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Abstract

Jointly modeling chaotic maps as LPV systems and
using Unknown Input Observers for retrieving the infor-
mation in a secure communication scheme has previously
been motivated in a deterministic context [1]. In this paper,
some new theoretical results from a control theory point
of view, concerning the design in a stochastic and so more
realistic context of Unknown Input Observers for chaotic
LPV systems is provided. The design of such observers
is expressed in terms of the resolution of a finite set of
Matrix Inequalities constraints and guarantees some pre-
scribed performances on the state reconstruction error.

I. INTRODUCTION

The well-known practical interest of chaos syn-
chronization lies in the potential applications in com-
munications and more specifically in the possibilities
of encoding or masking messages by embedding the
information into the dynamics of a chaotic system.
The information to be masked plays the role of an
external input for the dynamical system and is not
transmitted to the receiver. Hence, the receiver sys-
tem must be designed such that the information can
be unmasked, given the only available output data
consisting of a function of the state vector. In [1], a
brief survey of the main approaches proposed in the
literature is given. Then, a novel approach based on
Unknown Input Observer (UIO) for a noise-free con-
text is proposed.
In a deterministic context, Unknown Input Observers
have been largely investigated for linear systems
[2][3][4][5]. On the other hand, in a stochastic con-
text, there does not exist a lot of results. For time-
invariant systems, we can mention the works of [6]
while for linear time-varying systems, the reader can
refer to [7], but none of those classes of systems can
exhibit chaotic behaviors and so have no interest for
chaos-based communications purposes.

The aim of this paper is to state some new results
concerning the design of Unknown Input Observers

for Linear Parameter Varying Systems in a stochastic
context. The interest of LPV systems lies in the fact
that a large amount of chaotic systems enter this class.
Furthermore, the UIO design guaranteeing some pre-
scribed performances can be carried out in a tractable
way by solving Matrix Inequalities.
Notation :
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II. UNKNOWN INPUT OBSERVERS FOR LPV
SYSTEMS

Consider the general state space realization of LPV
discrete-time systems in a noisy context.' 
&�$(*)+� ,-�/.0�1��
&� 2 3-4
� 2 576��8 � � 9:
&� 2 ;<6�� (1)

where
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is the input,
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is the disturbance acting on the dynamics through5
and acting on the measurement through

;
.
,

is of
class
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with respect to the entries of a T -dimensional

time-varying parameter vector
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.
In [8], it has been shown that a lot of chaotic maps
can be modeled by LPV discrete-time systems with.J�

being a function of the state vector

Y�

. Since

&�

evolves chaotically,
.��

is bounded in a hypercube Z .
As a result,

,
lies in a compact set which can always

be embedded in a polytope, that is :
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where the
, ^

’s correspond to the vertices of the
convex hull acb%d , ) U$V$V$VWU , \fe . The _ � ’s belong
to the compact set g � dih � = ? \ U h � �� h )� U$V$V$V�U h \� � � U h
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they can always be expressed as functions of class
9 )

with respect to the
.��

’s. The advantage of such a de-
composition lies in the fact that the design problems
turn into the resolution of a finite set of constraints in-
volving only the vertices of the convex hull.
For secure communication purposes,

4 �
plays the role

of the information to be masked and acts as an un-
known input. 8 � is the signal transmitted to the re-
ceiver. The structure of the required Unknown Input
Observers for the recovering of

4 �
is reminded from

[1].

�
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with
� � � A ��� 9

and T �/.0��� � " \^ #*) _
^� �/.J��� T ^ .

The gains
�

and T ^ ’s (
n � o U$V$V$VWU
	

) are unknown
matrices to be computed.

From (1) and (3), it is straightforward to show that

the state reconstruction error � �
�� 
&��� �

�
is governed

by :� �$(*) ��� �/.0� � � �Y2��73-4
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(4)

with
� �/.0���<� " \^ #*) _

^� ���7, ^ � T ^ 9 � and
� �/.0��� �" \^ #*) _

^� ���75�� T ^ ; � .
Before dealing with the performances on the state re-
construction when disturbances act on the system, it
is necessary to remind how the global stability of the
null solution of (4) can be guaranteed when

60�Q� l
.

Some details can be found in [1].

Theorem 1. The global stability of the null solution
of (4) with

6R�:� l
is ensured if

i) ������� ��9f3 �B� ������� � 3 �B� � ,
ii) there exist symmetric matrices

� ^
, matrices � ^ and� ^

such that,
m � n U � � = d o U$V$V$V U
	 e ! d o U$V$V$VWU
	 e , the

following set of Linear Matrix Inequalities is feasible." � ^ ����� �� ^ � , ^ � � ^ 9 � � ^ 2 � ^ �#�%$'&�( l (5)

The time-varying gain is given by T �/.���� �" \^ #*) _
^� T ^ with T ^ � �*) )^ � ^ .

Proof: On one hand, according to the definition of�
, the equality

� 3 � l
entails that

�
must be subject

to 3p�+�c9f3
(6)

and i) ensures the existence of the solution
�

of (6).
Its general expression is :� � 3Q��9f3 �-, 2/. � � E �@��9f3 � ��9f3 �-,��

(7)

with
.

an arbitrary matrix. Then, whenever
�

satis-
fies (7),

�73M� l
and so (4) turns into an input inde-

pendent dynamics :
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On the other hand, the proof follows a reasoning sim-
ilar to the one carried out in [9]. All the relations are
valid

m � n U � � = d o U$V$V$V U
	 e ! d o U$V$V$VWU
	 e .
a) Since

�2$
is strictly positive, one has :� ^ � ) )$ � � ^ j � ^ 2 � � ^ �3�2$

b) Substitute � ^ by
� ^ T ^ in (5) and take into account

the inequality above yields :" � ^ ����� �� ^ ���7, ^ � T ^ 9 � � ^ � ) )$ � � ^ &�( l (9)

which is equivalent to465 " � ^ ����� ��%$J���7, ^ � T ^ 9 � �%$ & 574 �
(10)

with 4 � " � �� � ^ � ) )$ &
and so to " � ^ ����� ��%$J���7, ^ � T ^ 9 � �%$ & ( l (11)

since
� ^

and
�2$

are full rank matrices.
c) For each

n � o U$V$V$VWU
	
, multiply the correspond-

ing
� � o U$V$V$VWU
	

inequalities (11) by _ $�$(*) and sum.
Then, multiply the resulting

n � o U$V$V$VWU
	
inequalities

by _
^�

and sum again. We obtain :" 8 � ����� �8 �$(*)9� 8 �$(*) & ( l (12)

with
8 �N� " \^ #*) _

^� � ^
and

8 �$(*) � " \^ #*) _
^�$(*) � ^

.
Applying the Schur complement formula gives :� � 8 �$(*)-��� 8 �;: l m � (13)

It is shown in [9] that <>= ?�A0? ? (
, a function de-

fined by < ��@�� U _ �1�H��@��� 8 �A@W�
with

8 �N� " \^ #*) _
^� � ^

and _ �<= g acts as a Lyapunov function for (4) when6�� � l
and ensures the poly-quadratic stability of

(4) which is sufficient to global asymptotical stability.
This completes the proof.

In the forthcoming sections, the case
6J�/B� l

, that
is the stochastic context, is considered and constitutes
the main result of the paper.



III. OBSERVER DESIGN WITH PRESCRIBED

PERFORMANCES

A. Bounded �  gain

We define the upper bound denoted � of the �  
gain as a scalar verifying :��������� ���	�#%� 	 @%	  	�
6 	  : � (14)

where
@��:�
�9 � � , 
6��:��� 6 �� 6 ��$(*)�� �

.

Theorem 2. The �  gain corresponding to (4) with6���B� l
is less than � if

i) ������� ��9f3 �B� ������� � 3 �B� � ,
ii) there exist symmetric matrices

� ^
, matrices � ^ and� ^

such that
m � n U � �f= d o U$V$V$V�U
	 e ! d o U$V$V$V U
	 e , the

set (21) of Linear Matrix Inequalities is feasible.
The time-varying gain is given by T �/.���� �" \^ #*) _

^� T ^ with T ^ � � ) )^ � ^ .
Proof : For the same reason motivated in the proof

of Theorem 1, condition i) ensures the existence of a
matrix

�
such that

�73 � l
holds and turns (4) into

an input independent dynamics. Besides, define the
matrices

� ^ � �� � ^ � �� �B� �� � �B�
�� U�� ^ � �� � ^ � �� �B� �� � �B�

��

and
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(21) can be rewritten :" � ^ ����� �� ^ � � ^ � ^ 2 � � ^ � � $�& ( � (15)

Following the same three steps a) to c) as in the proof
of Theorem 1, feasibility of (15) implies that� � � �$(*) � � � �
: l

(16)

with

� �7� �� 8 � � �� �B� �� � �B�
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Equation (16) can be rewritten like (22). Then, multi-
ply left and right respectively by

� � ��
6�� �
and its trans-

pose gives :

< � � �$(*) U _ � (*)�� � < � � � U _ ��� 2 � ) ) � �9 � ��� � � �9 � �1� � � 
6 �� 
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Consider (17) from � � l to
	

and sum leads to:
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Yet, < � � \ (*) U _ \ (*) ��� � � \ (*) 8 � � \ (*) ( l . Hence :

� ) ) \]�$#%� � �9 � � � � � �9 � � � : � \]�$#%� 
6 �� 
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When
	

tends toward infinity, this relation is equiva-
lent to (14). This completes the proof.

B. Peak-to-peak gain

Let � be the upper bound of the peak-to-peak gain
defined as the ratio between

	 � 	 � and
	�
6 	 �

������ � �!�� ��" � � 	 � 	 �	#
6 	 � : � (20)
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Theorem 3. The peak-to-peak gain corresponding to
(4) with

6R��B� l
is less than � ( l if

i) ������� ��9f3 �B� ������� � 3 �B� � ,
ii) there exist symmetric positive definite matrices

� ^
,

matrices
� ^

, scalars �
= � l U o �

, h ( l
such that,m � n U � �P= d o U$V$V$VWU
	 e ! d o U$V$V$VWU
	 e , the Matrix In-

equalities (29) are fulfilled.
The time-varying gain is given by T �/.���� �" \^ #*) _

^� T ^ with T ^ � � ) )^ � ^ .
Proof: For the same reason motivated in the proof

of Theorem 1, condition i) turns (4) into an input in-
dependent dynamics. On one hand, again, consider-
ing the first inequality of (29) and following the same
steps from a) to c) as in the proof of Theorem 1 yields :�$$� � o �

�
� 5 8 � ����� � ����� � ����� �� hH� ����� � ����� �� � hH� ����� �8 �$(*)9� 8 �$(*)
� � 8 � (*) �7; 8 �$(*)

�&%%� ( l
(23)

Applying the Schur complement formula and somes
basic manipulations yields (30). Then, multiply (30)
left and right respectively by

� � � 
6�� �
and its transpose,

entails that :< � � �$(*) U _ �$(*)�� : � o �
�
� < � � � U _ ���Y2 h 	�
6���	  m �

(24)
Applying the Gronwall-lemma in the discrete case
gives : < � � � U _ �1� : h

�
	#
6*	  � m � (25)

On the other hand, multiplying the second inequality
of (29) by _

^�
and sum from

n � o
to

	
gives :"

�
8 �1� )

� � �� � � � h � � &�( l (26)

Besides, multiply (26) left and right respectively by� � � 
61� �
and its transpose leads to :o

� 	 � ��	  :
�%< � � � U _ ��� 2 � � � h �W	�61��	  m � (27)

Finally, combining (25) and (27) and taking into ac-
count that � � h ( l

from the second inequality of
(29) leads to : 	 � 	  � : �  	�6 	  � (28)

And yet, (28) is equivalent to (20).
Remark
Note that the Matrix Inequalities coresponding to the
peak-to-peak performances are not linear unlike the
ones related to the �  gain. They involve a product of
two unknowns, say � and

� ^
, and a nonlinear depen-

dence on � which prevents the convexity.
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