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Abstract

We study a diffusion with random, time dependent coeffigerloreover, the diffusion
coefficient is allowed to degenerate. We prove the invagarinciple when this diffusion is
supposed to be controlled by another one with time indeparoefficients.

1 Introduction

We want to prove the invariance principle for a diffusivetjmde in a random flow described by the
following stochastic differential equation

t t
Xf:x—k/b(r,Xf,w) ds+/a(r,Xf,w) dB; 1)
0 0

where B is a d-dimensional Brownian motion amdb are stationary random fields such that the
generator of the diffusion can be rewritten in divergenaenfo

2V (z,w)
1 = o —div, ([a(t, 2, w)e ™) + H(t,2,w))Ve ) -

Herea(t, z,w) is equal tavo™* (¢, z,w), V and H are still random fields such th&t is bounded and
H antisymmetric.

This will allow us to describe the limit as — 0 of z(z/e,t/c%,w) wherez is the solution of
the parabolic PDE:

d 62 d 9
Z a;j (t,z,w) mz(w, t,w) + Z bi (t,z,w) gz(ﬂ:, t,w) @
i j=1 v !

7 i

z(z,0w) = f(z)
We will prove that, in probability with respect to,

N |

0
az(az,t,w) =

;i_r)% 2(z /e, t/e? w) = Z(t, ) (3)
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wherez is the solution of the following deterministic equation béttype

7 & 0%z
255 N :E:: jqijéalﬁfiﬂj

Z7J:

where A is a constant matrix - the matrix of so-called effective Goefnts. We can here mention
that central limit theorems valid for almost every envir@mhhave already been obtained in the
time independent case (sg€][11] for instance).

The homogenization problems have been extensively stunitet case of periodic flows (cf.
(M, [L2], [L3], and many others). The study of random flowse(§L¥], [3], [T1, [IP], and many
other) spread rapidly thanks to the techniques ofaheironment as seen from the partigte
troduced by Kipnis and Varadhan ifj [5], at least in the castneé independent random flows.
Recently, there have been results going beyond these teemin the case of isotropic coefficients
which are small perturbations of a Brownian motion (Je¢)[1&ut there are only a few works
in the case of space-time dependent random floys ( [] or j9h&tance). In these, the diffusion
matrix o is supposed to be constant. The novelty of this work is thadifiusion matrix can depend
of the space and time variables. The only restriction alfmitime dependence is the control of our
diffusion process with an ergodic and time independent &ea consequence, this work includes
the static case where all the coefficients do not depend an fitoreover, these assumptions allow
the diffusion matrix to degenerate under certain conditiofypically it can degenerate in certain
directions or vanish on subsets of null measure but can taitytwanish on an open subsetBf,
like in [[LF] in the periodic case.

We will outline now the main ideas of the proof. Our goal is how that the rescaled process

t/e? t/e?
EX:}EQ = 5/ b(r, X, w) ds—i—s/ o(r,X¥, w) dB
0 0

converges in law to a Brownian motion with a certain positbevariance matrix. The general
strategy (se€[]6]) consists in finding an approximation efftrst term on the right-hand side by a
family of martingales and then apply the central limit trexarfor martingales. In order to find such
an approximation, we look at the environment as seen frorpdhigcle

Y = 1 xpw

where{r; .} is a group of measure preserving transformation on the meéliu Thanks to the
particular choice of the drift, we can explicitly find an imant measure for this Markov process.
Provided that the degeneracy of the diffusion is not toongfr@ee hypothes|s 2.4), this measure is
ergodic. The approximation that we want to find leads to sthdyequation X > 0)

Auy — (1;<+-l)t)1LA =b

whereL + D, is the generator of the procesqthe termD; is due to the time translations). Here are
arising the difficulties due to the time dependence. Indéesljntroduces additional difficulties and
the usual techniques that are used in the static case fatl@ghestablishing the so-called sublinear
growth of the correctors . Essentially, they are the result of the time degenerachebperator
L+ D,. To get round this difficulty, the regularity properties bétheat kernel are used {ih [8] ¢} [9].
Here the degeneracy of the diffusion coefficient prevent®usse these arguments. That is why
arises the last main assumption of this paper (see hyps{adyi. We introduce a new opera@r



whose coefficients do not depend on time. Then the spectrallga linked to the normal operator
S + D, will be useful to establish the desired estimates for thet&wi v, of the equation

)\’U)\ — g"u,\ — Dt’U)\ =b.

Finally , with perturbation methods, we show that thesenestiés remain valid for the correctors
V).

2 Notations and setup

Let us first introduce a random medium with the next definition

Definition 2.1. Let (€2, G, 1) be a probability space anfir; ,; (¢, z) € R x IR’} a stochastically
continuous, measurable group of measure preserving wamsftions acting ergodically of2. This
means that

* VA€ G Y(t,x) € R x RY, p(ry . A) = pu(A),
e Ifforall (t,7) € R x R, 7, , A = Athenu(A) =0orl,

 Forany measurable functiofion (2, G, 1), the function(t, z, w) — f(¢,z,w) is measurable
on(IR x R x , B(R x RY) ® G).

* Foreveryf € L?(€, 1) and for everys > 0:

pAlf (reew) = fW)| = 0} ——— 0.
(t,x)—0

We denote byL?(Q2) the space of square integrable functions(tng, i) equipped with its
usual norm|. |, and (., . )2 will denote the corresponding scalar product. Then theaipes on
L?(€2) defined by

T(t,x).f(w) = f(Tt,$w) (4)

form a strongly continuous group of unitary mapsZiA(f2). For every functionf € L?(Q),
let f(t,z,w) = f(m.w). Each functionf in L?(Q2) defines in this way a stationary ergodic
random field oR**!. Reciprocally, for each stationary ergodic random field caealways find a
probability space where such a representation is possibighat follows we will use the bold type
to denote an element € L?(Q2) and the normal typé (¢, z,w) to distinguish from the associated
stationary field. The group possesges 1 generators defined by (with the notatiof = t)

Dz.f: ;Txfh:(]a ZZO,,d (5)

Ty

which are closed and densely defined. In what follows we Wgth @enote byD; the generatoD.
We denote by’ the dense subset &f () defined by

C={freifel(Q).0eCm")} 6)

where the convolution operator is defined by

fro@ = [ fom)etodd )



We can remark that C Dom(D;) andD;(f * ¢) = —f * g_i and this last quantity is also equal
to D; f x pif f € Dom(D;).

We now consider a standardimensional Brownian motion defined on a probability space
(€Y, F,1P) and the diffusion in random medium given by the following &juation

t t
X;"::U%—/ b(r, X, w) dr—|—/a(r,Xﬁ’,w) dB, (8)
0 0

The coefficientd(¢, x,w) ando (¢, z,w) are stationary random fields defined @h G; 1) such that
{X7¥;t > 0} is finally defined on the product spa@ x ;G @ F; u x IP) (the medium and the
Brownian motion are mutually independent).

We are going to give more details on the coefficients.

Hypothesis 2.2. Control of the coefficients
e We suppose that there exists a coefficenthich does not depend on time, ie

Vte R, o(row)=0(w),
and two constants: and M such thatvw € Q
ma(w) < a(w) < Ma(w) 9)

where the symmetric, positiviex d matrix a is defined byr = ", which doesn’t depend on time
either.

e Let H be ad x d antisymmetric and stationary matrix (the so-called strematrix) such that
there exists a constaidt; such that

pas, |H| < Cla(w), (10)

where| H| is the symmetric positive matsjx— H2. Moreover we suppose th#l, a € Dom(Dy)
and

pas, |DiH|(w) < CHa(w), (11)
pas, |Dal(w) < Ca(w) (12)

For example, if the matrix is uniformly elliptic and bounded, we can choase= Id and then
(L0), (1) and () <« H, D;H andD;a € L™(Q).

We consider moreover a stationary, real valued funclionvhich doesn't depend on time. We
assume that

Vi, g, k,l=1,...,d, aij, 6Z-j, V, Hija Dlaij anleﬁij S DOIIl(Dk).
Now we are able to define the coefficigntWe assume that its entries are given by the following

expression, fof = 1,...,d

d
=> ( Djaj(w) — aijD;V (W) + %ezv(”)DjH” (w)) : (13)
Jj=1



In the same way, we define fore=1,...,d
d

Ei(w) = Z <%Dj6ij(w) - 6iijV(w)(w)> . (14)

j=1
For the sake of clarity, we sum up the regularity assumptidrise coefficients as follows

Hypothesis 2.3. Regularity of the coefficients

* We assume thati, j, k.l =1,....d,
aij, 6”», Vv, Hij, Dlaij and Dlaij S Dom(Dk).
* In order to prove the existence of global solutions of th&B), we assume that the appli-
cationsz +— b(t,z,w) andz — o(t,r,w), r — b(t,z,w)andz — & (t,r,w) are locally

lipschitz and that the coefficients, a, b, o, b, V', H are uniformly bounded by a constant
K.

In order to guarantee the homogenization property, we st following

Hypothesis 2.4. Ergodicity Let L be the unbounded operator di#(2) defined by

d d
1

i,j=1 i=1
which can be rewritten in divergence form As= %divx (ae™2V + H)D, > We suppose that

eachL + D, harmonic function must be constgntlmost surely.

Even if it means adding t&" a constant (and this will not change the dbiif we divide the ma-
trix H by the exponential of twice the same constant), we make thewgstion thatf e 2V du = 1.
This enable us to consider a new probability measurg given by

dr(w) = e 2V dp(w). (16)

Finally, let us define oom(L)NDom(L*) the operators = LEL~ andA = L1 respectively
equal to the symmetric and antisymmetric parts of the opedain L?(€2, 7), whereL* stands for
the adjoint operator of. in L?(§2, 7). These operators could be given more explicitlydoby the
following formulas

2V

e 5 €2V
S = leVx <(CL€_ V)DJ; >, and A= leVx <HDx >

Let us now state a result which shows the importance of thersstnic operator

- €2V
S = leVx <(a€_2V)Dx >

linked to the proces .



Lemma 2.5. We suppose thaff satisfies the following condition

Vf € Dom(S), Sf=0 = fisequaltoafunction which is constant with respect
to the space translationg almost surely

Then the hypothesfs P.4 is satisfied.

Proof: We use the notations given in the subsectipns 5.1[afd 5.8iesproof could be odmitted
in first reading. Letf € Dom(L + D;) which is L + D;-harmonic. Thus\G,f = f € TH;.
Moreover, we have for amp € TH;

NGB + [Grepll? = /Q WG dr

and this necessarily leads [tff||; = 0.
We deduce/yp € TH; andVa > 0

a(fa(p)2+ < .fa(p >1= (afa(P)Q-

Hence, if we denote bg'S the resolvent of the generatgr, we havef = aGS(f), so thatf is S-
harmonic and then constant with respect to the space ttemsléhenf € Dom(L) andLf = 0.
From (L + D;)f = 0, we deduce thaf € Dom(D;) and D;f = 0. Finally f is p almost
surely equal to a function which is invariant with respectite time and space translations. By the
ergodicity of the mesurg, this function is constant and hengds constanj: almost surely [

This kind of hypothesis is automatically true when for altradbw € €, thelR?-valued Markov
processX“»° with generator

€2V(x,w) o1
— ] 1 - (wi)
5 Div, <a(w, w)e Va )

~w

is irreducible in the sense that starting from any poinlRdf the process reaches each subs@® 6f
of non-null Lebesgue’s measure in finite time, ie :

Proposition 2.6. We suppose that the diffusion procééég with generatorg'w verifies the follow-
ing hypothesis: there exists a measurable subset 2 with ;(N) = 0 such thatvw € Q \ N, for
each measurable subsBtof IR? with Az, (B) > 0, Va € IR¢, 3t > 0,

P, <X§”’§ €B)>0.
Then the hypothesis of leminal 2.5 is satisfied.
Proof: First we remark that th-valued procesyg defined by
YV (w) = To, x5

X% = 0

admitsS as generator and the meastures invariant for this process. Then it is sufficient to prove
that each invariant subset for this process is invarianeusgace translations and we can proceed
with the same kind of arguments as fjh [9] section 3 in ordeiotctude O



Corollary 2.7. If the matrixa is uniformly elliptic then the hypothedis P.4 is satisfied.

Proof: By the Aronson estimates for the heat kernels, it is cledrtti@hypothesis of the proposi-
tion 2.6 is satisfied O

When studying examples we will see other hypotheses whiglyithat hypothesi§ 214 is true.

3 Examples

The most simple examples which are possible to construdiaee by the processes with periodic
coefficients. The considered medium is then the tdiifs ' equipped with its uniform measure
which is ergodic. There are many ways to ensure the erggpdi€ithe process as seen from the
particle, like the uniform ellipticity of the matrix. as we already saw in propositi¢n]2.7. In this
case we already pointed out that the boundedness of thecasdtfiand D; H is sufficient to deduce
that the hypothese§ (10) arid](11) are true.

3.1 An example where the diffusion coefficient vanishes

We will construct a periodic, reversible and static exammiethe torusII'? where the diffusion
matrix vanishes. It turns out from our hypotheses that tfffegion matrix can vanish only on a
subset of zero Lebesgue measure.

We leto (z,y) = (1 —cos(z))(1 —cos(y)) ( (1) (1) ) . Then we can choose any bounded, periodic
function V' and we choosé1 (z,y) = 0.

We have then to verify that hypothe$is]2.4 is satisfied. Thaalhe ellipticity of the diffusion
coefficient inside the squai@, 27[x]0, 2x[, it is not very difficult to see that each-harmonic
function must be constant on this square Lebesgue almasdllysurhen the periodicity of such a
function ensures the validity of hypothe§is| 2.4.

Remark 3.2. Although we consider not necessarly symmetric procegsesypothesig (10) shows
that they are not too far from being symmetric. New diffiegltarise when the antisymmetric part
is not anymore controlled by the symmetric one and it is atillopen problem for the stationary
and ergodic random media. On the other hand, we don’t havesdinge restriction in the case of
periodic coefficients (se¢ [[12]).

3.3 Example in a stationary, ergodic random medium

We are going to construct a medium and a process in this medhich verifies all our assump-
tions. These types of examples are often given in the Gaussielom fields but we want here to
construct our process as simply as possible. The naturalon@hytain a discrete space-time, ergodic
stationary random field is to consider a product of the w%@d where( is a given probability law.
We are going to proceed in a similar way. We consider a semer@g7.,.7kd))(k17...7,€d)ezd of in-
dependant Bernouilli random variables with parameter}0, 1[. We define a procesgas follows
- for eachz € IRY, there exists an uniqugs, . . ., kq) € Z¢ such that: belongs to the hypercube
(K1, k1 + 1[x -+ x [kg, kg + 1[. Then we defing, = e, k,)-

The law of our process is invariant with respect to transtetiin Z¢ but not inIR¢. To find a
solution to this problem, we choose a uniform variabilen the cubg0, 1[¢ which is independent



of the sequenc(ae(,ﬂ7,“7,%))(,C1 kel and we define
ﬁa} = ﬁJ?-FU'

We have then defined a stationary ergodic random fieldRén The last difficulty that will later
arise is the regularity of the trajectories. To get aroungl the consider & (IR?) functiony with
compact support included in the b&l(0, 1/4) and define a new pocesgs

Ne = / nyp(r —y)dy =7 x ().
IRd

It is then a stationary ergodic random field with smooth ttajges.
Let us consider now the process

1 2
W(t,x) = (Bh Qs a$2)t€]R,:E:(:E1,1’2)€]R2

where the three processe$, o and 3 are mutually independent and constructed according to the
previous method. Hencgw; ,); (t,z) € R x IR?} is an ergodic stationary process. The consid-
ered medium(€2, x2) will be the space” (IR x IR?;IR?) equipped with the probability law of this
process.

We define the matrix

- 10

=10 o]
andV = 0 (or any bounded function of the random fiel). We can choose a time dependent
matrix U such thatVU* is uniformly elliptic and bounded, and then we set

o=0ocU.

In this case, we can prove that propositjon] 2.6 is satisfie@. jut outline the main ideas. Let
(ex)kez be the independant Bernouilli random variables of paramet80; 1[ used to construct the
processy!. There existsV C €2 such thaju(N) = 0 andvw € Q\ N, there exists: € 7 such that
e = 1. Hence, by the construction of (and more precisely the fact thaitipp(p) C B(0,1/4)

), there exists € IR such that! (z,w) = 1forz € B, = {(z,y) € R? |z — 2| < 1}.

Then, starting from any point of the plan, it is not difficut $ee that the process“* can
reach the strigB,, because of the non-degeneracy of the diffusion coeffickmtg the x-direction.
Then the reversibility of this process ensures that, sigfiiom B,, we can reach each subset of
IR2. Finally, by the uniform ellipticity of the diffusion coeffient overB. and the strong Markov
property, we can prove that the assumption of proposftiris2valid. The ergodicity is proved.

We can then consider a stream matfx For example we can choose

{ 0 (ag)?Bo
“(a

H(n) = (1))2% 0 )

and all our assumptions are verified.
We should also point out that for almost all the trajectodethe procesg, the diffusion matrix

o is degenerated in the directien = ( (1) > on certain open regions of the spdBé.



4 The environment as seen from the particle

We can now look at thenvironment as seen from the particlghis is a Markov process on the
probability spacé? defined by
YVi(w) = 7 xow. an

where the procesX* is starting from the poind € IR?. Its generator is equal th + D, and it
turns out thatr is an invariant measure for the procé§s Moreover it is ergodic. Indeed, each
L + D, harmonic functionp is constanj: almost surely because of the hypothgsi$ 2.4. As the two
measureg andr are equivalenty is also constant almost surely and this proves the ergodicity.
We should point out that there is no need for the invariantsuesof the process to be unique.

5 The Poisson equation
The aim of this section is to solve the resolvent equationA fo- 0, wherew), is our unknown :

AUy — (L + Dt)’lL)\ =b. (18)

In fact, the existence of such a solution is in general not fierd to obtain, at least in th&? sense.
But we choose the following approach in order to prove thatsthiution is in a good space which
can guarantee a not so bad regularity of the solution andhwhiltallow us to obtain an appropriate
control of the solution a& — 0.

5.1 Setup

For eachw € 2, we define the diffusion proceéé“’vg by the following I1td equation
~ t _ t _
X =+ / b(X“O W) dr + / 5(X“5 w)dB,. (19)
0 0

Then the proces§3’§ is defined byY§ = T, W WhereXSJ’S = 0, and the generator of this
et

process is equal t8 + D, so that the measureis again invariant for this process. Let us denote by
P, the semigroup oti.?(2, 7) generated by this process andByits adjoint operator on this space.
By the time independance of the coefficients[in (19), the Meanbroperty and the reversibility of
the process, it is easy to prove thgt € L2(9, 7)

Pio P f = TBo[f(0, X57°,w)] = P o P f.

Then the theorem 13.38 ifi 14] ensures us that the opeﬁaﬂorDt is normal so that we can find a
spectral resolution of the identity on the Borelian subsets @ x IR such that

-S—D, = / (x +iy) E(dz,dy).
R+XIR

For anyp, ¢ € L%(Q), we will denote byE, ., the measure defined 0y, ., = (Ey,v)2. By the
symmetry (resp. antisymmetry) of the operas(resp.D;), we have

-8 = z E(dr,dy), and —D,= / iy E(dzx, dy).
R+ xR R4 xR



From now, we will denote by. , .) the usual scalar product i’ (§2). For anyy, v € C we define
<epi== [ sBpudndy) = ~(¢,59) (20)
R4 xR

and||¢|l1 =< @, >1. Itis important to remark that, because of hypothdsis (83,g4emi-norm
is equivalent or to the semi-norm defined by — (¢, S¢) with the constants

mleli < —(p,Sv) < Mgl

We will denote bylD the closure ifL2(Q2),] . |2) of the subspacé\v —S¢; ¢ € C}.
Let IF be the Hilbert space equal to the closure€ah L2(2) with respect to the scalar product
¢ defined orC by

(e, ) = (2, )+ < @, ¢ >1 +(Dep, Dyap). (21)
The applicationd™ : ¢ c IF — L2(Q) x (L2(2))? x L*(Q) is alinear isomorphism. So we
p = OY(p)=(p,0" Dy, Dip)
can extend it tdF' and we will note for anw € TF, (u, Vu, Diu) o OF (u).

In the same way, LelH; be the Hilbert space generated by the closur€ af L?(2) with
respect to the scalar productefined orC by

k() = (@, )+ < @, >1. (22)

The applicationd™ : ¢ c H; — L?(Q) x (L?(Q))? is again a linear isomorphism. So
o — M (p) = (p,0"D.p)
we can extend it t@H; and we will note for anyw € H;, (u, V7u) L pih (u).

Remark 5.2. For a sequencéy,,),, € IH;, we have
- 1o -
mV =Se,ls < SIV7eulls < MV =Se,l5,

so that convergence of the sequer@cé——gcpn)n in L2(Q2) is equivalent to convergence of the
sequencéV e, ), in (L2(Q))4.

If for a certain functionf € L?(Q) we havef]R+X1R 1 E¢ #(dx, dy) < oo, we will define

1
I1£1I% 1 :/11% R;Ef,f(dwvdy)- (23)
+><

We point out that|| f||—1 < oo if and only if there exists € IR such that for anyp € C,
Jo fedn < Clle|1. Inthis case we have

mf{c emvpec, [ fodrs cu<p||1} — £l
Q

We denote byl _; the closure inH} of the spacd.?(2) for the norme]| ||_;.
Now we introduce some notations and definitions about thisyantnetric partH. We have

|(u, H) (u, [H|w)" (v, |H |v)"/? (24)

<
< Cf'(uw,au)' (v, av)"?

10



where the second inequality follows frofn}(10), while thetfirequality in (2§ is a general fact of
linear algebra. Hence we deduce that

1
Vet € C. \g/gﬂmso-mm\ < CHEX |l ol

Thus there exists an antisymmetric and continuous bilifiean 7" on ID x ID C L?*(Q,7) x
L?(2, ) such that

Vew el 3 [ HVup Vopdu - T(\/-Sp.\/-3p). (25)

Similarly, thanks to the hypothesik [11) we know that thetiste an other antisymmetric and con-
tinuous bilinear fornT” onID x ID C L?(Q, 7) x L*(Q, 7) such that

Ve pec, /Q DHY - Votpdp = T'(\ g, \/— 59b). (26)

5.3 Existence of a solution :
Our goal in this subsection is to prove the following profiosi
Proposition 5.4. Suppose thak € TH_; N L?(€) is such that there exists a constafy} satisfying

Vs >0,V €C
T sop—®
<h, L> < Chllgl- (27)
-1,1

S

Then, for any\ > 0, there exists an unique solutiar, € IF of the equation
)\u)\—LuA—Dtu)\ =h (28)

MoreoverD;u, € IH; and

~ 2
#(Deu, D) < (Ch+ CfF e |h]| 1 + Cllh] 1)

Before proving this result we first introduce a result in taeecof time independent coefficients.
On the first side, this will be a good starting point for thegdrim the time dependent case and this
will bring out the difficulties arising with the dependency time. On the other side, we will need
this result in the last section of this paper in order to pritnetightness of some process.

Proposition 5.5. Suppose thak € H_; N L?*(Q2) Then, for any\ > 0, there exists an unique
solutionw), € H; of the equation
)\’w)\—S’w)\ =h (29)

P12,
P

Moreover we have\|wy |2 + m||w,||? <

Proof : The main tool of this proof will be the Lax-Milgram theoremetl > 0 be fixed. For any
@, € C we consider the following bilinear form an x C defined by

D)\((Pv ¢) = )‘(9071#)2 - (907 S/l)b)Q

11



Thanks to hypothesis 2.2, it is easy to verify that this fosnedercive and continuous @hx C so
that it can be extended to the whole sp&itex IH;. This extension is also coercive and continuous.
Then itis sufficient to see that the applicatipn— [, h¢ dr is continuous iffH; in order to apply
the Lax-Milgram theorem and to obtain a solutiaf.

Moreover, we have

w3+ mlwal} < Daws,wy) = / haws dr < R wal
(9]

(L3 =
m

IN

and this concludes the proof O

Proof of the proposition [5.4: In order to prove the existence of a solution to the resolegottion
we want to apply the Lax-Milgram theorem to the followingibdar form which is defined for
A>0andp, vy € C

1

Brw.d) = A [ @win+ 3 [ (a+ HS)Dsp- Doy — [ Dpwdr (30
Q Q Q

But the problem is the degeneracy with respect to the timabia: This bilinear form is not

coercive onlF. So we add some ellipticity with respect to the time varidifeadding a term as

follows. We define for any\,§ > 0 ande, vy € C

1 o
Brs(e.¥) = A [ win+ [ (@t HV)Dup-Dopdn— [ Digdns s [ DupDipm.
Q Q Q Q
(31)
Notice that forp, ¢ € C we have[,(A—L— ng —Dy)pp dm = B, 5(p, ). With the help of the

inequality [2}) and the boundednessofwe obtain that B (¢, )| < C\/e(p, @) x (b, ).
As a result of the time-independence Wfwe have for anyp € C, [, ¢Dipdr = 0 and as a
consequence

min()\, 6/27 m)g(SDv 90) < B)\,é((pa 90)' (32)

We can then say thdB) 5 defines a continuous and coercive bilinear formlornx IF. The Lax-
Milgram theorem allows us to solve the equatieanstands for the unknown):

V(p SIS B)\,(S(ua (P) = F((P)

for each continuous linear forf on IF. Moreover we can construct for ady > 0 a strongly
continuous resolventr s on L2(€2), with generatorL’ = L + gD,? + Dy, and we define for
h € L*(Q), u) s = G sh, which solves the equation, fér < L*()

Vo €C, Bis(urs p) = (h,p). (33)
We want now to pass to the limit aggoes ta) in order to obtain a solutiom ), to the equation
Vo €C, Ba(ur,p) = (h,p). (34)

But we are faced with the following problem: we cannot coltine termD,u s because we lose
our control of this term a§ — 0. The idea is to differentiate equatiop](33) with respecthis t
time variable, in order to obtain an equation verifiedbyu, s and this will allow us to control this

12



T — .
0TS and we remark that, solves the following

term. So we let for each fixed §, v, =
equation

Vo €IF, Bys(vs, ) = Fs(p) (35)
whereF', is a continuous linear form olil; defined byVy € IF,

)P — <p> | T(V=Suy5 V-5T_s0p) = T(V=5T pyurs, V= 5¢)
1,1

Fi(p) = <h, d

~ (V=8ups, V=STs0p) = (V=8T(s 0 urs, V—5¢)

S

S S

S

For the first term, by assumption we have < IF, <h, M> < Gl For the

other terms we need the following lemma

Lemma 5.6. For anyg € IF and for anyy € IF we have

‘T( V=89,V -8T_,0¢) — T(V-ST09,V—Sp)

H 2K
- < e gl

and

. < Cllgll1llelh

‘ (V=S89 V=ST(_s0)¢) — (vV=5T(1,09. V—S)

Proof : For anyy, 1 € C we define

() = ¢ [ (B (o) Dasp(rio) - Dutb(w) — H(@)Datplr) - D) )

and we have

Toow) = [ FODZEED o) Do) duto)
- / / DyH (r) duDyp(74w) - Dytp(w) dp(w)

< / / |DyH (740) Dup(s0) - Db ()| dia(w) du
@)

< 203N T oyl 1l

2037 *X (| p||1[|% |11

HenceT, is a continuous bilinear form and can be extende@itox IH;. Let us consider now
@ € C,we have

T( \ —gga \Z _S’T(fs,(])(p) —T( \ _gT(s,O)g> v —g(p) 1

= —/Q—QAT(—5,0)<P+T(5,0)QA<PCZ7T

S S

P —

S

+ /Q g(TSw)%div(H(w)DxQO) dw)

= Ts(gv ‘P)

13



and the first inequality of the lemma follows from the factttlfais dense inlH;. The second
inequality that we have to prove requires the same arguments O

Sowe havers > 0, Fy(p) < (Cy + CHe2E ||luy 511 + Cllunsl1)]ell, and therefore
By s(vs,vs) = Fy(vs) < (Cp + C3'®" x5l + Cllunslh) sl
~ 2
which impliesA|vs |3 + ||vs]|? < (O + CHe* K |luy 5|1 + CHuA,(;\h) ,and||v,]; is bounded by
a constant which doesn’t depend @n
Since there exists a constaftsuch thatvs > 0,V € C, F () < All¢|1, there is a linear

form F, on IH; such thatF'; converges weakly td& in IH] along a subsequendgs,,),, which
converges td. With the help of [3R), we have

mln()\’ 5/2? ]‘)6(1)3717 vsn) é B>\76(v3n’ ,vsn) = an(vsn) S AHvSnHl

We deduce that the sequenee,, ),, is bounded in the spadE and we can extract a subsequence
which is still denoted bywvs, ), and converges weakly il towards some function, € IF. But,
because of the weak convergences, we havec C,

Bys(vo, p) = lim By 5(vs,,, ) = lim Fy, (p) = Fo(p).
Hence we deduce that, is the solution of the equation
Vo € IF, By 5(vo,p) = Fo(p). (36)

Tis,0)Ux5 — U,

On the other hand, we know that = d converges strongly id?(€2) to Diuy 5,

S
so we deduce thab,u, ;s € IF and solves the equatiop {36). To sum up, we found a family of
functions(u, 5)» s such thatuy s € IF, Dyuy 5 € IF and

VoeF, Byslurs, ) =<h,o>_11, (37)
Vo € F, Bas(Diurs,p) = Fo(p). (38)
After choosinge = uy 5 in B%) andp = Dyu,y 5 in 8), we have
)
Munsl3 + llursl? + §\DtuA,6!§ =< h,uys >-11< |R%, (39)
2 2 J 2 2
AlDyuy s]3 + (| Dewnslli + §|Dt u o)z < Al Dywy o)t (40)

By (BY) and [4D), the sequencer) s5)s-0 is bounded in the spack' as well as the sequence
(Dyuy 5)5>0 is bounded inH;, so there is a subsequente) s);~0 € IF with Diuys € H;
such that(u) 5)5~0 converges weakly i to uy and Dyuy s converges weaklyg IH; to Dyu)
asd — 0. Moreover with the help of[(39) we know thatD,u, 5|3 < 2||k||2; which means in

particular thaty D, uy s % 0. This allows us to pass to the limit @sgoes to0 in the equation
(B3) and to prove that
Ve e IF, B)\(’U)\, (p) =< h,p >_11 (41)
Now we just have to prove the uniqueness. But this is simptadre if we have two solutions
u) andw) thenVp € IF
B)\(’U)\ — V), (p) =0.
By choosingy = u) — v, we obtainu, = v, u almost surely O

14



5.7 Control of the solution

Like for the existence of the solution, we begin with the timeéependent case by way of introduc-
tion.

Proposition 5.8. Let h be inTH_; N L?(2) and for any\ > 0, letw) be defined as the unique
solution inIH; to the equation
)«w)\ — S’w)\ =h

Then\|w, |3 0 and there exist§ € L?(Q)¢ such that V7w, — €| 0

2
Proof : We know (see propositiop $.5) thatw,|3 + m|w,|? < % Thus even if it means
extracting a subsequence, we can find L?(£2) such tha{y/—Sw ), converges weakly ()

2(Q . .
towardsg. Moreover we havew % 0. Since for anyp € TH we have (see propositidn b.5)

Awy, p)2 + (V=8wx,V=Sp)s = Dr(wy, ¢) = (h, ¢)a,
we can pass to the limit whexgoes to) and we obtain
(9,V=8p)2 = (h,¢)s. (42)
Hence we deduce

limsup |glz[v " Bwils > limsup(g, v _Suws)s
A—0 A—0

= limsup(h,w))s
A—0

= limsup Nwy[3 4+ [v—Sw,|3
A—0

lim sup |[v/—Sw |3
A—0

v

So we obtaifig|2 > limsup,_,, |[v/—Sw,|2. Moreover, by the weak convergence, we hgle >
lim inf)\*)(] ‘\/ —S’w)\’Q. FlnaIIy
gl = lim |V=Sw,;

and the strong convergence holds for the fanil{~Sw ), towardsg. In this case, there must be
equality at each line of the previous calculus so thiat |3 gy 0. Because of equatiof (42), it is

easy to prove the uniqueness of the weak limit O

Our goal is now to obtain a good control of the solutiq)@ of the equation
b — Lub — Dyul = b;, (43)

this means we want to show thafus |3 = 0 and that(V°u}), converges in(L2(£2))? as\

goes ta). Our strategy consists in showing that the operaterL — D; is just a perturbation of the
operator\ — S — D so that our study can be reduced to the study of the solutidimedfollowing
equation

)\’U)\ — gv)\ — Dt’U)\ = b)\,

15



whereb, will be defined below and possesses a strong limitin,. This kind of equation is more
convenient to study because the operate& and D, commute and hence we can use a common
spectral decomposition of these operators. In our procf il be of the utmost importance and
will allow us to prove that the antisymmetric terf? does not play an essential role in the control
of the solution. So we begin by proving the second point:

Proposition 5.9. Let (b)) ,~o be a family of functions ih.2(Q) NIH_; which is strongly convergent

inTH_; toby € H_;. Suppose that there is a family of functiondinDom (S denoted byv,)x~0
such that

YA>0, Avy— Svy— Dy =b,. (44)
Then there existg € (L2(2))? such that

NCNE 0and|Vv, — 0
|>\|2‘)\‘_TO_’ | A 77|2—>\—_TO—’

Proof : We remind that we have

-S§ = 2 E(dz,dy) and — D; = / iy E(dz, dy).
R4 xR R+ xR

After multiplying (#4) bywv, and integrating with respect to the meastreve have
Noal+ lloal} = [ byoxdn < Cloa] < €2 (45)
Q
whereC' = sup ||b,||—1. Hence we know that there Is € L?(2) and a subsequence still denoted
A>0

by (vy), such that(\/ —g’v)\))\ converges weakly if.?(Q) to h.

e We have sup ||[Avx||—1 < oo and sup || Dva||—1 < oo:
A>0 A>0

A
= — dF
‘/nmm A ta)+iy 2%

)\2
dEy, b / rdEg,
\//IR+><1R (A +x)2+y? A\/ R. xR ©e
1
< (sup\/ / —dEbA,bA> el
A>0\ JIRL xR ¥

= sup [[ba-1 el
A>0

/ Avyp dm
Q

IN

< Cllelh

whereC' does not depend oh. Hence we deduce from, v, = \vy — §m — by, that there is
a constantd independent of\ such thatvy € C, [, Diwapdr < Al ||, so that, even if it
means extracting a subsequence, there is a faf#ily) >, of linear forms onD C L?(2) such

thatvA > 0,V € C, F)(V —S‘cp) = fQ Dyvyp dr, and(F'y),~o is weakly convergent td:
Vo eC, Fi(\/—-Se) — Foly/ ~Sop).

16



e We have Fy(h) =0 :

Since
Fy(\/ —g"vu) = / Dyvyv, dr = —/ Dyvyvydr = —F,(\/ —Sv))
Q Q

we deduce by passing to the limit agoes ta) that Fo(V/ —§vu) = —F,(h) and then by passing
to the limit asu goes ta) we haveFy(h) = —Fy(h) = 0.

e The limit equation :

2
By @5), we know that\|v, |3 < C? so that\v, LA—?> 0. Then, if we multiply the equatior| (44)

by ¢ € C we havel(vy, )+ < vy, >1 —(Dwy, ) = (by, ) and if we pass to the limit as

A — 0 we obtain
(h,\/ =8) — Fo(\/ —~8¢) =< by, >_11 . (46)

Because of the density ¢fin IF, this equality remains valid for any < IF.
e Final step for the convergence:
If we use the fact thaF'y(h) = 0 we have

lim (h, \/—>§’U)\) = /1\12% <(h7 \/—>§'UA) - Fo(\/—>§’v>\)> (47)

A—0

Hence we deduce

lim sup |hl2||vall1 limsup(h, \/ —Sv))
A—0 A—0

Hmsup(ﬂuy/jgvﬂ‘—Fb( —§vm>

A—0

Y

IE]

limsup < bg, v\ >_1,1
A—0

limsup (by,v))
A—0

&

mTSSP(AWAg‘+HUHE)

> limsup oy

—

Hence, thanks to the same arguments as in the static caseyee h

h|s = i .

[hlz = lim [|ox])
Thus we obtain the strong convergence(o‘f—gvA)A towardsh along a subsequence. But there
must be equality at each line of the previous calculatiorhabwe also hava|v |3 Y 0.

e Uniqueness of the weak limit :

This convergence holds for the whole family if there is urigess for the weak limit. That's what
we are going to prove. Lét andh’ be two weak limits of two subsequences(ef, ), andF,F,
the corresponding linear forms defined as described abogestiMhave the two limit equations for

anyp € IF
(h,\/ —g’cp) — Fo(y/ —gcp) =< by, >_11, (48)

17



and similarly

(R, \/=Sep) — Fy(\/ ~Sp) =< bo, ¢ > 11 . (49)

In a similar way we did previously we have

Fy(\/ —g"vu) = /Dt”A”u dm = — /Dt'vuw\ dr = —F,(\/ —g"vA)

We can pass to the limit asgoes ta) along the first subsequence and then to the limjt gees to
0 along the second subsequence and we obtain

Fy(h') = ~Fj(h). (50)

By choosingy = v,, in (8) and [49) and taking the limit along the second subsecgl we obtain

(h,h,) — Fo(h,) = < bo,h, >_1,1s
(W K)=(H,h)—F)(h) = <by,h >_11,

In the same way, by choosing = v, in (£8) and [4P) and taking the limit along the first subse-
guence we obtain

(hah) = (hah) - FO(h) = < bO’h >71,1
(h/,h) — F/O(h) = <by,h >_1,1
From these 4 last equalities we deduce
lh=h3 = (h.h)—2(R'h)+ (R}
—Fy(h) — Fo(h')
0

[Eea

and this allows us to dedude= h’ O

We want now to treat the general case (with the symmetricpand the antisymmetric part).
First we explain the idea of the proof. Formally we have

A—S—A-D, = A-8§-D,—(S-S)—A
= (I—[(S—§)+A]()\—§—Dt)_1>()\—S—Dt)
If we can prove that the operator
[(S—8)+A](A\ -8 — Dy}

is bounded with a norm strictly less thanthen we will be able to inverse this operator. In general,
its norm is bigger than 1 but we will bring back our study tostibase by introducing a small
parametep. Then the norm of the operator

5[(S—8)+A](A\— S — Dy}

will be strictly less than 1. We will deduce the general casanfthis situation.

18



Lemma 5.10. Letu € IF be such thafD;u € IH;. Thenve € C we have,
—5,00P — ¥
[ Au =L < 5 (Of ful + CE Dyl

and
T( 5,00P
[ 522 <2 (Gl + MIDral ) ol

Proof : For anyy, 1 € C we define

2Q,(p, ) = /H Tsw)Dypp(Tsw) + Dptp(w) — H(w)Dyp(w) - Dptp(w) dp,

and we have

2Q.(p.9) = / H(Tsw)_H(W)DmSD(Tsw)'Dmﬂb(w)d#

/H ) Dap(w) - Dpap(w) dp

Then
Q‘Q;(‘ﬂ P)| = H (ryw) duDyp(Tsw) - Dptp(w) dp
1

S /0 /Q |DiH (1,w)Dyp(Tsw) - Dptp(w)| dpdu
(L)
< 205" M| T 0l 191
= 2057 el

and

2|1Q% (¢, )] < )S_ "’(w)> - Dyab du

@ CHKH plrw) - <>

S

H2K

H¢Hl

/ Dip(Tsyw) du

< 2o ([ i Tsuwwldu) e
= 201 | Dl 190

HenceQ), is a continuous bilinear form and can be exteni@ttpx H;. Let us consider now € C,
we have
1

! <_ /Q u(Tsw)%div(H(Tsw)D;pLﬁ) dr

S

1.
+/Qu(w)§d1V(H(w)Dxcp),d7r>
= —QQS(’U,,(,O)

1
—/ AuT(_s 0y — Aupdr
s Ja
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and the lemma follows from the fact th@tis dense ifH;. We do not prove the second inequality
because the proof is very similar to the first one O
Equipped with the above lemma we are able to prove the fingtafteur demonstration.

Proposition 5.11. Let (b)) -0 be a family of functions iftl _; N L?(©2) which is strongly convergent
in TH_, to someb, € IH_;. We also suppose thaj, verifies the assumption of propositipn|5.4, ie
there exists a constaidf (which does not depend oY) such thatVs > 0 andVe € C

T sorp —
<bA7w> < Cllels.
S 1,1

There exist$ > 0 such that: for each\ > 0, if we denote by € TF with D;u) € H; the unique
solution (see propositioh $.4) of the equation

Auy —0Suy — (1 — 5).§u>\ — 0Auy — Dyuy = by,

— 2
then there existgy € L?(f2) such thaty —Swu,, LA—(%)» nand\|u, |3 0

Proof: We denote byH the subspace dfl_; whose elements satisfy the conditioris > 0 and

Vo el
Tsop—¥
<hﬁL—l———> < Cliglh, (51)
s 1,1
where the constant might be different for differdntc 7. For anyh € H, the smallestC which
satisfies this condition will be denotéid||. Then’ is closed for the nornf ||z = || || -1 + || ||

We consider now the operat®k : H — H defined byl’\(b) = §(S — S+ A)(A— S —D;)~}(b).
We have already seen thath — S — D;)~1b||7 < ||b]|2;, so that

§(14+ M+ e2KCh)||(A— 8 — D)L (b)|l1
51+ M + )b (52)

168 = S+ A)A =5 - D) )1 <
<

Moreover, thanks to propositidn 5.4, we know thia(\ — S — D,)~!(b) € IH; and
1D« = 8 = D)7 (®) 11 < [Ibllr + (C3" + C)b] -1,
and thanks to lemn{a’5]10, for amyc IF with D;u € Hy,
16(S = 8+ A)(w)llr < 2(e*Cf + O) |y + (2e*F Off + M + 1) Dyu|,
so that
16(S = S+ A)(A =S8 — D)~ (b)l|r < 6<262K02H +2C + (C + Chy2eMeff + M + 1)) 1B]|

+6(2e*C + M +1)|b||7.
(53)

Hence we can choosesmall enough in order that\ > 0, ||T)||x—n < d and| T\ |5, -1, < d
with d < 1. This implies that we can define the operafior- T)]~! : H — H. Moreover it is
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sufficient to prove that', (b)) converges ifH_; in order to prove the convergence[bf-Ty| 1 (b))
in IH_;. But, for any\, i > 0, we have

ITA(B) = Tu(B)l-1 < 61+ M+ KON =8 = D)7 (B3) = (n— 5 = Do) (by)lh

and this last term converges@according to propositiop §.9.
Finally, it is sufficient to remark that

A=08—(1-6)8—6A—-D) ' =A-8—D) '[1-Ty] "

and to apply proposition §.9 in order to conclude the proof O

So we have almost proved the desired result but the coeffi¢iesnin general strictly less than
1. In order to get round this difficulty, we pdt = 6 and we choosé, > 0, and then we write

A — (51 +(52)S — (1 — 01 — 52)5 — (51 +(52)A — Dy
= [[-0(S—S+A)N-6S—(1-6)S—51A— D] |(A =618~ (1-61)S — 51 A~ Dy),

so that we want exactly repeat the proof of proposifion] 5xtkpt that the operator— (1 — 61)3’ —
518 — 01A — Dy is replaced by the operatar— (1 — §; — 52)§ — (01 4 02)S — (01 + 92)A — Dy
and the use of propositidn 5.9 with the operator S—D,is everywhere replaced by the use of
the propositior] 5.11 with the operatdr- (1 — 51)§ — 018 — 81 A— Dy, provided thab, is choosen
small enough. Even if it means substitutiagvith ma, we can suppose without loss of generality
thatm = 1. Hence, because of the inequality

a<a< Ma,

the inequalities[(§2) and (563) remains valid whéris replaced by, so that the chooice af; is
independent on;. This remark is important because this means that we cadtdrese arguments
until we findd,, such that; +d> + - - - + 6, = 1 and such that propositign 5]11 remains valid if we
relace everywheréby 6, + --- + 6, = 1.

For the sake of clarity, we sum up our discussion in the fatguproposition:

Proposition 5.12. Let (b)) -0 be a family of functions iftl_; N L?(Q2) which is strongly convergent
in H_, to someby € H_;1. We suppose that there exists a constar{ivhich does not depend on
A) such thatvs > 0 andVe € C

T sorp —
<bA7w> < Cllels.
s 1,1

Then solutioru, € IF of the equation

)\’U)\ — S’U)\ — A’U,)\ — Dt’U)\ = b)\

satisfies:
— 2
« there exist3) € L2(2) such thaty —Su,, %—(%)» 7,

2
o )\"U/)\’Q E) 0.
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Now we prove that we can apply this result if we chobgequal to the driftb of our diffusion
process. That is why we need the following lemma

Lemma 5.13. For eachi € {1,...,d}, we have|b;||_1 < co and¥s > 0,Vy € C

Ti_s0)p — ¢
/biL drr < || Dybi 2]l

S

Remark 5.14. If ||g||-; < co then we have, g dm = 0.

Proof of the lemma: Let (Ey, . .., E4) be the canonical basis @it?. Then we have

Q

1 €2V
= \ Z(§Djaij — al-ijV + TD]HZ])QD dm
J

1
= —/(a—eQVH)Dcp-Eidw
2 Ja
1 1
< —/aDLp-Eidw +‘—/HDLp-EZ~dM‘
2 Ja 2 Ja
c=s 2 H ~ 1/2 /= 1/2
< Mlglh| [ (@B Eydn| 4 [ @Ei- )V @De - De) du
Q

c—5 N
< Clelh /an‘dﬂ

and this proves the first point. For the second point we have 0,V € C

Ts0p — T s D — D
/()Z.L(’C’L‘Ocl7T = _/(GQQV_;_H)EZ.. (=5.0) 2(’0 (Pdu
S S
Tisoy(ae ™2V + H) — (ae?V + H
_ _/ (0 (ae 2) (ac ) 5. Dy dy
S

IN

(6 + GQKCg{) /&“ dﬂ'HSOHl

6 Itd’'s formula

Since the matrixa is not uniformly elliptic, we can't prove the regularity die functionSuiA in
order to apply Ité’s formula. Here we will use the fact thag processy is almost symmetric in the
sense that we can control the antisymmetric part with thasgtnic one. The aim of this section is
to prove the following theorem:

Proposition 6.1. For each functionf € Dom(L + D;) N IF, we have

t t
P, ps, (V)= F(Yo) + /O (Lf + Dif)(Y,) dr + /O VOFY) B, (54)

wherelP; is the law of the procesE starting with the distributionr on €2.
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Proof: Considerf € Dom(L + D;) C IF and a sequencgp,,),, € (C)N such thatp,, F, f

andLe,, f—@» L f. Thanks to the regularity of the functiogs,, we can apply the classical Itd
formula: .
t t
@ulYi) = galte) + [ (Lipw+ Diphn(Voydr + [ Vo) d, (55)

Thanks to the invariance of the measuaréor the procesy” and the Cauchy-Schwarz inequality, it
is not difficult to see that

IE,

t t 2
on(¥2) — FOYOP + lon(¥o) — FVO)2 + ( [ @eu+ Digivyar = [ (s +pp)vn dr) ]

converges t® asn goes to infinity. Moreover

2

IN

B | [ B0 - Ve - V)

< 2Mt|f - ol

E, [ sup ( [ e -vrm dBr)
0<s<t 0

converges also t0 asn tends to infinity. The above last inequality results from dedinition of
V7 and inequality [{9). It is now sufficient to take the limit inwegion (55) in order to prove the
proposition O

7 The invariance principle

Notation :
Up to the end of this paper, fore {1, ..., d} we will denote byuj the solution of the equation

b — Lul, — Dyul, = b;.
From propositior 5.32, we havgu} |3 ~— 0and we can defing; = lim_, V"uj where the
limit is taken in the spacé?(Q2)? O
By applying the Itd formula (see sectiph 6) to the functian, we obtain

t/e?
eXyer = H* + 5/ (o 4+ Vouy)(r, X),w) dBy,
0

where
t/e?
H¥ = 53/0 U2 (r, X9 w) dr — eua(t/€2, th/’;,w) + eug2(0,0,w).
We still denote byY; = 7 x» andIP; the law of the proces%; with initial distribution 7.
We want to show that the finite dimensional distributionshe processf*“ converges inP -
probability to0. Using the Cauchy-Scharz inequality and the invariancé@feasurer, we get

the estimate
E-[(H;“)?] < 3(2 + t*)e%|u2 3

and this last term converge foase goes ta0.
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Now we have to study the limit of the process— ¢ fg/52 (0 + Vou3)(r, X}’ ,w) dB, whose

quadratic variations are given by
t/e? t/e?
2 [ e+ vun)e + Vun) (i = [ @+ €)@ + € () dr

/€? /€?
+ (82 /t (0 +Voul)(o +Viul)"(Y,) dr — &2 /t (o +&)(o+ &) (Y,) dr) .
0 0

By the ergodic theorem, the first of the two last terms core®rgalmost surely to the process
t — At where the marix4 is given by

A= [lererr e in

and the second one convergesZihto 0. Indeed, after integrating with respect to the probability
measurdP,, it is bounded byCt|V°u.> — £|3. Hence we conclude by applying the central limit
theorem for martingales that the finite dimensional distidns of the process.Xj;;62 converge in

law to the processl'/2B;.

Proposition 7.1. The processX;‘;52 is tight in the space& ([0, T); IR%). Hence it converges in law
in the space’ ([0, T]; IR?) towards the procesd!/?B;.

Proof : The next section will be devoted to the proof of the tightness O
We have now to determine the limit when the starting poinisdranymore but: /<.

Ease {f(EXgﬁ)] = Eo [f(ﬂc + 5Xt7/<2’zz/s)w)]
inl ith 1t "
e o |

m prob, E [f(m+ A1/2Bt)}

e—0

For the first above equality we used that if
t t
X, :x+/ b(r, X,,w) dr—l—/ o(r,X,,w) dB,
0 0

andZ; 2 X; — z thenZ, solves the SDE

¢ t
Zy :/ b (7‘, ZT,T(07m)w) dr —|—/ o (7‘, ZT,T(07m)w) dB,.
0 0

Hence we have proved the following result

Theorem 7.2. Let f be a continuous, bounded aiRf’ valued function. Then the solutiepr, t, w)
of the partial differential equation

) d

d

0 0
Z agj (t,x,w) WZ(%@W) + Zbi (t,z,w) %Z(watw)
i,j=1 v v

z(z,0,w) = f(=z)

DO | —

d
Ez(m,t,w) =

i
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satisfies the propertyz z /e, t/e?,w) converges inr-probability ass — 0 to IE [f(x + Al/th)]
which is the viscosity solution of the deterministic equrati

ou 1 ou
E(t’x) -5 ZAijg—(t’x)

2 i iEiiEj ,
u(0,z) = f(x).
with
A= [(oc+&)(e+&) dr
Q
8 Tightness

In order to obtain the tightness in the spai¢g0, T; IR?) of the process

t/e? t/e?
eXl’wz = 5/ b(r, Xﬁ"”,w) dr + 6/ o(r, X&’“,w) dB,.,
0 0

we are faced with the two terms of the right side of the aboeetity. The tightness of the second
terminC([0, T]; IR?) is not very difficult to prove by using the Burkholder-Dawandy inequality
and the boundedness of the coefficienfor the first term, we are going to exploit ideas[of [15] or

[T7].

Proposition 8.1. Letg € TH_; N L?(Q2). Then for anyl’ > 0, the family of processes indexed by

e>0
t/e?
(6 / g(Yr)dr>
0 o<t<T/ .

is thight in the spac€’'([0, 7]; R).

0

Proof : Forany\ > 0, we putwy = (A—S)"!'g € IH;NnDom(S) (see propositiof §.5). Moreover
we know (see propositign §.8) that there exists (L2(£2))¢ such that

AMwyp — 0 andVw), — (.
| )\|2 A—0 A A—0 C
Then by choosing\ = £2, we obtain

t/e? t/e? t/e?
5/ gV, )dr = 53/ w2 (Y;) dr—e/ Sw,.2(Y,)dr
0 0 0

By usint the Cauchy-Schwarz inequality and the invariarfd@e@measurer, we have

86 T/EQ w T 2
( /0 | (V) d

< T w23

2

IE; | sup

0<t<T

t/e?
83/ w2 (Y,)dr < IE;
0
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and this converges t0 ase — 0. Hence we only have to show the tightness of the family
( e [/ Sw.(Y, )dr) - Let{py, A > 0} € C be afamily such thalp, — walz — 0
£>

and|Sep, — Sw,|3 < A3/2 when) — 0. We have

t/e? t/e? t/e?
5/ Sw.(Y,)dr = 8/ S(w. — @2)(Y,)dr + 5/ Sz (Y,)dr,
0 0 0

and as previously

S T2 ‘S(w&‘Q B LP{;‘Q)’% 0

E; | sup =2

0<t<T e—0

2
t/e
5/ S(w.z — ¢2)(Y,)dr
0

Finally we just have to study the tightness of the fan{i&yfo'/62 Sp.2(Y;) dr>€>0. First, we remark
thatlimy .o [V, — Vow,|3 = —21imy () — wy, S, — Swy)2 0 and this implies
thatlimy .o |V, — /3 g, 0. Then, we remind that the operathi is the adjoint operator of
L. Itis easy to check that ¢ Dom(L*). Then we observe thal) < ¢ < T ande > 0

t/e
p2(Yy/e2) — p2(Yo) — /0 (L2 + Dope2|(Yr) dr = My, — Mg,

where M® is a martingale with respect to the forward filtratiQ#y )o<;<7, where 7 is the o-
algebra orf2 generated by Y;;0 < r < t/e?}. In the same way,

t/e
Pa(¥s) = @ (Vi) = [ (B2 = Dospaal(¥) dr = My* = M;

where M** is a martingale with respect to the backward filtrati@if )o<¢<7, whereg; is the
c-algebra on( generated by{(Y;;¢/e? <r <T/e?}. We deduce from these two expressions:
VO<t<T
t/e EME, , —eME  eMTF, —eMy*
—5/ S (Y;)dr = t/€22 0 _ U 5 o
0

By proving the tightness of these two last terms, we will dode our proof. In order to prove the
tightness of these martingales, it is sufficient to provetitffeness of their brackets (sdg [4] theorem
4.13). But for0 < ¢t < T, their brackets are equal to

t/e?
g2 V722V (Y;)dr.
0
Moreover we have
t/e?

t/e
£ ; V792 VoL(Y,)dr = 82/0 Vo2Vl — ¢CTI(Yr) dr

t/e?
+&? /0 ¢CH (Y, dr
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We can easily see that

t/e?
Ew[sup &2 / Vo2Vl — (Y dr|| < TIVg. —Cls
0<t<T 0
— 0.
e—0

Moreover for each fixed, the Birkhoff ergodic theorem proves that the tea'?nfg/‘52 ¢¢CH(Yy) dr

convergesr almost surely ta fQ ¢¢*(w) dm. Then theorem 3.37 if][4] says that the brackets are
tight in D([0, T); IR%*4) O
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