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Toward Automatic Phenotyping of Developing
Embryos from Videos

Feng Ning, Damien Delhomme, Yann LeCun,
Fabio Piano, Léon Bottou, Paolo Emilio Barbano

EDICS categories: 2-SEGM, 2-NEUR, 2-NFLT observable under a microscope fitted with Nomarski Differ-

Abstract— We describe a trainable system for analyzing videos ential Interference Contrast (DIC) optics. When observing
of developing C. elegans embryos. The system automatically yomg) ild type embryos it is possible to visualize important
detects, segments, and locates cells and nuclei in micropto llular functi h | t d fusi
images. The system was designed as the central component of gelu ,ar L_mc Ions suc gs nuclear mOYeme” S anda lusions,
fully-automated phenotyping system. The system containshtee ~ CYtokinesis and the setting up of crucial cell-cell corsact
modules (1) a convolutional network trained to classify edt pixel These events are highly reproducible from embryo to embryo
into five categories: cell wall, cytoplasm, nucleus membra® and deviate from normal behaviors when the function of a

nucleus, outside medium; (2) an Energy-Based Model which e ; ;
cleans up the output of the convolutional network by learnirg specific gene is depleted [10] [30] [31] [40], allowing the

local consistency constraints that must be satisfied by labe association of a gene’s activity with specific early embigon
images; (3) A set of elastic models of the embryo at various €vents.

stages of development that are matched to the label images. A typical experiment consists in knocking down a gene
Index Terms—image segmentation, convolutional networks, (or a set of genes), and recording a time-lapse movie of the
nonlinear filter, energy-based model developing embryo through DIC microscopy. Figure 1 shows a

few frames extracted from the movie of a normally developing
C. elegangmbryo from the fusion of the pronuclei to the four-
cell stage.
A. Automatic Phenotyping Using RNAI, several research groups have gathered a large
One of the major goals of biological research in the posgollection of such movies. Many of these movies depict eellu
genomic era is to characterize the function of every gene l@r behaviors in the early embryos that deviate from the wild
the genome. One particularly important subject is the stfdy type, and some show dramatic problems during embryonic
genes that control the early development of animal embrysigvelopment. Although initial analyses of the movies have
Such studies often consist in knocking down one or sevekgen performed by hand, automating the analysis of the
genes and observing the effect on the developing embryogellular behaviors would augment our ability to process the
process calleghhenotyping large amounts of data being currently produced, and could
As an animal model, the nemato@eeleganss one of the reveal more subtle quantitative defects that cannot bectigte
most amenable to such genetic analysis because of its styrtmanual analysis.
generation time, small genome size, and availability ofjida  One important classification task is to automatically de-
gene knock-down approach, RNAI(RNA interface) [7]. tect whether the development is normal (and therefore, not
Since the completion of th€.elegansgenome sequenceparticularly interesting), or abnormal and worth inveatigg.
and identification of its roughl0, 000 protein-coding genes Another important task is to automatically extract quatitie
in 1998 [6], extensive research has been done on analyzihgasurements such as the number of cells, the relative posi-
how these genes functioim vivo. Early embryonic events tions of the cell nuclei, the time between each cell division
provide a good model to assess specific roles genes playeta... Ultimately, one may want an automated system for
a developmental context. Early.elegansembryos are easily classifying the movies into a number of known scenarios of
normal or abnormal development.
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Fig. 1. Snapshots of the early development stages of a wild §.elegans embryo obtained through DIC microscopy.

et al. [39], which describes a computer vision approach ¢o tit would be sufficient to label the nucleus, cytoplasm, and
detection the nuclei and cell walls. Their method is based emternal medium to locate the nuclear membrane and the cell
the combination of several types of edge features. Becawsall. However, including the boundaries as explicit catégo
DIC microscopy images are very noisy and anisotropic, thetroduces redundancy in the label images that can be ctlecke
method produces a large number of false positives (e.gsaréar consistency.
falsely detected as cell nuclei) that must be manually coece Ensuring local consistency is the role of the next module.
One conclusion from this work is that DIC images are ndince the label of each pixel is produced independently ®f th
easily analyzed with commonly-used feature detectorshig tlabels of neighboring pixels, the predicted label image may
paper, we propose to rely on machine learning methods itmleed contain local inconsistencies. For example, amtied|
produce a more reliable image segmentation system. pixel in the outside medium may be erroneously classified as
Learning methods have been used for low-level imagaicleus. Since nucleus pixels must be surrounded by other
processing and segmentation with some success over the magtleus pixels or by nuclear membrane pixels, it would seem
few years. A notable example is the object boundary detectipossible to clean up the label image by enforcing a set of
system of Martin et al. [25], [24]. Closer to our applicatiorocal consistency constraints. To implement this process,
is the detection and classification of sub-cellular strregu used anenergy based mod€EBM) [33], [16], [21]. EBMs
in fluorescence microscopy images. Machine learning aade somewhat similar to Markov Random Fields, and can
adaptive pattern recognition methods have been widelyiegplbe seen as a sort of non-probabilistic Conditional Random
to this problem in a series of influential work [23], [12]. e Field [17]. The EBM used in the present system can be viewed
systems rely on the time-honored method of extracting aelarg scalar-valued “energy” functio®(f(X),Y"), where f(X)
number of carefully engineered features, while using leayn is the label image produced by the convolutional net, &nd

methods to select and exploit these features. is the cleaned-up image. The EBM is trained so that when
f(X) is a predicted label image arid is the corresponding
B. Overview of the system “correct” (cleaned-up) label image, the energy f(X),Y)

R L . ill be smaller than for any other (“incorrect”) value bf. The

The method proposed in this paper consists in learning t g L7 . L

entire processing chaifiom end to engdfrom raw pixels to cléanup process consists in searching forthéhat minimizes
P g b FE(f(X),Y) fora givenf(X). This approach is related to the

“'“’.“ate object categories. The system is composed of thrr% axation labeling method [13]. While learning methodséha
main modules.

The first module is a trainabl€onvolutional Network been used to estimate the coupling coefficients in relamatio

) o . : labeling systems [29], the method used here is based on
which labels each pixel in a frame into one of five cate-. = .~ . .
. . ) minimizing a new type of contrastive loss function [21].
gories. The categories are: cell nucleus, nuclear mempran ;
he third component of the system models the embryos

cytoplasm, cell wall, and outside medium. The main advaenta%nd their internal parts by matching deformable templates t

.Of Convqlutlonal Nets is that they can learn to map raw PIXg, o |apel images. This module is used to precisely locate and
images into output labels, synthesizing appropriate ineer count parts such as cells nuclei, and cell walls. It is also

diate features_ along the way, and eliminating the need ft%ed to determine the stage of development of the embryo
manually engineered features. They have been widely applie

i " " ™R the image. This technique is related to the classicalacti
to detection and recognition tasks such as handwritinggeieo contour method [14], [26], and very similar to elastic métgh
tion with integrated segmentation (see [19] for a revievahdh . ' Y

tracking [27], face recognition [18], face detection [3@], methods based on the Expectation-Maximization algoritsm a

[28], and generic object recognition [11]. The main advgata described in .[32]' [3]'. .
. : . The following sections describe the three modules of the
of Convolutional Networks is that they can operate direotty ) >
. system in detail.

raw images

The architecture of the convolutional network is designed
so that each label can be viewed as being produced by a non-
linear filter applied to al0 x 40 pixel window centered on the A Convolutional Network is a trainable system whose archi-
pixel of interest in the input image. This convolutionalwetk tecture is specifically designed to handle images or other 1D
is trained in supervised mode from a set of manually labeled 2D signals with strong local correlations. A Convolutibn
images. The five categories may appear somewhat redund&lgtwork can be seen as a cascade of multiple non-linear

Il. CONVOLUTIONAL NETWORK



local filters whose coefficients are learned to optimize amindow size to40 x 40 to ensure that at least some of the
overall performance measure. Convolutional Networks hawmeiclear membrane and the cytoplasm will be present in every
been applied with success to a wide range of applicatioris [1@indow containing nucleus pixels. Once the input windovesiz
[27], [18], [34], [8], [28], [11]. is chosen, the choice of the kernel size and subsmpling ratio
Convolutional Networks are specifically designed to handfer each layer is quite constrained. The first layer (markégl C
the variability of 2D shapes. They use a succession of layemsntains 6 feature maps withx 7 pixel convolution kernel.
of trainable convolutions and spatial subsampling interspd The second layer (S2), is a subsampling layer witlx 2
with sigmoidal non-linearities to extract features with- insubsampling ratios. The third layer (C3) uges6 convolution
creasingly large receptive fields, increasing complexatyd kernels. Each of the 16 maps in C3 combines data from
increasing robustness to irrelevant variabilities of thputs. several maps in S2 by applying a separate convolution kernel
The convolutional net used for the experiments described tm each map, adding the results, and applying the sigmoid.
this paper is shown in figure 2. Each feature variable in C3 is influenced by Enx 18 pixel
Each convolutional layer is composed of a set of planesndow on the input. Each C3 map combines input from a
called feature mapsThe value at positiorfz,y) in the j-th different subset of of S2 maps, with a total of 61 individual
feature map of layer is denoted:;;,,,. This value is computed kernels. Layer S4 is similar to S2 and subsamples C3 by a
by applying a series of convolution kernelg;;, to feature factor of 2. Layer C5 comprises 40 feature maps that use
maps in the previous layer (with index— 1), and passing 6 x 6 convolution kernels. There is one kernel for each pair
the result through a sigmoid function. The width and heiglaf feature map in S4 and C5. The output layer contains five
of the convolution kernels in layer are denotedP;, and @; units, one for each category.
respectively. In our network, the kernel sizes are between 20ne key advantage of convolutional nets is that they can

and 7. More formallyc;;., is computed as: be applied to images of variable size. Applying the network
P—1Qi—1 to a large image is equivalent (but considerably cheaper com
Ciipn = tanh [ b;; + Wijhpg Cli—1) k.(04p), putationally) to applying a copy of the single-output perlkvo
e < ! Xk: pz:;) q:z(:) JhpatG=) ko (wrp) (vra) to every40 x 40 window in the input stepped every pixel.

(1) More precisely, increasing the input size by 4 pixels in one
where p, ¢ index elements of the kernel;;;, tanh is the direction will increase the size C1 by 4 pixels, S2 and C3 by
hyperbolic tangent function,is the layer indexj is the index 2 pixel, and S4, C5, and the output by 1 pixel. The size of the
of the feature map within the layek, indexes feature mapsoutput in any dimension is therefo(& — 36)/4, whereN is
in the previous layer, and;; is a bias. Each feature map isthe size of the input image in that dimension. Consequently,
therefore the result of a sum of discrete convolutions of tttee convolutional net produces a labeling for evéry4 block
previous layer maps with small-size kernels, followed by af pixels in the input, taking information from 40 x 40
point-wise squashing function. The parameteys.,, andb;; window centered on that block of pixels. Figure 2 shows the
are all subject to learning. size of each layer when 40 x 40 pixel input is used and a

Subsampling layers have the same number of feature mapggle output vector is produced. Figure 4 shows the result
as the convolutional layer that precedes them. Each valueohapplying the convolutional network to an image, which
a subsampling map is the average of the values ih>a2 produces a label image witty4 the resolution of the input. It
neighborhood in the corresponding feature map in the pusviowould be straightforward to modify the method to produce a
layer. That average is added to a trainable bias, multipli¢gabel image with the same resolution as the input. However, w
by a trainable coefficient, and the result is passed throudbtermined that the current application did not requirespix
the tanh function. The2 x 2 windows are stepped withoutlevel accuracy.
overlap. Therefore the maps of a subsampling layer are one
half the resolution of the maps in the previous layer. The rol
of the subsampling layers is to make the system robust td sné1
variations of the location of distinctive features. Training images were extracted from different movies

Figure 2 only shows a portion of the network: the smallesif C. elegansembryos.10 frames were extracted from each
portion necessary to produce a single output label. Eagiuoutmovie, every10 frames, for a total of50 frames. Testing
is influenced by at0 x 40 pixel window on the input. The images were extracted from a disjoint set dfmovies (of
full network can be seen as multiple replicas of this netwotkree different embryos). Similarly,0 frames were extracted
applied to all40 x 40 windows stepped every 4 pixels on thegseparated by 0 frames) from each test movie, for a total of
input image (more on this later). The window size was chos&0 frames. The sample frames were picked evihframes
so that the system would have enough context informatiémthe movies so as to have a representative set covering the
to make an informed decision about the category of a pixefarious stages of embryonic development.

For example, the local texture in the nucleus region is often Frames from different movies had different sizes, but were
indistinguishable from that of the external medium. Theref typically around300 x 300 pixels. All images were 8-bit gray-
distinguishing nucleus pixels from external medium pixelscale. The movies were stored in Apple Quicktime format,
can only be performed by checking if the pixel is within avhose compression method introduces some quantization and
roughly circular region surrounded by cytoplasm. Since tHdocking artifacts in the frames. Working with compressed
nuclei are typically less than 40 pixels in diameter, we Bet tvideo make the problem more difficult, but it will allow us to

Datasets and Training



C3 f. maps C4 f. maps

Input C1 feature maps 16@12x12 S4 f. maps 10@1x1

window 0@34x34 S2 f. maps 16@6x6 F6 f. maps

40x40 6@17x17 (output)

5@1x1
i v e v

v —¥ 6x6
7x7 2x2 6x6 _ 2x2 convolutions
convolutions subsampling convolutions subsampling

Fig. 2. The convolutional network architecture. The featarap sizes indicated here correspond #0ax 40 pixel input image, which produceslax 1
pixel output with 5 components each. Applying the networlataV; x N, pixel image will result in output maps of siZéN, — 36)/4] x [(Ny — 36)/4].

tap into a larger pool of movies produced by various grouj
around the world, and distributed in compressed formats.

1) preprocessingDIC images are not only very noisy, but
also very anisotropic. The DIC process creates an embos:
“bas relief” look that, while pleasing to the human eye, nmake
processing the images quite challenging. For example the ¢
wall in the upper left region of the raw image in figure 4 look:
quite different from the cell wall in the lower right regiowe
decided to design a linear filter that would make the imag:
more isotropic, while preserving the texture informatidine
linear filter used was equivalent to computing the diffeeenc
between the image and a suitably shifted version of it.
typical resulting image is shown in figure 4((a), bottom)eTh
pixel intensities were then centered so that each image
zero mean, and scaled so that the standard deviation v
1.0. An unfortunate side effect of this pre-processing &t th
it makes the quantization artifacts of the video compressi
more apparent. Better preprocessing will be considered 1
future embodiments of the system. It should be emphasizcu
that the purpose of this preprocessing is merely to make the
image features more isotropic. The purpose is not to reCOV&Y 3 o the M1 and M2 label images are produced. The graurt

the optical pathlength, as several authors working with DI@bel image (GT) is unattainable. The human-produced $abedy contain
images have done [35]. error and inconsistencies. The M1 label image is derivednftbe human

. . produced labels by removing all boundary pixels, whereasM label image
2) labels: Each training and testing frame was manualll produced by making the boundary 3 pixel wide so as to enassiphe

labeled with a simple graphical tool by a single persomround truth.

Labeling the images in a consistent manner is very difficult

and tedious. Therefore, we could not expect the manually

produced labels to be perfectly consistent. In particitals ~ Two separate networks were trained to produce the two

very common for the position nucleus boundary or the celifferent sets of label images M1 and M2.

wall to vary by several pixels from one image to the next.  3) training set and test setThe simplest way to train the
Consequently, it appeared necessary to use images of gigstem would be to simply feed a whole image to the system,

sired labels that could incorporate a bit of slack in the pmsi compare the full predicted label image to the ground truth,

of the boundaries. We used a very simple method whiénd adjust all the network coefficients to reduce the error.

consists in deriving two label images from each human- This “whole-image” approach has two deficiencies. First,

produced label image. The process is described in figure there are considerable differences between the numbers of

A.2. The first image, called M1, contains no boundary labelgixels belonging to each category. This may cause the infre-

It is obtained by turning all the nuclear membrane pixels intquent categories to be simply ignored by the learning psaces

either nucleus or cytoplasm using a simple nearest neighl®gcond, processing a whole image at once can be seen as

rule. The second label image, M2, is obtained by dilating th®ing equivalent to processing a large number40fx 40

boundaries by one pixel on each side, thereby producingoiel windows in a batch. Previous studies have shown that

3-pixel wide boundary. performing a weight update after each sample leads to faster




convergence than updating the weights after accumulati@gd, C3, C5 and F6 (output) are shown. The segmented regions
gradients over a batch of samples [20]. Therefore, we choskthe five categories (nucleus, nuclear membrane, cytoplas
to break up the training images into a series of overlappirgll wall, external medium) are clearly delineated in thes fiv
40 x 40 windows that can be processed individually. Overalbutput maps.
from the 50 frames in the training sef 90,440 windows of The labeling produced by the network for several sample
size 40 x 40 pixels were extracted. To each such windoimages, with a false color scheme to represent the various
was associated the desired labels (for M1 and M2) of tlwategories, is shown in figure 5. The essential elements of
central pixel in the window. Each pair of window and labethe embryos are clearly detected. The cell nuclei are cthyrec
was used as a separate training sample for the convolutioledleled before, during, and after the fusion of the pro-aucl
network, which therefore produced a single output vector (aThe cell wall is correctly identified by the M2 network.
pixel output map). There were wide variations in the numbé&towever, the detection of new cell walls created during cell
of training samples for each category: 3333 windows werivision (mitosis) seems to be more difficult.
labeled nucleus, 12939 nuclear membrane, 80142 cytoplasmit takes90 minutes for one iteration of training process (one
39612 cell wall, and 54414 external medium. To correct thepass through the frequency-equalized training set), onanXe
wide variations, a class frequency equalization method whased workstation running at2 GHz. We train the machine
used. A full learning epoch through the training set coesist with the M1 labels and the M2 labels in two seperate processes
in 272,070 = 5 x 54414 pattern presentations. During oneup to 6 epochs, so the total CPU time is approximatédy
epoch, each sample labeled “external medium” was seleours.
once, while samples from the other categories were repeated he main advantage of the convolutional network approach
54414/ P times, whereP is the number of samples fromis that the low-level features are automatically learned. A
that category. Therefore each category was presented ah egomewhat more traditional approach to classification stgisi
number of times §4414) during each epoch. in selecting a small number of relevant features from a large
The network was trained to minimize the mean squaréet. One popular approach is to automatically generateya ver
error between its output vector and the target vector foddre large number of simple “kernel” features, and to select them
sired category. The target vectors wexel, —1,—1,—1,—1] using the Adaboost learning algorithm [36]. Another popula
for nucleus, [-1,+1,—1,—1,-1] for nucleus membrane, approach is to build the feature set by hand. This approach
[~1,—1,+1,—1,—1] for cytoplasm[—1, -1, —1,+1,—1] for has been advocated in [5] for the classification of sub-tzllu
cell wall, and[-1, -1, —1, —1, +1] for external medium. The structures. We believe that these methods are not directly
training procedure used a variation of the back-propagati@pplicable to our problem because the regions are not well
algorithm to compute the gradients of the loss with respect ¢haracterized by local features, but depend on long-range
all the adjustable parameters, and used an “on-line” versioontext (e.g. a nucleus is surrounded by the cytoplasm} Thi
of the Levenberg-Marquardt algorithm with a diagonal agkind of contextual information is not easily encoded into a
proximation of the Hessian matrix to update those pararsetégature set.
(details of the procedure can be found in [19]).
Two separate networks were trained, one with the M1 labels Ill. ENERGY-BASED MODEL
and another one with the M2 labels. Results are reported forThe Convolutional Network gives predictions on a per-pixel
the network trained with the M2 labels. basis. While it is trained to produce the best possible Iagel
there is no specific mechanism to ensure that elementary
consistency constraints of labels within a neighborhoeder
spected. Some of those local constraints are easy to foreula
The network was trained foé epochs on the frequency-For example, a nuclear membrane pixel must be connected
equalized dataset. The pixel-wise error rate of the networ other nuclear membrane pixels, and must have a nucleus
trained with the M2 labels was measured. The pixel-wigsixel on one side, and a cytoplasm pixel on the other side. A
error rate on thewon frequency equalizeaining set (i.e. on popular way to model local consistency constraints in insage
the 50 frames from the training set) was 25.6%. The pixels to use Graphical Models, particularly Markov Random dFiel
wise error rate was 29.0% on th test frames. It must (MRF) [22], which incorporate local 2D interactions betwee
be emphasized that pixel-wise error rate is a bad indicat@iriables.
of the overall system performance. First of all, many errors Traditionally, the interactions terms between the vasgabl
are isolated points that can easily be cleaned up by poist-an MRF are encoded by hand. While some of the rules for
processing. Second, it is unclear how many of the errors eandur application could be encoded by hand, we chose to learn
attributed to inconsistencies in the human-producedalaeld them from data using the Energy-Based Model framework.
how many can be attributed to truly inaccurate classificstio  Traditionally, MRFs and other Graphical Models are viewed
Third, and more importantly, the usefulness of the overadls probabilistic generative models, where each configurati
system will be determined by how well the cells and nucle¢he input variable is associated with a probability. To easu
can be detected, located, counted, and measured. proper normalization of the distribution, the integral (e
Figure 4 shows a sample image (top left), a pre-processadn) of that probability over all possible input configuoaits
version of the image (bottom left), and the correspondinmgust be one. Learning the parameters of such a model is gen-
internal state and output of the convolutional network. érgy erally performed by maximizing the likelihood of the traigi

B. Results
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Fig. 4. convolutional network applied to a sample image.t¢@) raw input image; bottom: pre-processed image; (bestatlayer C1; (c) layer C3; (d):
layer C5; (e): output layer. The five output maps correspanthé five categories, respectively from top to bottom: nuglenucleus membrane, cytoplasm,
cell wall, external medium. The properly segmented regiamsclearly visible on the output maps.

Fig. 5. Pixel labeling produced by the convolutional netwoiTop to bottom: input images; label images produced by #tevork trained with M1 labels;
label images produced by the M2 network Because each owpotluenced by a0 x 40 window on the input, no labeling can be produced for pixetsle
than 20 pixels away from the image boundary.

data under the model. Unfortunately, this often requiredt ththat may be intractable; (2) because there is no requirefoent
the probability distribution be explictely normalized.i$mor- normalizability, the repertoire of possible model arcbitees
malization is generally intractable because it entailsgotimg that can be used is considerably richer than with probaigilis
the partition function the normalization term which is a summodels.

over all possible input configurations (all possible lalbehges

in our case). Training an EBM consists in finding values of the trainable

parameters that associdtev energieso “desired” configura-
Energy-Based Models [33], [21] associate a scatsrgyto tions of variables (e.g. observed on a training set), gt en-
each configuration of the input variables. Making an infeeen ergiesto “undesired” configurations. With properly normalized
with an EBM consists in searching for a configuration of thprobabilistic models, increasing the likelihood of a “ded!
variables to be predicted that minimizes the energy. EBM®nfiguration of variables will automatically decrease the
have considerable advantages over traditional probébilislikelihoods of other configurations. With EBMs, this is not
models: (1) There is no need to compute the partition funstiothe case: making the energy of desired configurations low
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Fig. 6. Local constraints: we illustrate the idea for a 3egaty classification

problem. The top-left configuration is consistent, so assiglow energy, Fig. 7. The architecture the Energy-Based Model. The imageked “input

while the bottom-left configuration is not consistent. labeling” is the variable to be predicted by the EBM. The fiester of the
interaction module is a convolutional layer willd feature maps ané x 5
kernels operating on thé feature maps from the output label image. The

may not necessarily make the energies of other configusaticien-linear function for each node is of the fogtu) = %iz) The second
high. Therefore, one must be very careful when designing |0/&/e" simply computes the average value of the first layer.

functions for EBMs. We must make sure that the loss function
we pick will effectively drive our machine to approach the

desired behavior andY takes a different value. The module ensures that the

cleaned—up label image will not be drastically differertrfr
. either f1(X), or fo(X). The function is encoded in the form
A. The architecture of the EBM of a5 x 5 x 5 table which contains the energies associated
The EBM is a scalar functionZ(W,Y, f1(X), f2(X))) with each possible combination of values of the variables
where I is the parameter vector to be learnéd, is the Yy, f,(X), and f»(X) at any particular pixel location. The
label image to be predicted using the EBf(X) is the label output energy of the association module is simply the awerag
image produced by the M1 convolutional network, afdX) of those energies over all pixel locations.
the label image produced by the M2 convolutional network. The second factor is thimteraction modulel (W,Y). The
Each of the variable¥’, f1(X), fo(X) are 3D arrays of size interaction module implements the local consistency con-
5 x N, x Ny, where N, and IV, are the dimensions of the straints and is trained from data. The first layer of the
label images. interaction module is a convolutional layer wittd feature
Operating the EBM consists in running the input imaggaps and x 5 kernels that operate on thefeature maps o¥’.
through the M1 and M2 convolutional networks, and clampinghe non- Imear activation function of the units is of therfor
the f1(X), and f>(X) inputs of the EBM to the values () = This function and its derivatives are shown
thereby produced. Then thE input is initialized with the jn flgure 8. 'I2he idea behind this activation function is that
value f>(X), and an optimization algorithm is run to find agach unit implements inear constrainton the neighborhood
value of Y that locally minimizesE(W. Y, f1(X), f2(X))).  of variables from which it takes inputs [33]. When the input
The quantity at each pixel location of, f1(X), and f2(X) vector is near orthogonal to the weight vector, the output is
is a discrete variables with 5 possible values: nucleusleauc near zero, indicating that the constraint is satisfied. \ien
membrane, cytoplasm, cell wall, external medium. A numbgiput vector has a non-zero projection on the weight vector,
of Markov-Chain Monte-Carlo (MCMC) methods were teste¢he output is non zero. If the constraint is strongly viotate
for minimizing the energy, including simulated annealinghw the output will be near 1.0 (the asymptote). The saturating
Gibbs sampling. In the end, a simple “greedy” deterministigsymptote ensures that only a “nominal price” will be paid
descent was used. The sites are updated sequentially aied sgh terms of energy) for violating a constraint [33]. Theabt
the configuration that minimizes the energy, keeping themthoutput energy of the interaction module is the average of the

sites constant. outputs of all thel0 feature maps over all positions.
The EBM is composed of two modules faictors as shown

in figure 7. The overall energy is the sum of the energies
produced by the two factors. B. Training the EBM

The first factor is the association module As we mentioned earlier, a suitable loss function must be
A(Y, f1(X), f2(X)). The association module is fixed (itfound whose minimization will “dig holes” in the energy
has no trainable parameter), and produces a high energyaifidscape at the location of the desirEdfor given f;(X)
Y gets very different from eitherf,(X), or f2(X). The and f2(X), and “build hills” for all other (incorrect) value of
energy gets particularly large if1(X), and f2(X) agree Y.



up cell wall pixels. Several legitimate cell wall pixels theere
correctly identified by the convolutional net were elimiggt
by the EBM.

It is possible that these deficiencies could be reduced by
modifying the architecture, changing the loss function, or
improving the training procedure. Because EBM is a reléfive
new method, many aspects of EBM training are not yet fully
understood. More research is needed in this area.

-15 -1 -05 0 0.5 1 15

Fig. 8. The activation functiory(u) = 11% used in the EBM feature F'
maps. ;

|
As reported in [21], there are several suitable loss fumstio

whose minimization will achieve the desired result. Foisthi
work, we have used the loss function below. For a give
training example(X*, Y?), where X? is an input image and
Y*? a human-produced label image, the loss function is:

LW, Y, XT) = EW,Y", f1(X"), fa(X7)+ere” 2 Puwmvi B0
2 5
where ¢; and ¢, are user-specified positive constants. Th g
overall loss function is the average of the above functic
over the training set. The first term is the energy associat §
with the desired input configuration&®, f1(X?), f2(X?)).
Minimizing the loss will make this energy low on average
The second term is a monotonically decreasing function
miny, v E(W,y, f1(X"), f2(X")), which can be seen as the &
energy of the ‘best wrong answer”, i.e. the lowest energy & B
sociated with g that is different from the desired answigt.
Minimizing the loss will make this energy large. Minimizing
this loss function makes the machine approach the deSirFed 9. Results of EBM-based clean-up of label images ¢esting images
behavior by making the e”ergy of Fjes”ed configura’gions IO\?)og[; Iiﬁe: input image; second line: outgut of M2 consoluﬁbnnet\f\;/ork; %rd.
and the energy of wrong configurations found by our inferene@d 4th line value oft” (cleaned-up image) at two different stages of the
algorithm high. energy-minimizing inference process.
It takes aboub hours to complete one iteration of training.
Inference is rather fast and it takes less thaminute for10
inference steps (10 updates of each site), which is sufficien)\y DEroRMABLE TEMPLATES FORGLOBAL ANALYSIS
for our denoising purpose. Similar loss functions have mége The previous sections discuss image analysis techniques to
been used in the somewhat different contexts of face detecti

and pose estimation [28], pose and iIIumination-invariar?tccurately segment images into cellular elements suchlbs ce

X . - e . nucleus, nuclear membrane, etc. Further processing steps a
generic object recognition [21], and face verification gsin S C S
trainable similarity metrics [4]. needed to transform this pixel-wise information into thereno

global characteristics that are relevant to automatic ptygn
ing. This section discusses various methods we considered
C. Results for extracting information at such higher levels of abstrac
The training sets and test sets were the same as for tlm. When experts visually inspect images, they obseree th
convolutional neural net training. A few results produced bemerging organization of the multi-cellular organism. §hi
applying the EBM to label image produced by the convanformation is often conveyed by drawing a sketch of the
lutional network are shown in figure 9. The method does cell representing the relative shape and position of thés cel
good job at eliminating isolated points that were errongousand of their nuclei. When inspecting a movie, sequences of
labeled. The nuclei are clearly identifiable in the resgltinspecific events occuring over multiple frames are identified
images. However, the method is a bit overzealous in cleaniBgents can be global (for instance, which cells divide and in



what order) or very specific (for instance, a visible featcaa@ matches the label image with the lowest energy. The EM
appear between two specific cells at a specific time during tfiging algorithm alternates two steps. Tlestepconsists in
embryo development). computingresponsabilitycoefficients that assign each pixel in
An possible approach consists in collecting sketches rethe label image to a key point in the deformable template. The
resenting various normal or abnormal stages of the organidfstepconsists in finding the minimum energy configuration
development and using them as a dictionary of deformalié the spring system given those responsabilities. Singe th
templates that can be aligned and matched with each frameeofrgy is quadratic in the position of the key points, the
the movies. Identifying the stage of development comes dowalution can be found by solving a linear system. The E and M
to finding the deformable template in the dictionary thattbesteps are iterated until convergence. Examples of defdemab
matches the image under consideration. By aliging anddittitemplates matched to real label images are shown in figure 11.
the template to the images, we can extract the relative shape
and position of the cells, the orientation of the organi n .. ,
the igentity of each individual cell. Deformoabtleet;mg;fllafﬂg a B. Fitting dense deformable templates with Colored SOMs
enforce global constraints that are not easily implemebted A second method was tested using templates with “dense”
local analysis. For example, the nucleus must lie roughly modes. Such dense templates may finer levels of global in-
the center of the cell, the cell boundary must be a closedssurformation such as the precise position of the cell boundarie
etc. Fitting such models with the EM algorithm is prohibitively-e
Deformable template models have been used successf@ignsive, and subject to local minima. Xu and Prince [38)clai
in several problems, such as medical image processing [1tiat complex contours may be identified more efficiently gsin
object matching in video sequences [2], and many othdynamic algorithms that do not derive from the optimization
applications. For a survey of active contour methods, s6éf [20f an energy function. Interesting active contour algarih
In the following, we present two different methods fofl] are derived from Kohonen’s Self-Organizing Map method
matching label images to deformable templates. The fils§OM) [15].
method uses “sparse” elastic templates that are matched t&igure 12 shows preliminary results obtained using Colored
the label images by minimizing an energy function using a88OMs. Each deformable template is specified by assigning
efficient method reminiscent of the Expectation-Minimiaat labels to the nodes of a regular lattice [37]. The lattice
algorithm (EM). The second method uses “dense” elastic tefs-then aligned with the label images associated with each
plates that are matched to the label images using an algoritrame using a variant of Kohonen’s SOM algorithm [15].
reminiscent of Kohonen'’s Self-Organizing Map algorithm. Each iteration of the alignment algorithm picks a random
image pixel and locates the closest lattice node with the
same label. This node is then moved towards the location
of the image pixel. Neighboring nodes in the lattice are also
Matching images to simple deformable templates can bsoved in the same direction with an amplitude that depends
achieved using the Expectation-Maximisation algorithI{E on their lattice distance to the node being considered. Step
[9] have applied spline-based models for hand-written atvar sizes and neighborhood sizes are decreased slightly aftér e
ter recognition. They used deformable splines whose cbntigeration. Results obtained with this method are promising
point positions were optimized with the EM. Each spline wasreliminary.
seen as the mean of a probabilistic Gaussian model that could
generate the “ink” of a character. Similarly, [3] proposed a
normalization method for handwritten words that used EM to
fit quadratic lines to key points on the trajectory of a pen The methods presented in this paper are the first components
writing the word. of a fully automated phenotyping system that can operate on
Experiments were performed with templates defined byraicroscopic image sequences of small clumps of cells. A
set of key points linked by springs with given rest lengthsonvolutional network labels each pixel as nucleus, nuclea
and stiffnesses. Figure IV-A shows deformable templates fmembrane, cytoplasm, cell wall or external medium. An
successive stages of the development ofdheleganembryo. Energy-Based Model post-processes the label images so as
Each key point is interpreted as the mean of a Gaussitnsatisfy local consistency constraints. Finally a set ef d
distribution that can generate pixels of the same label farmable templates are matched to the label image to identif
the label image. A particular template can be viewed ite stage of development of the embryo and to preciselydocat
probabilistic terms as a mixture of Gaussian model, wheee tthe cell nuclei.
relative positions of the means of the components Gaussian3he final system will also include a Hidden Markov Model
are dependent on each other. Different springs have been githat will be used to classify movies into normal or abnormal
different spring constants in the models. For example, tlievelopment, to identify the type of abnormal development,
springs that link two key points on the cell wall are veryfstifand to locate the time at which key events take place.
(k = 100), while the springs that link the nucleus to the cell Because labeled data is very scarce, and because the system
wall are less stiff § = 1) to allow the nucleus to move aroundhas not yet been fully integrated, we report results for each
We determine the embryo’s stage of development by fittiraf the three modules that are somewhat qualitative. The
each of those models to an image and finding the model tma¢asurement of meaningful quantitative results will regai

A. Fitting sparse deformable templates with EM

V. DISCUSSION AND FUTURE WORK



(b)

(d)

Fig. 10. EM deformable templates for each stage of @Gheslegansembryo development. (a) Fertilization has just occurré). The maternal pronucleus
migrates to the posterior area and a pseudo-cleavage fdmams. (c) The pronuclei fuse. (d) The cell divides unequadl produce two cells. (e) The two
cells further split into four cells.
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Fig. 11. Matching deformable templates to label images. tbopottom: input images, M2 predictions, EBM output, EBM muttoverlaid with deformable

template that produced the best fit. Multiple templates a@ied to each image. Only the template with smallest enexghown here. Only the stiff springs
of the template are drawn (yellow lines). The pink dots iaticthe node of the deformable template that correspondseteenter of the nucleus. We find
that the 2-cell templates correctly match image5 — 10, while the 1-cell templates correctly match images- 4. However, image2 has been wrongly

matched with a 2-cell template (albeit with a high energy).



Fig. 12. Matching deformable templates with Colored Seff@hizing Maps. Each deformable template is specified bygricg a regular lattice of nodes.
The lattice is then aligned with the cell component labelgvdd from the image.

considerably larger dataset than is currently availaldewall states represent the various stages of embryo development.
as a fully integrated system. The emission probability model for each state is a mixture
The main advantage of the approach presented here is tmadel whose components are the deformable templates. Each
it is fully trainable, and therefore fairlgeneric Applying the deformable template can be seen as a probability density
system to a new problem comes down to collecting label@dodel whose log-likelihood is proportional the fitting egner
data and training the system with this new data. A parti¢ylarof the deformable model. Classifying a movie into one of the
interesting aspect of the approach is that the convolutioeta scenarios simply consist in finding the HMM that maximizes
work takes care of learning appropriate features and etites the likelihood of the observed data. This can be performed
the need for hand-designed feature sets that may be problewith one of the standard methods for HMM inference (Viterbi
dependent. algorithm, or forward algorithm).
The paper describes one of the first uses of Energy-Based
Models for solving a practical task. EBM training methods )
are very much in their infancy. It is likely that performancd- Conclusion
improvements will be obtained with better architecturesttdr The emergence of fully-automated phenotyping system will

loss functions, and better optimization techniques. allow very large-scale exploratory experiments in funetb
genomics. With an automatic phenotyping system, it may be-
A. Euture Work come possible to perform systematic experiments wheres pair

i i of genes are knocked out, perhaps unveiling new regulatory
Because the configuration of the embryo changes slowlyaractions.

, and not particularly tuned to the particularkpeon

at hand, they may be easily applied to other image-based
could take multiple successive frames into account anddmcqjhenotyping Z\pplicyations. YR °

temporal as well as spatial consistency. The main obstacle t

this is the small amount of manually-labeled successivads

currently available. Producing more labeled data is one of REFERENCES
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