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Abstract

In this paper, a class of dynamical systems on the N-dimensional torus is investigated.
It is proved that any dynamical system in this class is chaotic in the sense of Devaney, and
that the sequences produced are equidistributed for almost every initial data. Then, the
results are extended to switched affine transformations of T, involving Z-valued matrices.
Next, a chaos-synchronization mechanism is introduced and used for masking information in
a communication setup.
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1 Introduction

Chaos synchronization has exhibited an increasing interest in the last decade since the pioneering
works reported in [21][22]. Thereafter, it has entered the control scene and has become a very
popular issue in control theory [3]. From a control theory point of view, the synchronization issue
can be formulated as a state reconstruction problem. We refer the reader to [7] for a first survey
of chaos synchronization techniques based on an observer approach.

Chaos synchronization has also proved to be a very common feature in physical and engineering
systems, and it has been advocated as a powerful tool in secure communication [10][9][6][11][5].
Chaotic systems are indeed characterized by a great sensitivity to the initial conditions and a
spreading out of the trajectories, two properties which are very close to the Shannon requirements
of confusion and diffusion [15].

There are basically two approaches when using chaotic dynamical systems for secure commu-
nications purposes. The first one amounts to numerically computing a great number of iterations
of a discrete chaotic system, in using e.g. the message as initial data (see [27] and the references
therein). The second one amounts to hiding a message in a chaotic dynamics. Only a part of
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the state vector (the “output”) is conveyed through the public channel. Next, a synchronization
mechanism is designed to retrieve the message at the receiver part.

In both approaches, the first difficulty is to “build” a chaotic system appropriate for encryption
purposes. In this context, the corresponding chaotic signals must have no patterning, a broad-
band power spectrum and an auto-correlation function that quickly drops to zero. In [23], a mean
for synthesizing volume-preserving or volume expanding maps is provided. For such systems, there
are several directions of expansion (stretching), while the discrete trajectories are folded back into
a confined region of the phase space. Expansion can be carried out by unstable linear mappings
with at least one positive Lyapunov exponent. Folding can be carried out with modulo functions
through shift operations, or with triangular, trigonometric functions through reflexion operations.
Fully stretching piecewise affine Markov maps have also attracted interest because such maps are
expanding in all directions and they have uniform invariant probability densities (see [26][8]).

Besides, we observe that the word “chaotic” has not the same meaning everywhere, and that
the chaotic behavior of a system is often demonstrated only by numerical evidences. The first aim
of the paper is to provide a rigorous analysis of the chaotic behavior of a large class of dynamical
systems on TV (the N-dimensional torus) , based on the definition given by Devaney [4]. Some
connections with classical stability theory are pointed out in the paper.

For ease of design implementation and duplication, a cryptographic scheme must involve a
map for which the parameters identification is expected to be a difficult task, while computational
requirements for masking and unmasking information are not too heavy. The second aim of this
paper is to show that all these requirements are fulfilled for a large class of affine transformations
on the N-torus.

Let us now describe the content of the paper. Section 2 is devoted to the mathematical analysis
of the chaotic properties of the following discrete dynamical system

Tg+1 = Az + b  (mod 1) (1)

where A € ZN¥*N b € RY, and (mod 1) means that we keep the residue of Ax; + b modulo
1 (that is, the integral part of each coordinate of Az + b is removed). Most of the examples
encountered in the literature are given only for N =1 and |A| > 2, or for N =2 and det A =1
(see e.g. [12]). We give here a necessary and sufficient condition for (1) to be chaotic in the sense
of Devaney for any N > 1, and we investigate the equirepartition of the trajectories of (1). These
results are then extended in Section 3 to the case of switched affine transformations of TV. These
systems allow to generate very complicated dynamics with only a few low dimension matrices. A
masking/unmasking technique based on a dynamical embedding is proposed in Section 4. The
way of extracting the masked information is provided through an observer-based synchronization
mechanism with a finite-time stabilization property, an issue of first importance from a practical
point of view. Certain results of the paper have been announced in [25].

2 A class of chaotic dynamical systems on the N-torus

2.1 Chaotic dynamical system

Let (M,d) denote a compact metric space, and let f : M — M be a continuous map. The
following definition of a chaotic system is due to Devaney [4].

Definition 1. The discrete dynamical system
(2) Trpr = f(xx)
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s said to be chaotic if the following conditions are fulfilled:

(C1) (Sensitive dependence on initial conditions) There exists a number ¢ > 0 such that for any
xo € M and any 6 > 0, there exists a point yo € M with d(xo,yo) < & and an integer k > 0 such
that d(xg,yk) > €;

(C2) (One-sided topological transitivity) There ezxists some xog € M with (zg)k>0 dense in M;
(C3) (Density of periodic points) The set D = {xg € M; 3k >0, zy = o} is dense in M.

Recall [30, Thm 5.9], [29, Thm 1.2.2] that when f is onto (i.e., f(M) = M), the one-sided
topological transitivity is equivalent to the condition:

(C2') For any pair of nonempty open sets U,V in M, there exists an integer £ > 0 such that
fRONV £0 (= UNfHV) #0).

In this paper, we consider the case where M is the N—torus TV = RN /Z" (quotient group).
For any X = (Xi,..., Xn) € RY, the class of X in TV (namely the coset X + Z") is denoted by
v = X. Let 7 : RY — T be the natural projection, for which 7(X) = x = X. The distance
between two points X, Y is defined as

d(X,Y)= inf [ X -Y +Z|.
ZeZN
For any matrix C' € Z”*" (P, N > 1) and for any X € R, the class of CX in T”, which clearly
depends only on X, will be denoted by CX. Thus, we may associate to any matrix A € ZVN*V
and to any b € TV a discrete dynamical system (X,4,;) on TV defined by

(EA,b) { Tr41 :%](ka) = A'Tk + b7 (2)

The map f is called an affine transformation of the N—torus. When b = 0, f is nothing else than
an endomorphism of the topological group (TV,+), and f is onto (resp., an isomorphism) if and
only if det A # 0 (resp., det A = £1) (see [30, Thm 0.15]). Let sp(A) denote the spectrum of the
matrix A, that is the set of the eigenvalues of A. A root of unity is any complex number of the
form A = exp(2mit), with ¢ € Q. To see whether a dynamical system (X4;) is chaotic, we need
the following key result [30, Thm 1.11].

Proposition 1. Let f(z) = Az +b (b€ TV, A € ZN*N with det A #0) be an affine transforma-
tion of TV. Then the following conditions are equivalent:
(i)  (Xap) is one-sided topologically transitive;
(ii)  (a) A has no proper roots of unity (i.e., other than 1) as eigenvalues, and
(b) (A= DTN + Zb is dense in TV;
(iii) f is ergodic; that is, f is measure-preserving (i.e., for any Borel set E C TN, m(f 1(E)) =
m(E), where m denotes the Lebesque measure on TV ), and the only Borel sets E C TV for
which f~Y(E) = E satisfy m(E) =0 or m(E) = 1.

Notice that (ii) reduces to “A has no roots of unity as eigenvalues” when b = 0. Indeed, it
may be seen that (4 — I)TY is dense in TV if and only if (4 — I) is invertible.
The first result in this paper provides a necessary and sufficient condition for ¥4 o to be chaotic.

Theorem 1. Let A € ZN*N. Then (Xap) is chaotic if, and only if, det A # 0 and A has no roots
of unity as eigenvalues.

Proof. Assume first that (X40) is chaotic. We first claim that A is nonsingular. Indeed, if
det A = 0, then the map f is not onto [30, Thm 0.15], i.e. ATV # TV. As AT" is compact
(hence equal to its closure), it is not dense in TV, hence we cannot find any state zo € TV such



that the sequence (z;) = (A¥xy) is dense in TV, which contradicts (C2). Thus det A # 0. On the
other hand, since (X,40) is one-sided topologically transitive, the matrix A has no roots of unity
as eigenvalues by virtue of Proposition 1.

Conversely, assume that det A # 0 and that A has no roots of unity as eigenvalues. As (C1)
is a consequence of (C2) and (C3) (see [2],[29, Thm 1.3.1]), we only have to establish the later
properties. (C2) follows from Proposition 1. To prove (C3) we need to prove two lemmas.

Lemma 1. Let A € ZVN*N be such that det A # 0, and pick any p € N* with (p,detA) =1 (i.e. p
and det A are relatively prime). Then the map T : x € (Z/pZ)N — Az € (Z/pZ)" is invertible.

Proof of Lemma 1. First, observe that the map T is well-defined. Indeed, if XY € ZV
fulfill X — Y € (pZ)", then AX — AY € (pZ)" so that AX and AY belong to the same coset in
(Z/pZ)N = ZN /(pZ)N. As (Z/pZ)N is a finite set, we only have to prove that T is one to one.
Let X,Y € Z" be such that AX = AY in (Z/pZ)" (i.e., A(X =Y) € (pZ)"). We aim to show
that X =Y in (Z/pZ)" (ie., X =Y € (pZ)N). Set U = X — Y, and pick a vector Z € Z" such
that AU = pZ. It follows that U = ﬁAZ, where A € Z¥*N denotes the adjoint matrix of A
(i.e. the transpose of the matrix formed by the cofactors). Since U € Z", each component of the
vector pAZ is divisible by det A. Since (p,det A) = 1, we infer the existence of a vector V € ZV
such that AZ = (det A)V. Then X —Y =U = pV € (pZ)", as desired. [}

Lemma 2. Let A and p be as in Lemma 1, and let E, := {0, (]1)), oy (1%1)} C T. Then each point
x € EI],V is periodic for (Xa0). As a consequence, the set of periodic points of (34,) is dense in
TV (i.e., (C3) is satisfied).

Proof of Lemma 2. First, observe that for any 4,j € {0,...,p — 1}, i/p = j/p (mod 1) if and
only ifi = j (mod p). We infer from Lemma 1 that the map 7" : x € EI])V — Az € EI],V is well defined
and invertible. Pick any z € EY. As the sequence (T*z);>1 takes its values in the (finite) set

EX, there exist two numbers k, > k1 > 1 such that T*g = T*z. T being invertible, we conclude
that Ak2~k1z = 1 (i.e., z is a periodic point). Finally, the set E = U{E,; p > 1, (p,det A) =1}
is clearly dense in TV (take for p any large prime number), and all its points are periodic. This
completes the proof of Lemma 2 and of Theorem 1. [ |
For an affine transformation, we obtain a very similar result to Theorem 1 when 1 ¢ sp(A).

Corollary 1. Let A € ZV*N and b € TV. Assume that 1 is not an eigenvalue of A. Then (Sap)
s chaotic if, and only if, det A # 0 and A has no roots of unity as eigenvalues.

Proof. Pick any B € RY with B =b. As 1 ¢ sp(A), we may perform the change of variables

z=r—(A-I)"'B, (3)
which transforms (2) into
Tey1 = Arg,
{ To :.Io“f‘(A—I)*lB (4)
Clearly, the conditions (C2) and (C3) are fulfilled for (¥ 4,) if and only if they are fulfilled for (4).
Therefore, the result is a direct consequence of Theorem 1. [ |

2.2 Equidistribution

Let us consider now a discrete dynamical system with an output

{$k+1 = Az + b
yr = Cuxy
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where o € TV, A € ZV*N b € TV and C € Z'V. It should be expected that the output v, inher-
its the chaotic behavior of the state x;. However, Devaney’s definition of a chaotic system cannot
be tested on the sequence (yg), since this sequence is not defined as a trajectory of a dynamical
system. Rather, we may give a condition ensuring that the sequence (yi) is equidistributed (hence
dense) in T for a.e. zy, a property which may be seen as an ersatz of (C2).

If X = (Xy,..., Xy),Y = (Y1, ..., Yy) are any given points in [0,1)Y and x = X, y = Y, then
we say that z < y (resp., z < y) if X; <Y, (resp., X; <Y;) for i = 1,..., N. The set of points
z € TV such that z < z < y will be denoted by [z,y). Let (zx)r>0 be any sequence in TV. For
any subset E of TV, let Sg(E) denote the number of points zj, 0 < k < K — 1, which lie in E.

Definition 2. [13]/ We say that (z) is uniformly distributed modulo 1 (or equidistributed in TV )

if
am S ) < [0 X

for all intervals [x,y) C TV.
The following result is very useful to decide whether a sequence is equidistributed or not.

Proposition 2. (Weyl criterion [13], [24]) The sequence (zy)k>o 15 equidistributed in TV if,
and only if, for every lattice point p € ZN, p # 0

1 .
[7d Z 2P Tk _y () as K — +oo0.
0<k<K

The next result shows that under the same assumptions as in Corollary 1 the sequences (zy)
and (y;) are respectively equidistributed in TV and T for a.e. initial state z, € T .

Theorem 2. Let A € ZN*N b € TV and C € ZN \ {0}. Assume that det A # 0 and that A
has no roots of unity as eigenvalues (hence Y4y is chaotic). Then for a.e. xop € RN the sequence
(x1) (defined in (2)) is equidistributed in TV, and the sequence (yx) = (Cxy,) is equidistributed in
T.

Proof: By virtue of Theorem 1, the map f(z) = Az + b is ergodic on TV. It follows then
from Birkhoff Ergodic Theorem (see e.g. [30, Thm 1.14]) that for any h € L'(TV,dm) and for
a.e. xg € TV

= B ) - [ hwydm(y)  as K =+

Therefore, for every lattice point p € ZV, p # 0, and for a.e. 2o € TV

1 . .
Z o2 f* (o) _y 2Ty dm(y) =0 as K — +oo.
K TN
0<k<K

As ZN\ {0} is countable, the same property holds for a.e. o € TV and all p € Z"V\{0}. Therefore,
we infer from Weyl criterion that the sequence (x1) = (f*()) is equidistributed for a.e. zo € TV.
Pick any 2o € TV such that (z;) is equidistributed, and let us show that the output sequence
(yx) = (Cxy) is also equidistributed provided that C' = (C4,...,Cy) # (0, ...,0). Indeed, for any
p e Z\{0} , ,
2me 27mi(pC) x
§Zem”°:EZe Pz 4 as K — +o0o,
0<k<K 0<k<K

hence the equidistribution of (y;) follows again by Weyl criterion. [ |
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2.3 Links between stability and chaoticity

It has been demonstrated in Theorem 1 that a system X4 is chaotic if and only if the spectrum
of A does not contain 0 nor a root of unity. The proof of this result was based upon ergodicity
theory. The aim of this section is to provide a direct proof of this result (more precisely, of (C5))
in the more familiar situation where A is a “dilating matrix”, i.e.

sp(4) C {z € C; |z > 1}. (5)

In stability words, the condition (5) amounts to saying that the linear system X, = A7'X}, is
asymptotically stable in CV. The following result is obtained in using classical stability arguments.

Lemma 3. Let A € ZN*N fulfilling (5), and let U be any nonempty open set in TV . Then there
exists a number k € N* such that f*(U) = TV, where f(z) = Az.

Proof. We claim that we are done if we show that for any X € R and any (arbitrary small)
€ > 0, we may pick a £ > 0 such that

AFX +[0,1)N c A* B.(X). (6)
(B:(X) denoting the open ball in RY centered at X with radius €). Indeed, we infer from (6) that
TV = 7(A*X +10,1)") € 7(A* B.(X)) = f*(m(B:(X)))

and the result of the lemma follows at once. It remains to show that (6) holds true. As sp(4~1) C
{z € C; |z| < 1}, the linear system X1 = A !X, is asymptotically stable in CV, hence there
exists a k > 0 such that A~%[0,1)" C B.(0). Therefore, [0,1)¥ C A¥B.(0), and A*X +[0,1)" C
A*(X + B.(0)) = A*B.(X), as desired. |

It follows from Lemma 3 that if (5) holds true, then the system (X4 0) is one-sided topologically
transitive (as (C2') is clearly satisfied).

3 Chaotic switched systems
In this section we extend the results of Section 2 to switched affine systems on the N —dimensional

torus.

3.1 Switched systems

To define what we mean by a switched system, we assume given a sequence (A;)i<;<s of matrices in
ZN*N and a sequence (b;)1<j<s of points in TV, and we consider the following (periodic) switching
signal o : N — {1, ..., J} defined as

olk+pJ)=k+1 Vke{0,.,J—1}, VpeN. (7)
Notice that o(k + J) = o(k) for all k£ > 0.

Definition 3. The switched system Y44, associated with the sequences A = (Aj)i<j<s, b =
(bj)1<j<s and the switching signal o is defined by

(Zab0) Tr1 = Aoy Th + bory  Vk > 0. (8)



If eg. J =2 and by = by = 0, then the first terms of the sequence (xy) read z; = A;xy,
To = Agxy = AsAixg, x3 = A1z9 = A1 AsA 30, ete. Notice that (8) defines a dynamical system
associated with a particular switching signal. Having in mind the applications to chaos synchro-
nization and cryptography, we shall not consider (as in [1]) the case where the switching signal is
any random function o : N — {1,..., J}.

The first issue of interest is the chaotic behavior of (8). A direct inspection of Devaney’s
definition cannot be made, since the dynamical system (8) is time-varying. However, using the
periodic structure of the switching signal, we shall see in the next section that it is possible to put
the dynamical system (8) into a time invariant form.

3.2 Time-invariant form

We first perform a change of variables as in the proof of Corollary 1, namely

Tk = Tk + Zo(k) Vk >0 9)
where the points z; € TV for j = 1,..., J are chosen in such a way that

Tha1 = Agk) Tk Yk > 0. (10)
Straightforward calculations show that (10) is satisfied provided that

Zo(k+1) = Aa(k)zg(k) - ba(k) Vk € {0, vy — 1},

1.e. )
zo = A1z1 — bl;
zg = Agzo — bo,
4 (11)
2y =Aj_1z5-1 — by,
zZT = AJZJ — bJ.

\

The resolution of (11) is then reduced to the resolution of the following single equation
(AjAj1--- A — Dz =Ay---Asby +---+ Ajby_1 + by. (12)
When 1 & sp(A;A7_1---A;), then writing b; = B; for each j and setting
Zy = (AjA; -~ Ay = 1) Ay~ ABy +---+ A;jB; 1 + By),

we obtain that z; := Z is a solution to (12). Defining 2y, ...,z; by (11), we conclude that for this
choice of 2, ..., 25, the change of variables (9) transforms (8) into (10).

Let Z := (21,...,27), G := {(z0, A170, A2 A1 10, ..., Ay 1+ A1xp); 1o € TV}, and M := G — Z.
Consider the map ¢ : TV — G, defined by ¢(zo) = (9, A17¢, ..., Ay _1--- A17p). Then G is a
compact connected subgroup of (TY)7 (hence a Lie group), and ¢ is a group isomorphism which
is continuous together with its inverse. It follows that the map h: zg € TV — ¢(z9) — Z € M is
also continuous together with its inverse. Thus M = {h(zy); zo € TV} may as well be considered
as the state space. A simple computation shows that for any p > 0

’]"pJ :(AJ...Al)pT-O
Tprs1 = Airpr = (A1Ay -+ - Ay)P Ay

Tpgti—1 = (Aj_1---A1Ap)PA;_1--- Ao,
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that is

Rp_|_1 = APRO (13)
Witth:(T‘pJ,TpJ+1,...,T‘pJ+J_1)TEGand
Ay A 0
A= Y Jol ‘o . e ZNIXNT, (14)

0 Aj_---AlA

(13) may be rewritten as
Rp+1 = ARp, Vp Z 0. (15)

Letting X, = (Tps, Tpss1,--->Tpsrs—1)’ € M (hence X, = R, — Z), we have that X, 11 = AX, +
(A —I)Z. The above considerations may be summarized in the following result.

Proposition 3. Assume that 1 is not an eigenvalue of the matriz AjA;_1---A;. Then the
switched system (8) may be seen as the following time-invariant dynamical system in M :

Xpi =AX, +(A—D)Z  Vp>0. (16)

3.3 Chaoticity and equidistribution

(16) may be seen as the restriction to M of a time invariant linear dynamical system on TV? to
which the theory developed in Section 2 may be applied. The first result of this section provides
a sufficient condition for (16) to be chaotic.

Theorem 3. Assume that the matriz A in (14) is invertible and has no root of unity as eigenval-
ues. Then the dynamical system (15) is chaotic on G, and the dynamical system (16) is chaotic
on M.

Proof. ~ As the map R € G — X € M is an isometry, it is sufficient to prove that (15) is
chaotic on G. To keep the same notations as above, we consider (16) with Z = 0 (hence M = G).
We infer from Theorem 1 that (16) is chaotic on T7 (not G !). To prove that the restriction of
(16) to G is still chaotic, we check that the conditions in Definition 1 are fulfilled. First of all, it
is easily seen that the map Xy — AAX;, from G into itself is onto. Next, as the map X — AX
is one-sided topologically transitive (and ergodic) by virtue of Theorem 1, we infer that there
exists a state X = (zq,...,z7-1) € (T")” such that the sequence (A*X)g>o is dense in TVY. It
follows that the sequence of the N first components ((Ay- -+ A1)*zo)k>0 is dense in TV. Since
¢ is a homeomorphism from TV onto G, and ¢((A;---A1)*zy) = A*Xy with Xy = ¢(zo), we
conclude that the sequence (A*X;)r>¢ is dense in G, i.e. (Cy) is fulfilled. As (C)) follows from
(C3) and (Cj3), it remains to check that (Cj3) holds true. By Lemma 2, each point of the form
(o, A1xgy ooy Ay 1 - - - A1) With zy € EIJJV is periodic for (16) provided that (p,detA) = 1. As the
set {(zo, A1Zo, ...y Ay_1-+-A1x0); To € EIJJV, p > 1, (p,det A) = 1} is dense in G, we conclude
that (Cs) is satisfied. Therefore, (16) is a chaotic system on M. ]

Remark 1. The restriction of a chaotic system to a stable subgroup may fail to be chaotic, as is

-1 0
Then (Xa,) is chaotic on T?, as the spectrum of A is o(A) = {%‘/5} Let G denote the projection
on T? of the eigenspace associated with the eigenvalue _?’%\/5, i.e. G = m(Ker(A— *”%‘/EI))
Clearly, (C) fails to be true for (X40) restricted to G, for \_3%‘/?’\ < 1.

shown by the following example. Consider the dynamical system (X 4,) in T? with A = ( =31 ) .
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An equidistribution property follows under the same assumptions.

Corollary 2. Let A be as in Theorem 8, and let C € Z'N \ {0}. Then for a.e. 7o € RY
the sequence (xy) (defined in (8)) is equidistributed in TV, and the sequence (yx) = (Cxy) is
equidistributed in T.

Proof. Assume first that Z2 =0, (i.e. by = --- =b; = 0). It follows from [30, Thm 1.11 p. 31]
that the map X, — AAX is ergodic on G, hence for any h € L*(G,du) and for a.e. Xy € G

% S hArRX) - / MX)dp(X)  as K — 400,

0<k<K

where 1 denotes the Haar measure on G (see e.g. [30]). It is easy to check that u(¢(B)) = m(B)
for any Borel set B C TV. Therefore

[ 1 du(x) = [ 1io(w) dm(z).

G T~

Pick h(xg, 21, ..., Tj_1) = e2™PoTot4Ps-12s-1) with (py, ..., ps_1) € (ZV)7\ {0}. Taking py # 0 and
p1=---=pyj_1 =0, there obtains

1 . )
= E : e27rzpo Tk _y e?mpo T dm($) — 0’
K TN

0<k<K

hence the sequence (zj;)k>o is equidistributed. A similar argument shows that the subsequences
(Zkss1)s - (Trsrs—1) are equidistributed as well. It follows that the sequence (zy) is equidis-
tributed in TV. When Z # 0, the above argument shows that the sequences (747), (Tks41)y->(Tkr+.7-1)
are equidistributed. Using the periodicity of o, we conclude that the sequences (zxs), (Tks11)s---,
(Tks471) are equidistributed, hence (x}) is equidistributed in TV. The proof that the sequence
(yx) is equidistributed in T is as above. u

4 Synchronization and information recovering

The aim of this section is to suggest a chaos-based encryption scheme involving affine transfor-
mations on the N—torus. It differs from the one introduced in [18] in the fact that the maps
involve Z-valued matrices. New stability results are provided in this framework. To be precise,
we provide some conditions which guarantee a synchronization with a finite transient time despite
the inherent nonlinearity of the chaotic systems under study.

4.1 Encryption setup

At each discrete time k, a symbol my, € T (the plaintext) of a sequence (my)r>o is encrypted by
a (nonlinear) encrypting function e which “mixes” my and z; and produces a ciphertert up =
e(zg, mg). We also assume given a decrypting function d such that my = d(z, ux) for each k.
Next, the ciphertext uy is embedded in the dynamics exhibited by the map (8). We shall consider
the following encryption

Tpr1 = a(k)( k U(k)ulc) ba(k)
¥ , Aoty (2 + M 17
( Ab,M,C, ) { Yy = Ca(k)(:rk Z\{a(k)uk) ( )

which corresponds to an embedding of the ciphertext in both the dynamics and the output. In
(17) Apy € ZN*N, Moy € ZV*N, Cory € ZV*! are matrices belonging to the respective families
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(Aj)1<j<rs (Mj)1<j<s, and (C})1<j<s, and b,y € TV is a vector belonging to the family (b;)1<;<y-.
o is the switching signal as defined in (7). y; € T is the output conveyed to the receiver through
the channel.

From the definition of the decrypting function d, it is clear that to retrieve my at the decryption
side we need to recover the pair (z,u), which in turn calls for reproducing a chaotic sequence
(Zx) synchronized with (xx) (i.e., such that &y — xz;x — 0). To this end, we propose a mechanism
based on some suitable switched unknown input observers, inspired from the ones given in [18]
and [19]. The main differences are that: (i) the gain matrices have to be Z-valued because of the
congruential operations; (ii) a finite-time synchronization is achieved for obvious practical reasons.

For the encryption considered here, the decryption involves the following observer-like structure

& Tpr1 = Aoy @k + Lo (Yk — Jk) + bog)
b - A . 18

where i, € TV and ¢, € T (2o being an arbitrary point in TV). We stress that ;1 and g are
well defined provided that the observer gain L) is Z—valued.
Setting ey = xy — Ix, when subtracting (18) from (17) we obtain that the error dynamics reads

ext1 = (Aok) = Lok)Cor))er + (Aok) = Loy Cory) Mok U (19)

Before proceeding to the design of the observers, we give a few definitions and a preliminary
result.

4.2 Definitions and preliminary results

Definition 4. A pair (A°,C”) is said to be in a companion canonical form if it takes the form

N1t 10 --- 0
—aN2 0 1 0
A= . C’=(10--00)- (20)
—at 00 --- 1
—al 00 --- 0

It is well known that the characteristic polynomial of A* reads x4 (A) = AN + oV 1AV~ 4
ot atd+ b

Definition 5. Two pairs (A,C) and (A’,C") in ZN*N x Z*N are said to be similar over Z if
there exists a matriz T € ZN*N with det T = 41 (hence T~* € ZV*N too) such that

A=T'AT, C=CT

The following result provides a sufficient condition for an observable pair (A4, C) to admit a
Z-valued gain matrix L such that A — LC' is Hurwitz.

Proposition 4. Let A € Z"*Y and C € Z*Y be two time-invariant matrices. Assume that (A, C)
is similar over Z to a pair (A°,C°) in a companion canonical form (the first column of A’ reads
(=™ ... —a®)). Then there exists a unique matriz L € ZV*' such that the matriz A— LC is
Hurwitz (i.e., sp(A—LC) C {z € C; |z| < 1}), namely L = T7'L’ with L’ = (—a' ... —aP)".
Furthermore, (A — LC)N = 0.

10



Proof. Write A =T—'A’T, C = C’T, with (A°,C”) asin (20) and T' € ZV*N with det T = +1.
For any given matrix L € ZV*! we define the matrix L’ = (I¥~'... %) by L’ = TL. Then,
A—LC =T YA — I’C°)T with

—aNt N1 0 .- 0
QN2 N=2 g 1 ...
Al) _ Lbcb — . .
—a' =1 00 1
—a® -0 0 0 0

Its characteristic polynomial reads
Xar—por(A) = AN + (@ IV AN o (o YA+ (@ +19).

If L is such that A — LC is Hurwitz, then A’ — L’C® = T(A — LC)T~! is Hurwitz too, hence we
may write xa_rc(A) = xar_per(A) = APx(A), where p € {0,..., N} and x € Z[)\] has its roots
ALy s An—p in the set {z € C; 0 < |z| < 1}. Assume that p < N, and denote by ¢ the constant
coefficient of x. Then ¢ # 0 (since x(0) # 0), and |g| = [[,”|\i| < 1, which is impossible, since
q € Z. Therefore p= N and IY = —a/ for any j € {0,..., N — 1} (hence L’ and L are unique). On
the other hand

010 0
001 ---0
A-pC=|: | (21)
0 00 1
0 00 0
For this choice of L, xa_rc(A) = AN and (A — LC)N =0. ]

It should be emphasized that the above argument shows that a Z-valued matrix A is Hurwitz
if and only if it is nilpotent. In other words, the system vy = Ny is asymptotically stable if and
only if it is finite-time stable.

4.3 Synchronization of switched systems

Consider a switched system
Vg1 = Na(lc)Vk (22)

in which each matrix in (Nj)i<j<n is nilpotent. The following result proves to be useful to
guarantee that the state vector v, reaches zero in finite time.

Lemma 4. Let N1, ..., Ny be N nilpotent matrices in CN*N . Assume that the Lie algebra spanned
by these matrices is resoluble. Then NiN5---Ny = 0.

Proof. Let Lie(MN, ..., Ny) denote the Lie algebra spanned by the matrices N, ..., Ny. Since
Lie(NVi, ..., Ny) is resoluble, we infer from Lie theorem (see e.g. [28, Theorem 3.7.3|) that there
exists an invertible matrix 7 € C¥*¥ such that each matrix /\/']’ := T 'N;T is upper triangular
with zeros on the diagonal. Now, a straightforward computation shows that A7--- Ny =0. =

Remark 2. The Lie algebraic condition in Lemma 4 1s useful, since the product of N nilpotent
matrices in CN*N may fail to be nilpotent without any additional assumption. Indeed, we observe

that ( 8 (1) ) ( (1) 8 ) = ( (1) g ) It is however easy to see that the product of N nilpotent

matrices which commute pairwise is 0. Lemma 4 provides a nice generalization of this observation.
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The following result is the main result of this section.

Theorem 4. Let us consider (17) and (18). Assume that the following conditions are fulfilled for
each j=1,...,J:
1) the pair (A;, C;) is similar over Z to a pair (Ag-, C”) in a companion canonical form through
T; € ZN*N with det T; = £1;

2) the matriz T; may be written in the form T; = S;T with S; being upper triangular of deter-
minant +1, T being any square matriz in ZN*N with det T = +1;

3) the matriz M; € ZN*' is such that M; = T; ' M’ with
M = (10...0); (23)
4) the matriz L; € ZN*' is such that L; = T; 'L} with
_ !
L = (ot —aj). (24)

Then the error (19) fulfills e, = 0 for k > N and for any &o in (18). Furthermore, Uy =
Yk — Coy T, = ug for k> N.

Proof. On one hand, if 1) and 4) are fulfilled, a simple computation leads to

Aj— L;iCy =T YA — L,C)T; = T, 'N'T; (25)
with
010 -0
00 1 0
N=|: 1 -
000 -~ 1
000 - 0

N is clearly a nilpotent, upper triangular matrix. Moreover, from 1) and 3), (4; — L,;C;)M; =
T;'N'M; and N M} = 0. As a result, (A; — L;C;)M; = 0, hence

ert1 = (Aoky — Lok)Coir)) €k, Yk > 0. (26)
Iterated applications of (26) yield
ejips = (A5 — L;jCj) - (A1 — LiC){(Ay — L;Cy) -+ - (A1 — LiC1) Pey. (27)

with, from 1) and 2), A, — L,;C; = T_l(Sj_lNSj)T. Let now 7 denote the set of upper triangular
complex matrices. It is well-known that 7 is a resoluble Lie algebra (see [28, p. 201]). As each
matrix S;'NS; is upper triangular, the Lie algebra Lie(S; ' NSy, S5 'N'S,, ..., S7IN'S)) is a Lie
subalgebra of 7, hence it is resoluble. The same property holds true for

Lie(4; — LiCy, ..., Ay — L;C;) = T™'Lie(S;' NSy, Sy "N S, ..., STIN'S))T.

It follows then from Lemma 4 that e, = 0 for all £ > N.
On the other hand, according to (17),

Uk = Coy (@ + Mygyur) = Coryer + Coiy T + Coti) Moy Ui
hence, as Cy(1) Mok = 1,
Uy = Yp — CoyZr = Commyer +up =up  Vk > N.

12



Remark 3. 1. The choice S; = I for all j in 2) corresponds to the case when the matrices T}
are tdentical and equal to T.

2. The result in Theorem 4 is sharp for N = 2. Indeed, let Ty, T, € Z**? be any matrices

with determinant +£1, and let N = < 8 (1) ) Then a direct computation shows that the

matriz (T "N'Ty) (T N'TY) is nilpotent if and only if Lie(Sy NSy, N) is resoluble (where
Sy =TT "), if and only if So is upper triangular.

4.4 Concluding remarks

The message-embedding masking technique studied here does not originate from the conventional
cryptography (see [16] for a good survey). Nevertheless, it seems to be highly related to some
popular encryption schemes, the so-called stream ciphers [20]. Therefore, it is desirable that
the proposed scheme be robust against both statistical and algebraic attacks. On one hand, the
robustness against statistical attacks follows from the chaotic behavior of the output. On the other
hand, the security against algebraic attacks mainly rests on the identification of the parameters
of the system which is a hard task here for two reasons:

1. The particular structure of the encryption system (X4 m,c,0), that is the dimension and the
number of the matrices A;, is assumed to be unknown;

2. The ciphertext uy actually results from a mixing between the plaintext my and the state xy
(ur = e(zg, mg)). This generally results in a nonlinear dynamics (X4 nm,0,5), rendering the
parameters hardly identifiable [14].

A real-time implementation has already been carried out on an experimental platform involving a
secured multimedia communication. (For details about the platform, see e.g. [17]). The security
aspects are currently investigated and are out of the scope of the paper.

Acknowledgments. One of the authors (L.R.) wishes to thank A. Bacciotti and C. Mauduit,
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