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Abstract

We study a diffusion with time-dependent random coeffigeihe diffusion coefficient is
allowed to degenerate. We prove an invariance principlewthis diffusion is supposed to be
controlled by another one with time independent coeffisient

1 Introduction

We want to establish an invariance principle for a diffugdagticle in a random flow described by
the following Stochastic Differential Equation (SDE)

¢ t
X;":x—k/ b(r, Xy, w) dr—l—/ o(r,X¥ w) dBy,
0 0

whereB is a d-dimensional Brownian motion andb are stationary random fields.is defined in
such a way that the generator at timef the diffusion coincides on smooth functions with

(1) L¥ = (1/2)e* @9 div, (72 @) a(t, 2, w) + H(t, z,w)]V, ).

Herea(t, z,w) is equal tooo™*(t,z,w). V and H are stationary random field¥; is bounded and
H antisymmetric.

We will then be in position to study the effective diffusion a macroscopic scale of the following
convection-diffusion equation

(2) Oz(t,z,w) = (1/2)Trace[al gz 2| (t, x,w) + b - Vy2(t, z,w),

with certain initial condition. We will prove that, in probgity with respect taw,
gii%z(t/sQ, x/e,w) =Z(t, x)

wherez is the solution of a deterministic equation

(3) 0z(t, x) = Trace[ AN, Z|(t, x).

A is a constant matrix - the matrix of so-called effective &ioafnts.
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Homogenization problems have been extensively studieldeirtase of periodic flows (cf[][1],
[L4], [L7], and many others). The study of random flows (§e&, [fL3], [24], and many others)
spread rapidly thanks to the techniques of ém¥ironment as seen from the partidigroduced
by Kipnis and Varadhan if][7], at least in the case of time peelent random flows. Recently,
there have been results going beyond these techniquesdaghef isotropic coefficients which are
small perturbations of Brownian motion (sg¢e][21]). But thare only a few works in the case of
space-time dependent random flows ($eb [10[ dr [11] for ie&tan the case = 1d). A quenched
version of the invariance principle is stated [h [2] proddidat the diffusion coefficient satisfies
a strong uniform non-degeneracy assumption. In this case,egularizing properties of the heat
kernel are widely used to face with the non-reversibilityttef underlying processes. Some results
stated in Markovian flows are also established jn [3[br [4].

The novelty of this work lies in the ergodic and regularizprgperties required on the coefficients,
which are not far from being minimal. The only restrictionttie control of the diffusion process
with an ergodic and time independent one. As a consequemisework includes the static case
where all the coefficients do not depend on time. Moreovesdhtassumptions allow the diffusion
matrix to degenerate. Typically it can degenerate in aed#iections or vanish on subsets of null
measure but cannot totally reduce to zero on an open sub&t. oHowever, considering such
strong degeneracies remains a quite open problem for rarstitionary coefficients (for recent
advances in the static periodic case, [16]).

We will outline now the main ideas of the proof. Our goal is lhow that the rescaled process

t/e? t/e?
5Xt°?€2 = 5/ b(r, X}, w) ds—i—a/ o(r, X, w) dB;
0 0

converges in law to a Brownian motion with a certain positbexariance matrix. The general
strategy (se€[]8]) consists in finding an approximation efftrst term on the right-hand side by a
family of martingales and then in applying the central lithikcorem for martingales. To find such
an approximation, we look at the environment as seen frorpdhigcle

Y = 1 xpw,

where{r; .} is a group of measure preserving transformation on a randedium(2 (see Defini-
tion[2.]). Thanks to the particular choice of the drift, aplit invariant measure can be found
for this Markov process. The ergodicity is ensured by thenggtoy of the diffusion coefficient
(see Assumptionfs 2.3 apd]2.4). The approximation that we tw&ind leads to study the equation
(A>0)

4) Auy — (L+ Dyuy=b

where L + D, coincides with the generator of the procé&sn a certain class of functions (the
term D, is due to the time evolution anfl is an unbounded operator on the medi{trassociated

to (l)). Here are arising the difficulties resulting from tti@e dependence. Due to the term
Dy, the Dirichlet form associated th + D; does not satisfy any sector condition (even weak).
However, for a suitable functiob, () can be solved with the help of an approximating sequefce
Dirichlet forms with weak sector condition. Then, usuahigiques used in the static case fall short
of establishing the so-called sublinear growth of the aiaes «,. To get round this difficulty,
regularizing properties of the heat kernel are used]in [&)] pr [L1]. Here the degeneracies of
the diffusion coefficient prevents us from using such argusie The strategy here consists in



separating the time and spatial evolutions (see Assumpti@n We introduce a new operatgr
whose coefficients do not depend on time. Then the spectrallaa linked to the normal operator
S + D, will be determining to establish the desired estimatesHersolutionv ) of the equation

vy — (§—|— Dt)'v)\ =b.

Finally, with perturbation methods, we show that thesevestes remain valid for the correctass.

2 Notations, Setup and Main Result

Let us first introduce a random medium

Definition 2.1. Let (2, G, 1) be a probability space andlr; ,; (t,z) € R x R?} a stochastically
continuous group of measure preserving transformationmgergodically ort:

1)VA € G, V(t,x) € R x RY, p(ry . A) = pu(A),

2) Ifforany (¢t,7) € R x R, 7, , A = Athenu(A) =0or 1,

3) For any measurable functiagion (2, G, i), the function(, z, w) — g(7 ,w) is measurable
on(R x R? x Q, B(R x RY) ® G).

In what follows we will use the bold type to denote a functigrfrom € into R (or more
generally intoR™, n > 1) and the unbold type(t, z,w) to denote the associated representation
mapping(t, z,w) — g(m w). The space of square integrable functiongQng, 1) is denoted by
L?(€2), the usual norm by - |, and the corresponding inner product(by - ). Then, the operators
on L?(Q) defined byT; ,g(w) = g(7:.w) form a strongly continuous group of unitary maps in
L?(Q). Each functiong in L?(Q) defines in this way a stationary ergodic random fieldRr .
The group possessést 1 generators defined far= 1, ..., d, by

0 0
Dz.f = 8—T0,x.f’(t7ar):07 and th = aﬂﬁf‘(t,x):m

Ty

which are closed and densely defined. Denot€ liye dense subset &f(2) defined by
C= Span{f*gp; fe LQ(Q), p € Cfo(]RdH)}, with fx*p(w) = / f(reaw)e(t, x)dt de,
Rd+1

whereC2°(R¥+1) is the set of smooth functions @&f*! with a compact support. Remark titat-
Dom(D;) andD;(f x¢) = —f = g—i. This last quantity is also equal 10; f x ¢ if f € Dom(D;).

Consider now the measurable functians Q — R4 & : Q — R4 H . O — R*4 gnd
V : Q — R and assume thd is antisymmetric. Define = oo* anda = oo ™. The functionV’
does not depend on time, that meattss R, 7; oV = V.

Assumption 2.2. (Regularity of the coefficients)
e Assume tha\t%i,j, k.l=1,...,d, ai;, 'dl-j, V, Hij, Dlaij and Dl’dij S Dom(Dk).
e Define, fori =1, ... ,d,

d
biw) = Y (3 D) — ai D3V (@) + 3 D Hig (),
(5) o 1
biw) =Y (3D58:5(w) — @i D;V (w)),



and assume that the applicatiofis z) — b;(t,z,w), (t,z) — bi(t,z,w), (t,2) — o(t,z,w)
are globally Lipschitz. Moreover, the coefficients a, b, o, V', H are uniformly bounded by a
constantK'. (In particular, this ensures existence and uniquenessgiflal solution of SDES).)

Here is the main assumption of this paper

Assumption 2.3. (Control of the coefficients)

e o does not depend on time (i¥. € R, T,o = o) and H, a € Dom(D;). As a consequence, the
matrix a does not depend on time either.

e There exist five positive constants M, C¥, C4, C¢ such thaty a.s.,

(6) ma < a < Ma,

(7) |H| < Ci'a, |DiH|<Cja and |Da|l< Cja,

where| A| stands for the symmetric positive square rootofi.e. |A| =v/— A2,

For instance, if the matrix: is uniformly elliptic and boundeds can be chosen as equal to the
identity matrixId and then[(7}= H, D,H andD,a € L*>(Q).
Let us now set out the ergodic properties of this framework

Assumption 2.4. (Ergodicity) Let us consider the operatdf = (1/2)e?V ¢ .| Di(e"?Va;;D; )
with domainC. From Asgumptio@.z, we can consider its Friegrich extmnﬁiee [b, Ch. 3, Sect.
3]) which is still denotedS. Assume that each functighe Dom(.S) satisfyingS f = 0 must beu
almost surely equal to some function that is invariant urgfgce translations.

Even if it means adding t& a constant (and this does not change the #riftee [(p)), we make
the assumption thaf e~2V du = 1. Thus we can define a new probability measurédoy

dr(w) = e V@ du(w).

We now consider a standardimensional Brownian motion defined on a probability space
(€Y, F,1P) (the medium and the Brownian motion are mutually indepet)damd the diffusions in
random medium given as the solutions of the following Ststihdifferential Equations (SDE)

t t

th:x—k/ b(r, X;, w) dr—l—/ o(r, Xy, w) dBy,

(8) . . L

th:x—k/ b(X;”,w)dr—F/ (Xy,w)dB,.
0 0

The main result of this paper is stated as follows

Theorem 2.5. The law of the rescaled procesX;?g2 converges in probability (with respect 9
to the law of a Brownian motion with a certain covariance mat (seedg)).



3 Examples

There are many ways to ensure the validity of Assulnp@)(ZrAparticular, it is satisfied when,
for almost allw € Q, the R%-valued Markov proces&“, whose generator coincides on smooth

functions with
€2V(x,w)

- 5 Div, <€72V(m’w)a($,w)vm ) ;

~w

is irreducible in the following sense. Suppose that, stgrfrom any point ofR?, the process
reaches each subset®f of non-null Lebesgue measure in finite time. That means teaietexists
a measurable subsat ¢ Q with p(N) = 0 such thatvw € Q \ N, for each measurable subdet
of R% with A (B) > 0, Vo € R%, 3t > 0,

9) P, (fc;v c B) > 0.

This can be proved as if J11] section 3 or|in][14] chapter 2 Téea2.1, in studying th€-valued

Markov proces¥;(w) = 7, 3.w, Whose generator coincides 6iwith S. As an easy consequence,
st

if the diffusion coefficient is uniformly elliptic or satisfies a strong Hormander cdiudi (see [P]
for further details), then estimates on the transition diessof the proces§( « ensure[(9).

Let us now tackle the issue of constructing examples thatodsatisfy any uniform ellipticity
assumption or even strong Hoérmander condition. In whédviad, two examples are given. The first
one deals with periodic coefficients. The second one is arandedium with a random chesshoard
structure and thereby does not reduce to the periodic case.

3.1 A periodic example

Let us construct a periodic example on the tditiswhere the diffusion matrix reduces to zero on
a certain subset with null Lebesgue measure. We define atidegpendent matrix-valued function

o(t,x,y) = (1 — cos(x))(1 — cos(y)) < é (1) > .

For simplicity, we choos&” = H(z,y) = 0. Thanks to the (not uniform!) ellipticity of the
diffusion coefficient inside the celC =|0, 27[x]0, 27, it is not very difficult to see that[|(9) is
satisfied. Indeed, each subggtc [0;27]? with a strictly positive Lebesgue measure necessarily
satisfies\ ., (B N C) > 0. As explained above, this is sufficient to ensure AssumRign Let us
now focus on Assumption 2.3. The strategy consists in chgassmooth functio/ : T3 — R2*?
satisfyinga~!'Id < UU*(t,z,y) < ald for somea > 0, and then in definingr(t,z,y) =
o(t,xz,y)U(t,z,y), for which Assumptio 2}3 is easily checked.

3.2 An example on chessboard structures

Let us now explain how to construct a random medium with dhessl structures. Gived >

1, consider a sequendex, ... x,)) (k... k,)cz¢ Of independant Bernouilli random variables with
parametepp <]0,1[ and define a process as follows: for each: € R?, there exists a unique
(k1,...,kq) € Z% such thatr belongs to the cubf;, ky + 1[x --- x [kgq, kg + 1[. Then define
the process; : R — R by: Vo € RY, 7, = E(ky,..ky)- The law of this process is invariant
and ergodic with respect t“ translations. Roughly speaking, we are drawingr@imensional
chessboard ofR?, for which we are coloring each cube of the chessboard eithbtack with



probability p or in white with probabilityl — p. It remains to make the process invariant ungér
translations. To this purpose, choose a uniform varidblen the cubg0, 1[¢ independent of the
a random change of tﬁe’origin of the chessboard. It can bé&etdhat we get a stationary ergodic
random field onR?. Let us now tackle the issue of the regularity of the trajeeso Consider
a C>°(R%) function ¢ with a compact and very small support (for instance, inalugethe ball
B(0,1/4)) and define a new procegs = [p47,¢(x — y)dy = 7 * p(z), which is a stationary
ergodic random process with smooth trajectories. Thatasigin for a general framework.

Let us now consider the process;,) = (3, ay,,02,)icr o—(o,,20)cr?, Where the three
processesy', o and § are mutually independent and constructed as prescribedeabldence
{wi2); (t, ) € R x R?} is an ergodic stationary process and we can consider themantedium
Q) = O(R x R?%;R3) equipped with the probability law of this process.

We define the matrie (w) = [ (1) 0?1 } andV = 0 (or any bounded function of the random
0

field o). We can choose any matrix-valued functibh: Q — R2?*2 such that7U* is uniformly
elliptic and bounded, and then we set= gU. It can be proved that Assumpti¢n]2.4 is satisfied.
Actually, the ergodicity property fo# is very intuitive. Indeed, the matrix(-, w) degenerates only
on some stripes (the white ones), and in fact only on a paraoh @f them (depending on the
support ofy), and only along thes-axis direction: while lying on the degenerating part of aterh
stripe, the diffusion associated (b/2) Zijzl 0;(a; j0;) can only move along thg;-axis direc-
tion. Nevertheless, with probability, the process encounters a black stripe sooner or laterybeca
the parametep belongs tgo, 1[): it thus manages to move up and down and to reach every subset
of the space. Ergodicity follows. Rigorous arguments angdwer left to the reader.

We can also consider a non-null stream matfx For instance the matrix-valued function

N 0 (Oéé)QﬁQ . .
H(w) = —(a})260 0 , fits Assumptior] 2]3.

4 Environment as seen from the particle

We now look at theenvironments as seen from the partielssociated to the process&sand X :
they both are?-valued Markov processes and are defined by

(20) ﬁ(w) and Yi(w) = 7 xew,

= T Xe%
where the processes® and X* both starts from the poirt € R%. An easy computation proves
that the generators of these Markov processes respectioglgide ornC with S + D; and L + Dy,
whereL is defined orC by

2V 4 v
(11) L= Z D;(e”*V[a + HJ;;D;).
i,7=1
Hencer is an invariant measure for both processes (see Rl$o [13})h &sociated semigroups

thus extend continuously tb?(2, 7). We should point out that the invariant measure need not be
unique.



5 Poisson’s equation

The aim of this section is, at first, to find a solutiag of the resolvent equation that can formally
be rewritten (a rigorous definition of each term is givenrgter A > 0, as:

(12) Auy — (L + Dt)uA = h.

Since the associated Dirichlet form satisfies no sectoritondeven weak), existence and regu-
larity of such a solution is generally a tricky work, espdgian considering degeneracies both in
time and in space. However, for a suitable right-hand shde gquation can be solved with the help
of an approximating sequence of Dirichlet forms satisfyéngeak sector condition. Thereafter we
study the asymptotic behaviour of the solutiegasA — 0.

5.1 Setup

Let us denote byP,); the semigroup orL.2(£2, ) generated by the procedsand by (P} ), its

adjoint operator. Let us also denote (¥, ); the self-adjoint semigroup oh?(Q, 7) generated by

the procesy;(w) = o.xww- Its generator isS. From the time independence of the coefficiehts
7t ~ _ —

anda, it is readily seen that, thatf € L*(Q, ), P.f = TroP.f = P.T;0f. As a consequence,

Pr=T_oP.f = BT ;of, insuch away that

ﬁt(ﬁt*f) - ﬁt*(ﬁtf)

The generator ilL2(Q, 7) of (P,);, wrongly denoted byS + D,], is then normal (see Theorem
13.38 in [IP]) so that we can find a spectral resolution of treaiity £ on the Borelian subsets of
R, x R such that

—[g'—i—Dt] :/R XR(x—i—iy) E(dx,dy).

Actually, we have—S = [, @ E(de,dy), and —D; = [, iy E(dz,dy). Indeed,S
and fR+XR x E(dz, dy) are both self-adjoint and coincide ¢n From [§, Ch. 1, Sect. 3], they are
equal. The same arguments hold m[ande+XR iy E(dz, dy).

For anyep, 9 € L%(12), denote byE,, ., the measure defined W, ., = (E¢, ). From now on,
denote by(., . ), the usual inner product ihi?(€2, 7). For anyy, v € C, define

(13) (o)1 = /R @ Bgylda.dy) = ~(,50):

and|j¢ll1 =+/{p,e)1. By virtue of Assumption[{6), this semi-norm is equivalem @ to the

semi-norm defined by/— (¢, S¢)a,
(14) mlleli < = (e, Se)2 < Mlle]1,

whereS is the Friedrich extension of the operator definedduy (1/2)e*V' 3~ . D;(e=*V a;; D; ).
Let IF (respectivelyH) be the Hilbert space that is the closureldh L?(2) with respect to the
inner produck (resp.x) defined orC by

5(907 ¢) - (¢7¢)2 + <(107 ¢>1 + (Dt907Dt¢)2
(resp"‘i(@v ¢) - ((107 'l,b)g + <(107 ¢>1)



Define the spacdD as the closure ifL2(Q),]. ;) of the subspacd(—5)/2p; € C}. For
any ¢ € C, define®((—5)"%¢) = o*D,p € (L*(2))* and note tha{®((—S)/%¢)|3 =
—(¢, Sp)2. From (1H),® can be extended to the whole spdbeand this extension is a linear
isomorphism froniD into a closed subset ¢.%(2))?. Hence, for each function € H, we define
Vou = &((—5)/2u) and this stands, in a way, for the gradiento@long the directior.

For eachf € L?(Q) satisfyinngM]R % Ey¢ ¢(dz,dy) < oo, we define

1
(15) £, = / — By g(dz, dy).
Ry xR T

We point out that| f||-1 < oo if and only if there exists®' € R such that for anypy € C,
(f,p)2 < CJpll1. For such a functionf, || f||-1 also matches the smallest satisfying this
inequality. Remark thaff||_1 < oo implies7(f) = 0. Denote byH _; the closure ofL?(Q2) in
H* (topological dual oftl) with respect to the norr || ;.
Let us now focus on the antisymmetric p#&ft We have

(16) |(u, H)| < (u, |H|u)"? (v, | H|v)"? < CH (u, au)"/? (v, av)"/?.

The second inequality follows fronh](7) and the first one is megal fact of linear algebra. We
deduce

Ve, €C,  (1/2)(H Dup, Duotp)2 < O [[l1 101
Thus there exists an antisymmetric continuous bilineanfdt; onID x ID such that
(17) Vo, €C,  (1/2)(HDyp, Dotp)s = Tr((=5) 2, (=5)"/*4).

Likewise, with the help of Assumptioﬂs, we define the ammbus bilinear formsr",, 0,1,
0Ty, N\sTy, A, T,onID x ID C L?(Q,7) x L?(Q, 7) as follows: Ve, € C,

(1/2)(aDatp, Datp)2 = Tu((—5) %, (—5)?4),
(1/2)(DiaDyep, D ¢>2: (<—§>1/2 L (=9)?4p),
(1/2)(DeH Dyp, Do)y = 0T (=), (—8)*4p),
(1/2)(As@Dyp, Datp)s = AT ((—5) 2 <S>1/2¢)
(1/2)(AsHDyp, Dytp) = A TH( 52 )1/21/’),

where, for any € R*, A, denotes thd.?-continuous difference operator (remind of the definition
of T ¢ in section[R):

(18) Ve L*(Q), Ad(f)=(Tsof — f)/s.

From Assumptioth 2|3, the norms of the forthsT", andA T are uniformly bounded with respect
to s € R* and the forms are weakly convergent respectively towaids ando,T'f;.

Now, denote by the subspace dfl_; whose elements satisfy the conditiaf¢’ > 0,Vs > 0 and
Vo € C, (h,Asp)_11 < C||p|l1. For anyh € H, the smallest that satisfies such a condition is
denoted|h||r. ThenH is closed for the nornf} || = || ||=1 + || ||z

Finally, let us now extend the operatdr defined onC by ({L]). For any\ > 0, consider the
continuous bilinear fornB, onH x H that coincides o x C with

Vo, €C, Ba(e, 1) = Mg, ¥)2 + [T + Til((—5) 20, (=5)24).



Thanks to Assumptiop 2.3 and the antisymmetrybfthis form is clearly coercive. Thus it defines
a strongly continuous resolvent operator and consequéehdygeneratoL associated to this resol-
vent operator. More precisely € H belongs tdDom (L) if and only if By (¢, -) is L2-continuous.
In this case, there exisfg € L%(Q2) such that3) (¢, ) = (f, )2 and Ly is equal tof — A\e. It can
be proved that this definition is independent\of- 0 (see [1R, Ch. 1, Sect. 2] for further details).
Let us additionally mention that the adjoint operafr of L in L?(, ) can also be described
throughBy. Indeed,Dom(L*) = {¢ € H;B\(-, ) is L?(Q2)-continuous}. If ¢ € Dom(L*),
there existsf € L2(€2) such that3, (-, ¢) = (f, )2 andL* is equal tof — \ep.

Remark 5.2. For each functionp € C C H, the applicationL¢ can be viewed as a function of
H_1. Indeedyy € C, (L, %)z = —[To+TH|((—5)"p, (=8)"?9) < [M+Cf |l [l%]1-
Hence, the applicatiop — L € H_; can be extended to the whole spdteso that, for each
functionu € H, we can defindu as an element dfl_; even ifu ¢ Dom(L).

5.3 Existence of a solution:

This section is devoted to proving existence of solutionsapfation [(1]2) for a suitable right-hand
side. The difficulty lies in the strong degeneracy of the eis¢ed Dirichlet form. It satisfies no
sector condition, even weak. However, it can be approxichbjea family of Dirichlet forms with
weak sector condition.

Foranyf € {0;1}, A > 0 andd > 0, definer’\ 5 as the (non-symmetric) bilinear continuous form
onF x IF that coincides o€ x C with 7

(19) B 5(¢.%) = A, ¥)2+(1/2)([a+ H| Dy, Dptp)s — 0(Dyp, )2+ (5/2)(Desp, Dyr)s.

In what follows, the parametér(resp.d) is omitted each time that it is equal 1qresp.0). So the
forms Bj , B§’O andBj , are respectively simply denoted 84 5, Bf andB,.

Proposition 5.4. Suppose thahk € L%(Q2) N Dom(D;) andd € H. Then, for any) € {0;1} and
A > 0, there exists a unique solutian, € F of the equatiomuy — Luy — 6 D;uy = h +d, in the
sense thatyp € F, BY(uy, p) = (h, )2 + (d, p)_1,1. Moreover,D;u, € H and

(202) Mual3 +mlluallf < [h[3/A + [|d]2y /m,

(20b) A Dy [3+ml||Dews |} < |Deh|3/A+2]|dl7/m+2(C5+C3")? (Ih?/A+1dl2 1 /m) fm?.

In the casal € L%(Q), u) € Dom(L).
Finally, u, is the strong limit inH as¢é goes td) of the sequenceu) 5). s, Whereu, s is the unique
solution of the equationvy € T, Bié(um, ¢) = (h, )2+ (d,v)_1,1, and the family D;u 5)5
is bounded in.%(9).

Before proving this result, we first investigate the casemétindependent coefficients. On the
first side, this is a good starting point for understandirg fhoof in the time dependent case and

this will bring out the difficulties arising with the time depdency. On the other side, this result is
needed in the last section of this paper in order to proveigheniess of the process.

Proposition 5.5. Suppose thak € L?(Q2) Then, for any\ > 0, there exists a unique solution
w), € HN Dom(S) of the equation

(21) )\w,\ — Sw)\ = h.



Proof : The main tool of this proof is the Lax-Milgram theorem. Let> 0 be fixed. For any
@, € C, consider the bilinear form off x C defined by

D)\(QD,’I,D) = )\(9071!7)2 - (907 S'lnb)Q

Thanks to Assumptiof 2.3, this form is clearly coercive andtinuous onC x C so that it can

be extended to the whole spaBiex H. The extension is also coercive and continuous. Now, the
applicationy — (h, )2 is obviously continuous ofil so that the Lax-Milgram theorem applies.
It allows to construct a strongly continuous resolvent eisdéed to\ — S by way of classical tools
(see [, Ch. 1, Sect. 3] of [12, Ch. 1, Sect. 2] for further itigta O

Proof of the Proposition [5.4: Since the casé = 0 andf = 1 are quite similar, we only give the
proof foré = 1. The existence of a solution relies on the Lax-Milgram teeomagain. However,
the considered bilinear fornp (19) with= 0 is not coercive orf because of the time differential
term (D;p, ). The strategy consists in making it coercive by adding a tef2)(D;p, D))
(6 > 0) and then letting) go to0. Notice that forp, 1 € C, we have

([)‘ —L— Dt - (5/2)Dt2](107¢)2 - BA,5(L)07¢)'

The continuity of By s onC x C C F x F follows from (@) and [(16). As a result of the time-
independence oV, for anye € C, we have(p, D;p)s = 0. As a consequence, for agy € C,

(22) min()\, 6/27 m)g(SDv 90) < Bk,é((pa 90)'

HenceB, ; defines a continuous coercive bilinear formlorF. The Lax-Milgram theorem applies
and provides us with a solutiam, s of the equation

(23) Vo €C, Bys(urs,p) = (h, @)+ (d,¢)_11.

In particular, choosings = u, s in (£3), we get the bound

(24) Nngf3 + mllus sl + 8| Druun o3 < [RE/A+ ]2 /m.

Let us now to pass to the limit @sgoes to0 to obtain a solutions) € [ of the equation
(25) Ve eC, Ba(ur, o) =(h,p)2+(d,p)-1,1.

We are faced with the problem of controlliig,u, s asé goes ta). The idea lies in differentiating
equation [2B) with respect to the time variable in order tatglish an equation satisfied By, s,
from which estimates will be derived. So, we define for eachdix,§ > 0, vs = Asuy s (the
parameters\, § of v, are temporarily omitted in order to simplify the notatiores)d we easily
check thatw, solves the following equation

(26) Vo € F, By s(vs, ) = Fs(p),

whereF', is a continuous linear form df defined V¢ € IF, by

(27) Fi(p) = (Ash, )2 — (d, A_sp) 11 — [ATo + AT y]((=8)* Ty punr s, (=5) ).
From Assumptiorf 2}3, it is readily seen that

Fy(¢) < |Dihlalelz + [dlzllells + (CF + C3) w1l
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for anys € R*. Therefore
(28)  Bs(vs,v5) = Fis(vs) < |Dihla|vslo + [ldl|7l|ll + (CF + O3 [unslli]|vs1-

Using estimate[ (24) i (8), we have
(29)
Mvsl3+ml|vsl[t + 8| Drvsl5 < | Dihf3/A+2lld]F/m+2(C5 + 3 (I /A+ || d][2 /m) /m?.

So, the family(vs)scr+ is bounded irff. Even if it means extracting a subsequence (still denoted
by (vs)ser+), (vs)ser+ converges weakly ifi towards some functiom, € F ass goes to). On
the other hand, since, s € F C Dom(D;), (vs)ser+ also converges strongly ih?(£2) towards
Dyuy 5, S0 thatDyuy s € F and satisfies bound (29) insteadwf. In particular, (Diu) )s=o iS
bounded irHl independently o6 > 0 and so iSu, 5)5-0 in F. Thereby, there exists a subsequence
(uns, Diuy5)s>0 C F x H, still indexed withé > 0, that converges weakly i x H towards
(uy, Diuy) € F x Hasé — 0. In particular,d Dyuy s — 0in L?(2) asé goes to). So we are in
position to pass to the limit asgoes to0 in (23). Obviouslyu, is a solution of [25). Uniqueness
of the weak limit raises no particular difficulty since two akelimits ) andw), satisfyVey € F,

By (uy — wy, ) = 0. It just remains to choosg = u, — w,. (204) and[(2Qb) respectively result
from @4) and [29). Ifd € L?(2), note thatuy € F C HandB,(uy, ) = (h +d + Dyuy,-)s is
L?-continuous so that) € Dom(L).

Let us now investigate the strong convergence of (u) ), s towardsuy asé goes to0. Let us
make the difference between ]23) apd (25) and chgoseu, s — u,, this yields

Bys(uns —ux,uys — uy) = (0/2)(Dyuy, Dyuy — Dyuy )2,
and this latter quantity converges @oasé goes to0 because of the boundedness of the family
(|Diuys)2)as- (B2) allows to conclude. O

5.6 Control of the solution

Our goal is now to determine the asymptotic behaviour) g®es to0, of the solutionu of the
equation (in the sense of Propositfon] 5.4)

(30) ub — Lul, — Dyul = b;.

More precisely, we aim at proving thatu} |3 — 0 and that(Vo ), converges i L?(2))? asA
goes to0. Our strategy consists in showing that the operater L — D is just a perturbation of
the operaton — S — Dy, so that the study can be reduced to studying the solutiomeoéguation

)\’l))\ - S”v)\ - Dt’l))\ = b)\,

whereb, will be defined thereafter but possesses a strong limitlin. This latter equation is
more convenient to study because the operafoasd D; can be viewed through the same spectral
decomposition. Thus, the purpose of this section is to ptioedollowing Proposition

Proposition 5.7. Let (b)) >0 be a family of functions ifil_; N L2(£2) which is strongly convergent
in H_; to by. Suppose that there exists a const@nwhich does not depend ov) such that’/s > 0
andVe € C,

(bx, Asp)2 < Cllp]r-
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Then the solutione), € F of the equatiomu, — Luy — D;uy, = by (in the sense of Proposition
B.4) satisfies:

o there existg) € ID such that(—§)1/2u>\ — masAgoestainID,

e \uyl3 — 0as A goes ta.

As for the existence of the solution, let us first investightetime independent case by way of
introduction.

Proposition 5.8. Leth be inH_; N L2(Q). For any\ > 0, letw), be defined as the unique solution
in H of the equation
)\w)\ - S’w)\ =h

Then\|w, |2 — 0 and there exist§ < (L?(2))? such thaf Vowy — ¢|]» — 0 as\ goes ta0.

Proof : Keeping the notations of Propositifn]5:b, solves the equationzy € H, Dy(w,, @) =
(h,)2. Choosingy = w, and usingh € H_;, we havel|lw,|3 + m|w,|F < ||h|*,/m.
Thus, even if it means extracting a subsequence, we cag find.2(2) such that((—S)"/2wy),
converges weakly ii?(Q2) towardsg as\ tends to). Moreover(\w ), clearly converges t0 in

L?(€2). For anyy € H, passing to the limit as goes to zero in the expression

(31) Aw, )2 + Ta((=8) 2wy, (=8)*¢)s = Dr(wy, @) = (B, 9)s,

we obtainT, (g, (—§)1/2<p)2 = (h,¥)>. Making the difference between the last two equalities,
subtractingl’, ((—S)'/?w) — g, g) and then choosing-S)"/?¢ = (~8)"/?w, — g, we obtain

Nwil3 + Ta((—8)?wy — g, (=8) 2wy — g) = T4 ((—5)*wy - g,9).

Due to the weak convergence (c(f—g)l/QwA)A to g in ID, the right-hand side converges G@as
A goes to0. So does the left-hand side. Sin€g defines an inner product db equivalent to
the canonical one (Assumptign ]2.3), this completes thefpsbthe strong convergence up to a
subsequence. Uniqueness of the weak limit is clear sincev®ak limitsg andg’ € ID satisfy:
Vo € C, Tulg — g',(—8)/2p) = 0. Finally, since the convergence in of ((—S)Y/2w,), is
equivalent to the convergence 077w ), in (L?(Q2))¢, we complete the proof. O

Proposition 5.9. Let (b))>o be a family of functions ifil_; that is strongly convergent th, in
H_;. Let(vy)r>o be a family of functions it that solves the equation (for any > 0) Avy —
Svy, — Dyvy = b, in the following sense,

(32) Ve €F, Avr )2+ (va,9)1 — (Do, )2 = (b, p)2.
Then there existg € ID such that\|v,|2 — 0 and|(—S)"/2v, — 5], — 0 as\ goes ta.

Proof: From Lemma[5.50 and Lemnja §.11 below, we can assume thatnjok a> 0, b, €
L2(Q) N Dom(D,) NH_; and converges thy € H_,. Thenv, € Dom(S) (see Propositioh 5.4).
Remind that-S = Ja, wx  E(dw,dy) and=D; = [, iy E(dz,dy). Choosingp = v in
(B2), we have

(33) Aoals + [[oallf = (br,vy)2 < Cllva|l < C?,
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whereC' = sup,.q [|ba||=1. Thus we can finck € ID and a subsequence, still denoted(by).,
such that<(—f§‘)1/2m)A converges weakly if.?(Q) to h.
Now we claimsupy g [|Ava|—1 < co andsupy~q || Diva| -1 < o0.

Aoy, @)a] = | AA+ 2 +iy) " dEp, o
R+><R

22 1/2 1/2
dE dE
(/ﬂwxwmuyﬂ o) UMR”C o)

. 1/2
swp ([ B ) el
A>0 R+><R

= sup [[baf-1lellr
A>0

IN

IN

SinceD;vy = A\vy—Swvy—by and||Svy||_1 < ||vall1, Divy € H_j andsupyg || Dy -1 < oo.
Then there exists a bounded famil),>o of continuous linear forms o> c L?(92) such that
VA > 0,Yp € C, Fy\((—8)Y%p) = (Dswy,p)2. Moreover, from[[33)(\v, ), converges td
in L2(Q) so thatyy € C
FA(=8)'"2@) = (wx @)z + ((=8)2vx, (=8)%0)s — (b, )11
— (B, (=8)"?¢)s — (bo, ) 1.1

as A goes to0. Hence,(F'y),>o is weakly convergent iiD* (topological dual oflD) to a limit
denoted byFy.
We now aim at proving?y(h) = 0. Using the antisymmetry of the operatby

FA((—E)UQUM) = (Do, vp)2 = —(Dyoyvy)2 = —Fu((—g)lﬂvk)a

we pass to the limit aa goes to) and obtainFO((—S’)l/?vu) = —F,(h). It just remains to pass
to the limit asu goes ta), it yields Fo(h) = —Fy(h) = 0.

Let us investigate now the limit equation, which connegts h andb,. First remind of [33), which

states\|v, |3 < C? and as a consequeng@, — 0 as\ goes to). Then, we are in a position to
pass to the limit as tends ta) in ), and this yields, for any € I,

(34) (h, (—=8)"2@); — Fo((—8)"2p) = (bo, )11

Let us now establish the uniqueness of the weak limit..ahdh’ be two possible weak limits of
two subsequences b)), andF,F, the corresponding linear forms defined as described above.
Then (3%) provides us with he following equality:

(35) Vo €F, (h—I,(=8)"p)=[Fo - F|((-5)"¢).
Using the antisymmetry of the operatby again, we obtain
FA((=8)"2v,) = (D, vp)a = =(Diwy, v3)2 = —Fu((=8)?v)).

Let us first pass to the limit as goes ta) along the first subsequence, and then pass to the limit as
1 goes ta) along the second subsequence, we obtain

Fo(h') = —F(h).

13



Now, it just remains to choose-S)!/2¢ = h — k' in (BF) and this yields
|h = R'[3 = —Fo(h') — Fy(h) = 0.
Hence the weak convergence holds for the whole family. Letawstackle the strong convergence

of (vy)a. Choosingy = v, in B4), usingFy(k) = 0 and passing to the limit & goes to0, this
yields

(36) (h,h)y = ;%(bmm%l,l = ;ig%(bmvv—l,l = lim [Aval3 + [loall]-

In particular,|h|y = limy_g |(—5)'/2v,],. Thus, the convergence of the norms implies the strong

convergence of the sequenfe-S)'/?vy ), to h in L?(Q). As a bypass,[($6) also implies the
convergence ofA|v,3), to 0. O

Lemma 5.10. For each functionb € H_, there exists a familyb, ), of functions inL?(Q) N
Dom(D;) NH_; such that|b — by||—; converges t® as A goes ta).

Proof: Let us consider the solutiow, € H of the equatiomw ), — g’w,\ = b (see Proposition
B.5). Then, for anyp € C,

(A\wy, @)y = / A +2) "t dEp o (dz, dy)
R+ xR

B B 1/2
< ([, W) dBus(drdy) el
Rt xR

Sinceb € H_1, we havefRWRm*l dEyp(dx,dy) < oo. Thus the Lebesgue theorem ensures that
the above integral convergesas \ goes to). Hence,||\w,||—; converges td as\ goes to0.
We can now choose a familyp, ), in C such that|w, — ¢,|l1 — 0 as goes td). Finally,

15— Seall-1 < 16— Swall-1 + [|Swx — Syl -1 < [Awn]|l-1 + [wxr = @l
also converges t as) tends to0 and, clearly,Sy, € L2(€2) N Dom(D;). O

Lemma 5.11. Let (b)), and (b)), be two families ifH_; such that|b, — b)||-; — 0 as\ goes
to 0. Let(v,), and (v)), two families inF solving equation(82) with respectivelyb, and ) as
right-hand side. The|v, — v} |3 + |lva — v} ||} — 0 as\ goes to0.

Proof: Making the difference between the two equations correspgniah v, andv’, this yields
foranyyp € F,

A(wy = vy, )2 + (vr — V), @)1 — (Drox — Dyv), )2 = (by — by, ) —11.

Choosingp = v, — v}, we easily deduca|v, — v} |3 + [lvy — v} |1 < [|bx — b} |l-1. The result
follows. O

Let us now investigate the general case, that means thamvetaéplacingg‘ by L in Proposi-
tion 5.9. We first set out the main ideas of the proof. Let umty write

A—L-D, = A\—S—-D;—(L-S)
= (I-[L-8S]A-8-D) ™ Y(A\-85-Dy)
If we can prove tha[L — .§] (A— S — D;)~! defines a strictly contractive operator, then we will be in
position to inverse it. It turns out that it is actually boeddout not strictly contractive. To overcome

this difficulty, we introduce a small paramet®to make the operataf[L — S](A — S — D;)~"
strictly contractive. Then, an iteration procedure pravedé can be chosen equal to
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Proposition 5.12. Let (b))~ be a family of functions ifil_; that is strongly convergent iH_
to someby € H_; and bounded irt{. Then there exist§ > 0 such that, for any < § < ég, for
any A > 0, the solution (in the sense of Propositipn] 5u4) € F (with D;u, € H) of the equation

)\’U,)\ — 5Lu>\ — (1 — (5)5"11,)\ — Dt’U)\ = b)\,
satisfies:In € L?(Q) such that\[u,|3 + [(—8)/2uy — nlz — 0 asA goes to.

Proof: Consider the operatd?, : H — H defined byP,(b) = (L — S)(A — S — D;)~(b). Note
that Propositiofi 5]4 applies for all coefficierntsand H satisfying Assumptiof 3.3. In particular, it
works fora = a andH = 0, so thatP, is well defined. Lemmpa5.]L3 below proves tha, ||—.+

is bounded with a norm that only depends on the constahts' | C¢ andC! (see Assumption
B-3). Therefore, we can choosg > 0 such that||dy Py [[—» < 1 (actuallydy < [2(2 4+ M +
CHY1+Cg+C)] ™). Foro < 6 < &, we can then define the operafbr- 6P, ~! : H — H.
Note that(A — L — (1 = 8)S — D) = (A= 8 — D)~ '[I - 6PA]71. Thanks to Proposition
B3, it is sufficient to prove thall — 5P| ' (by) is convergent ifH_;. But [I — 6P,] ' (by) =
5% ,(6Py)"(by). Lemma[5.13 ensures that the sum converges uniformly withe tox > 0.

It just remains to prove that, for each fixad> 0, ((6Py)"(by))x converges irfH_;. This can be
proved by induction om € N. Forn = 0, (by)a>0 iS convergent by assumption. Then, if the
family ((6P5)"(bx))x is convergent i1, we can apply Propositidn 5.9 to ensure that the family
((=8)Y2(A — 8§ — D) H(6Py)" (bx)]), converges inL?(Q2). This implies the convergence of
(((5P)\)n+1(b)\)))\ inH_;. O

Lemma 5.13. The norms ofy : (H,||-||—1) — (H_q, || -||-1) and Py : (H, || lln) — (H, |- %)
are both bounded from above b2 + M + CH)(1 + C¢ + CI).

Proof : Fix b € H. Letu, € F (with D;u) € H) be the solution of the equation (apply Proposition
Ewitha: a, H=0,h=0andm =1)

Ve €F,  Aun, )2+ (ur, o)1 — (Diun, )2 = (b, )11
It derives from [2Qa) thak|u, |3 + |[u]|? < ||b]|?, in such a way that
IPA®)[|-1 = (L = S)usll-1 < (1+ M +Cf)|luslh < (1+ M+ Cf)[b]|-1.

This proves the first point.
Consider nows € F with D;u € H. An easy computation proves that, for ang R* andy € C,

Ta((_g)lpu’ (—g)l/QAS‘P) = _AfsTa((_g)l/Qua (_S’)l/Q‘P)
(37) - Ta((—g’)l/QAsu, (—§)1/2T3704p)
< CY|lull1llellr + M| Dyl el

In the above inequalities, we ugel|; = ||Tsoull1 and|[Asull; < [[Dyull;. This latter point can
be proved foru € C as follows

[Agu|? = —(Asu, SAu); / / (DT} o, SD, Tyou)2 drdu < —(Dyu, SDyu)s.
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The general case is treated by density arguments.
Asin @B7), we havel'sr ((—5)"*u, (~8)?Asp) < Cfflull el + Cff | Deull: |l olls. Hence,

I = 8)(w)llr < (C3" + C3)|lully + (Cff + M + 1)|| Dy 1.

Then, Propositiofi §.4 ensures tatu, € H and || Diuy |1 < 2||bl|r + 2(CH + C)||b]|-1 (see
(BOB)) so that we finally obtain

(38)  IPA(b)lIr < (G5 + CB)lIbll—1 +2(C{" + M + 1)([Ibllr + (C3" + CF)|[bl|-1)-

The result follows. O
Proof of Proposition [5.7: The last step before proving Propositipn] 5.7 consists tmgjfthe re-
striction of the smallness @. The previous construction provides us withstrictly less thari.
We perform an induction to get round this restriction whasggalization is the construction af,.
The second step consists in iterating our arguments to thatny

A= (8o +6)L— (1 =8y —01)S — Dy
= [I—6(L—8)[\— 8L — (1 -380)S — D) (A — GoL — (1 — 50)S — Dy).

We exactly repeat the proof of Proposit.12~except thbperator — (1 — 0y — 61)S — (dp +
61)L— Dy plays the role of the operatar—(1—80)S — oL — D; and we apply Propositidn 5]12 with
the operatoﬂ—(l—&l)g‘—élL—Dt instead of applying Propositidn 5.9 with- S—D,. Of course,
a restriction about the smallnessdfis imposed by this procedure. Even if it means substituiing
with ma, we assume, without loss of generality, tlrlat: 1. Thus Le~mm3 remains valid for
the operato”) : H — ‘H defined byP} (b) = (L — S)(A — (1 — 89)S — 6oL — D;)~*(b). This
is of the utmost importance because that means that we caseho= ;. Thus we can iterate
these arguments until we fidid; such thaty + d; + --- + dy > 1 and such that Propositign 5]12
still holds except thad < d is everywhere replaced by < 8§ + 01 + - -- + dx. Proposition5]7
follows. O
Now let us prove that the driti of the diffusion proces< fulfills the assumptions of Proposi-
tion b.7. To this purpose, let us establish

Lemma 5.14. For eachi € {1,...,d}, b; belongs tdH_; andVs € R, V¢ € C,
(bi, Asp) 11 < (C§ + CIN|(@Es, Ei)a| (|1
Proof: Let (E1,. .., E,;) be the canonical basis &. Then we have
(biv‘P)Q = 1/22 (QQVDJ(G_QV[G+H]ij)790)2
J
= ~1/2(la — H|Dy, E;),

< 1/2|(aDe, E;),| + 1/2|(H D¢, E;), |

Cauchy—Schwarz _ "
< M|pli|@E;, Ea| ' + Cf |l @l1|@Es, Ei)o|'/?

and this proves the first point. Thers > 0,V € C, we have
(bi; Asp) -1 = —(1/2)([a + H|E;, AsDyp),
= (1/2)(A_la + H|E;, Dy),

Assumptior@ "
< (€5 + CN@E:, Ea| el O
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6 Itd’'s formula

We are not in a lucky situation of working on an explicit Dhlet form connected with the generator
in L?(Q2, 7) of Y, wrongly denoted byL + D;]. This raises the following issue: given a function
F € L?*(Q) and the functionu, that weakly solves (see Propositon]|5M), — (L + D;)uy = f,
does the "Ito formula” apply taw, and to the procesg. Indeed, it is not clear that the construction
of u,, in Proposition[5]4 belongs to the domain of the generatdr ofrhe key tool is the regular
approximation(uy s)s provided by Propositioh §.4 for a suitable functign

Let us consider a standadddimensional Brownian motio§ B;;¢ > 0} that is independent of
{By;t > 0} insuch away tha{(B;, B;);t > 0} is a standard + 1-dimensional Brownian motion.
Define then thel + 1-dimensional diffusion procesk“%, starting from0, as the solution of the
SDE:

wi t 1 t
(39) Xt —/0 |: b(X;J’(S’w) :| dr+A

The associated diffusion in random meditif defined byY;’ (w) = xeoW is aQ2-valued Markov
process, which admits as invariant measure (similar to sectign 4) It also definesrdinuous
semi-group or.2(2). The associated (non-symmetric) Dirichlet form is giver(fb§) (withd = 1)

with domainF x F and satisfies a weak sector condition (e [12, Ch. 1, Seftir2ije definition).
The generatol’ is defined orDom(L?) = {u € TF; By s(u,-) is L?(Q)-continuoug (see [IR,
Ch. 1, Sect 2.] for further details). It coincides 6with L + D, + (§/2)D?. Sinceb ando are
globally Lipschitz (Assumptiof 2.2), classical tools of SEheory ensures that

Ve 0

d(B', B),.
0 J(X}‘)’&,w) (B, B)

(40) / E[ sup |(t, X)) — ;"’5|2] dm — 0 asé goes ta),
0<t<T

where both diffusions start froiin

Proposition 6.1. Let f € L2(2) and a family(uy )~ in F such that:

1)Ve € F, Ba(ux, o) = (f, #)2,

2) for each\ > 0, there exists a sequence,, 5)s-0 in F that converges it towardsu,. Moreover
(uys)s>0 € Dom(L°) and satisfie\vuy s — Louy s = f.

3) for each fixed\ > 0, (Dyu, 5)s is bounded inZ.%(12).

4) each functioru) s has continuous trajectories, that is, fpralmost everyw € €, the function
(t,z) € R i u,y 5(7; ,w) is continuous.

Then,IP,; a.s., the following formula holds

t t
u)(Yy) = uy(Y0) +/ (Auy — f)(Y;)dr +/ Veui(Y;)dB
0 0
wherelP . is the law of the procesE starting with initial distribution on (2.
Proof: Sinceu, s € Dom(L?) and\uy s — L'uy s = f, we can write (see Lemnja 6.2 below)
ur (YY) — us(Yp)

t t t
= / Louy5(Y,) dr 461/ / Dyuy5(Y,)) dB; + / V7uj (Y,)) dB;
(41) 0 ’ O ’ 0 b

t t t
= [ Danns = 1107y +5 [ D s(vyaBs + [ 973,507) B
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Thanks to [40), the convergence, s~ 0, of (u, 5), s towardsu, in H and the boundedness of
(Druy 5)5 in L2(Q), we can pass to the limit ih (41) and complete the proof. O

Lemma 6.2. Keeping the notations of Propositipn]6.1, the followingiiata holds P, a.s.,

t t t
wn o) = uns09) = [ Lo dr +0Y | DunsV2)dBy+ [ V0w () b
0 0 0

Proof: Sinceuy s € Dom(L°) , the differenceuy 5(Yy) — urs(Yy) — [y Lours(Y,)) dr is a
square-integrable continuol®,-martingale, denoted by/?. Moreover, for a functionp € C,
the classical Ito formula yieldp(Y?) — o(Y9) = [3 Lop(Y,)) dr + 62 [} Dyp(Y,?) dB. +

3 V@*(Y;?) dB,. Then the process— uy 5(Y,?) — ¢ (Y} is a continuous semimartingale and
Theorem 32 in[[18, Ch. 2, Sect. 7] (applied with the functioa R — z2) yieldsIP, a.s.,

(urs(Yy) (YY)

= (a0~ o) +2 [ (uns — @)L (urs — @) (V) dr

(42) t
+2 / (urs — @) (V) (dM? — 62 Dyp(Y,2) dBL — V7 p*(Y,?) dB;)
0

oM~ [ 8 Dp(v) B, - [ Vo) dB],
0 0

where[X] stands for the quadratic variations of the marting&le Integrating with respect to the
measurer, the martingale term vanishes and we deduce

(43) B, (2[M —/ ' Dyp(Y,?) dB, —/ V7@ (V) dB,],) < 2By s(urs — @, urs — @)
0 0

Choosing a sequendg,, ), in C that converges ifi' towardsu, s, we easily complete the proof
with the help of [4R). O

Note that the time reversed procéss Yj‘i_t is a Markov process with respect to the backward
filtration (G} )o<i<7, WhereG? is the s-algebra orf2 generated by Y,’;¢ < r < T'}, and admits
the adjoint operatofL®)* of L° in L?(Q, 7) as generator, which coincides 6rwith L* — D; +
(§/2)D?. From [4D),t — Yjé_t approximates the procegs— Yp_; asé tends to0. It is then
readily seen that we can slightly modify the proof of Profiosi.] and prove the

Proposition 6.3. Let f € L2(2) and a family(uy )~ in F such that:

1)Ve € F, Ba(p,ur) = (f, )2,

2) for each\ > 0, there exists a sequence,, 5 )s-0 in F that converges itil towardsu. Moreover
(uy.6)s>0 € Dom(L°)* and satisfies\uy 5 — (L°)*uy s = f.

3) for each fixed\ > 0, (Dyu, 5)s is bounded inZ.%(12).

4) each functioru) s has continuous trajectories, that is, fpralmost everyw € €, the function
(t,z) € R s u, 5(7 ,w) is continuous.

Then,IP,; a.s., the following formula holds

t
(Ve =) = wa(¥r) + [ (s = F)(¥ro) dr -+ (s = M)
0
where M is a martingale with respect to the backward filtrati¢g;)o<;<7, and G is the o-

algebra onQ2 generated by{Y,;¢t < r < T}. Moreover, the quadratic variations df/ exactly
maitch [} Vou} - Vouy(Yr_,) dr.
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7 Ergodic Theorem

Let us now exploit the ergodic properties of the operémtated in Assumptioh 3.4 and prove
Theorem 7.1. Let f € L1(Q). Then

t
E, %/ f(Yr)dr—w(f)‘ — 0 ast goes tox.
0

Proof: We suppose at first thgt € C. Even if it means considering — 7 (f) instead off, we
assume that(f) = 0. Clearly, f € Dom(D;) and Propositiof 5|4 applies. For eakh> 0, it
provides us with a functiom) € IF such that

(44) \V/(p ek, B)\(u)\, (P) = (f’ 90)2

Moreover, [20a) and (2Pb) ensures that the familias, ), (AD;u,)» and(AY/2(—8)1/2u, ), are
bounded in’.2(Q2). Even if it means considering a subsequence, we assumg@\ingly, (AD;u) )y
and(\/2(—8)'/2u,), weakly converge respectively tn g’ andG in L2(£2). Since the operator
D, is closed, it turns out thay’ = D;g. Let us now prove now thag € Dom(L). Consider
@ € Dom(L*) . Then we derive from[(44) that

A(F. )2 = ABy(ur, @) = N (uy, p)2 — (Muyr, L¥@)s — (ADyuy, )o.

Passing to the limit a& goes ta), we deducdg, L*p), = —(D:g, ¢)2. Henceg € Dom(L**) =
Dom(L) Cc HandLg = —D.g. In particular

m|lg||} < —(g,Lg)2 = (D:g,g)2 =0

so thatg € Dom((—S)'/2) and(—S5)'/2g = 0. As a consequencg, € Dom(S) andSg = 0.
From Assumptiorj 2]4g is invariant under space translations in such a way thgt= —Lg = 0
andg is also invariant under time translations. Thus the erdtydaf the measure: implies thatg
is constant 4 a.s.). Choosing equal to the constant functidnin (#4), we deducg = 0. We now
aim at proving that the convergence(afu) ), towards0 holds in the strong sense. In what follows,
we make no distinction betwedghe R and the constant function that matctiesver Q2. We just
have to write

0= (0, f)2 = lim (\uy, f)2 = lim By(Auy, Ay )2 > limsup [Auy 3.

A—0 A—0 A—0

Note now that the approximating famify:, s)s provided by Propositiop §.4 is given la 5(w) =
[ e MIE[f(X¢°,w)] dr. For each(t,z) € R4, the law of the proces§, z) + X0,
X729 gtarting from0 € R4, is the same as the law of the procégs?® starting from(t, z)
R (see the proof at the end of Sectign 8). Hemge (1 ,w) = [ e MIE, ,[f (X, w)] dr.
Sincef is smooth and¥{“- is a Feller processy, s has continuous trajectories. Thus Proposition
6.1 applies and it yields

[ 100 ar = @)~ + [ noiar+ [ vousn) as.
0 0 0

Thanks to a) and the invariance of the measufer the procesy”, we can find a constart,
which depends neither oxnnor ont, such that

t
]EJ%/O f(Yr) dr|2 < C/(tA)? 4 ClAuy |2 4+ C/(EAY?).
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It just remains to choosg small enough and thenlarge enough to complete the proof in the case
f € C. The general case is treated with the densitg of L' (2) and the invariance of the measure
. Since it raises no particular difficulty, details are lefthe reader. O

8 Invariance principle

Notation :
Up to the end of this paper, fare {1,...,d} we denote by} the solution of the equation (in the
weak sense of Propositign b.4)

b — Lul, — Dyul, = b;.

From Propositiorf 5|7, there exisgs € (L(92))¢ such that\|u} |2 + [¢;, — Vul|s — 0 as) goes
to 0. O
Applying the Ito formula (see Propositipn Jp.1) to the funatis.» yields

t/e?
eXyer = H“ + 5/ (0 4+ Vouy)(r, X),w) dBy,
0

where
t/e?
H;® =3 / ug2(r, X¥ w)dr — eug(t/e?, 17e2,w) + €ue2(0,0,w).
0
For the reader’s convenience, it is worth recalling tHat 7 x« andIP is the law of the process
Y with initial distributionz. We want to show that the finite dimensional distributionghefprocess

He* converges ifP .-probability to0. Using the Cauchy-Scharz inequality and the invariance of
the measure, we get the estimate

B [(H; )] < 3(2 + t*)e|ucs 3

and this latter quantity convergesi@se goes ta0.

Let us now investigate the convergence of the progess ¢ fg/ < (o + V7u})(Y,) dB, whose
guadratic variations are given by

t/e? t/e?
52/ (0 +Voul)(o +Voul)"(Y,)dr = g2 / (o +&)(o+&)(Y,)dr
0 0

- (52 /Ot/eZ(a +Voul) (o + Voul)*(Y;) dr — & /Ot/82(0-—|—§*)(0'+§*)*(Yr)d7“).

With the help of Theorerf 7.1, the finite dimensional distiitis of the former term in the right-
hand side converge ifi!(IP,) to the ones of the process— At, where the matrix4 is given by

(45) A= [@+&)o+eyan

The finite dimensional distributions of the latter term i tlight-hand side converge ' (IP,)

to 0. Indeed, after integrating with respect to the probabilitgasurelP, it is bounded by
Ct|V? u.2 — £|%. Hence we conclude by applying the central limit theoremnfiartingales that
the finite dimensional distributions of the proceé(é;}g2 converge in law to the ones of the process

A2 B,.
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Proposition 8.1. The processX;;;62 is tight in the space ([0, T]; R?). Hence it converges in law
in the space” ([0, T); R?) towards the procesd'/?B;.

Proof : The next section is devoted to the proof of the tightness O
Let us now to determine the limit when the starting point isthbut z /<.

]Ex/e [f(EXg?ez ):| — ]E(] [f(ﬂc + EX;—/(E,;/E)W)] in IaW:w.r.t.u ]E(] [f(x + EX;;}EQ ):|

TP [ f(x + AV2B,)]

e—0

For the first above equality we used the following fact. If
t t
X :x+/ b(r, X,,w) dr—l—/ o(r,X,,w) dB,
0 0
andZ; 2 X; — x thenZ; solves the SDE

t t
Zy :/ b (7‘, ZraT(O,aC)w) dr —|—/ o (7‘, ZraT(O,aC)w) dB,,
0 0

so that the law of the process” starting fromz € R? is equal to the law of the process+ X =¥
where X7 s starting from0. We sum up:

Theorem 8.2. Let f be a continuous, bounded function &. Then the solutior:(z,¢,w) of
the partial differential equatiorfd) with initial condition z(0, x,w) = f(x) satisfies the following
convergencez(z /<, t/e%, w) converges inr-probability ase — 0 to IE [f(z + AY2B,)], which is
the viscosity solution of the deterministic equat{iwith the same initial condition. The matrix
A'is given by

A= /Q(O' + &) (o + &) dn.

9 Tightness

Let us now investigate the tightnessar{[0, 7]; RY) of the process

t/e? t/e?
eX{er = 5/ b(r, X, w) dr + a/ o(r, X%, w)dB,.
0 0

The tightness of the first term in the above right-hand sideaslily derived from the Burkholder-
Davis-Gundy inequality and the boundedness of the diffusimefficients. Concerning the second
term, we are going to exploit ideas ¢f]20] ¢r]22].

Foranyi € {1,...,d} and\ > 0, we putwy = (A — S)~'b; € HN Dom(S) (see Proposition
B.5). Propositiof 5]4 (with = 0 and H = 0) also ensures thaby € F, D;w, € H. For each fixed
A > 0, we can find a sequen¢@?,),, in C such that|y — w1 + | Dy — Dyw,y |1 converges to
0 asn goes tox. DefineAY = (1/2) 3, ; Di(HwDyyY). From Propositiofi 54, we can find two
sequence$vy ), C FNDom(L)and(vY), C FNDom(L") that respectively solve the equations
(A= L)v} =b;, — Ay and(\ — L*)v} = b; + AY. Moreover, the functions’ andv’ possess a
corresponding approximation sequer@ﬁ%)bo and(g§75)5>o (see Propositiop §.4), which both
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have continuous trajectories sinke+ A% have. We are then in position to apply Proposifiof 6.1.
Forany0 <t <Tand\ >0

t
=n =n =N =n A A
BUY:) — T (Vo) = /0 L5 + D)V, dr + M — T
t —n, A\ —_—n, A\
- / VBY — by + AL+ DY) dr + M — P,
0

whereA" " is a martingale with respect to the forward filtratioF; )o<:<7, andF; is thec-algebra
on( generated byY;;0 < r < t}. From Propositiorh 6.3, we also have

t
W} (Vo) — v} (V) = /0 L0 — Dyol](Ya) dr + MI — M
t
_ /0 Dl — b — AL — D)) dr + M — M,

where M™* is a martingale with respect to the backward filtrati®h)o<:<7, and g, is the o-
algebra or(2 generated byY,;t < r <T'}. Adding up these equalities, we obtain, for any
t<T,

t t
2/0 b;i(Y,) dr =[v —oY](Y;) + [O) — v}](Y0) + /0 M@ 4 v)) + Dy(vy — oX)|(Y) dr
+ M = MO+ MO — MO

Fix R > 0 and choose\ = £2. Integrating with respect to the measiire, we have (the sup below
is taken oved < t,s < 1T

(46)
t/e?
]EW[ sup |2€/ bi(Y;) dr| > R]
[t—s|<a s5/e2
<20R*(1 4 T)e* (|3 + [0%]3) + 10R*T/e?| Dw" — Dy’ |3
—n 2 —n 2 n n
152 E, [ sup (M) — Mojol? > R + 5% E, [ sup |MDS, — MIS[2 > R?).

15| <a osj<a T e
We are now going to explain how to choas¢éo make each term of the above right-hand side go to
0 ase goes ta.
Since(A — S)w) = b; and(A — L)v} = b; — AY, we can subtract these equalities and obtain, for
eachy € F, BY(wx — oY%, @) = Ty (wx — 9%, ¢) (remind of the definition o3} andTj; in (LL9)
and [IJ)). Choosing = w, — 1%, we obtain a first estimate

(47) Mwy = B3[3 + (m/2)llwy — BRI < (2m)7H(C)?|lwa — 93T

Following Propositior 5]4, we can differentiate the equraB} (w) — v}, @) = T (wy — %, ¢)
with respect to the time variable. So we have, for egche H, B)(Dw, — Do}, ) =
Ty (Diwy — Dipl, ) + 0T (wx — %, 9) = (0T + 0 TH|(wx — Ty, ). Choosing
¢ = Dywy — Db\, we obtain a second estimate
48) A Dywy — D3 + (m/2)|| Dewy — Dewh|If

_ — 2
< (2m)~ (O | Dywy — Dipi |1 + O3 [[wx — 3|1 + (C5 + C3F)[lwx — wR[11)"
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Likewise, [4) and[(48) remain valid fef} instead ofv’. For each fixed\ > 0, we can then choose
ny € N Iarge enough to ensure th|abA o\ %+ waA — DM 3 + A Dywy — DM3 < A
and|wy — v{M3 + [lwy — ’U)\)‘Hz + A" \thA — Dywi* 3 < X\. From Propositiof 58, there exists
¢ e (L2(Q)) such that\|[w,|3 + |[V7wy — ¢|o — 0 as\ goes to0. From [4Y) (withn = n)),
N3 + A[v* 3 — 0 as A goes to0. Hence, choosing. = n.2 in @8), all the terms in the
right-hand side except the martingale terms convergeats: goes ta0.
Let us now focus on the martingale terms. In order to provédigimness of the two martingales, itis
sufficient to prove the tightness of their brackets (§pe [@drem 4. 13) Which respectively match
2 5/52 IVoD5” (Y;)|? dr ande? 5/52 |V°‘g52 (Y;)]? dr. Note tha Vow'5” — ¢|; — 0 ase tends
to 0 so that the procegs— &> t/52 Vo 5* (Y,)|? dr has the same Ilmlt ni‘([o T]; R) as the pro-

cesst — &2 (f/‘f 1C(Y,) 2 dr. Flnally, for each fixed, Theoren| 7)1 proves that ft/‘f Y,)|? dr
converges to the deterministic non-decreasing protg”ééfdg drn in L' under the measurE’ :
Then Theorem 3.37 in][6] says that the brackets are tigte (), 7]; R). The same arguments
remain valid for the brackets of1" 2" Hence, the right-hand side ih [46) converge9) tase
goes ta0 and the tightness af— X t/ , follows. O
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