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Abstract

We consider the model of the one-dimensional cookie random walk when the

initial cookie distribution is spatially uniform and the number of cookies per site

is finite. We give a criterion to decide whether the limiting speed of the walk is

non-zero. In particular, we show that a positive speed may be obtained for just 3

cookies per site. We also prove a result on the continuity of the speed with respect

to the initial cookie distribution.
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1 Introduction

We consider the model of the multi-excited random walk, also called cookie random walk,
introduced by Zerner in [10] as a generalization of the model of the excited random
walk described by Benjamini and Wilson in [2] (see also Davis [3] for a continuous time
analogue). The aim of this paper is to study under which conditions the speed of a cookie
random walk is strictly positive. In dimension d ≥ 2, this problem was solved by Kozma
[6, 7] who proved that the speed is always non-zero. In the one-dimensional case, the speed
can either be zero or strictly positive. We give here a necessary and sufficient condition
to determine if the walk’s speed is strictly positive when the initial cookie environment is
deterministic, spatially uniform and with a finite number of cookies per site. Let us start
with an informal definition of such a process:

Let us put M ≥ 1 ”cookies” at each site of Z and let us pick p1, p2, . . . , pM ∈ [1
2
, 1).

We say that pi represents the ”strength” of the ith cookie at any given site. Then, a cookie
random walk X = (Xn)n≥0 is simply a nearest neighbour random walk, eating the cookies
it finds along its path by behaving in the following way:

∗Address for both authors: Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et

Marie Curie, 175 rue du Chevaleret, 75013 Paris, France.
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• If Xn = x and there is no remaining cookie at site x, then X jumps at time n + 1
to x + 1 or x − 1 with equal probability 1

2
.

• If Xn = x and there remain the cookies with strengths pj , pj+1, . . . , pM at this site,
then X eats the cookie with attached strength pj (which therefore disappears from
this site) and then jumps at time n + 1 to x + 1 with probability pj and to x − 1
with probability 1 − pj.

This model is a particular case of self-interacting random walk: the position of X at time
n + 1 depends not only of its position at time n but also on the number of previous visits
to its present site. Therefore, X is not a Markov process.

Let us now give a formal description of the general model. We define the set of
cookie environments by Ω = [1

2
, 1]N

∗×Z. Thus, a cookie environment is of the form ω =
(ω(i, x))i≥1,x∈Z where ω(i, x) represents the strength of the ith cookie at site x. Given
x ∈ Z and ω ∈ Ω, a cookie random walk starting from x in the cookie environment ω is
a process (Xn)n≥0 on some probability space (Ω,F ,Pω,x) such that:






Pω,x{X0 = z} = 1,
Pω,x{|Xn+1 − Xn| = 1} = 1,
Pω,x{Xn+1 = Xn + 1 — X1, . . . , Xn} = ω(j, Xn) where j = ♯{0 ≤ i ≤ n , Xi = Xn}.

In this paper, we restrict our attention to the set of environments Ωu
M ⊂ Ω which are

spatially uniform with at most M ≥ 1 cookies per site:

ω ∈ Ωu
M ⇐⇒






for all x ∈ Z and all i ≥ 1 ω(i, x) = ω(i, 0),
for all i > M ω(i, 0) = 1

2
,

for all i ≥ 1 ω(i, 0) < 1.

The last condition ω(i, 0) < 1 is introduced only to exclude some possible degenerated
cases but can be relaxed (see Remark 2.4). A cookie environment ω ∈ Ωu

M may be
represented by (M, p̄) where

p̄ = (p1, . . . , pM) = (ω(1, 0), . . . , ω(M, 0)).

In this case, we shall say that the associated cookie random walk is an (M, p̄)-cookie
random walk and we will use the notation P(M,p̄) instead of Pω.

The question of the recurrence or transience of a cookie random walk was solved by
Zerner in [10] for general cookie environments (even in the case where the initial cookie
environment may itself be random). In particular, he proved that, if X is an (M, p̄) cookie
random walk, there is a phase transition according to the value of

α = α(M, p̄)
def

=

M∑

i=1

(2pi − 1) − 1. (1)

• If α ≤ 0 then the walk is recurrent i.e. lim sup Xn = − lim inf Xn = +∞ a.s.

• If α > 0 then X is transient toward +∞ i.e lim Xn = +∞ a.s.
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In particular, for M = 1, the cookie random walk is always recurrent for any choice of p̄.
However, as soon as M ≥ 2, the cookie random walk can either be transient or recurrent
depending on p̄. Zerner [10] also proved that the speed of a (M, p̄)-cookie random walk
X is always well defined (but may or not be zero). Precisely,

• there exists a constant v(M, p̄) ≥ 0 such that

Xn

n
−→
n→∞

v(M, p̄) P(M,p̄)-almost surely.

• The speed is monotonic in p̄: if p̄ = (p1, . . . , pM) and q̄ = (q1, . . . , qM) are two cookie
environments such that pi ≤ qi for all i, then v(M, p̄) ≤ v(M, q̄).

• The speed of a (2, p̄)-cookie random walk is always 0.

The question of whether one can construct a (M, p̄)-cookie random walk with strictly
positive speed was affirmatively answered by Mountford, Pimentel and Valle [8] who
considered the case where all the cookies have the same strength p ∈ [1

2
, 1) i.e. the cookie

vector p̄ has the form [p]M
def

= (p, . . . , p). They showed that:

• For any p ∈ (1
2
, 1), there exists an M0 such that for all M > M0 the speed of the

(M, [p]M )-cookie random walk is strictly positive.

• If M(2p − 1) < 2, then the speed of the (M, [p]M)-cookie random walk is zero.

They also conjectured that when M(2p− 1) > 2, the speed should be non-zero. The aim
of this paper is to prove that such is indeed the case.

Theorem 1.1. Let X denote a (M, p̄)-cookie random walk, then

lim
n→∞

Xn

n
= v(M, p̄) > 0 ⇐⇒ α(M, p̄) > 1

where α(M, p̄) is given by (1).

In particular, we see that a non-zero speed may be achieved for as few as 3 cookies per
site. Comparing this result with the transience/recurrence criteria, we have a second order
phase transition at the critical value α = 1. In fact, it shall be proved in a forthcoming
paper that, for 0 < α < 1, the rate of transience of Xn is of order n

α+1

2 .
One would certainly like an explicit calculation of the limiting velocity in term of the

cookie environment (M, p̄) but this seems a challenging problem (one can still look at
the end of Section 3 where we give an implicit formula for the speed). However, one can
prove that the speed is continuous in p̄ and has a positive right derivative at all its critical
points:

Theorem 1.2. • For each M , the speed v(M, p̄) is a continuous function of p̄ in Ωu
M .

• For any environment (M, p̄c) with α(M, p̄c) = 1, there exists a constant C > 0
(depending on (M, p̄c)) such that

lim
p̄→p̄c

p̄∈Ωu
M

α(p̄)>1

v(M, p̄)

α(M, p̄) − 1
= C.
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In particular, for M ≥ 3, the (unique) critical value for an (M, [p]M)-cookie random
walk is pc = 1

M
+ 1

2
and the function v(p) is continuous, non-decreasing, zero for p ≤ pc,

and admits a finite strictly positive right derivative at pc.
The remainder of this paper is organized as follow. In the next section, we construct a

Markov process associated with the hitting time of the cookie random walk. The method
is similar to that used by Kesten, Kozlov and Spitzer [5] for the determination of the rates
of transience of a random walk in a one-dimensional random environment. It turns out
that, in our setting, the resulting process is a branching process with random migration.
The study of this process and of its stationary distribution is done in Section 3. This
enables us to complete the proof of Theorem 1.1. Finally, the last section is dedicated to
the proof of Theorem 1.2.

2 An associated branching process with migration

In the remainder of this paper, X = (Xn)n≥0 will denote a (M, p̄)-cookie random walk.
Since the speed of a recurrent cookie random walk is zero, we will also assume that we
are in the transient regime i.e.

α(M, p̄) =

M∑

i=1

(2pi − 1) − 1 > 0. (2)

For the sake of brevity, we simply write Px for P(M,p̄),x and P instead of P0 (the process
starting from 0). Let Tn stand for the hitting time of level n ≥ 0 by X:

Tn = inf(k ≥ 0 , Xk = n). (3)

For 0 ≤ k ≤ n, let Un
i denote the number of jumps of the cookie random walk from site i

to site i − 1 before reaching level n

Un
i = ♯{0 ≤ k < Tn, Xk = i and Xk+1 = i − 1}.

Let also Kn stand for the total time spent by X in the negative half-line up to time Tn

Kn = ♯{0 ≤ k ≤ Tn, Xk < 0}.

A simple combinatorial argument readily yields

Tn = Kn − Un
0 + n + 2

n∑

k=0

Un
k .

Notice that, as n tends to infinity, the random variable Kn increases almost surely toward
K∞, the total time spent by the cookie random walk in the negative half line. Similarly,
Un

0 increases toward U∞
0 the total number of jumps from 0 to −1. Since X is transient,

K∞ + U∞
0 is almost-surely finite and therefore

Tn ∼
n→∞

n + 2
n∑

k=0

Un
k . (4)
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Let us now prove that for each n, the reverse process (Un
n , Un

n−1, . . . , U
n
1 , Un

0 ) has the same
law as the n first steps of some branching process Z with random migration. We first
need to introduce some notations. Let (Bi)i≥1 denote a sequence of independent Bernoulli
random variable under P with distribution:

P{Bi = 1} = 1 − P{Bi = 0} =

{
pi if i ≤ M ,
1
2

if i > M .
(5)

For j ∈ N, define

kj = min(k ≥ 1, ♯{1 ≤ i ≤ k, Bi = 1} = j + 1)

and
Aj = ♯{1 ≤ i ≤ kj, Bi = 0} = kj − j − 1.

We have the following easy lemma:

Lemma 2.1. • For any i, j ≥ 0, we have P{Aj = i} > 0.

• For all j ≥ M , we have

Aj
law

= AM−1 + ξ1 + . . . + ξj−M+1 (6)

where (ξi)i≥0 is a sequence of i.i.d. geometrical random variable with parameter 1
2

independent of AM−1.

Proof. The first part of the lemma is a direct consequence of the assumption that p̄ is
such that pk < 1 for all k. To prove the second part, we simply notice that kM−1 ≥ M so
that for j ≥ M , the random variable Aj −AM−1 has the same law as the random variable

min(k ≥ 1, ♯{1 ≤ i ≤ k, B̃i = 1} = j + 1 − M) − j − 1 + M (7)

where (B̃i)i≥0 is a sequence of i.i.d. random variables independent of AM−1 and with

common Bernoulli distribution P{B̃i = 0} = P{B̃i = 1} = 1
2
. It is clear that (7) has the

same law as ξ1 + . . . + ξj−M+1.

By possibly extending the probability space, we now construct a process Z = (Zn, n ≥
0) and a family of probability (Pz)z≥0 such that, under Pz, the process Z is a Markov
chain starting from z, with transition probability:

{
Pz{Z0 = z} = 1,
Pz{Zn+1 = k | Zn = j} = P{Aj = k}.

Since the family of probabilities (Pz) depends on the law of the cookie environment (M, p̄),
we should rigourously write P(M,p̄),z instead of Pz. However, when there is no possible
confusion we will keep using the abbreviated notation. Furthermore, we will simply write
P for P0 and E will stand for the expectation with respect to P.

Let us now notice that, in view of the previous lemma, Zn under Pz may be interpreted
as the number of particles alive at time n of a branching process with random migration
starting from z, that is a branching process which allows immigration and emigration (see
Vatutin and Zubkov [9] for a survey on these processes). Indeed:
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• If Zn = j ≥ M − 1, then according to Lemma 2.1, Zn+1 has the same law as∑j−M+1
k=1 ξk + AM−1, i.e. M − 1 particles emigrate and the remaining particles

reproduce according to a geometrical law with parameter 1
2

and there is also an
immigration of AM−1 new particles.

• If Zn = j ∈ {0, . . . , M − 2} then Zn+1 has the same law as Aj i.e. all the j particles
emigrate and Aj new particles immigrate.

We can now state the main result of this section:

Proposition 2.2. For each n ∈ N, (Un
n , Un

n−1, . . . , U
n
0 ) under P has the same law as

(Z0, Z1, . . . , Zn) under P.

Proof. The argument is similar to the one given by Kesten et al. in [5]. Recall that Un
i

represents the numbers of jumps of the cookie random walk X from i to i − 1 before
reaching n. Then, conditionally on (Un

n , Un
n−1, . . . , U

n
i+1), the number of jumps Un

i from i
to i − 1 depends only on the number of jumps from i + 1 to i, that is, depends only of
Un

i+1. This shows that (Un
n , Un

n−1, . . . , U
n
0 ) is indeed a Markov process.

By definition, Z0 = 0 P-a.s. and Un
n = 0 P-a.s. It remains to compute P{Un

i =
k | Un

i+1 = j}. Note that the number of jumps from i to i − 1 before reaching level n is
equal to the number of jumps from i to i − 1 before reaching i + 1 for the first time plus
the sum of the number of jumps from i to i−1 between two consecutive jumps from i+1
to i which occur before reaching level n. Thus, conditionally on {Un

i+1 = j}, the random
variable Un

i has the same law as the number of failures (i.e. Bk = 0) in the Bernoulli
sequence (B1, B2, B3, . . .) defined by (5) before having exactly j + 1 successes. This is
precisely the definition of Aj and therefore P{Un

i = k | Un
i+1 = j} = Pj{Z1 = k}.

Since Un
0 is the number of jumps from 0 to −1 of the cookie random walk X before

reaching level n and since we assumed that the cookie random walk X is transient, Un
0

increases almost surely toward the total number U∞
0 of jumps of X from 0 to −1. In

view of the previous proposition, this implies that under P, Zn converges in law toward a
random variable which we denote by Z∞.

Let us also note that Z is a irreducible Markov chain (this is a consequence of part 1
of Lemma 2.1). Since Z converges in law toward a limiting distribution, this shows that
Z is in fact a positive recurrent Markov chain. In particular, Zn converges in law toward
Z∞ independently of its starting point (i.e. the law of Z∞ is the same under any Px) and
the law of Z∞ is also the unique invariant probability for Z.

Corollary 2.3. Recall that v(M, p̄) denotes the limiting speed of the cookie random walk
X. We have

v(M, p̄) =
1

1 + 2E[Z∞]
(with the convention 0 = 1

+∞
).

In particular, the speed of an (M, p̄)-cookie random walk is non zero i.i.f. the limiting
random variable Z∞ of its associated process Z has a finite expectation.

Proof. Since X is transient, we have the well known equivalence valid for v ∈ [0,∞] :

Xn

n
−→
n→∞

v P-a.s. ⇐⇒
Tn

n
−→
n→∞

1

v
P-a.s. (8)
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On the one hand, this equivalence and (4) yield

1

n

n∑

k=0

Un
k −→

n→∞

1

2v(M, p̄)
−

1

2
P-a.s. (9)

On the other hand, making use of an ergodic theorem for the positive recurrent Markov
chains Z with stationary limiting distribution Z∞, we find that

1

n

n∑

i=1

Zk →
n→∞

E[Z∞] P-a.s. (10)

(this result is valid even if E[Z∞] = ∞). Proposition 2.2 implies that the limits in (9) and
(10) are the same. This completes the proof of the corollary.

Remark 2.4. We assumed in the definition of an (M, p̄) cookie environment that

pi 6= 1 for all 1 ≤ i ≤ M .

This hypothesis is intended only to ensure that Z starting from 0 is not almost surely
bounded (for instance, if p1 = 1 then 0 is a absorbing state for Z). More generally, one
may check from the definition of the random variables Aj that Z starting from 0 is almost
surely unbounded i.i.f.

♯{1 ≤ j ≤ i , pj = 1} ≤
i

2
for all 1 ≤ i ≤ M . (11)

When this condition fails, Z starting from 0 is almost surely bounded by M − 1, thus
E[Z∞] < ∞ and the speed of the associated cookie random walk is strictly positive. Oth-
erwise, when (11) is fulfilled, Z ultimately hits any level x ∈ N with probability 1 and the
proof of Theorem 1.1 remains valid.

3 Study of Z∞.

We proved in the previous section that the strict positivity of the speed of the cookie
random walk X is equivalent to the existence of a finite first moment for the limiting
distribution of its associated Markov chain Z. We shall now show that, for any cookie
environment (M, p̄) (with α(M, p̄) > 0), we have

E[Z∞]
def

= E(M,p̄)[Z∞] < ∞ ⇐⇒ α(M, p̄) > 1.

This will complete the proof of Theorem 1.1. We start by proving that Z∞ cannot have
moments of any order.

Proposition 3.1. We have
E
[
ZM−1

∞

]
= +∞.
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Proof. Let us introduce the first return time to 0 for Z:

σ = inf(n ≥ 1 , Zn = 0).

Since Z is a positive recurrent Markov chain, we have 1 ≤ E0[σ] < ∞ and the invariant
probability measure is given for any y ∈ N by

P{Z∞ = y} =
E0

[∑σ−1
k=0 1lZk=y

]

E0[σ]
.

A monotone convergence argument yields

E0

[
σ−1∑

k=0

ZM−1
k

]
= E0[σ]E[ZM−1

∞ ] (12)

(where both side of this equality may be infinite). We can find n0 ∈ N
∗ such that

P0{Zn0
= M, n0 < σ} > 0 (in fact, since we assume that pi < 1 for all i, we can choose

n0 = 1). Therefore, making use of the Markov property of Z, we find that

E0

[
σ−1∑

k=0

ZM−1
k

]
≥ P0{Zn0

= M, n0 < σ}EM

[
σ−1∑

k=0

ZM−1
k

]

= P0{Zn0
= M, n0 < σ}

∞∑

k=0

EM

[
ZM−1

k∧σ

]
. (13)

In view of (12) and (13), we just need to prove that

∞∑

k=0

EM

[
ZM−1

k∧σ

]
= ∞. (14)

We now use a coupling argument. Let us define a new Markov chain Z̃ such that, under
Pz, the process evolves in the following way

• Z̃0 = z,

• if Z̃n = k ∈ {0, 1, . . . , M − 1} then Z̃n+1 = 0,

• if Z̃n = k > M − 1 then Z̃n+1 has the same law as
∑k−(M−1)

i=1 ξi where (ξi)i≥1 is a
sequence of i.i.d. geometrical random variables with parameter 1

2
.

Thus, Z̃ is a branching process with emigration: at each time n, there are min(Z̃n, M −1)
particles which emigrate the system and the remaining particles reproduce according to
a geometrical law of parameter 1

2
.

Recall that Z is a branching process with migration, where at most M − 1 particles
emigrate at each unit of time, and has the same offspring reproduction law as Z̃. There-
fore, for any z ≥ 0, under Pz, the process Z̃ is stochastically dominated by Z. Since 0 is
an absorbing state for Z̃, this implies that, for all n ≥ 0 and all z ≥ 0,

Ez[Z̃
M−1
n ] ≤ Ez[Z

M−1
n∧σ ]. (15)
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Our process Z̃ belongs to the class of processes studied by Kaverin [4]. Moreover, all the
hypotheses of Theorem 1 of [4] are clearly fulfilled (in the notation of [4], we have here
λ = θ = M − 1 and B = 1). Therefore, for any z ≥ M , there exists a constant c > 0
(depending on z) such that

Ez[Z̃
M−1
n ] ∼

n→∞

c

n
. (16)

The combination of (15) and (16) yield (14).

Remark 3.2. In view of the last proposition and Corollary 2.3, we recover the fact that
for M = 2, the speed of the cookie random walk is always zero.

In order to study more precisely the distribution of Z∞, we will need the following
lemma

Lemma 3.3. We have

E [AM−1] = 2
M∑

i=1

(1 − pi).

Proof. Recall that (Bi)i≥1 denotes a sequence of independent Bernoulli random variables
with distribution given by (5). Recall also that

kM−1 = min(k ≥ 1, ♯{1 ≤ i ≤ k, Bi = 1} = M),

AM−1 = kM−1 − M.

In particular, for any j ∈ N
∗

P{AM−1 = j} = P{kM−1 = M + j}

= P
{
♯{1 ≤ i ≤ M + j − 1, Bi = 1} = M − 1

}
P{BM+j = 1}.

Hence,

P{AM−1 = j}

=
1

2

M∑

l=1

P
{
♯{1≤ i≤M, Bi = 1} = M−l

}
P
{

♯{M+1 ≤ i ≤ M+j−1, Bi = 1} = l−1
}

=

M∧j∑

l=1

P
{
♯{1 ≤ i ≤ M, Bi = 1} = M − l

}
C l−1

j−1

(
1

2

)j

.

Let L = ♯{1 ≤ i ≤ M, Bi = 0}, therefore

P{AM−1 = j} =

M∧j∑

l=1

P{L = l}C l−1
j−1

(
1

2

)j

for j ∈ N
∗.

9



Making use of the relation jC l−1
j−1 = lC l

j, we get

E[AM−1] =
∞∑

j=1

M∧j∑

l=1

P{L = l}

(
1

2

)j

lC l
j

=
M∑

l=0

lP{L = l}
∞∑

j=l

(
1

2

)j

C l
j

= 2

M∑

l=0

lP{L = l}

= 2E[L].

We now compute E[L] by induction on the number of cookies.

P{L = l} =
∑

1≤i1<i2<...<il≤M

l∏

j=1

(1 − pij )
∏

j /∈{i1,...,il}

pj for 0 ≤ l ≤ M.

Decomposing the last sum according to whether i1 = 1 or i1 6= 1, we obtain

E[L]

=
M∑

l=1

l
∑

2≤i2<...<il≤M

(1 − p1)
l∏

j=2

(1 − pij )
∏

j /∈{1,i2,...,il}

pj +
M−1∑

l=0

l
∑

2≤i1<...<il≤M

l∏

j=1

(1 − pij)p1

∏

j /∈{1,i1,...,il}

pj

=

M−1∑

l=0

(l − (1 − p1))
∑

2≤i1<...<il≤M

l∏

j=1

(1 − pij)
∏

j /∈{1,i1,...,il}

pj

=

M−1∑

l=0

(l − (1 − p1))P{L̃ = l}

= E[L̃] + 1 − p1,

where L̃ = ♯{2 ≤ i ≤ M, Bi = 0}. Finally, we conclude by induction that

E[L] =

M∑

i=1

(1 − pi).

We now study the law of the limiting distribution Z∞ of the Markov chain Z. This is
done via the study of its probability generating function (p.g.f.)

G(s) = E
[
sZ∞

]
for s ∈ [0, 1].

Lemma 3.4. The p.g.f. G of Z∞ is the unique p.g.f. solution of the following equation

1 − G

(
1

2 − s

)
= a(s)(1 − G(s)) + b(s) for all s ∈ [0, 1], (17)
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with

a(s) =
1

(2 − s)M−1E [sAM−1 ]
,

and

b(s) = 1 −
1

(2 − s)M−1E [sAM−1 ]
+

M−2∑

k=0

G(k)(0)

(
E
[
sAk

]

(2 − s)M−1E [sAM−1 ]
−

1

(2 − s)k

)
.

Proof. The law of Z∞ is a stationary distribution for the Markov chain Z, therefore

G(s) = E
[
EZ∞

[
sZ1
]]

=

∞∑

k=0

P{Z∞ = k}Ek

[
sZ1
]

=
M−2∑

k=0

P{Z∞ = k}Ek

[
sZ1
]
+

∞∑

k=M−1

P{Z∞ = k}Ek

[
sZ1
]
.

By definition of Z, for 0 ≤ k ≤ M − 2, Z1 under Pk has the same law as Ak under P. For
k ≥ M − 1, Z1 under Pk has the same law as AM−1 + ξ1 + . . . + ξk−M+1 where (ξi)i≥1 is a
sequence of i.i.d. random variables independent of AM−1 and with geometric distribution
with parameter 1

2
. Thus,

G(s) =

M−2∑

k=0

P{Z∞ = k}E
[
sAk
]
+

∞∑

k=M−1

P{Z∞ = k}E
[
sAM−1+ξ1+...+ξk+1−M

]

=
M−2∑

k=0

P{Z∞ = k}E
[
sAk
]
+

E
[
sAM−1

]

E [sξ]M−1

∞∑

k=M−1

P{Z∞ = k}E
[
sξ
]k

=

M−2∑

k=0

P{Z∞ = k}
(
E
[
sAk
]
− E

[
sAM−1

]
E
[
sξ
]k+1−M

)
+

E
[
sAM−1

]

E [sξ]M−1
G
(
E
[
sξ
])

.

Since E
[
sξ
]

= 1
2−s

, and P{Z∞ = k} = Gk(0), we get

G(s) =
M−2∑

k=0

Gk(0)
(
E
[
sAk
]
− E

[
sAM−1

]
(2 − s)M−1−k

)
+E

[
sAM−1

]
(2−s)M−1G

(
1

2 − s

)
,

from which we deduce that G solves (17). Furthermore, the uniqueness of the solution of
this equation amongst the class of probability generating function is a direct consequence
of the uniqueness of the stationary law for the irreducible Markov chain Z.

Given two functions f and g, we use the classical notation f(x) = O(g(x)) in the
neighbourhood of zero if |f(x)| ≤ C|g(x)| for some constant C and all |x| small enough.

Lemma 3.5. The functions a and b of Lemma 3.4 are analytic on (0, 2). In particular,
they admit a Taylor expansion of any order near point 1 and, as x goes to 0:

a(1 − x) = 1 − αx + O(x2),

b(1 − x) = O(x).

11



Proof. Recall the definitions of the random variables Ak given in Section 2. Since a
geometric random variable with parameter 1

2
admits exponential moments of order strictly

smaller than 2, it follows that the p.g.f. s 7→ E[sAk] are strictly positive and analytic on
(0, 2). From the explicit form of the functions a and b given in the previous lemma, we
conclude that these two functions are indeed analytic on (0, 2). A Taylor expansion of a
near 1 gives

a(1 − x) = 1 − (M − 1 − E[AM−1])x + O(x2) = 1 − αx + O(x2), (18)

where we used Lemma 3.3 for the last equality. Since G is a p.g.f. we have G(1) = 1
which, in view of (17), yields b(1) = 0 and therefore b(1 − x) = O(x).

The following proposition relies on a careful study of equation (17) and is the key to
the proof of Theorem 1.1.

Proposition 3.6. Recall that

α =

M∑

i=1

(2pi − 1) − 1 > 0.

The p.g.f. G of Z∞ is such that, as x goes to 0:

• if 0 < α < 1, then 1 − G(1 − x) ∼ c1x
α, for some constant c1 > 0.

In particular E[Z∞] = +∞.

• if α = 1, then 1 − G(1 − x) ∼ c2x| lnx|, for some constant c2 > 0.

In particular E[Z∞] = +∞.

• if α > 1, then 1 − G(1 − x) = c3x + O(x2∧α) for some constant c3 > 0.

In particular E[Z∞] < +∞.

Proof. Since G is a p.g.f, it is completely monotonic and we just need to prove the propo-
sition along the sequence x = 1

n
with n ∈ N

∗. Making use of Lemma 3.4 with s = 1 − 1
n
,

we get, for all n ≥ 1

1 − G

(
1 −

1

n + 1

)
= a

(
1 −

1

n

)(
1 − G

(
1 −

1

n

))
+ b

(
1 −

1

n

)
.

Let us define the sequence (un)n≥1 by

{
u1 = 1 − G(0) = 1 − P(Z∞ = 0) > 0,

un = 1−G(1−1/n)∏n−1
i=1

a(1−1/i)
for n ≥ 2.

(19)

Hence, (un) is a sequence of positive numbers and satisfies the equation

un+1 = un +
b(1 − 1/n)∏n
i=1 a(1 − 1/i)

,

12



hence

un = u1 +
n−1∑

j=1

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)
.

This equality may be rewritten

1 − G

(
1 −

1

n

)
=

n−1∏

i=1

a

(
1 −

1

i

)(
1 − G(0) +

n−1∑

j=1

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)

)
. (20)

Using Lemma 3.5, we easily obtain

n∏

i=1

a

(
1 −

1

i

)
=

c4

nα

(
1 + O

(
1

n

))
, with c4 > 0. (21)

Lemma 3.5 also states that, when b is not identically 0 then there exists a unique k ∈
{1, 2, . . .} such that

b(1 − x) = Dkx
k + O(xk+1), with Dk 6= 0.

If b is identically 0, we use the convention k = +∞. In particular, when k is finite, using
(21) we deduce that

b(1 − 1/n)∏n
i=1 a(1 − 1/i)

= Dkc
−1
4 nα−k + O(nα−k−1). (22)

Let us now suppose that k = 1. Combining (20), (21) and (22) we find that 1−G(1− 1
n
)

converges towards D1

α
6= 0 as n tends to infinity but this cannot happen because G is

continuous at 1− with G(1) = 1. Thus, we have shown that in fact

k ≥ 2.

We now consider the three cases α > 1, α = 1, α < 1 separately.

α > 1
We have three sub-cases: either α > k − 1, or α < k − 1, or α = k − 1 with k ≥ 3.

• α > k − 1: Making use of (22), we have

n−1∑

j=1

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)
=

Dkc
−1
4

α − k + 1
nα−k+1 + O(1 ∨ nα−k).

By (20) and (21), we deduce that

1 − G

(
1 −

1

n

)
=

Dk

(α − k + 1)nk−1
+ O

(
1

nk∧α

)
.

If k was strictly larger that 2, we would have

lim
n→∞

n(1 − G(1 − 1/n)) = 0

13



and therefore G′(1) = E[Z∞] = 0 which cannot be true because Z is a positive
random variable which is not equal to zero almost surely. Thus k must be equal to
2 and

1 − G

(
1 −

1

n

)
=

D2

(α − 1)n
+ O

(
1

n2∧α

)
. (23)

• α < k − 1: We prove that this case never happens. Indeed, in view of (22) we find
that, for any ε ∈ (0, k − 1 − α)

b(1 − 1/n)∏n
i=1 a(1 − 1/i)

= O

(
1

n1+ε

)
(24)

(this result also trivially holds when k = ∞), thus

∞∑

j=1

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)
< ∞.

Combining this with (20) and (21) we see that

1 − G

(
1 −

1

n

)
= O

(
1

nα

)
.

Since α > 1, just as in the previous case, this implies that E[Z∞] = 0 which is
absurd.

• α = k − 1 and k ≥ 3: Again, we prove that this case is empty. Using (22), we now
get

b(1 − 1/n)∏n
i=1 a(1 − 1/i)

∼
Dkc

−1
4

n
.

And, by (20) and (21), we conclude that

1 − G

(
1 −

1

n

)
∼ Dk

ln n

nk−1
.

Since k ≥ 3, we obtain E[Z∞] = 0 which is unacceptable.

Thus, we have completed the proof of the proposition when α > 1 and we proved by the
way that k must be equal to 2.

α = 1
We first prove, just as in the previous cases, that k = 2. Let us suppose that k ≥ 3.

In view of Lemma 3.5, for any l ≥ 3, we can write the Taylor expansion of b of order l
near 1 in the form

b(1 − x) = D3x
3 + . . . + Dlx

l + O(xl+1) (25)

where Di ∈ R for i ∈ {3, 4, . . . , l}. Similarly,

a(1 − x) = 1 − x + a2x
2 + . . . + alx

l + O(xl+1),

14



from which we deduce that, as n goes to infinity

n∏

i=1

a

(
1 −

1

i

)
=

a′
1

n
+

a′
2

n2
+ . . . +

a′
l

nl
+ O

(
1

nl+1

)
with a′

1 > 0. (26)

From (25) and (26) we also deduce that

b(1 − 1/n)∏n
i=1 a(1 − 1/i)

=
d′

2

n2
+ . . . +

d′
l−1

nl−1
+ O

(
1

nl

)
.

Thus,
n−1∑

j=1

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)
= g0 +

g1

n
+

g2

n2
+ . . . +

gl−2

nl−2
+ O

(
1

nl−1

)
. (27)

Therefore, in view of (20), (26) and (27), we get

1 − G

(
1 −

1

n

)
=

n−1∏

i=1

a

(
1 −

1

i

)(
1 − G(0) +

n−1∑

j=1

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)

)

=
λ1

n
+

λ2

n2
+ . . . +

λl−1

nl−1
+ O

(
1

nl

)
.

Comparing with the Taylor expansion of the p.g.f. G, we conclude that E(Z l−1
∞ ) < ∞ for

all l which contradicts Proposition 3.1. Thus, k = 2 and (22) yields

b(1 − 1/n)∏n
i=1 a(1 − 1/i)

∼
D2c

−1
4

n
with D2 6= 0.

And, by (20) and (21), we conclude that

1 − G

(
1 −

1

n

)
∼ D2

ln n

n
,

and therefore
E[Z∞] = +∞. (28)

α < 1
Since k ≥ 2, the relation (22) yields

∞∑

j=1

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)
< ∞

(of course, this is trivially true when k = ∞). Thus, the sequence (un) defined by (19)
converges to a constant c5 ≥ 0. Suppose first that c5 = 0. In this case, k cannot be
infinite (because when k = ∞, the sequence (un) is constant and then c5 = u1 > 0). From
(22) we deduce that

un = −

∞∑

j=n

b(1 − 1/j)
∏j

i=1 a(1 − 1/i)
∼

Dk

(k − α − 1)c4nk−α−1
,
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therefore, with the help of (21) we get that

1 − G

(
1 −

1

n

)
= un

n−1∏

i=1

a

(
1 −

1

i

)
∼

Dk

(k − α − 1)nk−1
.

Since k ≥ 2, this implies that n(1 − G(1 − 1/n)) converges to a finite constant and so
E[Z∞] < ∞. We already notice that this implies a strict positive speed for the cookie
random walk in the associated cookie environment (M, p̄). But (by possibly extending
the value of M) we can always construct a cookie environment (M, q̄) such that p̄ ≤ q̄
and α(q̄) = 1. In view of (28), the associated cookie random walk has a zero speed and
this contradicts a monotonicity result of Zerner (c.f. Theorem 17 of [10]). Therefore c5

cannot be 0 and by (19) and (21), we get that

1 − G

(
1 −

1

n

)
= un

n−1∏

i=1

a

(
1 −

1

i

)
∼

c5c4

nα
.

As we already noticed, Theorem 1.1 is now a direct consequence of the last proposition
and Corollary 2.3. We also proved that, when the speed is strictly positive, its value is
given by the formula

v =
α − 1

α − 1 + 2D2
where 2D2 = b′′(1) > 0.

Remark 3.7. In the transient case and when the limiting speed is zero, Proposition 3.6
gives with the help of a classical Abelian/Tauberian Theorem the asymptotic of the dis-
tribution tail of Z∞ i.e. the distribution tail of the total number of jumps from 0 to −1:

P {Z∞ > n} ∼
n→∞

{
c6
nα if 0 < α < 1,
c7 ln n

n
if α = 1.

(29)

The functional equation given in Lemma 3.4 for the p.g.f. of Z∞ also gives a similar
equation for the total number of returns R to the origin for the cookie random walk.
Indeed, recall that Un

0 (resp. Un
1 ) stands for the respective total number of jumps from 0

to −1 (resp. from 1 to 0) before reaching level n. Thus, the total number of returns to
the origin before reaching level n is Un

0 + Un
1 which, under P has the same distribution as

Zn + Zn−1 under P. Therefore, we can express the p.g.f. H of the random variable R in
term of G:

H(s) = E
[
sZ∞EZ∞

[
sZ∞

]]

=
1

a(s)
G

(
s

2 − s

)
+

M−2∑

k=0

G(k)(0)sk

(
E
[
sAk
]
−

1

a(s)(2 − s)k

)
.

In particular, Proposition 3.6 also holds for H and the tail distribution of the total number
of returns to the origin when α ≤ 1 has the same form as in (29).
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Remark 3.8. In the particular case M = 2 (there are at most 2 cookies per site), the
only unknown in the definition of the function b is G(0). Since we know that b′(1) = 0
( c.f. the beginning of the proof of Proposition 3.6) we can therefore explicitly calculate
G(0), that is the probability that the cookie random walk never jumps from 0 to 1 which is
also the probability that the cookie random walk never hits −1. According to the previous
remark, we can also calculate the probability that the cookie random walk never returns to
0. Hence, we recover Theorem 18 of [10] in the case of a deterministic cookie environment.

4 Continuity of the speed and differentiability at the

critical point

The aim of this section is to prove Theorem 1.2. Recall that

v(M, p̄) =

{
0 if α(M, p) ≤ 1,

α−1
α−1+b′′(1)

if α(M, p) > 1,

where b′′(1) stands for the second derivative at point 1 of the function b defined in Lemma
3.4:

b(s) = 1 −
1

(2 − s)M−1E [sAM−1 ]
+

M−2∑

k=0

P{Z∞ = k}

(
E
[
sAk

]

(2 − s)M−1E [sAM−1 ]
−

1

(2 − s)k

)
.

Furthermore, we also proved in Proposition 3.6 that, when α(M, p̄) = 1, then b′′(1)
is strictly positive. Hence, in order to prove Theorem 1.2, we just need to show that
b′′(1) = b′′(M,p̄)(1) is a continuous function of p̄ in Ωu

M . It is also clear from the definition
of the random variables Ak that the functions

p̄ →
(
E(M,p̄)

[
sAk
])(i)

(1) (i.e. the ith derivative at point 1)

are continuous in p̄ in Ωu
M for all k ≥ 0 and all i ≥ 0 (it is a rational function in p1, . . . , pM).

Therefore, it simply remains to prove that, for any k ≥ 0, the function

p̄ → P(M,p̄) {Z∞ = k}

is continuous in Ωu
M . The following lemma is based on the monotonicity of the hitting

times of a cookie random walk with respect to the environment.

Lemma 4.1. Let (M, p̄) be a cookie environment such that α(M, p̄) > 0. Then there exist
ε > 0 and f : N 7→ R+ with limn→+∞ f(n) = 0 such that

∀q̄ ∈ B(p̄, ε), ∀j ∈ N, ∀n ∈ N, |P(M,q̄) {Z∞ = j} − P(M,q̄) {Zn = j} | ≤ f(n),

where

B(p̄, ε) =
{

q̄ = (q1, . . . , qM),
1

2
≤ qi < 1, α(M, q̄) > 0 and

∞∑

i=1

|pi − qi| ≤ ε
}
.
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Proof. Let us fix (M, p̄) with α(M, p̄) > 0. For ε > 0, define the vector p̄ε = (pε
1, . . . , p

ε
M)

by pε
i = max(1

2
, pi − ε). We can choose ε > 0 such that α(M, p̄ε) > 0. Then, for all

q̄ ∈ B(p̄, ε), we have
p̄ε ≤ q̄ (30)

(where ≤ denotes the canonical partial order on R
M). Let now pick q̄ ∈ B(p̄, ε), j ∈ N

and n ∈ N. Recall that U∞
0 denotes the total number of jump of the cookie random walk

from 0 to −1 and

P(M,q̄){Z∞ = j} = P(M,q̄){U
∞
0 = j} = P(M,q̄){X jumps j times from 0 to -1},

and

P(M,q̄){Zn = j} = P(M,q̄){U
n
0 = j}

= P(M,q̄){X jumps j times from 0 to -1 before reaching n}.

Hence

|P(M,q̄){Z∞ = j} − P(M,q̄){Zn = j}| = |P(M,q̄){U
∞
0 = j} −P(M,q̄){U

n
0 = j}|

≤ P(M,q̄){U
n
0 6= U∞

0 }

= P(M,q̄){A}, (31)

where A is the event ”X visits − 1 at least once after reaching level n”. Recall the nota-
tion ω = ω(i, x)i≥1,x∈Z for a general cookie environment given in the introduction. Let now
ωX,n denote the (random) cookie-environment obtained when the cookie random walk X
hits level n for the first time and shifted by n, i.e. for all x ∈ Z and i ≥ 1, if the initial
cookie environment is ω, then

ωX,n(i, x) = ω(j, x + n) where j = i + ♯{0 ≤ k < Tn, Xk = x + n}.

With this notation we have

P(M,q̄) {A} = E(M,q̄)

[
PωX,n

{X visits −(n + 1) at least once}
]
.

Besides, X has not eaten any cookie at the sites x ≥ n before time Tn. Thus, the
environment ωX,n satisfies P(M,q̄)-almost surely

ωX,n(i, x) = qi, for all x ≥ 0 and i ≥ 1 (with the convention qi = 1
2

for i > M).

Hence, in view of (30), the random cookie environment ωX,n is P(M,q̄)-almost surely
larger (for the canonical partial order) than the deterministic environment ωp̄ε defined by

{
ωp̄ε(i, x) = 1

2
, for all x < 0 and i ≥ 1,

ωp̄ε(i, x) = pε
i , for all x ≥ 0 and i ≥ 1 (with the convention pε

i = 1
2

for i ≥ M).

Thus, Lemma 15 of [10] yields

PωX,n
{X visits − (n + 1) at least once}

≤ Pωp̄ε{X visits − (n + 1) at least once} P(M,q̄) − a.s.
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In view of (31) we deduce that

|P(M,q̄){Z∞ = j} − P(M,q̄){Zn = j}| ≤ f(n),

where f(n) = Pωp̄ε{X visits −(n + 1) at least once} does not depend of q̄. It remains to
prove that f(n) tends to 0 as n goes to infinity. Let us first notice that

Pωp̄ε{∀n ≥ 0, Xn ≥ 0} = P(M,p̄ε){∀n ≥ 0, Xn ≥ 0},

since these probabilities depend only on the environments on the half line [0, +∞). Recall
also that the cookie random walk in the environment (M, p̄ε) is transient (we have chosen
ε such that α(M, p̄ε) > 0), thus

P(M,p̄ε){∀n ≥ 0, Xn ≥ 0} = P(M,p̄ε){U
∞
0 = 0} = P(M,p̄ε){Z∞ = 0} > 0.

Hence
Pωp̄ε{∀n ≥ 0, Xn ≥ 0} > 0,

which implies
Pωp̄ε{Xn = 0 infinitely often} < 1,

and a 0 − 1 law (c.f. Proposition 5 of [10]) yields

Pωp̄ε{Xn = 0 infinitely often} = Pωp̄ε{Xn ≤ 0 infinitely often} = 0.

Therefore, limn→∞ f(n) = 0.

Recall that the transition probabilities of the Markov chain Z are given by the law of
the random variables Ak:

P(M,p̄) {Zn+1 = j | Zn = i} = P(M,p̄) {Ai = j} .

It is therefore clear that for each fixed n and each k, the function p̄ → P(M,p̄) {Zn = k} is
continuous in p̄ in Ωu

M . In view of the previous lemma, we conclude that for each k the
function p̄ → P(M,p̄) {Z∞ = k} is also continuous in p̄ in Ωu

M and this completes the proof
of Theorem 1.2.
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