα
(

ω2
ssi − ω2

)2 + 4ζ 2
ssiω

2
ssiω

2α2
pi = ω2zi‖ui‖2 (25)

where α is the ratio k/(k + ks). For ω ≪ ωssi, the limiting value of the scattering cross-section

scales as ω4 as for the classical Rayleigh scattering limit. For ωssi ≪ ω, the limiting value

satisfies ziσ ≈ 2mζssiωssiα, but this limit is relevant only for vertically incident plane waves

since ui has to be uniform on the foundation as stated in equation (24). In this particular

case, zi = ρcs and it can be shown from the classical limit of the foundation impedance that

2mζssiωssiα = ρcs S with S the surface of the foundation and therefore σ = S as in the high

frequency limit of the cross-section of an absorbing obstacle.

The most relevant approximation in our case is, however, for ω equal to ωssi leading to a

total cross-section inversely proportional to the damping ratio:

σ zi ≈
mωssi

2ζssiα
(26)

As the damping ratio ζssi is usually small, this expression indicates a potential high value for

the total cross-section of resonating buildings.
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3.3 The mean free path for a uniform distribution of buildings

In order to compute the total cross-section from equation (26), the normalizing constant zi

has to be determined. The multiple scattering in the city is governed by surface waves and the

normalizing constant is therefore of the following form:

zi = ρcsurfhsurf (27)

with csurf the surface wave velocity and hsurf the depth of the surface wave. The two types of

surface wave of interest for a layered half-space are Rayleigh waves on one hand and Love

waves on the other. For both types of wave, the wave velocity is of the order of the shear wave

velocity of the first layer. The depth hsurf is equal to half the wavelength for Rayleigh waves

and equal to the thickness of the first layer for Love waves. For ω equal to ωssi, this leads to

the following scattering cross-section:

σ =
mωssi

2ζssiαρcsurfhsurf

(28)

In the independent scattering approximation, the mean free path is estimated as 1/ρscσ and,

normalized by the wavelength λ = 2πcsurf/ω, is given by:

l

λ
=

ζssiα

π

ρhsurf

γρscm
(29)

where the surface density ρsc has been multiplied by the fraction γ of buildings that have

their resonance frequency ωssi at ω. The second factor in equation (29) represents the ratio

of the mass of the mobilized soil and the uniformly distributed mass of the buildings with a

resonance frequency ωssi = ω. In the following, the case of Mexico city is considered, where

the subsoil is characterized by a weak top layer with a thickness of about 50 m and a density

ρ of 1250 kg/m3. The distributed mass of the buildings is calculated from a surface density

ρsc of 5.1 × 10−4 m−2, with a fraction γ equal to 20% for buildings with 10 storeys and

an estimated mass per unit surface of 9000 kg/m2 for this type of building. This leads to an

estimated value of 109 for the second factor, which is divided by π and multiplied by the small

damping ratio ζssi and the factor α = k/(k + ks), which is necessarily smaller than 1. This

results in a potentially small ratio of the mean free path and the wavelength λ and indicates

that multiple wave scattering is of importance in the frequency range of the building resonance

frequencies.

4. The mean field

4.1 The Dyson equation

Following the formalism introduced by Frisch [14], the averaging operation is represented by

the operator P . Applying the operators P and (I − P) on equation (13) allows us to derive

the following system of equations for the mean, coherent field u and the incoherent field

u f :

u = ui − UG P
δ(u + u f )

u f = −UG(I − P)
δ(u + u f ) (30)

The second equation is used to express the incoherent field u f as a function of the coherent

field by means of a Neumann expansion for the inverse of the operator I + UG(I − P)
δ .

Introducing this expression in the first equation results in the Dyson equation [14] for the
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mean field:

u = ui + UGMu (31)

where M represents the mass operator:

M = −P
δ

+∞∑

n=0

[−(I − P)UG
δ]n (32)

An exact solution of the Dyson equation cannot be obtained due to the infinite sum in the

expression for the mass operator and an approximate solution is derived.

4.2 The Foldy approximation

In the following, the Foldy approximation is applied to estimate the configurationally averaged

field by means of the solution in the single scatterer case. The Foldy approximation [11] is

a mean field approximation for the wavefield u′
i j incident on building j . This wavefield is

composed of the wavefields u′
dk scattered by all other buildings:

u′
i j = ui +

N∑

k=1,k �= j

u′
dk (33)

The scattering operator Tk of a single building in equation (22) is now used to calculate the

wavefield u′
dk , scattered by building k from the incident field on building k:

u′
dk = UGTku′

ik (34)

This leads to the following system of N equations and N unknown for the exciting wavefields

u′
i j :

u′
i j = ui + UG

N∑

k=1,k �= j

Tku′
ik (35)

In a similar way as the Dyson equation has been derived from equation (13), an equation for

the mean exciting wavefield can be formulated.

A first order approximation yields the following equation:

u′
i = ui + UG P

N∑

j=1

T j u
′
i (36)

which is similar to the Foldy approximation [11] for the mean exciting field [12, 25] in the

case of point scatterers. The averaging operation involves both a spatial averaging over all

possible positions of the buildings and an averaging over the building impedance iωZ′
j :

u(x) = ui(x) − ρsc

∫

S

UG(x, x′)

∫

S

Π(x′ − x j )iωZ′u(x j ) dx j dx′ (37)

where iωZ′ denotes the mean modified building impedance and the mean exciting field is

considered as an approximation of the mean field in the soil domain.

In the case of a horizontally layered half-space, this equation can be solved explicitly by

means of a double forward Fourier transformation from the horizontal coordinates to the

wavenumber pair k. In the following, a distinction is therefore made between the horizontal

coordinates xS and the vertical coordinate z. The displacement field u(x) is rewritten as u(xS, z).

Furthermore, in the case of a horizontally layered half-space, the Green’s tensor is invariant

under a horizontal translation and is rewritten as UG(x′
S − xS, z′, z). The Foldy equation for

the mean field now becomes:

ũ(k, z) = ũi(k, z) − ρscŨG(−k, 0, z)Π̃(k)iωZ′ũ(k, 0) (38)
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where a tilde denotes the wavenumber domain transform. The evaluation of this equation for

z = 0 provides a system of three equations with three unknown ũ(k, 0) in the frequency–

wavenumber domain:

{

I + ρscŨG(−k, 0, 0)Π̃(k)iωZ′} ũ(k, 0) = ũi(k, 0) (39)

The solution of this equation gives the mean field ũ(k, 0) at the soil’s surface, which can

subsequently be used for the evaluation of the mean field at any depth z.

4.3 The mean Green’s function

The Foldy approximation in equation (38) allows us to formulate the following equation for

the mean Green’s function of the coupled city-half-space system:

Ũ
G

kn(k, z, z′) = Ũ G
kn(k, z, z′) − ρscŨ G

kl (−k, 0, z)	̃lm(k)iωZ ′
mmŨ

G

mn(k, 0, z′) (40)

where a summation on the dummy indexes l and m is performed. The calculation of the mean

Green’s tensor UG therefore requires the solution of a system of equations in terms of the

Green’s tensor Ũ
G

kn(k, 0, z′) for the fundamental response at the soil’s surface (z = 0).

In the following, the mean Green’s functions are needed for the case where both the

source and the receiver are located at the soil’s surface (z′ = 0, z = 0) and the source and

receiver directions are equal to ex and ey . The equations for the Green’s functions Ũ
G

xx (k, 0, 0),

Ũ
G

yx (k, 0, 0) and Ũ
G

xy(k, 0, 0), Ũ
G

yy(k, 0, 0), respectively, uncouple as follows:

[

1 + ρscŨ G
xx iωZ ′	̃ ρscŨ G

xyiωZ ′	̃

ρscŨ G
yx iωZ ′	̃ 1 + ρscŨ G

yyiωZ ′	̃

] {

Ũ
G

xx

Ũ
G

yx

}

=

{

Ũ G
xx

Ũ G
yx

}

(41)

[

1 + ρscŨ G
xx iωZ ′	̃ ρscŨ G

xyiωZ ′	̃

ρscŨ G
yx iωZ ′	̃ 1 + ρscŨ G

yyiωZ ′	̃

] {

Ũ
G

xy

Ũ
G

yy

}

=

{

Ũ G
xy

Ũ G
yy

}

(42)

where the dependence of the Green’s functions on the wavenumber k and the coordinates

z = z′ = 0 is omitted. A change of coordinates from the wavenumber pair k to a radial

wavenumber kr and an angular coordinate θ is performed to calculate the Green’s functions

of the original elastic half-space from the results of a reflection-transmission method [26]

that have been obtained by means of a Hankel transform in a cylindrical coordinate system.

The mean Green’s functions show the same angular dependence on θ as the original Green’s

functions, as expected from the configurational averaging over the disorder.

In the following, the attenuation of the mean and the original Green’s function are compared

to verify the simplified estimation of the mean free path in equation (29).

5. The field correlation

5.1 The Bethe–Salpeter equation

The Bethe–Salpeter equation [14] is an equation on the configurationally averaged outer

product of the wavefield u(x, t) or its correlation function R(x, x′, t, t ′). The power spectrum

S(x, x′, ω, ω′) is the double Fourier transform of the correlation function with respect to t and t ′:

S(x, x′, ω, ω′) = E[u(x, ω) ⊗ u∗(x′, ω′)] (43)
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The non-stationary Bethe–Salpeter equation for the field correlation is formulated as follows

[14, 16]:

S(x, x′, ω, ω′) = u(x, ω) ⊗ u∗(x′, ω′) +
∫

D

∫

D

∫

D

∫

D

UG(x′, y′
1, ω) ⊗ UG∗(x′′, y′′

1, ω
′) :

× K(y′
1, y′′

1, x′
1, x′′

1, ω, ω′) : S(x′
1, x′′

1, ω, ω′) dy′
1 dy′′

1 dx′
1 dx′′

1 (44)

where K(y′
1, y′′

1, x′
1, x′′

1, ω, ω′) represents the kernel of the intensity operator, which is

expressed as an infinite sum of operators by means of a diagram approach [14, 16]. In order to

avoid a laborious notation, the dependence on ω and ω′ is omitted and understood implicitly.

The solution of the Bethe–Salpeter equation allows us to calculate the configurationally

averaged non-stationary field correlation.

5.2 The ladder approximation

In the ladder approximation, the infinite sum that determines the kernel of the intensity operator

is truncated at its first term. This leads to the following expression for the intensity operator

that is based on the solution of the single scatterer problem:

K(y′
1, y′′

1, x′
1, x′′

1) = ρsc

∫

S

〈Π(y′
1 − xb)iωZ′

j ⊗ Π
∗(y′

1 − xb)(iω′Z′
j )

∗〉

× δ(y′
1 − x′

1)δ(y′′
1 − x′′

1) dxb (45)

In the present paper, independent approximating solutions of the Dyson and Bethe–Salpeter

equation are made. The conservation of energy is therefore not demonstrated through the

derivation of a Ward identity that links both approximations. The ladder approximation of the

Bethe–Salpeter equation for the field correlation is:

S(x′, x′′) = u(x′) ⊗ u∗(x′′) + ρsc

∫

S

∫

S

∫

S

UG(x′, x′
1) ⊗ UG∗(x′′, x′′

1) :

× 〈Π(x′
1 − xb)iωZ j ⊗ Π

∗(x′′
1 − xb) × (iω′Z′

j )
∗〉 : S(x′

1, x′′
1) dx′

1 dx′′
1 dxb (46)

In the case of a field that is second moment stationary with respect to the horizontal position,

S(x′, x′′) can be rewritten as S(x′′
S − x′

S, z′′, z′). The mean Green’s tensor UG(x′, x) of a hori-

zontally layered half-space is invariant under a horizontal translation and can be replaced by

UG(xS − x′
S, z, z′). In a similar way as in the mean field approximation, the solution of the

correlation at the soil’s surface (z = 0, z′ = 0) will allow for the calculation of any other pair

(z, z′). In the following, the vertical coordinates are therefore omitted and it is assumed im-

plicitly that all functions are evaluated at z = 0 and z′ = 0, leading to the following expression

for the field correlation at the soil’s surface:

S(x′′
S − x′

S) = u(x′
S) ⊗ u∗(x′′

S) + ρsc

∫

S

∫

S

∫

S

UG(x′
1S − x′

S) ⊗ UG∗(x′′
1S − x′′

S) :

× 〈Π(x′
1S − xbS)iωZ′

j ⊗ Π
∗(x′′

1S − xbS)(iω′Z′
j )

∗〉 :

× S(x′′
1S − x′

1S) dx′
1S dx′′

1S dxbS (47)

The two terms containing the distribution of tractions Π vanish when either x′
1 or x′′

1 are

not on the interface Ŵ j of a building located at xb. If we assume that the field correlation

varies on a scale that is larger than the scale of an individual foundation, S(x′′
1S − x′

1S) can

be approximated by S(0). In the frequency–wavenumber domain, the following expression is
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obtained:

S̃(k) =
∫

S

u(x′
S) ⊗ u∗(x′′

S) exp [+ik(x′′
S − x′

S)] dx′′
S + ρscŨ

G
(k) ⊗ Ũ

G∗
(k):

× 〈Π̃(−k)iωZ′
j ⊗ Π̃

∗
(−k)(iω′Z′

j )
∗〉(:) S(0) (48)

This equation for S̃(k) is transformed into a system of equations on S(0), by means of an

integration on all wavenumbers k and accounting for the identity:

S(0) =
1

4π2

∫

S̃(k) dk (49)

The following system of equations is finally obtained:

S(0) = u(x′
S) ⊗ u∗(x′

S) + ρsc

1

4π2

∫

Ũ
G

(k) ⊗ Ũ
G∗

(k):

〈Π̃(−k)iωZ′
j ⊗ Π̃

∗
(−k)(iω′Z′

j )
∗〉 : S(0) dk (50)

The solution for S(0) allows us to calculate the field correlation for any other wavenumber

pair k by means of equation (48). In an indicial notation, each equation is written as:

Skl(0) = uk(x′
S)u∗

l (x′
S) + ρsc〈iωZ ′

jmm(iω′ Z ′
jnn)∗〉

×
[

1

4π2

∫

Ũ
G

km(k)	̃mm(−k)Ũ
G∗
ln (k)	̃∗

nn(−k) dk

]

Smn(0) (51)

where it has been assumed that Π̃(−k) is a diagonal matrix, as is the case for relaxed boundary

conditions at the building–soil interface. Furthermore, as only the horizontal motion of the

buildings will be considered, k, l, m and n only refer to x or y. The integral inside the square

brackets in equation (51) is denoted as φklmn and depends on the circular frequencies ω and

ω′ only:

φklmn =
1

4π2

∫

Ũ
G

km(k)Ũ
G∗
ln (k)	̃mm(−k)	̃∗

nn(−k) dk (52)

This integral is solved by means of a change of variables from k to the radial wavenumber

kr and an angular coordinate θ . In the case where the foundation shape is circular and the

stress distribution 	̃ is uniform in both directions, the integrand depends on θ through the

mean Green’s functions only. This angular dependence uncouples the equations for Sxy(0) and

Syx (0) from those for Sxx (0) and Syy(0).

6. The response of a city to a vertically incident shear wave

6.1 The Roma Norte district of Mexico City

In the following, the configurationally averaged site response and correlation are calculated

for the case of the Roma Norte district of Mexico City, subjected to a plane, vertically incident

shear wave (SH wave). This is the most relevant case in earthquake engineering since, due to

the velocity contrast between the deeper and surface layers, almost all incident rays from the

seismic source are converted into vertical rays, as stated by the Snell-Descartes law. For some

particular sites such as the lake region in Mexico City, the waves diffracted by the edge of the

basin can reach a significant amplitude, but still less than the direct wavefield.

The results are validated by means of numerical results of Mezher et al. [6] for a three-

dimensional model of an entire city quarter. This model includes 77 buildings on a total surface
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of 350 × 450 m2. The buildings are modelled by means of the finite element method (FEM),

using beam and plate elements for the beams and columns and the floors of the buildings,

respectively. The buildings are coupled to the soil by means of the boundary element method

(BEM), based on the Green’s functions of the horizontally layered half-space. This allows us

to fully account for the multiple wave scattering between the buildings. Assuming ergodicity,

the spatial average of the site response and the correlation for this particular city configuration

can be compared to the configurationally averaged quantities obtained within the present

analysis.

6.2 The soil model

The soil is modelled as a horizontally layered linear elastic half-space for which the Green’s

functions [27, 28] are calculated numerically in the wavenumber–frequency domain by means

of a reflection-transmission method [26].

Table 1 summarizes the layer thickness t , the shear wave velocity Cs , the longitudinal wave

velocity C p, the density ρ and the material damping ratio β of the soil model for the Mexico

City lake bed zone. Material damping in the soil is modelled in the frequency domain by the

use of complex Lamé coefficients λ(1+2βi) and µ(1+2βi), where β represents the hysteretic

material damping ratio. The interface between layer 14 and the half-space 15 is referred to as

the bedrock level in the following.

In the case of a vertically incident SH wave in a horizontally layered half-space, the total

wavefield in the soil layers consists of upward and downward vertically propagating waves

and can be formally written as ux [exp(+ikαz) + exp(−ikαz)]ex or ux (z)ex . The site transfer

function relates, in the frequency domain, the site response ux (0) at the soil’s surface (z = 0)

to the incident, upward propagating SH wave uix (zbr) at bedrock level (z = zbr). The dynamic

soil characteristics in table 1 have been used to calculate the site transfer function in absence

of the city. The transfer function (figure 2) shows a strong amplification with a factor of 20

near 0.4 Hz. This well-known amplification of the ground motion is also found when data

recorded at the lake bed zone of Mexico City are compared to data from hill zones [2] and is

attributed to the first site resonance frequency. This first site resonance is due to the presence

of a highly compressible clay with a shear wave velocity of about 70 m/s in the upper 30 to

80 m of soil. A second site resonance frequency is observed near 0.8 Hz.

Table 1. The dynamic soil characteristics.

t Cs C p ρ β

Layer [m] [m/s] [m/s] [kg/m3] [−]

1 5 91 1447 1200 0.02
2 8 30 1447 1100 0.02
3 14 55 1233 1100 0.02
4 8 80 1267 1200 0.02
5 8 202 1442 1400 0.02
6 8 131 1472 1400 0.02
7 5 404 1786 1500 0.01
8 10 253 1588 1500 0.01
9 38 434 1746 1700 0.01

10 20 666 1965 1700 0.01
11 8 434 1771 1700 0.01
12 10 929 1935 1900 0.01
13 22 505 1776 1800 0.01
14 14 677 2084 1800 0.01
15 ∞ 1132 2522 2000 0.01
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Figure 2. Site transfer function.

The incident wavefield ui(x, t) in the following is the total wavefield in the soil generated

by an incident wave uix (zbr, t) = f (t), where f (t) is a Ricker pulse, centred at 0.75 Hz in the

frequency domain (figure 3). Figure 4a shows the frequency content of this incident wavefield

uix (0) at the soil’s surface, which is obtained as the product of the site transfer function in

figure 2 and the frequency content f (ω) of the incoming wave at bedrock level. The time

history in figure 4b is obtained by means of an inverse Fourier transform and clearly shows the

contribution of the first site resonance. Due to the velocity contrast between the upper soil layers

and the underlying half-space (table 1), the downward propagating waves are almost perfectly

reflected and the attenuation observed in figure 4b is mainly due to absorption in the soil.

6.3 The city model

The statistical model of the dynamic characteristics of the buildings is based on the distribution

of the number of storeys over all buildings in the city. Figure 5a shows the built surface as a

function of the number of storeys n for the city quarter. The fundamental resonance frequency

of the buildings is estimated as 10/n, which leads to the distribution of the horizontal building

resonance frequency shown in figure 5b. The same resonance frequency is considered for the

motion in the x- and y-direction. It is important to notice that these resonance frequencies are

well above the first site resonance frequency at 0.4 Hz, as observed in the site transfer function

(figure 2). All buildings are assumed to have the same foundation surface Sb = 625 m2 and a

damping ratio ζ of 0.05. The building mass m is estimated from the number of floors n and

the foundation size Sb as 0.36nρb Sb, where ρb has a value of 2500 kg/m3, corresponding to

Figure 3. (a) Frequency content and (b) time history of the incident wave uix (zbr, t) = f (t).
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Figure 4. (a) Frequency content and (b) time history of the incident wavefield uix (0) at the soil’s surface.

reinforced concrete and 0.36 m is an equivalent floor slab thickness that allows us to obtain

similar masses as in the deterministic city model.

The surface density ρsc of the buildings is calculated from the foundation size Sb = 625 m2

and the ratio η = 0.32 of the built surface and the total surface as η/Sb, resulting in a value of

5.1 × 10−4 m−2.

Figure 6 shows the impedance iωZ for a building with 10 floors, as calculated from equation

(7), with an estimated resonance frequency of 1 Hz. The building mass in this equation has

been corrected for the fact that only 81% of the mass participates in the first horizontal mode,

which leads to an additional term of −0.19 mω2 for the impedance. At frequencies ω low

compared to the resonance frequency ωres, the building impedance is dominated by the inertial

term. At the resonance frequency, the real part of the impedance vanishes and the imaginary

part reaches a maximum. At high frequencies, the real part tends to a value of −0.19 mω2.

6.4 The single scatterer problem

The computation of the mean field by means of the Foldy equation requires the solution of the

soil-structure interaction problem for a single building. Equation (22) shows how this solution

is obtained by the calculation of the modified building impedance iωZ ′ that corresponds to a

series connection of the soil impedance Ks and the impedance iωZ .

The boundary element method (BEM) [29], based on the Green’s functions of the soil

model in table 1, has been used to calculate the soil impedance Ks (figure 7a). The imaginary

Figure 5. (a) Built surface S as a function of the number n of floors and (b) distribution of the building resonance
frequency �res.
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Figure 6. Real (solid line) and imaginary (dashed line) part of the building impedance iωZ for a building with 10
floors.

part of the soil impedance represents the energy dissipation due to the radiation of waves and

absorption in the soil. Figure 7b shows the modified impedance iωZ ′ for a building with 10

floors. At frequencies low compared to the resonance frequency, the impedance iωZ has a

negative value and the building acts as an additional mass at the soil’s surface. At the resonance

frequency, the imaginary part reaches a maximum and the effect of multiple wave scattering

will be the most pronounced.

A comparison of the impedance iωZ in figure 6 and the modified impedance iωZ ′ clearly

illustrates the effects of soil–structure interaction for a single building. First, the additional soil

flexibility lowers the fundamental building resonance frequency. Second, the coupling with

the soil provides an additional damping mechanism through radiation and material damping

in the soil.

Based on the results for the deterministic building impedances, the mean building impedance

is calculated (figure 8). The results at low and high frequencies are similar to those for a

particular building. In the frequency range of the building resonance frequencies, the imaginary

part shows a uniform large value.

6.5 The mean field

In order to calculate the mean field approximation by means of equation (38), the representation

of the incident wavefield in the frequency-wavenumber domain is calculated as:

ũi(k, z) = 4π2
δ(k)uix (z, ω)ex (53)

Figure 7. Real (solid line) and imaginary (dashed line) of (a) the soil impedance Ks and (b) the modified impedance
iωZ ′.
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Figure 8. Real (solid line) and imaginary (dashed line) of the mean modified impedance iωZ ′.

The mean field necessarily has the same δ(k) dependence on k and can be written as

4π2δ(k)u(z). After a double inverse Fourier transformation from k to xS , the following system

of equations is found for the mean field at the soil’s surface:

[I + ρscŨG(−k = 0, 0, 0)iωZ′
Π̃(k = 0)] u(0) = ui(0) (54)

The mean field u(z) at an arbitrary depth z is calculated from the mean field u(0) at the soil’s

surface by means of equation (38). The matrix Π̃(k = 0) in equation (54) equals the unity

matrix I as an evaluation of a function at a wavenumber k = 0 is equivalent to an integration in

the spatial domain over all x. Furthermore, the equations for the displacement components of

u decouple due to the fact that the Green’s tensor ŨG(−k = 0, 0, 0), the modified impedance

iωZ′ and the traction distribution matrix Π̃(k = 0) are diagonal matrices. The mean field is

therefore zero in the directions ey and ez and only has a non-vanishing component ux .

Figure 9 shows the modulus of the ratio of the mean field ux (0) and the incident wavefield

uix (0) at the soil’s surface. The ratio shows an increase at low frequencies until a peak is

reached at approximately 0.32 Hz, that is followed by a steep descent with a minimum at

0.37 Hz and a slow rise to a value of approximately 1. The sharp peak at 0.32 Hz suggests an

amplification of the incident field, but merely corresponds to a shift of the first site resonance

frequency, as indicated by the steep descent to a value much lower than unity that follows it.

Figure 10 compares the frequency content of the original site response due to a vertically

incident SH wave with the mean response as obtained by the Foldy approximation and the

Figure 9. Modulus of the ratio of the mean field ux (0) and the wavefield uix (0) at the soil’s surface as obtained by
the Foldy approximation.
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Figure 10. Frequency content of the response at the soil’s surface due to a vertically incident SH wave for the
original site (grey line) and frequency content of the mean response as obtained by the Foldy approximation (solid
line) and the FEM-BEM calculation (dotted line).

spatial averaging of the results for the city of finite size in the FEM-BEM computation.

Comparing the Foldy approximation to the original site transfer function, a clear shift of the

first site resonance frequency is observed due to the inertial behaviour of the mean impedance

in this frequency range (figure 8). The lower value for the mean transfer function near 0.8 Hz

may be due to wave scattering and absorption by the buildings. In the case of the FEM-BEM

calculations, the mean site transfer function has been computed from the mean field at the

soil’s surface in between the buildings. These results show a shift of the first site resonance

frequency, as for the Foldy approximation, but with a slightly lower peak value. The decrease

near 0.8 Hz is less pronounced and the response is closer to the original site transfer function.

Figure 11 compares the time history of the original site response due to a vertically incident

SH wave with the mean response as obtained by the Foldy approximation and the FEM-BEM

calculation. The modulus of the time history is shown with a logarithmic vertical scale, so that

the decay of the different fields can be better appreciated. When the original site response and

the Foldy mean response are compared, it is observed that the peak value of the mean field is

slightly smaller. The period of oscillation of the mean response is larger, as expected from the

shift of the first resonance frequency. Furthermore, the mean response decays slower than the

original site response, although it is also affected by the wave scattering and the absorption by

the buildings. The slower decay is explained by the shift of the first resonance frequency. If,

due to absorption in the soil, the original site response decays as exp(−ζsiteωsitet), a decrease of

Figure 11. Time history of the response at the soil’s surface due to a vertically incident SH wave for the original
site (grey line) and time history of the mean response as obtained by the Foldy approximation (solid line) and the
FEM-BEM calculation (dotted line).
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Figure 12. Frequency content of the mean foundation response as obtained by the Foldy approximation (solid line)
and the FEM-BEM calculation (dotted line).

the site resonance frequency ωsite slows down the decay if the damping ratio ζsite is unaffected.

The results of the FEM-BEM calculation are close to the original site response at early times

and show a larger oscillation period than the results by the Foldy approximation.

Equation (16) shows how the solution of the soil–structure interaction problem for a single

building allows us to calculate the foundation response from the incident wavefield. This

relation has been used to compute a mean transfer function that relates the foundation response

to the incident wavefield. Figure 12 compares the mean foundation response, calculated as

the product of the mean incident field and the mean transfer function with the results of the

FEM-BEM calculation. A better agreement is found for the peak value of the response at the

first site resonance frequency, as well as for the response in the range of the building resonance

frequencies.

Figure 13 compares the mean foundation response in the time domain. A good agreement

is found at small times, while at larger times between 5 s and 25 s, the Foldy approximation

predicts a smaller mean response.

6.6 The mean Green’s function

In order to verify the attenuation with distance of the response of the coupled city–soil sys-

tem due to wave scattering and absorption by the buildings, the mean Green’s function,

U G
xx (xS, z, z′) is calculated from the solution of the system of equations (40) and compared to

the Green’s function of the original site.

Figure 13. Time history of the mean foundation response as obtained by the Foldy approximation (solid line) and
a FEM-BEM calculation (dotted line).
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Figure 14. The Green’s function U G
xx (xS, yS = 0, z = 0, z′ = 0) of the layered half-space (solid line) and the mean

Green’s function U G
xx (xS, yS = 0, z = 0, z′ = 0) of the coupled city-half-space system (dotted line) at a frequency

of (a) 1.0 Hz (b) 2.0 Hz.

Figure 14a compares the mean Green’s function U G
xx (xS, yS = 0, z = 0, z′ = 0) of the cou-

pled city-half-space system with the deterministic Green’s function of the layered half-space

as a function of xS at a frequency of 1 Hz. The mean Green’s function is clearly more severely

attenuated due to the combined effect of the wave scattering and the absorption by the build-

ings. The mean free path l is estimated from the attenuation as 60 m and is of the same order

of magnitude as the Rayleigh wavelength in the soil as indicated by the initial simplified esti-

mation that only accounts for the attenuation due to wave scattering. Figure 14b shows similar

results at a frequency of 2 Hz, which is beyond the range of resonance frequencies in figure

5b. The mean Green’s function and the deterministic Green’s now show a similar behaviour.

6.7 Frequency content of the coherent and incoherent field

In order to estimate the contribution of the waves scattered by the buildings to the to-

tal site response, the system of equations (51) that corresponds to the ladder approxi-

mation of the Bethe–Salpeter equation has been solved to calculate the field correlation

S(x′′
S − x′

S, z′′, z′, ω, ω′), for the case where x′′
S = x′

S and z′′ = z′ = 0, denoted as S(0, ω, ω′)

in the following. For ω = ω′, this is the spatial average of the mean square modulus of

the site response, which includes the contribution of the waves scattered by the buildings.

The ratio of the mean square modulus Sxx (0, ω, ω) and the square modulus |ux |2 of the

mean site response therefore indicates the importance of the scattered waves in the total site

response.

Figure 15 shows the ratio of Sxx (0, ω, ω) and Syy(0, ω, ω) and the square modulus |ux |2 of

the mean site response. At low frequencies, the ratio Sxx (0, ω, ω)/|ux |2 is close to 1, while the

mean square modulus of the response in the direction ey is zero. In this frequency range,

the total site response is equal to the mean site response. At higher frequencies between

0.4 Hz and 1.5 Hz, where the mean site response is lower than the original site response

(figure 10), the ratio Sxx (0, ω, ω)/|ux |2 is relatively large. This confirms the shift of the

coherent site response to the incoherent component due to the scattering of waves by the

buildings.

Figures 16a and b compare the mean square modulus of the seismic response at the soil’s

surface as obtained by the Foldy ladder approximation and the FEM-BEM calculation. Al-

though the frequency content of the mean response in figure 10 is underestimated, a good

agreement is found for the mean square modulus of the response in the direction ex . The main
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Figure 15. The ratio of the correlation Sxx (0, ω, ω) (solid line), Syy (0, ω, ω) (dashed line) and the square modulus

of the mean field |ux |2.

difference between both results is therefore the way in which the total response is composed

of the coherent and incoherent response. As the response in the direction ey is entirely due to

waves scattered by the buildings, the larger contribution of the scattered waves in the Foldy

approximation also leads to a larger response.

6.8 The correlation length of the scattered wavefield

The results for the field correlation S(xS, ω, ω′) at the soil’s surface allow to estimate the

correlation length lxx of the scattered wavefield. First, a correlation surface Axx is calculated

as:

Axx =
∫

S
[Sxx (xS, ω, ω) − ux (0)u∗

x (xS)] dxS

Sxx (0, ω, ω) − |ux (0)|2
(55)

The integral in the numerator can be calculated from the evaluation of the field correlation

S̃xx (k, ω, ω) at k = 0. The latter is obtained by means of equation (48) as a function of

Sxx (0, ω, ω) and Syy(0, ω, ω):
∫

S

[Sxx (xS, ω, ω) − ux (0)u∗
x (x)] dxS

= ρsc〈|iωZ ′|2〉
[∣
∣Ũ

G

xx (0)
∣
∣
2
Sxx (0, ω, ω) +

∣
∣Ũ

G

xy(0)
∣
∣
2
Syy(0, ω, ω)

]

(56)

Figure 16. The correlation (a) Sxx (0, ω, ω) and (b) Syy (0, ω, ω) of the exciting field as obtained by means of the
Foldy ladder approximation (solid line) and a FEM-BEM calculation (dotted line).

21



Figure 17. The correlation length of the incoherent field component as obtained by means of the Foldy ladder
approximation (solid line) and the FEM-BEM calculation (dotted line).

where |	̃(0)|2 has been replaced by its unit value. The correlation length lxx is estimated from

the correlation surface Axx as:

lxx = 2

√

Axx

π
(57)

Figure 17 compares the correlation length as computed by means of equations (55) and

(57) with the correlation length of the wavefield in between the buildings from the FEM-BEM

calculation. Both calculations show a correlation length that approximately decreases with

the frequency as 1/ω. At low frequencies, the size of the city quarter in the deterministic

model is small compared to the wavelength in the soil and the result is not valid. Although

not visible on this figure, the correlation length as obtained from the approximate solution of

the Bethe–Salpeter equation reaches a local maximum at the first site resonance frequency.

Both calculations show a second local maximum at the second site resonance frequency of

0.8 Hz.

6.9 Time history of the coherent and incoherent field

The solution of the non-stationary Bethe–Salpeter equation in terms of S(0, ω, ω′) allows us

to recover the correlation function R(0, t, t ′) in the time domain by means of a double inverse

Fourier transform from ω, ω′ to t, t ′. An evaluation of the correlation function R(0, t, t ′) at

t = t ′ gives the mean square response in the time domain.

Figure 18 compares the time history of the square of the original site response with the

mean square response as obtained by the Foldy ladder approximation and the FEM-BEM

calculation. The peak value of the mean square response by the Foldy ladder approximation

(figure 18a) is slightly smaller than the original site response. Whereas the original site re-

sponse is attenuated due to absorption in the soil only, the attenuation of the mean square

response is due to absorption in the soil and by the buildings. At larger times, however,

the mean square response is found to be slightly larger than the original site response. The

results of the FEM-BEM calculation in figure 18 are closer to the original site response,

as expected due to the smaller contribution of scattered waves. As the mean square re-

sponse is only slightly larger than the original site response, the presence of the city does

not substantially increase the duration of the site response in the present case. For simi-

lar soil conditions, a clear increase of the signal duration has only been found in results

of 2D models [8, 9], where relatively high buildings were considered with a resonance

frequency close to the first site resonance frequency and a zero or low level of internal
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Figure 18. Time history of the square of the response at the soil’s surface due to a vertically incident SH wave for
the original site (grey line) and time history of the mean square response (a) 〈u2

x (t)〉 and (b) 〈u2
y (t)〉 as obtained by

the Foldy ladder approximation (solid line) and the FEM-BEM calculation (dotted line).

damping. A more plausible explanation for the long duration of the seismic records in Mex-

ico City is given by Shapiro et al. [30], who indicate that seismic records from the hill

zone of the Mexico Valley and sites far from the urbanized area also show a long duration

[30, 31].

The response in the direction ey (figure 18b) only consists of the waves scattered by the

buildings. Compared to the response in figure 18a, a time delay is observed. This is due to

the fact that, after a building is excited by an incident wave, a certain time is required for the

building to loose its energy by absorption and by radiation of waves into the soil. This results in

a time delay for the incoherent field, which results from the scattered waves. If only radiation

and absorption in the soil are accounted for, the dwell time tdwell = 1/ωssiζssi determines the

time scale on which energy is re-transmitted into the soil.

In order to investigate the role of the internal damping in the attenuation of the incoher-

ent field, the results have been calculated for the case where the damping ratio ζ of the

buildings equals zero. Figure 19 illustrates how the decay of the response in both horizon-

tal directions changes drastically. In the direction ex , the attenuation changes in time due

to the fact that the incoherent field builds up and attenuates more slowly than the coherent

field. The attenuation of the incoherent field is directly observed in figure 19b that shows

the response in the direction ey . The incoherent field attenuates more slowly than the mean

field or original site response due to the fact that the buildings temporarily store energy after

being excited, and energy is only lost during wave propagation by absorption in the soil. In

this case, an increase of the duration of the response is observed. The same effect would

slow down the transport of energy in the coupled city–soil system, as the time during which

energy is stored adds up to the mean free propagation time between two buildings. These

results show that resonant multiple wave scattering plays an important role in the seismic

response of a city if the buildings do not absorb energy. The assumption of lossless scatterers
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Figure 19. Time history of the square of the response at the soil’s surface due to a vertically incident SH wave for
the original site (grey line) and time history of the mean square response (a) 〈u2

x (t)〉 and (b) 〈u2
y (t)〉 as obtained by

the Foldy ladder approximation (solid line) for the case where the damping ratio ζ of the buildings equals zero.

is not justified, however, when the response of buildings during severe seismic events is

considered.

7. Conclusion

Within the frame of the present paper, the Dyson and Bethe–Salpeter equation for the config-

urationally averaged field and field correlation are applied to study the change of the seismic

site response by the presence of a city. The buildings are modelled as resonant scatterers that

are uniformly distributed at the surface of a deterministic, horizontally layered elastic half-

space that represents the soil. The distribution of the resonance frequencies of the buildings

is estimated from the distribution of the number of floors of the buildings.

The approximate solutions of the Dyson and Bethe–Salpeter equation are used to study the

site response due to a vertically incident SH wave for the case of Mexico City. In this partic-

ular case, the resonance frequencies of the buildings are higher than the first site resonance

frequency.

The effect of the city on the site response in this case is twofold. First, the mean or coherent

site response is modified. The mass of the buildings shifts the first site resonance frequency

to a lower value. Second, the presence of the city induces a spatial variability of the site

response. The multiple wave scattering that results from the interaction of the buildings and

the soil shifts a part of the energy of the coherent field to the incoherent field component. The

incoherent field is relatively small, however, and the resonant multiple wave scattering would

only play an important role in the seismic response of a city if the buildings act as lossless

scatterers. The solution is in close agreement with results from a numerical model of a city

quarter of limited size that fully accounts for multiple wave scattering between a large number

of buildings.
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Appendix A: Power balance for the scattering on a single building

The general power balance for the scattering on a single building is derived here from the

field equation (1) in the case of a single building �b resting on a purely elastic half-space �.

Multiplying equation (1) by the conjugate of the velocity −iωu, integrating over D = �b ∪�,

integrating by parts and taking the real part reads:

ωℑ
( ∫

Ŵ∞

t(u) · udS −
∫

D

{σ (u) : ǫ(u) − ρω2‖u‖2}dV

)

= 0 (A1)

Since dispersion is only taking place inside �b, the imaginary part of the second term vanishes

everywhere but on �b for the inner forces. Moreover, writing u as the sum of the incident and

the scattered field in the first term and noticing that:

ℑ
( ∫

Ŵ∞

t(ui ) · ui dS

)

= ℑ
( ∫

�

{σ (ui ) : ǫ(ui ) − ρω2‖u‖2}dV

)

= 0 (A2)

gives the following power balance:

−ℑ
( ∫

Ŵ∞

{t(ud ) · ui + t(ui ) · ud}dS

)

︸ ︷︷ ︸

Pout/ω=−Pin/ω

= ℑ
( ∫

Ŵ∞

t(ud ) · uddS

)

︸ ︷︷ ︸

Pd/ω

−ℑ
( ∫

�b

σ (u)ǫ(u)dV

)

︸ ︷︷ ︸

Pa/ω

(A3)

where Pin is the power brought by the incident field, Pd is the power lost by scattering and Pa

is the power lost by absorption inside the building. Noticing now that � is purely elastic the

reciprocity theorem shows that all these terms can be equivalently written on the soil–building

interface Ŵ with an outer normal convention for the soil:

Pout = ωℑ
( ∫

Ŵ

{t(ud ) · ui − t(ui ) · ud}dS

)

(A4)

Pd = −ωℑ
( ∫

Ŵ

t(ud ) · uddS

)

(A5)

Pa = ℑ
( ∫

Ŵ

t(u) · udS

)

(A6)

Once normalized by the power density of the incident field, Pout, Pd and Pa define the total,

the scattering and the absorption cross-sections, respectively.
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ratoire de Mécanique des Sols, Structures et Matériaux, Ecole Centrale de Paris.

25



[8] Tsogka, C. and Wirgin, A., 2003, Simulation of seismic response in an idealized city. Soil Dynamics and

Earthquake Engineering, 23, 391–402.
[9] Groby, J.-P., Tsogka, C. and Wirgin, A., 2005, Simulation of seismic response in a city-like environment. Soil

Dynamics and Earthquake Engineering, 25, 487–504.
[10] Boutin, C. and Roussillon, P., 2004, Assessment of the urbanization effect on seismic response. Bulletin of the

Seismological Society of America, 94, 251–268.
[11] Foldy, L. L., 1945, The multiple scattering of waves I. General theory of isotropic scattering by randomly

distributed scatterers. Physical Review, 67, 107–119.
[12] Waterman, P. C. and Truell, R., 1961, Multiple scattering of waves. Journal of Mathematical Physics, 2,

512–537.
[13] Lagendijk, A. and van Tiggelen, B. A., 1996, Resonant multiple scattering of light. Physics Reports, 270,

143–215.
[14] Frisch, U., 1966, La propagation des ondes en milieu aléatoire et les équations stochastiques. Annales
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