Numerical simulation of entangled materials mechanical properties
Résumé
A general approach to simulate the mechanical behaviour of entangled materials submitted to large deformations is described in this paper. The main part of this approach is the automatic creation of contact elements, with appropriate constitutive laws, to take into account the interactions between fibres. The construction of these elements at each increment, is based on the determination of intermediate geometries in each region where two parts of beams are sufficiently close to be likely to enter into contact. Numerical tests simulating a 90% compression of nine randomly generated samples of entangled materials are given. They allow the identification of power laws to represent the evolutions of the compressive load and of the number of contacts