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ON THE BLASIUS PROBLEM

Bernard Brighi, Augustin Fruchard and Tewfik Sari

Dedicated to the centenary of Blasius’ Thesis

Abstract. The Blasius problem f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′(+∞) = λ is
exhaustively investigated. In particular the difficult and scarcely studied case b < 0 ≤ λ is
analyzed in details, in which the shape and the number of solutions is determined. The method
is first to reduce to the Crocco equation uu′′ + s = 0 and then to use an associated autonomous
planar vector field. The most useful properties of Crocco solutions appear to be related to
canard solutions of a slow fast vector field.

Keywords Blasius equation, Crocco equation, boundary value problem on infinite interval,
canard solution
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1. Introduction

Given a, b, λ ∈ R, the boundary value problem

f ′′′ + ff ′′ = 0 on [0,+∞), (1.1)

f(0) = −a, f ′(0) = b, lim
t→+∞

f ′(t) = λ, (1.2)

arises for the first time, with a = b = 0, λ = 2, in 1907 in the PhD thesis of Blasius [7], and
plays a central role in fluid mechanics. Equation (1.1) was obtained using a similarity transform
and enabled successful treatment of the laminar boundary layer on a flat plate. In this way,
Blasius accomplished one of the most significant developments in fluid mechanics in the twentieth
century.

More general boundary conditions are physically relevant. For the laminar flow over a flat
plate with suction or blowing, the problem to be solved is (1.1 - 1.2) with a ∈ R

∗, b = 0 and
λ = 1 (see for example [33], [34] and [39]).

With a ∈ R, b = 1 and λ = 0, the Blasius problem (1.1 - 1.2) appears in the context of free
convection about a vertical flat plate embedded in a porous medium. With the same boundary
conditions, it also appears within the framework of boundary layer flow adjacent to a stretching
wall. For a survey and some generalizations, see [11, 24] and the references therein.

In the study of mixed convection in porous media, the Blasius problem (1.1 - 1.2) is considered
with a = 0, b ∈ R and λ = 1 (see [1]). The case b < 0 arises also in the boundary layer problem
for a flat plate moving at steady speed opposite in direction to that of a uniform mainstream,
with a = 0 and λ = 1 (see [53]).

Due to the following classical similarity property of Blasius equation (1.1)

if f is a solution, so is t 7→ σf(σt) for all σ ∈ R, (1.3)

we see that, in the case a = b = 0, the value λ = 2 can be replaced by any positive number.
In that case, H. Weyl [55] proves that (1.1 - 1.2) has one and only one solution. The method,
following an argument first advanced by C. Töpfer [46], is very elementary but uses strongly the
fact that a = b = 0. See also B. Brighi [10], P. Hartman [27].

In the general case, the approach is different according to the sign of λ− b. If f is a solution
of (1.1) on some interval J , since this equation can be seen as a linear homogeneous first order
ODE for f ′′, we deduce that f ′′ cannot vanish without being identically equal to 0 on J , see
(2.1). Therefore, the study of the problem (1.1 - 1.2) naturally splits into three cases: affine,
concave or convex, depending on λ = b, λ < b or λ > b. The affine case is quickly solved: if
λ = b, then (1.1 - 1.2) has one and only one solution given by f(t) = bt − a. The concave case
is well known. In fact, by a direct approach, Z. Belhachmi, B. Brighi, K. Taous [4] proved that
the Blasius boundary value problem (1.1 - 1.2) has exactly one (concave) solution if 0 ≤ λ < b,
and no solution if λ < 0. For the sake of completeness, we provide an alternative proof of this
result in Section 8.

In the convex case, the situation is quite different, and the proofs of uniqueness of the solution
of (1.1 - 1.2) depend on the introduction of suitable changes of variables, see Section 9.5. The
most powerful among them is the so-called Crocco transformation, see L. Crocco [15]. This
change of variables, detailed in Section 2.1, consists of choosing s = f ′ as independent variable
and expressing u = f ′′ as a function of s. This yields the Crocco equation

d2u

ds2
= − s

u
. (1.4)
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As we will see in Section 3.5, the Crocco change of variables provides an alternative, elementary
and very short uniqueness proof of the solution of (1.1 - 1.2), for b ≥ 0 and all a ∈ R. See also
A.J. Callegari, M.B. Friedman [13] and K. Vajravelu, E. Soewono, R.N. Mohapatra [49].

In the case b < 0, the Crocco transformation is still valid and, using it, non-uniqueness for the
problem (1.1 - 1.2) is mentioned for the first time by M.Y. Hussaini, W.D. Laikin [31], but only
supported by numerical investigations. Some partial proofs are then given by M.Y. Hussaini,
W.D. Laikin, A. Nachman [32] and by E. Soewono, K. Vajravelu, R.N. Mohapatra [43].

In this work, we will focus on the case b < 0 and λ > b. In order to study the solutions
of (1.1 - 1.2), we use the shooting method: let f( · ; a, b, c) denote the solution of the following
initial value problem with c > 0

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′′(0) = c. (1.5)

In Proposition 3.1, we prove that f( · ; a, b, c) is defined at least for t ∈ [0,+∞) and that its
derivative has a finite and non-negative limit as t → +∞. In the sequel, Λ(a, b, c) denotes this
limit

Λ(a, b, c) := lim
t→+∞

f ′(t; a, b, c) ∈ [0,+∞).
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Figure 1. On the left, the Blasius solution f( · ;−2,−1, 1); on the right, the corre-
sponding Crocco solution.

As we will see later (cf. Proposition 2.1), Λ(a, b, c) is also the right bound of existence of
the solution of (1.4) with initial conditions u(b) = c, u′(b) = a; see Figure 1 for a comparison
between a Blasius solution and the corresponding Crocco solution.

Our strategy will be, for b < 0 and for any value of a, to count the number of values of c for
which Λ(a, b, c) equals some given value λ. Due to (1.3), we can assume, without restriction,
that b = −1, and we use the notation

Λ̃ : R × (0,+∞) → [0,+∞), (a, c) 7→ Λ(a,−1, c).

Some useful properties of this function Λ̃ are stated in Section 2.3. In particular, we show that

Λ̃ is continuous on the upper half-plane, except on a spiraling curve Γ∞; see Figure 2 for an
illustration of this discontinuity. We also prove that Γ∞ is of class C∞ without inflexion point,
see Theorem 2.4-7.

The statement of our main result requires to introduce some new functions. For that purpose
we use the Crocco equation (1.4). In addition to its explicit solution u∗(s) = 2√

3
(−s)3/2, two

other solutions, denoted by u− and u+, will play an important role in our study. The solution
u− is the unique solution of (1.4) with boundary conditions u−(0−) = 0, u′−(0−) = −1. Here
and in the sequel, the notation ϕ(0−), resp. ϕ(0+), stands for the limit of ϕ(s) as s→ 0, s < 0,
resp. s > 0. The maximal interval of definition of u− is (−∞, 0); see Figure 3. The solution u+

is the unique solution of (1.4) with initial conditions u+(0+) = 0, u′+(0+) = 1. The maximal
interval of definition of u+ is (0, λ+); numerical computations give λ+ ≈ 1.303918; see Figure 3.
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Figure 2. A sketch of the spiral Γ∞ and two numerical Crocco solutions with initial
conditions u1(−1) = c1, u

′
1(−1) = a and u2(−1) = c2, u

′
2(−1) = a, where (a, c1) and

(a, c2) are on the convex and on the concave sides of Γ∞ respectively. The numerical
values are a = −2, c1 = 1.78 and c2 = 1.62. The sequence (an) and the ray Da in the
sketch on the left are defined in Proposition 1.1 and in (1.9).
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Figure 3. The graphs of u− on the left and of u+ on the right.

We now give more details about the discontinuity of Λ̃ on Γ∞. First, we have the following
parametrization of Γ∞

Γ∞ =
{(

(−s)−1/2u′−(s), (−s)−3/2u−(s)
)

; s < 0
}
.

Secondly, the discontinuity of Λ̃ at a point
(
(−s)−1/2u′−(s), (−s)−3/2u−(s)

)
on Γ∞ is as follows

(see Theorem 2.5): on the convex side of Γ∞, Λ̃ tends to 0, whereas on the concave side, Λ̃ tends

to −λ+

s . It follows that for all λ > 0 there is a unique point on Γ∞, namely with s = −λ+

λ ,

where Λ̃ takes values respectively 0 and λ on each side of Γ∞. Let A(λ) denote the abscissa of
this point. In other words, we have

A : (0,+∞) → (−∞, 0), λ 7→
√

λ
λ+

u′−
(
−λ+

λ

)
. (1.6)

See Figure 4 for a numerical graph of A and Figure 7 for a sketch showing the oscillations near
λ = 0. This function A satisfies the following properties.

Proposition 1.1. 1. The function A is C∞ and has an infinite sequence of extremal points
(λn)n≥1 decreasing to 0: local minima at λ2n and local maxima at λ2n+1.

2. Let an = A(λn) denote these extremal values. Sequences (a2n) and (a2n+1) are adjacent,
i.e., (a2n) increases, (a2n+1) decreases and they have the same limit.
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Figure 4. On the left: the graph of A. On the right: enlargement near (0,−
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3).

3. The asymptotic behavior of A is described as follows:

A(λ) ∼ −
√

λ
λ+

as λ→ +∞,

and there exist α, β ∈ R such that

A(λ) = −
√

3 + λ
(
α cos

lnλ√
2

+ β sin
lnλ√

2
+ o(1)

)
as λ→ 0. (1.7)

The proof is given in Section 2.4. Formula (1.7) is illustrated in Figure 5. As a consequence of
(1.7), the common limit of (a2n) and (a2n+1) is a∞ := −

√
3, and sequences (λn) and (an +

√
3)

are asymptotically geometric:

lim
n→+∞

λn+1

λn
= e−π

√
2, lim

n→+∞
an+1 +

√
3

an +
√

3
= −e−π

√
2. (1.8)

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

–10 –8 –6 –4 –2 2 4 6 8 10

A(λ)+
√

3
λ

lnλ

Figure 5. The graph of A(λ)+
√

3
λ

as a function of lnλ, illustrating the asymptotic
formula (1.7).

Given a ∈ R, λ > 0 and b = −1, counting the number of solutions of the Blasius Problem

(1.1 - 1.2) amounts to counting the number of times the function Λ̃ takes the value λ on a vertical
ray

Da := {a} × (0,+∞). (1.9)

For that purpose, we introduce the function

Λ̃a : (0,+∞) → [0,+∞), c 7→ Λ̃(a, c) = Λ(a,−1, c).
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Figure 6 shows some graphs of Λ̃a for miscellaneous values of a.
The description below is succint. We refer to Section 2.4 for proofs, additional details and

explanatory figures.
Let n ≥ 1 be such that a is between an−2 and an, possibly a = an (with the convention

a−1 = +∞, a0 = −∞). Then, the ray Da crosses n− 1 times the spiral Γ∞ (if a = an, there is

an n-th point of contact but without crossing, hence without creating any discontinuity for Λ̃a).
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Figure 6. Numerical graphs of Λ̃a. Top: on the left a = −3, on the right a =
−1.7324 ≈ a2. Bottom: on the left a = −1.7027 ≈ a1, on the right a = 0.

First, assume that n is even. As we will see in Lemmata 2.10 and 2.12, the graph of Λ̃a

consists of n pieces: n
2 − 1 on the left, one “central” and n

2 on the right. On the central part,

it turns out that, if a is close to an, then Λ̃a has a minimum close to 0. Therefore, we consider

dn ∈ [an−2, an) as close to an−2 as possible such that, for any a ∈ (dn, an], Λ̃a attains its infimum
on this central part, at some (possibly non-unique) abscissa c = Cn(a). Let µn ∈ (λn−1, λn−2]
(with λ1 < µ2 ≤ +∞) be such that dn = A(µn). For a ∈ (dn, an], we define Λn(a) as the

minimum of Λ̃a on the central part. This yields a continuous map Λn : (dn, an] → [0, µn),
satisfying Λn(an) = 0 and Λn(a) → µn as a→ d+

n .

If n is odd (Lemmata 2.9 and 2.11), then the graph of Λ̃a still consists of n pieces: n−1
2 on the

left, one central and n−1
2 on the right. In the same manner, we consider dn ∈ (an, an−2] as close

to an−2 as possible such that, for any a ∈ [an, dn), Λ̃a attains its infimum on its central part. In
the case n = 1, we choose d1 = +∞. For n ≥ 3, let µn ∈ (λn−1, λn−2] be such that dn = A(µn).

We define Λn(a) as the minimum of Λ̃a on its central part for a ∈ [an, dn). With the convention
µ1 = +∞, this yields a continuous map Λn : [an, dn) → [0, µn), still satisfying Λn(an) = 0 and
Λn(a) → µn as a → d−n . See Figure 7 for sketches of graphs of these Λn. We now present our
main result.



On the Blasius problem 7

Theorem 1.2. Consider the Blasius Problem (1.1 - 1.2) in the convex case b < λ, and in the
case b = −1, i.e., the boundary value problem

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = −1, f ′(+∞) = λ > −1. (1.10)

This problem has no solution if and only if:

either −1 < λ < 0 or a > a1 and 0 ≤ λ < Λ1(a).

Let n ∈ N \ {0}. Problem (1.10) has at least n solutions if (λ, a) belongs to one of the regions
marked n in Figure 7 right, in other words, if:

• either a = A(λ) with µn+1 ≤ λ < µn,
• or λ = Λn(a) with a ∈ [an, dn), if n is odd, a ∈ (dn, an] if n is even,
• or (λ, a) is in the region below the graphs of Λ2 and A in the case n = 1, and in the

region between the graphs of Λn−1,Λn+1 and A in the case n ≥ 2.

If λ = 0 and a = −
√

3, then Problem (1.10) has infinitely many solutions.
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Figure 7. In the (λ, a) plane, a lower bound of the number of solutions of (1.10). On
the left, a sketch of the graphs of the functions A and Λn, on the right the conjectured
number of solutions of (1.10). We stress that the distances are not respected: due to

(1.8) with eπ
√

2 ≈ 85, on the true graph of A no more than one extremal point is visible,
see Figure 4.

The proof is given in Section 2.4. In the affine case λ = −1, there is a unique solution
f : t 7→ −t− a. By Corollary 8.6 there is no solution in the case λ < −1. At the end of Section
2.4, we will also comment the following conjecture.

Conjecture 1.3. The lower bounds above are sharp. In other words, the expression “at least”
in Theorem 1.2 can be replaced by “exactly”.

In addition, we formulate two other conjectures. The first one is motivated by numerical
experiments.

Conjecture 1.4. For all n ∈ N we have dn+2 6= an; in particular, the constants d2 and µ2 are
finite. For any n ≥ 2 the function Λn is monotonous, increasing if n is odd, decreasing if n is
even.

Conjecture 1.5. The function Λ̃ is of class C∞ outside Γ∞ ∪ {S∗} and its minima Λn are

non-degenerate, i.e., ∂2eΛ
∂c2

(a,Cn(a)) 6= 0, so that the functions Cn and Λn are C∞, too.
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We will see (statement 2 of Lemma 2.9) that Λ1 is increasing at least on [0,+∞). Observe,

also, that our Conjecture 1.5 would already imply that dn+2 6= an for all n ≥ 1. Indeed, if Λ̃
is of class C1 and a is between an and an+2, a close to an, then a computation shows that the

central part of Λ̃a would be C1-close to a small segment of slope λnan
a2

n−3
, thus monotonous. See

Figures 12, 13 and 14 for an illustration.
The proofs of Proposition 1.1 and Theorem 1.2, given in Section 2.4, need several intermediate

results stated in Sections 2.1 to 2.3 whose proofs are postponed to Sections 3 to 5. We first use
the Crocco change of variables, then another change of variables leads to an autonomous planar
vector field. In Section 3, are collected results for the Blasius Problem in the already known
cases, as well as some useful preliminaries. Section 4 is devoted to a thorough study of the
vector field and Section 5 deals with some further deeper results on the Crocco equation (1.4).
In Section 6, we present an alternative proof of these results, using properties of canard solutions
of a related singularly perturbed differential system in R

3. The precise link between the Blasius
and Crocco problem is explained in Section 7. In Section 8, we treat the already known concave
case for the sake of completeness, and also because the use of the Crocco equation provides
new shorter proofs. In Section 9, we conclude with additional results, alternative proofs and
historical comments. These comments are not exhaustive. Actually, Blasius equation gave rise
to a huge number of publications. Some of them treat more general equations, some others are
incomplete or contain only numerical results.

Acknowledgements. The authors wish to thank Prof. Reinhard Schäfke for numerous and
fruitful discussions about this work.

2. Our strategy of proof

2.1. The Crocco change of variables. A basic property of the Blasius equation is that,
besides affine solutions (f ′′ = 0), all other solutions f are such that f ′′ does not vanish. Indeed,
(1.1) yields

f ′′(t) = f ′′(t0) exp
{
−
∫ t

t0

f(τ)dτ
}
, (2.1)

which shows that f ′′ cannot vanish without being identically zero. It follows that t 7→ f ′(t) is a
diffeomorphism for non-affine solutions.

The Crocco change of variable consists of expressing f ′′ as a function of f ′: if we put u =
f ′′ ◦ (f ′)−1, then differentiating u(f ′) = f ′′ (the variable t is omitted for simplicity) we obtain
u′(f ′)f ′′ = f ′′′ = −ff ′′ hence, u′(f ′) = −f . Differentiating once again we obtain u′′(f ′)f ′′ = −f ′,
i.e., equation (1.4), rewritten below for the reader’s convenience (with the independent variable
f ′ denoted by s)

u′′ = − s

u
. (2.2)

We stress that, by construction, a Crocco solution cannot vanish. Actually we had to divide
twice by f ′′ = u to obtain (2.2). In Section 9.1, we study solutions of the almost equivalent
equation uu′′ + s = 0 that vanish somewhere.

Notice that any positive solution of (2.2) on an interval I is convex on (−∞, 0]∩I and concave
on [0,+∞) ∩ I.

The Crocco change of variable yields the following characterization of Λ, see Section 3.1 for
the proof.

Proposition 2.1. For all a, b ∈ R and c > 0, [b,Λ(a, b, c)) is the maximal right interval of
existence of the solution u := u( · ; a, b, c) of (2.2) with initial conditions

u(b) = c, u′(b) = a. (2.3)
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Moreover, u(s) tends to 0 as s → Λ(a, b, c), s < Λ(a, b, c). If Λ(a, b, c) > 0, then we also have
u′(s) → −∞ as s→ Λ(a, b, c), s < Λ(a, b, c).

This means that, in terms of Crocco equation, boundary conditions (1.2) become

u′(b) = a, lim
s→λ

u(s) = 0.

The similarity property (1.3) implies

if u is a solution of (2.2), so is uσ : s 7→ σ3u(σ−2s) for all σ 6= 0, (2.4)

which can be rewritten as

u(σ2s;σa, σ2b, σ3c) = σ3u(s; a, b, c). (2.5)

It is easy to check that only one positive solution of (2.2), denoted by u∗, is self-similar by (2.4),
i.e., u∗(s) = σ3u∗(σ−2s) for all s, σ, s < 0 < σ, namely

u∗(s) = 2√
3
(−s)3/2. (2.6)

We will see that u∗ is also the unique solution of (2.2) on (−∞, 0) such that u∗(0−) = u∗′(0−) = 0,
see item 4 (1) of Theorem 2.4, and Section 9.2.

We now present the main result of this section. The difficult and important statement 4 is
the key to analyze the discontinuity of Λ, as described below in the second part of Theorem 2.5.

Theorem 2.2. 1. Every solution of (2.2 - 2.3) with b < 0 and c > 0 is defined at least on
(−∞, 0) and is asymptotic to u∗ as s→ −∞.

2. There is a unique solution of (2.2) on (−∞, 0), denoted by u−, satisfying

u−(0−) = 0, u′−(0−) = −1. (2.7)

Similarly, for any σ > 0 there is a unique solution of (2.2) on (−∞, 0) with u(0−) = 0, u′(0−) =
−σ, namely s 7→ σ3u−(σ−2s).

3. There is a unique solution u+ of (2.2) satisfying

u+(0+) = 0, u′+(0+) = 1, (2.8)

defined on some maximal interval (0, λ+), with 1 < λ+ < s0, where s0 ≈ 1.43 is the positive root
of equation (2s− 4) ln

(
1 − s

2

)
= s.

4. For every sequence ((αn, γn))n∈N which tends to (u′−(−1), u−(−1)), the sequence (u′(0−;αn,
−1, γn))n∈N is bounded and has at most two cluster points: 1 and −1.

Statements 1 and 2 are proved in Section 5.3, statement 3 is proved in 3.4, and statement 4
in 5.2. Besides, we have the following asymptotic formulae for Crocco solutions starting close
to u = 0 at s = −1.

Proposition 2.3. For any a ∈ R fixed, we have

u′(s; a,−1, c) ∼
√

2 ln 1
c sgn(s+ 1) as c→ 0+, (2.9)

u(s; a,−1, c) ∼
√

2 ln 1
c |s+ 1| as c→ 0+, (2.10)

uniformly for s in any compact subset of (−∞,−1) ∪ (−1, 0].

The proof is in Section 5.1.
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Γ∞

S∗

-x

6y

�	
y = R1(x)

xy = −2

@Iy = L1(x)

@R
y = R2(x)

Γ∞

S∗

-
xa2 a3 a1

Figure 8. On the left: the phase portrait of (2.12). On the right: sketch of enlarge-
ment of Γ∞ near S∗. The functions Ln and Rn are defined in Section 2.4.

2.2. The associated vector field. The similarity property (2.4) allows one to reduce the
Crocco equation to a system of autonomous differential equations. The change of variables

x(t) = et/2u′
(
−e−t

)
, y(t) = e3t/2u

(
−e−t

)
, (2.11)

leads to the system

ẋ =
1

2
x+

1

y
, ẏ = x+

3

2
y. (2.12)

The phase portrait of this system is depicted in Figure 8. Since this system is invariant by the
change (x, y) 7→ (−x,−y), we will consider it only for y > 0; this corresponds to positive Crocco
solutions and to convex Blasius solutions. The initial conditions (2.3) with b = −1 correspond
to

x(0) = a, y(0) = c. (2.13)

Notice that this vector field describes the Crocco equation (2.2) only for s < 0. In Section 9.3,
we introduce an analogous vector field for s > 0.

Because the transformation u 7→ uσ given by (2.4) (for σ > 0) corresponds to a shift by
t 7→ t− lnσ in (2.11), to each orbit {(x(t), y(t)); t ∈ R} of some solution of (2.12) corresponds a
whole family (uσ)σ>0 of solutions of (2.2) connected by the similarity (2.4).

In particular, the unique stationary point S∗ =
(
−
√

3, 2√
3

)
corresponds to u∗ given by (2.6),

which is the unique positive Crocco solution invariant by (2.4). To the solution u− given by
(2.7) corresponds a solution of (2.12), denoted by (x−, y−). Remark that, with s = −e−t, we
have

x−(t)

y−(t)
=

−su′−(s)

u−(s)
→ −1 as t→ +∞,

hence (x−, y−) parametrizes the orbit Γ∞ of Theorem 2.4, item 3 below. In Section 4, we will
prove the following result.

Theorem 2.4. 1. All solutions of (2.12) are defined on R and tend to S∗ as t→ −∞.
2. More precisely, for any solution (x, y) of (2.12) there exist A,B ∈ R such that

x(t) = −
√

3 + et
(
A cos

t√
2

+B sin
t√
2

+ o(1)

)
as t→ −∞. (2.14)

3. There is one and only one orbit, denoted by Γ∞, with the property that any solution (x, y)

parametrizing Γ∞ is such that x(t)
y(t) tends to −1 as t→ +∞.
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There is one and only one orbit, denoted by Γ0, with the property that any solution (x, y)
parametrizing Γ0 is such that x(t) tends to 0 as t→ +∞.

For all non-constant solutions (x, y), y(t) tends to +∞ as t→ +∞.

For all solutions (x, y), except those on Γ∞ ∪{S∗}, x(t)
y(t) tends to 0 as t→ +∞. In particular,

all solutions (x, y), except those on Γ∞ ∪ {S∗}, eventually leave the region x+ y ≤ 0.
4. In terms of positive Crocco solutions, this means that we have the following equivalences

(1) (a, c) = S∗ if and only if u(0−; a,−1, c) = 0 and u′(0−; a,−1, c) = 0,
(2) (a, c) ∈ Γ∞ if and only if u(0−; a,−1, c) = 0 and u′(0−; a,−1, c) < 0,
(3) (a, c) /∈ Γ∞ ∪ {S∗} if and only if u(0; a,−1, c) > 0.

5. For all solutions (x, y) except those on Γ∞, x(t)3

y(t) has a limit k ∈ R as t→ +∞.

6. Conversely, for any k ∈ R\{−9
2} there is one and only one orbit, denoted by Γk, such that

for all solutions (x, y) that parametrize Γk, we have

lim
t→+∞

x(t)3

y(t)
= k.

For k = −9
2 there are two orbits: S∗ and a second one denoted by Γ−9/2.

7. If k ≥ 0 or k = ∞, then Γk has no inflexion point; if k < 0, then Γk has exactly one
inflexion point.

2.3. Properties of the function Λ. In this section, we state the properties of Λ needed for
the proof of Theorem 1.2 and for arguments justifying our Conjecture 1.3. First, the similarity
property (1.3) implies

∀σ > 0, Λ(σa, σ2b, σ3c) = σ2Λ(a, b, c). (2.15)

Therefore, as far as possible, properties of Λ for b < 0 will be stated below using the function

Λ̃ : (a, c) 7→ Λ(a,−1, c), as said in the introduction.
Notice that, for any positive solution u of (2.2) defined on some interval I, we have

∀s ∈ I, Λ̃(u′(−1), u(−1)) = Λ(u′(−1),−1, u(−1)) = Λ(u′(s), s, u(s)).

As a consequence, (2.15) gives

∀s < 0, Λ̃(u′(−1), u(−1)) = −sΛ̃
(
(−s)−1/2u′(s), (−s)−3/2u(s)

)
.

In terms of the associated vector field, we deduce that for all (x, y) solution of (2.12)

∀t ∈ R, Λ̃(x(t), y(t)) = etΛ̃(x(0), y(0)). (2.16)

This formula shows how the flow of (2.12) transforms a level curve of Λ̃ into another level curve

of Λ̃.

Theorem 2.5. The function Λ̃ is continuous on (R × (0,+∞)) \ Γ∞. On Γ∞, the disconti-

nuity of Λ̃ is described as follows. If (a, c) belongs to Γ∞, then for all sequences ((αn, γn))n∈N

which tend to (a, c) on the convex side of Γ∞, the sequence (Λ̃(αn, γn))n∈N tends to 0, whereas
for all sequences ((αn, γn))n∈N which tend to (a, c) on the concave side of Γ∞, the sequence

(Λ̃(αn, γn))n∈N tends to λ+e
t, where t ∈ R is such that a = x−(t), c = y−(t).

As a consequence, for all λ > 0 there is a unique point on Γ∞, with abscissa equal to A(λ),

such that Λ̃ jumps from 0 on the convex side of Γ∞, to λ on its concave side.

The proof is in Section 5.3. Besides this important regularity property we have some monotony
properties.
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Proposition 2.6. 1. For non-negative b, the functions a 7→ Λ(a, b, c) and c 7→ Λ(a, b, c) are
increasing.

2. In the region above both Γ∞ and the hyperbola ac + 2 = 0, the function c 7→ Λ̃(a, c) is
increasing.

3. In the region on the right of both Γ∞ and the straight line 2a + 3c = 0, a 7→ Λ̃(a, c) is
increasing.

Statement 1 is proved in Section 3.3; statements 2 and 3 are proved in 5.3. At last, we present

asymptotic properties of Λ̃.

Proposition 2.7. For all a ∈ R fixed, we have

Λ̃(a, c) ∼ 2λ+ ln 1
c as c→ 0, (2.17)

Λ̃(a, c) ∼ c2/3Λ(0, 0, 1) as c→ +∞. (2.18)

The proof is given in Section 5.3. Numerical computations give Λ(0, 0, 1) ≈ 1.655193.

2.4. Back to the Blasius problem. In this section, we first prove Proposition 1.1. Then we

write Γ∞ as a union of graphs. Next, we describe the graph of Λ̃a in accordance with the relative
position of a and an and we give details about the functions Λn. These descriptions are then
used to prove Theorem 1.2. At last, we explain which elements lead us to state our Conjecture
1.3. Of course the results stated in the Sections 2.1 to 2.3 will be used throughout this section.

Proof of Proposition 1.1. As already announced in the introduction, the last item of Theorem
2.5 shows that, for all λ ∈ (0,+∞), there is a unique point (x−(t), y−(t)) on Γ∞, namely with

t = ln
(

λ
λ+

)
, such that Λ̃ takes values respectively 0 and λ on each side of Γ∞. We recall that,

by definition, the abscissa of this point is

x−
(
ln
(

λ
λ+

))
= A(λ). (2.19)

Then, using (2.14) with et = λ
λ+

, we obtain (1.7). The asymptotic behavior as t → +∞ simply

follows from (1.6) and from lims→0− u
′
−(s) = −1. Due to (2.19), the nth extremum an of the

function A, counted from the right is also the nth extremum of the function x− with time
reversed, i.e., with t from +∞ to −∞, see Figure 8. Because Γ∞ has no inflexion point, we have

a2 < a4 < a6 < ... < −
√

3 < ... < a3 < a1,

and items 1 and 2 follow.

We now describe the curve Γ∞ as an union of graphs. Since Γ∞ has no inflexion point and S∗ is
a focus, for all n ≥ 1, with the convention a0 = −∞, there exist functions Ln : [a2n, a2n−1] → R,
Rn : [a2n−2, a2n−1] → R such that (see Figure 8 right for the graphs of R1, R2 and L1)

• Γ∞ is the union of the graphs of the mappings x 7→ Ln(x) and x 7→ Rn(x),
• the functions Ln are convex and the functions Rn are concave,
• for all n ≥ 1, we have

Ln−1(x) ≤ Ln(x) ≤ −2

x
≤ Rn(x) ≤ Rn−1(x), (2.20)

where each inequality holds for all x such that both functions are defined, and is strict
if x is not an end point an,

• at the end points of the intervals we have

Rn(a2n−1) = Ln(a2n−1) = − 2
a2n−1

,

Rn+1(a2n) = Ln(a2n) = − 2
a2n

.
(2.21)
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Since the function t 7→ x(t) is decreasing under the hyperbola xy = −2 and increasing above
this hyperbola, from (2.19) we deduce that the map λ 7→ A(λ) is increasing on each interval
[λ2n, λ2n−1] and decreasing on each [λ2n−1, λ2n−2]. Hence, for all n ≥ 1, with the convention
λ0 = +∞, there exist one-to-one mappings

ln : [a2n, a2n−1] → [λ2n, λ2n−1], rn : [a2n−2, a2n−1] → [λ2n−1, λ2n−2],

such that the graph of λ 7→ A(λ) is the union of the graphs of a 7→ ln(a) and a 7→ rn(a), see
Figure 7 left for the graphs of r1, r2 and l1.

For all n ≥ 1, we have
rn+1(a) ≤ ln(a) ≤ rn(a), (2.22)

where each inequality holds for all a where both functions are defined, and is strict except at
the end points of the intervals. At the end points we have

ln(a2n) = rn+1(a2n) = λ2n, ln(a2n−1) = rn(a2n−1) = λ2n−1,

An immediate consequence of Theorem 2.5 is the following.

Lemma 2.8. At a point (a,Rn(a)) on Γ∞, Λ̃ jumps from 0 on the convex side of Γ∞ to rn(a)

on the concave side. At a point (a, Ln(a)), Λ̃ jumps from 0 on the convex side to ln(a) on the
concave side.

Let us now describe the functions Λn. We recall that, roughly speaking, Λn(a) is the minimum

of Λ̃a on its central part, when this minimum is reached.

6λ

-
c0 C1(a)

Λ1(a)

λ = Λ̃a(c)

Figure 9. A schematic graph of Λ̃a : c 7→ Λ(a,−1, c) in the case a > a1. For
convenience, explanatory figures 9, 10 and 11 are schematic. See Figure 6 and Figures
12 to 15 for numerical graphs; e.g. the present figure may be compared to Figure 6,
bottom right.

Lemma 2.9. Consider the case a ≥ a1.
1. The function Λ̃a is continuous on (0,+∞), tends to +∞ as c → 0+ and as c → +∞. As

a consequence, Λ̃a attains its minimum on (0,+∞), denoted by Λ1(a).
2. The function Λ1 is continuous on [a1,+∞) and increasing at least on [0,+∞).
3. We have Λ1(a1) = 0 and Λ1(a) ≥ a2λ+ for all a > 0. In particular, Λ1(a) tends to +∞ as

a→ +∞.

Proof. 1. If a > a1, then the ray Da does not cross Γ∞ and Λ̃a is continuous. If a = a1, then the
ray Da touches Γ∞, without crossing it, at

(
a1,− 2

a1

)
, hence, without creating any discontinuity,

and Λ̃a(− 2
a1

) = 0. Due to Proposition 2.7, Λ̃a(c) tends to +∞ as c → 0+ and as c → +∞,

hence Λ̃a has (at least) one global minimum Λ1(a), which is reached for some value c = C1(a),
see Figure 9. The function Λ1 is defined on [a1,+∞) and satisfies Λ1(a1) = 0.
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2. As for all fixed c the map a 7→ Λ̃(a, c) is continuous on [a1,+∞), this is also the case for
Λ1 (even though C1 may not be continuous). Furthermore, if 0 ≤ a < a′, then using item 3 of
Proposition 2.6, we obtain

Λ̃1(a) = min
c>0

Λ̃(a, c) ≤ Λ̃(a,C1(a
′)) < Λ̃(a′, C1(a

′)) = min
c>0

Λ̃(a′, c) = Λ̃1(a
′).

3. Set u = u( · ; a,−1, C1(a)). Because u is convex on [C1(a), 0] and increasing, we have
u(0) ≥ a and u′(0) ≥ a. Therefore, by item 1 of Proposition 2.6, we obtain

Λ1(a) = Λ(u′(0), 0, u(0)) ≥ Λ(a, 0, a) = a2Λ(1, 0, a−2) ≥ a2λ+. �

6λ

-
c0 C2(a)

Λ2(a)

R1(a)

q

r1(a) (

6λ

-
c0 R1(a)

q

r1(a) (

Figure 10. Sketches of graphs of Λ̃a in the case a < a2. On the left: a close to −∞,
on the right: a close to a2. For numerical graphs, see the top of Figure 6.

Lemma 2.10. Consider the case a ≤ a2.
1. The function Λ̃a has one discontinuity at c = R1(a).

2. As c→ 0+, Λ̃a(c) tends to +∞; as c→ R1(a)
−, Λ̃a(c) tends to r1(a).

3. The function Λ̃ is increasing on [R1(a),+∞) from Λ̃a(R1(a)) = 0 to +∞.
4. There exists d2 ∈ [−∞, a2) such that

• for all a ∈ (d2, a2], Λ̃a reaches its minimum on (0, R1(a)), denoted by Λ2(a),

• for a = d2 the infimum of Λ̃a on (0, R1(a)) is equal to µ2 := r1(d2) (with the convention
r1(−∞) = +∞).

5. The function Λ2 : (d2, a2] → [0, µ2) is continuous.

Proof. 1. If a < a2, then the ray Da crosses Γ∞ once. By Lemma 2.8, Λ̃a has a discontinuity at
c = R1(a) and jumps down from r1(a) to 0. If a = a2, then the ray touches Γ∞ also at (a2,− 2

a2
)

but without discontinuity.
2. The property follows from (2.17) and item 1.
3. The property follows from (2.18) and Proposition 2.6.

4. If a = a2, then Λ̃a has an isolated zero at c = − 2
a2

. Thus, by continuity of Λ̃, for a < a2, and

a close to a2, Λ̃a has a local minimum close to 0 for some (possibly non-unique) value c = C2(a)

close to − 2
a2

and Λ2(a) = Λ̃(C2(a)), see Figure 10. Now, let d2 ∈ [−∞, a2) be the infimum of

those values d such that for all a ∈ (d, a2], Λ̃a reaches its minimum Λ2(a) on (0, R1(a)). By
construction, we have Λ2(d2) = µ2 = r1(d2), see Figure 7.

5. As for all fixed c the map a 7→ Λ̃(a, c) is continuous on [a1,+∞), this is also the case for
Λ2.

Lemma 2.11. Consider the case a ∈ [a2n+1, a2n−1) with n ≥ 1.
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1. The function Λ̃a has 2n discontinuities at c = Rk(a) and c = Lk(a), with 1 ≤ k ≤ n, which
satisfy

L1(a) < · · · < Ln(a) < −2

a
< Rn(a) < · · · < R1(a).

2. As c→ 0+, Λ̃a(c) tends to +∞. On [R1(a),+∞), Λ̃a is increasing from 0 to +∞.

3. As c→ Rk(a)
−, Λ̃a(c) tends to rk(a); as c→ Lk(a)

+, Λ̃a(c) tends to lk(a).
4. We have 0 < ln(a) < rn(a) < · · · < l1(a) < r1(a).
5. There exists d2n+1 ∈ (a2n+1, a2n−1] such that

• for all a ∈ [a2n+1, d2n+1), the minimum of Λ̃a on (Ln(a), Rn(a)) is reached and denoted
by Λ2n+1(a), for some c = C2n+1(a) possibly non-unique,

• for a = d2n+1 the infimum of Λ̃a on (Ln(a), Rn(a)) is equal to µ2n+1 := ln(d2n+1).

6. The function Λ2n+1 : [a2n+1, d2n+1) → [0, µ2n+1) is continuous.

6λ

-
c0

q

)l1(a)

L1(a) −2
a3

R1(a)
q

r1(a) (

6λ

λ1

-
c−2

a1

0
q

(

q

)

Figure 11. Sketches of graphs of Λ̃a in the case a3 ≤ a < a1. On the left: a close to
a3. On the right: a close to a1. Compare with Figure 14 top left and Figures 12 bottom,

respectively.

Proof. 1. The ray Da crosses Γ∞ 2n times, hence Λ̃a has 2n discontinuities. The inequalities
result from (2.20).

2. The property results from Propositions 2.6 and 2.7.
3. The property results from Lemma 2.8.
4. The property results from (2.22).

5. If a = a2n+1, then we have Λ̃a

(
− 2

a2n+1

)
= 0, but there is no discontinuity at this point.

Moreover, Λ̃a(c) tends to the value rn(a) > 0 and ln(a) > 0 as c→ Rn(a)− and c → Ln(a)+

respectively. Hence, for a > a2n+1, a close to a2n+1, Λ̃a reaches its minimum on (Ln(a), Rn(a)).
This minimum Λ2n+1(a) is close to 0, attained for some c = C2n+1(a) (possibly non-unique, but
necessarily close to − 2

a2n+1
) see Figure 11 for the case n = 1. Let d2n+1 ∈ (a2n+1, a2n−1], be

the supremum of those values d such that for all a ∈ [a2n+1, d), Λ2n+1(a) achieves its minimum
on (Ln(a), Rn(a)). By construction, Λ2n+1(a) tends to µ2n+1 = ln(d2n+1) as a → d2n+1, see
Figure 7.

6. As for all fixed c the map a 7→ Λ̃(a, c) is continuous on [a1,+∞), this is also the case for
Λ2n+1. �

Similarly, we have the following result, stated without proof; see Figure 13.

Lemma 2.12. Consider the case a ∈ (a2n, a2n+2] with n ≥ 1.

1. The function Λ̃a has 2n + 1 discontinuities at c = Lk(a), 1 ≤ k ≤ n and c = Rk(a)
1 ≤ k ≤ n+ 1, such that

0 < L1(a) < · · · < Ln(a) < −2

a
< Rn+1(a) < · · · < R1(a).
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Figure 12. Scenario of bifurcation of the graph of Λ̃a near a1 ≈ −1.702704. Top: on
the left a = −1.68, on the right a = −1.7027. Bottom: on the left a = −1.7028, on the
right a = −1.705.

2. As c→ 0+, Λ̃a(c) tends to +∞. On [R1(a),+∞), Λ̃a is increasing from 0 to +∞.

3. At each c = Rk(a) the function Λ̃a jumps from 0 to lk(a) and at each c = Lk(a) it jumps
down from rk(a) to 0, where lk and rk satisfy

0 < rn+1(a) < ln(a) < rn(a) < · · · < l1(a) < r1(a).

4. Let d2n+2 ∈ (a2n, a2n+2] be the infimum of d such that for all a ∈ (d, a2n+2], Λ2n+1(a)
achieves its minimum on (Ln(a), Rn+1(a)), denoted by Λ2n+2(a).

This yields a continuous function Λ2n+2 : (d2n+2, a2n+2] → [0, µ2n+2) such that Λ2n+2(a) tends
to µ2n+2 as a→ d2n+2, with µ2n+2 := rn+1(d2n+2).

In the case a = −
√

3, the ray Da crosses Γ∞ infinitely times, and we have the following result,
once again stated without proof; see Figure 15.

Lemma 2.13. Consider the case a = −
√

3. The function Λ̃a has infinitely many discontinuities
at c = Ln(a) and c = Rn(a) with n ≥ 1, such that

0 < L1(a) < · · · < Ln(a) < · · · < 2√
3
< · · · < Rn(a) < · · · < R1(a).

As c → 0+, Λ̃a(c) tends to +∞. On [R1(a),+∞), Λ̃a is increasing from 0 to +∞. At each

c = Rn(a) the function Λ̃a jumps from 0 to ln(a) and at each c = Ln(a) it jumps down from
rn(a) to 0, where the sequences (ln)n∈N and (rn)n∈N satisfy

0 < · · · < ln(a) < rn(a) < · · · < l1(a) < r1(a).

From (2.21), we see that, as a increases and crosses the value a2n−1, Rn(a) and Ln(a) collapse
and two discontinuities disappear. This scenario of bifurcation is displayed on Figures 12 and
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Figure 13. Scenario of bifurcation of the graph of Λ̃a near a2 ≈ −1.7324. Top: on
the left a = −1.7323, on the right a = −1.73238. Bottom: on the left a = −1.7324, on
the right a = −1.733.

14 for the cases n = 1 and n = 2. Similarly, as a decreases and crosses a2n, Rn+1(a) and Ln(a)
collapse and two discontinuities disappear. This scenario of bifurcation is displayed on Figure
13 for the case n = 1.

Proof of Theorem 1.2. If −1 < λ < 0, then there is no solution by Proposition 3.1. If λ ≥ 0,

we have to count the number of solutions of the equation Λ̃a(c) = λ. A simple glance at the

graph of Λ̃a shows the following.

The case a ≥ a1. From Lemma 2.9 we deduce that Problem (1.10) has no solution if and only
if 0 ≤ λ < Λ1(a) and that this problem has at least one solution (satisfying f ′′(0) = C1(a)) if
λ = Λ1(a), and at least two solutions if λ > Λ1(a); see Figure 9.

The case a ≤ a2. From Lemma 2.10 we see that this case splits into two subcases. In the first
case d2 < a ≤ a2, we have the following:

• if 0 ≤ λ < Λ2(a), then Problem (1.10) has at least one solution;
• if λ = Λ2(a), then (1.10) has at least two solutions;
• if Λ2(a) < λ < r1(a), then (1.10) has at least three solutions;
• if r1(a) ≤ λ, then (1.10) has at least two solutions; see Figure 10, right.

In the second case a ≤ d2:

• if 0 ≤ λ ≤ r1(a), then (1.10) has at least one solution;
• if r1(a) < λ, then (1.10) has at least two solutions, see Figure 10, left.

The case a ∈ [a2n+1, a2n−1), n ≥ 1. From Lemma 2.10 we deduce that if a2n+1 ≤ a < d2n+1,
then the number of solutions of Problem (1.10) is at least equal to

• 2n, if 0 ≤ λ < Λ2n+1(a);
• 2n+ 1, if λ = Λ2n+1(a);
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Figure 14. Scenario of bifurcation of the graph of Λ̃a, near a3 ≈ −1.7320463. Top: on
the left a = −1.73204, on the right a = −1.732046. Bottom: on the left a = −1.732047,
on the right a = −1.732048.

• 2n+ 2, if Λ2n+1(a) < λ < ln(a);
• 2n+ 1, if ln(a) ≤ λ < rn(a);
• 2k, if rk(a) ≤ λ < ln−1(a), where 2 ≥ k ≥ n;
• and 2, if r1(a) ≤ λ; see Figure 11 left for the case n = 1.

If d2n+1 ≤ a < a2n−1, then the number of solutions of Problem (1.10) is at least equal to

• 2n, if 0 ≤ λ ≤ ln(a);
• 2n+ 1, if ln(a) ≤ λ < rn(a);
• 2k, if rk(a) ≤ λ < ln−1(a), where 2 ≥ k ≥ n;
• and 2, if r1(a) ≤ λ; see Figure 11 right for the case n = 1.

The case a ∈ (a2n, a2n+2], n ≥ 1 is completely analogous to the former one.

The case a = −
√

3. By Lemma 2.13, Problem (1.10) admits as many solutions as possible for
sufficiently small values of λ, and infinitely many solutions for λ = 0. �

Comments on Conjecture 1.3. Some numerical experiments and a deeper study which are
beyond the scope of the present article convinced us of the following assertion.

Conjecture 2.14. Let n ≥ 1. If d2n+1 ≤ a < a2n−1, then the function Λ̃a is increasing on its
central part (Ln(a), Rn(a)).

If a2n+1 ≤ a < d2n+1, then Λ̃a has a unique minimum on (Ln(a), Rn(a)) for c = C2n+1(a).

Moreover, the function Λ̃a is decreasing on the interval (Ln(a), C2n+1(a)] and increasing on
[C2n+1(a), Rn(a)).

Similarly, if a2n < a ≤ d2n+2, then Λ̃a is increasing on (Ln(a), Rn+1(a)) and if d2n+2<a≤
a2n+2, then Λ̃a has a unique minimum on (Ln(a), Rn+1(a)) for c = C2n+2(a), Λ̃a is decreasing
on the interval (Ln(a), C2n+2(a)] and increasing on [C2n+2(a), Rn+1(a)).
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Figure 15. Numerical graph of Λ̃a for a = −
√

3, with successive enlargements.

For all a ∈ R, on all parts of the graph of Λ̃a, except the central one, the function Λ̃a is
monotonous, decreasing on each part on the left of the central part, increasing on the right.

This would imply our Conjecture 1.3.

3. Preliminary results

In this section, we present some basic results on the Blasius problem (1.1 - 1.2) in the convex
case, i.e., for λ > b. Most of these results are already known; however we tried to give, as far as
possible, new shorter proofs. In particular in the case b ≥ 0, we prove (cf. Corollary 3.6) that
the Blasius problem has no solution if λ < 0 or if b = 0 < a and λ ≤ a2λ+ and a unique solution
in the following cases:

(i) b > 0 and λ > b, (ii) b = 0 and a ≤ 0 < λ,
(iii) b = 0 < a and λ > a2λ+.

We first show the existence of our function Λ and we prove its continuity and monotony prop-
erties.

3.1. Definition of the function Λ and proof of Proposition 2.1. Let a, b ∈ R and c ∈
(0,+∞). We recall that f( · ; a, b, c) is the solution of the initial value problem (1.5). Let [0, Ta,b,c)
denote its right maximal interval of existence. We also have set

Λ(a, b, c) = lim
t→Ta,b,c

f ′(t; a, b, c).

Proposition 3.1. If c > 0, then Ta,b,c = +∞ and Λ(a, b, c) exists, is finite and non-negative.

Proof. The existence of Λ(a, b, c) ∈ (b,+∞] follows from the positivity of f ′′( · ; a, b, c). We
first show that Ta,b,c = +∞. Since f := f( · ; a, b, c) is convex on [0, Ta,b,c), we have f(t) ≥



20 Bernard Brighi, Augustin Fruchard and Tewfik Sari

f(t0) + f ′(t0)(t− t0) for all t0, t in [0, Ta,b,c). Hence (2.1) implies

0 < f ′′(t) ≤ f ′′(t0) exp
{
−f(t0)(t− t0) − f ′(t0)

(t− t0)
2

2

}
. (3.1)

If Ta,b,c were finite, then f, f ′ and f ′′ would have finite limits as t→ Ta,b,c, thus a contradiction.
This proves Ta,b,c = +∞.

If now Λ(a, b, c) ∈ (b, 0), then f(t) → −∞ as t → +∞, hence there exists t1 ≥ 0 such that
f(t) ≤ −1 for t ≥ t1. From (2.1) we obtain f ′′(t) ≥ f ′′(t1)et−t1 , hence f ′′(t) → +∞, as t→ +∞,
which contradicts the fact that f ′(t) has a finite limit as t→ +∞.

It remains to show that Λ(a, b, c) is finite. We can assume that Λ(a, b, c) is not equal to 0.
Thus, f(t) → +∞ as t → +∞, hence there exists t2 ≥ 0 such that f(t2) = max{1, a + 1}. We

have f ′(t2) > 0, hence writing (3.1) for t0 = t2 we obtain 0 < f ′′(t) ≤ f ′′(t2)e−(t−t2) for all

t ≥ t2. Integrating, we obtain 0 ≤ f ′(t) − f ′(t2) ≤ f ′′(t2)
(
1 − e−(t−t2)

)
for all t ≥ t2. This

implies that Λ(a, b, c) is finite. �

Remark. Let c > 0. From its convexity, the function f( · ; a, b, c) has a constant sign at infinity,
hence it is so for f ′′′( · ; a, b, c). Since Λ(a, b, c) is finite, we obtain

lim
t→+∞

f ′′(t; a, b, c) = 0. (3.2)

Proof of Proposition 2.1. Let f = f( · ; a, b, c) be the solution of problem (1.5) with c =
f ′′(0) > 0. From Proposition 3.1, we know that f is defined on [0,+∞) and that f ′′(t) > 0 for

all t. Hence, the function t 7→ s = f ′(t) is increasing and defines t = (f ′)−1 (s) as a function of
s.

As seen at the beginning of Section 2.1, the function

u : [b,Λ(a, b, c)) → (0,+∞), s 7→ f ′′ ◦ (f ′)−1(s),

is solution of problem (2.2 - 2.3). We also saw that u′ ◦ f ′ = −f . Moreover, from (3.2), we have

lim
s→Λ(a,b,c)

u(s) = lim
t→+∞

f ′′(t) = 0.

This shows that u cannot be continued after Λ(a, b, c). Finally, if Λ(a, b, c) is positive, then
f(t) → +∞ as t→ +∞, hence

lim
s→Λ(a,b,c)

u′(s) = lim
t→+∞

(−f(t)) = −∞.

This completes the proof. �

3.2. Useful identities. Below are some useful identities satisfied by any function u, solution
of the Crocco equation (2.2) on some interval I. From this equation we immediately obtain that
for all s0, s ∈ I we have

u′(s) − u′(s0) = −
∫ s

s0

η

u(η)
dη, (3.3)

and integrating once again

u(s) − u(s0) − u′(s0)(s− s0) = −
∫ s

s0

η(s− η)

u(η)
dη. (3.4)

Moreover, since uu′′ = (uu′)′ − u′2, it follows after integration, and using (2.2), that for all
s0, s ∈ I we have

u(s)u′(s) − u(s0)u
′(s0) =

∫ s

s0

u′(η)2dη − 1

2
(s2 − s20),
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and integrating again

u(s)2 − u(s0)
2 − 2u(s0)u

′(s0)(s− s0) (3.5)

= 2

∫ s

s0

(s− η)u′(η)2dη − 1

3
(s− s0)

2(s+ 2s0).

Finally, multiplying equation (2.2) by 2u′ and integrating, we obtain for all s0, s ∈ I

u′(s)2 − u′(s0)
2 = −2s ln |u(s)| + 2s0 ln |u(s0)| + 2

∫ s

s0

ln |u(η)|dη. (3.6)

3.3. Further properties of the function Λ. Thanks to Proposition 2.1, we associate to
f( · ; a, b, c) the Crocco solution u( · ; a, b, c) of (2.2 - 2.3). Precisely, u := u( · ; a, b, c) satisfies

u′′ = − s

u
on [b,Λ(a, b, c)), u(b) = c, u′(b) = a, u > 0.

Proof of Proposition 2.6, Item 1. First, we prove that if a ∈ R and b ∈ [0,+∞), then
the function c 7→ Λ(a, b, c) is increasing. Suppose c1 > c2 > 0 and Λ(a, b, c1) ≤ Λ(a, b, c2).
For i = 1, 2 let us set ui = u( · ; a, b, ci) and w = u1 − u2. We have w(b) = c1 − c2 > 0,
w′(b) = a− a = 0, and

∀ s ∈ [b,Λ(a, b, c1)), w
′′(s) = u′′1(s) − u′′2(s) =

−s
u1(s)

+
s

u2(s)
=

sw(s)

u1(s)u2(s)
.

Therefore, as long as w is positive, w is convex, and so increasing in such a way that w
remains positive on [b,Λ(a, b, c1)). However, as s → Λ(a, b, c1), w(s) tends either to 0 if
Λ(a, b, c1) = Λ(a, b, c2), or to −u2(Λ(a, b, c1)) < 0 if Λ(a, b, c1) 6= Λ(a, b, c2). In both cases,
this is a contradiction.

Secondly, we prove that if b ∈ [0,+∞) and c ∈ (0,+∞), then the function a 7→ Λ(a, b, c)
is increasing. With the notation ui = u( · ; ai, b, c) (for i = 1, 2) and w = u1 − u2, we have
w(b) = c− c = 0 and w′(b) = a1 − a2 > 0. If Λ(a, b, c1) ≤ Λ(a, b, c2), then

∀ s ∈ [b,Λ(a, b, c1)), w′′(s) =
sw(s)

u1(s)u2(s)
.

and we conclude as in the previous case. �

Remark. From this proof, we see that, if 0 ≤ b ≤ s, then the function c 7→ u(s; a, b, c) is
increasing (when defined).

Proposition 3.2. If (a, b, c) ∈ R×R × (0,+∞) is such that Λ(a, b, c) > 0, then Λ is continuous
at (a, b, c).

Proof. We have Λ(a, b, c) = sup{f ′(t; a, b, c) ; t ≥ 0}. Since for every t the function (a, b, c) 7→
f ′(t; a, b, c) is continuous, it follows that Λ is lower semicontinuous on R × R × (0,+∞).

Now we argue by contradiction by assuming that Λ is not upper semicontinuous at (a, b, c).
Then, there would exist a positive real number ε and a sequence (an, bn, cn) in R×R × (0,+∞)
which converges to (a, b, c) such that, if we set λ = Λ(a, b, c) and λn = Λ(an, bn, cn), we have

∀n ∈ N, λ+ ε ≤ λn. (3.7)

Let u = u( · ; a, b, c) and un = u( · ; an, bn, cn). Since λ > 0 we deduce from Proposition 2.1 that
u(η) → 0 and u′(η) → −∞ as η → λ, η < λ. Hence, there exists s ∈ (0, λ) such that u(s) < 1
and u′(s) < −3

ε . By continuity with respect to the initial conditions, there exists m ∈ N such
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that um(s) < 2 and u′m(s) < −2
ε . Therefore, since um decreases and is concave on [s, λm), we

have um(λ) < 2 and u′m(λ) < −2
ε . Hence,

∀ η ∈ [λ, λm), um(η) ≤ um(λ) + u′m(λ)(η − λ) < 2 − 2

ε
(η − λ). (3.8)

Since um(η) → 0 as η → λm, η < λm, then (3.7) and (3.8) give a contradiction.

3.4. Proof of Theorem 2.2, item 3. Existence. Let un = u
(
· ; 1, 0, 1

n

)
. For s > 0 small

enough, we have un(s) ≥ s
2 . On any interval [0, α] where un is defined and satisfies un(s) ≥ s

2 ,

we have u′′n(s) = −s
un(s) ∈ [−2, 0]. Integrating twice, we obtain successively

1 − 2s ≤ u′n(s) ≤ 1 and
1

n
+ s− s2 ≤ un(s) ≤ 1

n
+ s. (3.9)

Since s
2 <

1
n + s − s2 for all s ∈

[
0, 1

2

]
, the a priori majorization principle implies that (3.9) is

valid for all s in this interval. This shows that the sequence (un) is uniformly equicontinuous
and bounded on

[
0, 1

2

]
. Ascoli’s Theorem implies that some subsequence (unk

)k∈N converges to
some function u, which is automatically solution of (2.2) because

u′′(s) = lim
k→+∞

u′′nk
(s) = lim

k→+∞
−s

unk
(s)

=
−s
u(s)

,

uniformly on each compact subset of
(
0, 1

2

]
. Moreover, (3.9) implies that u satisfies s − s2 ≤

u(s) ≤ s, hence u satisfies (2.8). This proves the existence of u+.

Remark. Since c 7→ u(s; a, b, c) increases on (0,+∞) if 0 ≤ b ≤ s (cf. the remark above
Proposition 3.2), we also have

u+(s) = lim
c→0

u(s; 1, 0, c). (3.10)

Uniqueness. Suppose that u1 and u2 are two solutions of (2.2) on some interval (0, T ), satisfying
u(0+) = 0, u′(0+) = 1. Setting w = u1 − u2, we obtain

w′′ =
sw

u1(s)u2(s)
and w(0+) = w′(0+) = 0. (3.11)

Assume first that w does not vanish on (0, T ). Without loss of generality we may assume that
w > 0 on (0, T ). Then w is convex. This implies that w(η) = w

(η
ss
)
≤ η

sw(s) for all η ∈ (0, s].
Now (3.11) gives by integration, for all s ∈ (0, T )

w′(s)
w(s)

=
1

w(s)

∫ s

0

ηw(η)

u1(η)u2(η)
dη ≤ 1

s

∫ s

0

η2

u1(η)u2(η)
dη.

Since u1(η)u2(η) ∼ η2 as η → 0+, there exists ε such that for 0 ≤ s < ε we have w′(s) ≤ 2w(s).
By Gronwall’s lemma, we deduce that w′ = 0 on [0, ε], hence w = 0 on [0, ε], which contradicts
our assumption.

Therefore, there is s0 ∈ (0, T ) such that w(s0) = 0. Then, w = 0 on [0, s0), because on the
contrary it should exist s1 ∈ (0, s0) such that, for example, w(s1) > 0 and w′′(s1) ≤ 0, which
contradicts (3.11). It follows that w = 0 on [0, T ).

Remark. Concerning u−, we give a similar proof in Section 9.2 and a shorter indirect proof in
Section 5.3.

Bounds for λ+. Let (0, λ+) denote the interval of existence of u+. We have to prove that
1 < λ+ < s0, where s0 > 0 satisfies (2s0 − 4) ln

(
1 − s0

2

)
= s0, see Figure 16.

By concavity, we have u+(s) < s for all s ∈ (0, λ+). Thus, u′′+(s) < −1 for all s ∈ (0, λ+).

Integrating twice we obtain u+(s) < s − s2

2 for all s ∈ (0, λ+). Hence, u′′+(s) < − 1
1− s

2
for all
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Figure 16. The solution u+ of the Crocco equation. We have λ+ ≈ 1.304.

s ∈ (0, λ+). Integrating twice again, we obtain u+(s) < β(s) := (2s − 4) ln(1 − s
2) − s for all

s ∈ (0, λ+). Thus, λ+ < s0, where s0 ≈ 1.43 is the positive root of equation β(s) = 0.
On the other hand for s > 0 small enough we have u+(s) > s

2 . Thus, u′′+(s) > −2 as long

as s > 0 and u+(s) > s
2 . Integrating twice we obtain u+(s) > s − s2 for all s ∈ (0, 1

2). Thus,

u′′+(s) > − 1
1−s , as long as both s ∈ (0, λ+) and u+(s) > s−s2. Integrating twice again, we obtain

u+(s) > α(s) := (s− 1) ln (1 − s) as long as s ∈ (0, λ+) and u+(s) > s− s2. Since α(s) > s− s2

for all s ∈ (0, 1), we deduce λ+ > 1. �

3.5. The Blasius problem for b ≥ 0.

Proposition 3.3. We have

λ+ = lim
c→0+

Λ(1, 0, c) = inf
c>0

Λ(1, 0, c).

Proof. Since c 7→ Λ(1, 0, c) is increasing and positive, the infimum

ν := inf
c>0

Λ(1, 0, c),

is finite and equal to limc→0+ Λ(1, 0, c). Besides, the solution u+ given by (3.10) is defined
on (0, λ+) and, for c > 0, the solution u( · ; 1, 0, c) is defined on [0,Λ(1, 0, c)). By the lower
semicontinuity of the positive maximal interval of existence of solutions of ODEs with respect
to initial conditions, we obtain λ+ ≤ ν.

By contradiction, assume that λ+ < ν. Notice that for all c > 0 we have (0, ν] ⊂ (0,Λ(1, 0, c)).
Consider ε > 0 and B ∈ (0, λ+), close to λ+. Then there exists c0 > 0 such that for all c ∈ (0, c0)

∀ s ∈ (0, B] |u(s; 1, 0, c) − u+(s)| < ε.

Since ε can be chosen as small as we want and B as close to λ+ as we want, this would contradict
the fact that u( · ; 1, 0, c) is positive and concave on [0, ν]. �

We prove below the asymptotic formula (2.18) of Proposition 2.7, in a more general situation.
This shows, in particular, that Λ(a, b, c) → +∞ as c→ +∞.

Proposition 3.4. For all (a, b) ∈ R
2 the following holds

Λ(a, b, c) ∼ Λ(0, 0, 1)c2/3 as c→ +∞.

Proof. From (2.15), for c > 0, we have

c−2/3Λ(a, b, c) = Λ
(
ac−1/3, bc−2/3, 1

)
−→ Λ(0, 0, 1) as c→ +∞,
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since Λ is continuous at the point (0, 0, 1). �

Remark. Section 9.5 contains an historical account about this constant Λ(0, 0, 1).

Proposition 3.5. Let a ∈ R and b ≥ 0. Set µa,b = inf{Λ(a, b, c) ; c > 0}. The mapping
c 7−→ Λ(a, b, c) is increasing one-to-one from (0,+∞) onto (µa,b,+∞). Furthermore, we have

µa,b =

{
b if a ≤ 0 or b > 0,

a2λ+ if a > 0 and b = 0.
(3.12)

Proof. The first assertion follows from Proposition 2.6, item 1 and Propositions 3.2, 3.4. It
remains to prove (3.12). Notice that we have

µa,b = lim
c→0+

Λ(a, b, c).

For the remainder of the proof, we set uc = u( · ; a, b, c) and λc = Λ(a, b, c).
• If a ≤ 0, then uc is decreasing on [b, λc). Thanks to (3.4) with s0 = b and s→ λc, we obtain

c ≥ c+ a(λc − b) =

∫ λc

b

η(λc − η)

uc(η)
dη

≥ 1

c

∫ λc

b
η(λc − η)dη =

1

6c
(λc − b)2(λc + 2b),

hence λc → b as c→ 0+.
• If a > 0 and b > 0, then there exists a unique sc ∈ (b, λc) in which uc attains its maximum.

Using identity (3.4) with s0 = sc, s→ λc and the fact that uc is decreasing on [sc, λc) we obtain
as above

uc(sc) =

∫ λc

sc

η(λc − η)

uc(η)
dη ≥ 1

uc(sc)

∫ λc

sc

η(λc − η)dη

=
1

6uc(sc)
(λc − sc)

2(λc + 2sc).

This and the concavity of uc yield

c+ a(sc − b) ≥ uc(sc) ≥
1√
6
(λc − sc)

√
λc + 2sc. (3.13)

In addition, from (3.3) and the concavity of uc, we obtain

a =

∫ sc

b

η

uc(η)
dη ≥ b

∫ sc

b

dη

c+ a(η − b)
=
b

a
ln
(
1 +

a

c
(sc − b)

)
,

and since b > 0, this leads to

0 ≤ sc − b ≤ c

a

(
ea

2/b − 1
)
,

hence, sc → b as c→ 0+. Coming back to (3.13) we obtain that λc → b as c→ 0+.
• If a > 0 and b = 0, then from the similarity (2.15) and Proposition 3.3, we have

µa,0 = lim
c→0+

Λ(a, 0, c) = a2 lim
c→0+

Λ
(
1, 0, ca−3

)
= a2λ+. �

Corollary 3.6. Let a ∈ R and b ≥ 0. If a ≤ 0 or b > 0, then the Blasius boundary value
problem (1.1 - 1.2) has one and only one solution for all λ ∈ (b,+∞).

If a < 0 and b = 0, then the Blasius problem (1.1 - 1.2) has one and only one solution for all
λ ∈ (a2λ+,+∞) and no solution for all λ ∈ (0, a2λ+].

Proof. This follows immediately from Proposition 3.5. �
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4. Properties of the autonomous vector field

This section is entirely devoted to the proof of Theorem 2.4.

4.1. The behavior near S∗.
Proof of Theorem 2.4, item 1. Let (x, y) be a solution of (2.12 - 2.13) with c > 0. Its
associated Crocco solution u( · ; a,−1, c) is defined at least on [−1, 0), hence (x, y) is defined at
least on [0,+∞).

Besides, (2.12) has the same orbits as the polynomial one:

ẋ = 1 +
1

2
xy, ẏ = xy +

3

2
y2,

hence, no orbit of (2.12) can reach the horizontal axis y = 0.
The upper half plane (y > 0) is cut in four regions by the isoclines I∞ (ẋ = 0 ⇔ xy = −2)

and I0 (ẏ = 0 ⇔ y = −2
3x). On the East, x and y increase with t, on the North, x decreases

and y increases, etc., see Figure 17, left.

-x

6y

West
�	

North

@I

South Hj

East

��

I0

�

-
S∗

I∞

6

? -
xx2 x1

x3

0

y1

y2

y3

6y

*

r

I∞

Figure 17. On the left, the four regions delimited by the isoclines I0 and I∞; on the
right, a solution starting in the East region for negative time and its invariant box.

With the time t reversed, any solution starting in the East region must cross I0 at some point
(x1, y1) with 0 < y1 <

2√
3

and x1 = −3
2y1, then crosses I∞ at some (x2, y2) with y1 < y2 <

2√
3

and x2 = − 2
y2

, then crosses I0 once again at (x3, y3) with x2 < x3 < −
√

3, then I∞ at (x4, y4)

with y4 < y3, hence x4 ≤ x1. This gives an invariant box containing the solution for t ∈ (−∞, t1],
see Figure 17, right. As a consequence the solution is defined for all t < 0. The divergence of
(2.12) is given by

∂

∂x

(1

2
x+

1

y

)
+

∂

∂y

(
x+

3

2
y
)

= 2.

Because this divergence has a constant sign, there is no cycle by Dulac criterion, therefore any
solution starting in the East region must tend to the unique stationary point S∗ as t→ −∞.

With the same arguments, any solution that starts from any other region eventually visits
the East as t decreases, and we fall in the first case. �

Proof of Theorem 2.4, item 2. The linear part of the vector field at the stationary point

S∗ has matrix

(
1/2 −3/4
1 3/2

)
, hence S∗ is a source with simple eigenvalues 1 ± i√

2
. Therefore,

(2.14) means that x is approximated by a solution of the linear part of our system at S∗. This
is proved in the following lemma.

Lemma 4.1. Consider a C1 differential system in R
n of the form

x′ = Ax + b(x). (4.1)
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Assume b : U ⊂ R
n → R

n satisfies b(x) = O(|x|k) as |x| → 0 for some k ∈ (1,+∞), where | |
stands for some norm in R

n and U is a neighborhood of 0 ∈ R
n.

Assume also that there is α > 0 such that −kα < Re(λ) < −α for any eigenvalue λ of A
(with the same k).

Then, for any solution x of (4.1) remaining in U and tending to 0 ∈ R
n, there exists x ∈ R

n

such that

x(t) = etA(x + o(1)) as t→ +∞.

Proof. Although this result follows directly from the theory of normal forms (the assumptions
imply that there is no resonance), we give here an elementary proof.

Since the linear part of the system at its stationary point 0 ∈ R
n is A, the assumption on

the spectrum of A already gives x(t) = O
(
e−αt

)
as t → +∞, hence b(x(t)) = O

(
e−kαt

)
as

t→ +∞.
Let us view (4.1) as a linear system with b(x) considered as a “known” function. The variation

of constant formula yields, for all t > 0:

x(t) = etA
(
x(0) +

∫ t

0
e−sAb(x(s))ds

)
.

By assumption, there exists δ > 0 such that for all s > 0, ||e−sA|| = O
(
e(kα−δ)s

)
, where || ||

stands for any matrix norm. Therefore, we obtain e−sAb(x(s)) = O
(
e−δs

)
as s → +∞, which

shows that the integral
∫ +∞
0 e−sAb(x(s))ds converges in R

n. Now put:

x = x(0) +

∫ +∞

0
e−sAb(x(s))ds.

Then x(t) = etA(x + r(t)) with r(t) = −
∫ +∞

t
e−sAb(x(s))ds = o(1). �

Remarks. 1. We stated the result for the stationary point 0 ∈ R
n but of course we have the

same result at any stationary point of sink type of any nonlinear system. In the same way we
have an analogous result as t→ −∞ for stationary points of source type.

2. The assumption on the spectrum of A is optimal: for example the system

x′ = −kx+ yk, y′ = −y,
with initial conditions x(0) = 0, y(0) = 1 is solved by x(t) = te−kt, y(t) = e−t which cannot be
asymptotic to any solution of the linear part, of the form (xe−kt, ye−t).

Our system (2.12), being C∞ near S∗, satisfies the assumptions of Lemma 4.1 (with time
reversed and after translation (x, y) 7→

(
x−

√
3, y+ 2√

3

)
, as explained in Remark 1 above) with

k = 2 and any α ∈ (1
2 , 1). This proves (2.14).

4.2. The orbits Γ∞ and Γ0.
Proof of Theorem 2.4, item 3. The straight line y = −x and the isocline I−1 given by
ẋ + ẏ = 0, i.e., x + y = − 2

3y , form a narrowing antifunnel (see Figure 18 left) with positive

divergence, thus Theorem 4.10 of [30] applies. This proves the existence and uniqueness of Γ∞.
In the same manner as for Γ∞, there is a unique orbit Γ0 in the narrowing antifunnel made

of the axis 0y and the isocline I∞ (see Figure 18 right).
Now the change of variables X = x

y , Y = 1
y transforms (2.12) into the polynomial system

Ẋ = Y 2 −X2 −X, Ẏ = −Y
(
X +

3

2

)
. (4.2)
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Figure 18. The orbits Γ∞,Γ0 and their antifunnels.
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Figure 19. On the left: the vector field (4.2). On the right: a sketch of the region R.

We study this system in the half plane Y ≥ 0, corresponding to y > 0. In addition to the

stationary point S =
(
− 3

2 ,
√

3
2

)
corresponding to the source S∗ of (2.12), system (4.2) has two

other stationary points, (0, 0) and (−1, 0), which lie on the axis Y = 0 and correspond to the
asymptotic direction at infinity of solutions of system (2.12). The linear part of the vector field
(4.2) at the stationary point (−1, 0) has eigenvalues 1 and −1

2 , hence (−1, 0) is a saddle. The
unstable separatrix of the saddle belongs to the axis Y = 0. The curve Γ∞ corresponds to the
stable separatrix Ws of this saddle. Using Taylor expansion for Ws, we get that, for y large
enough, Γ∞ is the graph of a function x = x∞(y) that satisfies

x∞(y) = −y − 1

2y
− 1

12y3
− 1

24y5
− 7

240y7
− 13

540y9
+O(y−11).

With the notation introduced in Section 2.4, x∞ is the inverse function of R1.
The linear part of the vector field (4.2) at the stationary point (0, 0) has eigenvalues −1 and

−3
2 . Hence (0, 0) is a stable node. Let us show that all trajectories of system (4.2), except the

part (X ≤ −1) of the axis Y = 0, the stationary point S, and the stable separatrix W , tend to

(0, 0) as t→ +∞. Let R denote the region enclosed by Ws and the lines X = −3
2 and Y =

√
3

2 as
shown on Figure 19, right. Because R contains neither limit cycles nor stationary points other
than the saddle (−1, 0), any trajectory (X(t), Y (t)) of system (4.2), starting in R will cross the
isocline X = −3

2 (see Figure 20 right). This means that the corresponding trajectory (x(t), y(t))

of system (2.12) will cross the isocline I0, given by y = −2
3x.

We claim that the corresponding orbit Γ is convex in the region y < −2x
3 . For that purpose,

we use the following result.
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Figure 20. On the left: the spiral Γ∞ and a trajectory of (2.12); on the right: the
corresponding stable manifold Ws and the corresponding trajectory of (4.2). We also
added the curve I of inflexion points and I∞ on the left figure, and isoclines 0 on each

figure.
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Figure 21. On the left: the curve of inflexion points I of (2.12) given by (4.3) and
the bounding curves I−1 and 0y. On the right: the same ones with Γ0, Γ∞ and two Γk

with k < 0 and k > 0.

Lemma 4.2. The set of inflexion points of the vector field (2.12) is the algebraic set of equation

4 + 4x2 + 20xy + 15y2 + 3xy3 + 3x2y2 = 0. (4.3)

It consists of one isolated point S∗ =
(
−

√
3, 2√

3

)
and a curve I with two branches x = x1(y)

and x = x2(y), y ∈ [2,+∞), that satisfy

∀ y ∈ (2,+∞), −y − 1

3y
< x2(y) ≤ x1(y) < 0. (4.4)

Moreover, we have x1(y) ∼ − 5
y and x2(y) + y ∼ − 1

3y as y → +∞. As a consequence, there

is no inflexion point of (2.12) in the region y < −2
3x.

Proof. Inflexion points of a vector field

ẋ = h(x, y), ẏ = g(x, y).

have to satisfy
h2gx + hg(gy − hx) − g2hy = 0,

where subscripts stand for the corresponding partial derivatives. To see this, if y can be written
as a function of x (otherwise permute x and y), we have y′(x) = g

h(x, y(x)), thus we obtain:

y′′(x) = 0 ⇔ h(x, y(x))
d

dx
g(x, y(x)) − g(x, y(x))

d

dx
h(x, y(x)) = 0
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⇔ h(gx + gy.y
′) − g(hx + hy.y

′) = 0,

then replace y′ by g
h and multiply by h.

In our case, we obtain that the inflexion points satisfy (4.3). This is a second degree algebraic
equation in x, therefore its discriminant ∆ = (y2 − 4)(3y2 − 4)2 has to be nonnegative. This
implies y = 2√

3
or y ≥ 2.

For y = 2√
3

we obtain x = −
√

3, i.e., (x, y) = S∗. The case y ≥ 2 gives the two branches

x1(y) =
−y(3y2 + 20) +

√
∆

2(4 + 3y2)
, x2(y) =

−y(3y2 + 20) −
√

∆

2(4 + 3y2)
. (4.5)

Let us now verify the inequalities and the asymptotics. Firstly, (4.3) has obviously no solution
with both x and y nonnegative. The asymptotics of x1 is found when one seeks for a solution
of (4.3) with y → +∞ and x → 0; thus two terms are in balance: 15y2 and 3xy3. We obtain
successively x1(y) = O(y−1) and 5 + yx1(y) = O(y−2), hence x1(y) = − 5

y +O(y−3).

Concerning x2 the most convenient is to put x = z − y in (4.3). Then (4.3) gives 4 − y2 +
12yz + 4z2 − 3y3z + 3y2z2 = 0 or equivalently

(4 − y2)(1 + 3yz) + (4 + 3y2)z2 = 0, (4.6)

from which it is clear that 1 + 3yz has to be positive. This gives the left inequality of (4.4).
The asymptotics of x2 is found when one seeks for a solution of (4.6) with y → +∞ and z → 0;
thus two terms are in balance: −y2 and −3y3z. One obtains successively z = O(y−1) and
1 + 3yz = O(y−2), hence x2(y) = −y − 1

3y +O(y−3). �

We now return to our proof of item 3. Since Γ is convex in the region y < −2x
3 , the trajectory

(x(t), y(t)) must cross the isocline I∞ given by xy = −2 and enter in the South region (see
Figure 20 left). Hence it must cross again the isocline I0. This means that the corresponding
trajectory (X(t), Y (t)) must cross again the isocline X = −3

2 (see Figure 20 right) and enter in

the region X ≥ −3
2 , in which Y is decreasing. Hence, it tends to the stationary point (0, 0).

Consequently, any solution (x(t), y(t)) of system (2.12), except those corresponding to S∗ and
Γ∞, satisfies

lim
t→+∞

y(t) = +∞, lim
t→+∞

x(t)

y(t)
= 0.

This proves item 3 of Theorem 2.4. �

Before going further in the proof of the remaining items, we now prove the following.

Lemma 4.3. 1. If u is a Crocco solution of (2.2) on (−∞, 0) satisfying u(0−) = 0, then for all

s < 0 we have − su′(s)
u(s) ≤ −1.

2. Moreover, if u′(0−) = 0, then for all s < 0 we have − su′(s)
u(s) ≤ −3

2 .

Proof. 1. If u is a Crocco solution such that u(0−) = 0, then by the finite-increment theorem,
for all s < 0 there exists θ ∈ (0, 1) such that u(s) = su′(θs). Since u′ is negative increasing on
(−∞, 0), we obtain

∀ s < 0, −su
′(s)

u(s)
= − u′(s)

u′(θs)
≤ −1.

2. For all s < 0 we have

2u′(s)u′′(s) = −2su′(s)
u(s)

≤ −2 and u′(0−) = 0.
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By integration we obtain u′(s)2 ≥ −2s, therefore u′(s) ≤ −
√
−2s. Integrating once again with

u(0−) = 0 we obtain

∀ s < 0, u(s) ≥ 2
√

2

3
(−s)3/2,

hence, − su′(s)
u(s) ≤ −3

2 . �

Proof of Theorem 2.4, item 4. Let us consider (a, c) ∈ R × (0,+∞), set u = u( · ; a,−1, c)
and let (x, y) denote the corresponding solution of (2.12) with initial conditions (2.13). Notice
that, if s and t are linked by s = −e−t, then we have

−su
′(s)

u(s)
=
x(t)

y(t)
.

Concerning (1), we have (a, c) = S∗ ⇔ u = u∗, which satisfies the conditions u(0−) = u′(0−) = 0.

Conversely, because S∗ is the only trajectory that satisfies x(t)
y(t) ≤ −3

2 for all t ∈ R, by Lemma

4.3 above, only u∗ can satisfy the required conditions. Incidentally, we proved that u∗ is the
unique Crocco solution with u∗(0−) = u∗′(0−) = 0, as claimed after (2.6).

For the proof of (3), if (a, c) /∈ Γ∞ ∪ {S∗}, then from item 3 proven above, x(t)
y(t) tends to 0

as t → +∞, i.e., su′(s)
u(s) → 0 as s → 0−. By Lemma 4.3, u(0−) 6= 0, i.e., u is defined (at least)

until 0 and u(0) 6= 0. Conversely, if u(0) 6= 0, then k := u′(0)3

u(0) is finite, therefore (a, c) cannot be

on Γ∞ (because on Γ∞ we have u′(s)3

u(s) = x(t)3

y(t) ∼ −x(t)2 → −∞) and of course (a, c) 6= S∗ since

u 6= u∗. Now (2) follows by exclusion. �

4.3. The orbits Γk.
Proof of Theorem 2.4, item 5. Along an orbit different from Γ∞ and S∗, a corresponding

Crocco solution has to satisfy u(0) > 0. Therefore, x(t)3

y(t) = u′(s)3

u(s) has a limit k as t → +∞ i.e.,

s→ 0−, namely k = u′(0)3

u(0) . �

Proof of item 6. Consider the trajectory of (2.12) corresponding to the Crocco solution with

u(0) = 1, u′(0) = k1/3. This shows the existence. For the uniqueness, if two Crocco solutions

u1, u2 satisfy
u′

i(s)
3

ui(s)
→ k /∈

{
−9

2 ,∞
}

as s → 0−, then the corresponding orbits of (2.12) are

different from S∗ and Γ∞, hence ui(0) > 0 and
u′

1(0)3

u1(0) =
u′

2(0)3

u2(0) , therefore u2(s) = σ3u1(s
−2) with

σ =
u′

1(0)
u′

2(0)
. In other words, the corresponding orbits of (2.12) coincide. �

Proof of item 7. We recall that the inflexion points of system (2.12), already described in
Lemma 4.2, are the point S∗ and the two branches given for y ≥ 2 by (4.5). Let us prove that
the curve

I = {(x, y) : y ≥ 2, x = x1(y) or x = x2(y)},
is a barrier. We have to show that for all y > 2, we have p1(y) > 0 and p2(y) < 0 where

p1(y) = x′1(y) −
2 + yx1(y)

y(3y + 2x1(y))
, p2(y) = x′2(y) −

2 + yx2(y)

y(3y + 2x2(y))
.

By a tedious but straightforward computation we obtain

p1(y) =
2(3y2 − 4)

[
2y(7y2 − 12) + (13y2 − 4)

√
y2 − 4

]

y
√
y2 − 4(2y +

√
y2 − 4)(4 + 3y2)2

> 0,
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and

p2(y) =
−2(3y2 − 4)

[
(2y(7y2 − 12) − (13y2 − 4)

√
y2 − 4

]

y
√
y2 − 4(2y −

√
y2 − 4)(4 + 3y2)2

< 0.

The first inequality is obvious (recall that y ≥ 2). The second inequality follows from the identity

2y(7y2 − 12) − (13y2 − 4)
√
y2 − 4 =

27y6 + 108y4 + 144y2 + 64

2y(7y2 − 12) + (13y2 − 4)
√
y2 − 4

> 0.

By Lemma 4.2, the curves x = 0 and x = x1(y) form a narrowing antifunnel which contains
a unique orbit, namely the orbit Γ0. Similarly, the curves x = −y − 2

3y (i.e., the isocline I−1)

and x = x2(y) form a narrowing antifunnel which contains a unique orbit, namely the orbit
Γ∞. Thus, the orbit Γ0 remains on the right of the curve I of inflexion points and the orbit Γ∞
remains on the left of I. Consequently, the orbit Γk has no inflexion point if k ≥ 0 and the orbit
Γk crosses the curve I at one and only one point if k < 0 (see Figure 21).

5. Further properties of Crocco solutions

We start with the following intermediate result.

Lemma 5.1. Let a ∈ R, c > 0 and u = u( · ; a,−1, c).
1. For all s1 ∈ [−1, 0) such that u′(s1) > 0, we have

∀ s ∈ [s1, 0],

∫ s

s1

lnu(η)dη ≥ − 1

u′(s1)
. (5.1)

2. For all s1 ≤ −1 such that u′(s1) < 0, we have

∀ s ≤ s1,

∫ s1

s
lnu(η)dη ≥ 1

u′(s1)
. (5.2)

Proof. 1. Since u is convex on [−1, 0], one has for all η ∈ [−1, 0]

u(η) ≥ u′(s1)(η − s1) + u(s1).

Denoting α0 = u(s1) and α1 = u′(s1) we then obtain
∫ s

s1

lnu(η)dη ≥
∫ s

s1

ln(α1(η − s1) + α0)dη

=

[(
η − s1 +

α0

α1

)
ln(α1(η − s1) + α0) − η

]s

s1

=

(
s− s1 +

α0

α1

)
ln(α1(s− s1) + α0) −

α0

α1
lnα0 − (s− s1)

= (s− s1) ln(α1(s− s1) + α0)

+
α0

α1
ln

(
1 +

α1

α0
(s− s1)

)
− (s− s1)

≥ (s− s1) ln(α1(s− s1)) − (s− s1) ≥ − 1

α1
,

since the function t 7−→ t ln(α1t) − t defined for t > 0 is convex and achieves its minimum for
t = 1

α1
. This completes the proof of item 1. The proof of item 2 follows the same way. �
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5.1. Proof of Proposition 2.3. Fix a ∈ R and set uc = u( · ; a,−1, c). Given a compact subset
of (−∞,−1) ∪ (−1, 0], we first choose δ ∈ (0, 1

4) such that this compact is included in

K = K+ ∪K− with K+ =
[
−1

δ ,−1 − 2δ
]

and K− = [−1 + 2δ, 0].

From (3.5) with s0 = −1 we obtain for all s ∈ K:

uc(s)
2 ≥ c2 + 2ac(s+ 1) +

1

3
(s+ 1)2(2 − s).

Since the constant term 1
3(s+ 1)2(2 − s) is bounded below by 2

3(2δ)2, we have

∃ c1 ∈
(
0, δ

2

]
, ∀ s ∈ K, ∀ c ∈ (0, c1), uc(s) > δ. (5.3)

Note also that, using the convexity of uc on (−∞, 0], we have

∀ s ≤ 0, uc(s) ≤ c+ (s+ 1)u′c(s). (5.4)

At this step we have to split the proof in two cases, whether s > −1 or s < −1.

Case 1. Assume first that s ∈ K+. Using (3.6), the fact that uc(η) ≤ uc(s) for all η ∈ [−1, s]
and (5.4), we obtain for all s ∈ K+ and all c ∈ (0, c1)

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c+ 2

∫ s

−1
lnuc(η)dη (5.5)

≤ a2 − 2 ln c+ 2 lnuc(s) ≤ a2 − 2 ln c+ 2 ln(c+ (s+ 1)u′c(s))

≤ a2 − 2 ln c+ 2 ln(1 + u′c(s)). (5.6)

In order to obtain (2.9) we need a converse inequality, and for that purpose we have to distinguish
between the cases a > 0 and a ≤ 0.

• If a > 0, then (5.1) for s1 = −1 gives

∫ s

−1
lnuc(η)dη ≥ −1

a
for all s ∈ [−1, 0]. Using (5.3),

(5.5) and (5.6) we deduce that for all s in K+ and all c in (0, c1)

a2 + 2 ln δ − 2
a + 2 ln 1

c ≤ u′c(s)
2 ≤ a2 + 2 ln 1

c + 2 ln(1 + u′c(s)).

Since u′c(s) > 0 we obtain

u′c(s) ∼
√

2 ln 1
c as c→ 0 uniformly for s ∈ K+. (5.7)

• Let us assume now that a ≤ 0. From (5.3), if c ≤ c1, then there exist sc ∈ (−1,−1+2δ) and
σc ∈ [−1, sc) such that uc(sc) = 2c and u′c(σc) = 0, see Figure 22. Of course, one has u′c(sc) > 0.

-
s−1

6u

c
-�

σc sc

2c

Figure 22. For a < 0, the graph of uc near s = −1.



On the Blasius problem 33

We claim that

lim
c→0

sc = −1. (5.8)

Indeed, from (3.4) with s0 = −1, s = sc, we obtain

c− a(sc + 1) =

∫ sc

−1

−η(sc − η)

uc(η)
dη

≥ 1

2c

∫ sc

−1
(η2 − ηsc)dη =

1

12c
(sc + 1)2(2 − sc) ≥

1

6c
(sc + 1)2.

This gives (5.8). Moreover, on the one hand, using (3.6) with s0 = −1 and s = σc, we obtain
for all c ∈ (0, c1)

−a2 = −2σc lnuc(σc) − 2 ln c+ 2

∫ σc

−1
lnuc(η)dη

≤ −2σc lnuc(σc) − 2 ln c+ 2(σc + 1) ln c = −2σc(lnuc(σc) − ln c),

from which, using σc ≤ sc ≤ −1
2 , we derive that for c < c1 we have

lnuc(σc) ≥ ln c− a2. (5.9)

On the other hand, for c < c1, writing (3.6) with s0 = −1, s = sc, and using (5.9) we obtain

u′c(sc)
2 = a2 − 2sc ln 2c− 2 ln c+ 2

∫ sc

−1
lnuc(η)dη

≥ a2 − 2sc ln 2c− 2 ln c+ 2(sc + 1) lnuc(σc)

≥ −2sc ln 2 − (2sc + 1)a2 ≥ ln 2, (5.10)

since we have sc ≤ −1
2 . Consequently, using (5.5), (5.1) and (5.10), we obtain, for c < c1

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c+ 2

∫ sc

−1
lnuc(η)dη + 2

∫ s

sc

lnuc(η)dη

≥ a2 − 2s lnuc(s) − 2 ln c+ 2(sc + 1) lnuc(σc) −
2√
ln 2

.

Using (5.9), (5.3) and sc ≤ −1
2 we deduce:

u′c(s)
2 ≥ 2sc ln c− 2s lnuc(s) −

2√
ln 2

≥ 2sc ln c+ 2 ln δ − 2√
ln 2

.

Altogether with (5.6), we have for all s ∈ K+ and all c ∈ (0, c1)

−2sc ln 1
c + 2 ln δ − 2√

ln 2
≤ u′c(s)

2 ≤ a2 + 2 ln 1
c + 2 ln(1 + u′c(s)).

Using (5.8), we see that (5.7) follows in this case too.

To obtain (2.10) for s ∈ K+, let us set vc = u′

cq
2 ln 1

c

. For all s ∈ K+ we have

uc(s)√
2 ln 1

c

=
c√

2 ln 1
c

+

∫ −1+2δ

−1
vc(η)dη +

∫ s

−1+2δ
vc(η)dη. (5.11)

Since vc(η) → 1 as c→ 0, uniformly on K+, we have
∫ s

−1+2δ
vc(η)dη → s+ 1 − 2δ as c→ 0 uniformly for s ∈ K+. (5.12)
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Moreover, for all fixed η ∈ (−1,−1 + 2δ], we have vc(η) → 1 as c→ 0, and since uc is convex on
(−∞, 0], the function vc is increasing on [−1,−1 + 2δ] and thus

∀ η ∈ [−1,−1 + 2δ], −∞ < inf
c>0

vc(−1) ≤ vc(η) ≤ sup
c>0

vc(−1 + 2δ) < +∞.

Therefore, applying the Lebesgue dominated convergence theorem, we obtain
∫ −1+2δ

−1
vc(η)dη → 2δ as c→ 0. (5.13)

Combining (5.11), (5.12) and (5.13) we obtain uc(s)q
2 ln 1

c

−→ s+1 as c→ 0, uniformly for s ∈ K+.

Case 2. Assume now that s ∈ K− =
[
−1

δ ,−1 − 2δ
]
. Using (3.6), the fact that uc(η) ≤ uc(s)

for any η ∈ [s,−1], and (5.3), we obtain for all s ∈ K− and all c ∈ (0, c1)

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c− 2

∫ −1

s
lnuc(η)dη (5.14)

≥ a2 − 2s lnuc(s) − 2 ln c− 2(−1 − s) lnuc(s)

= a2 − 2 ln c+ 2 lnuc(s) ≥ a2 − 2 ln c+ 2 ln δ. (5.15)

To obtain a converse inequality, we distinguish between the cases a < 0 and a ≥ 0.
• If a < 0, then (5.2) for s1 = −1 implies that

∫ −1

s
lnuc(η)dη ≥ 1

a
,

for all s ≤ −1. Using (5.4) and (5.14) we obtain for all s ∈ K− and all c ∈ (0, c1)

u′c(s)
2 ≤ a2 − 2s lnuc(s) − 2 ln c− 2

a

≤ a2 − 2s ln(c+ (s+ 1)u′c(s)) − 2 ln c− 2
a

≤ a2 + 2
δ ln

(
1 + 1

δ |u′c(s)|
)
− 2 ln c− 2

a . (5.16)

Thanks to (5.15) and (5.16) we obtain for all s ∈ K− and all c ∈ (0, c1)

a2 + 2 ln δ + 2 ln 1
c ≤ u′c(s)

2 ≤ a2 − 2
a + 2 ln 1

c + 2
δ ln

(
1 + 1

δ |u′c(s)|
)
.

Since u′c(s) < 0, we deduce

u′c(s) ∼ −
√

2 ln 1
c as c→ 0 uniformly for s ∈ K−. (5.17)

• Let us assume now that a ≥ 0. From (5.3), if c ≤ c1, then there exist sc ∈ (−1
δ ,−1 − 2δ)

and σc ∈ (sc,−1] such that uc(sc) = 2c and u′c(σc) = 0. One has u′c(sc) < 0 and, exactly as in
the previous case, we show

lim
c→0

sc = −1. (5.18)

Moreover, on the one hand, using (3.6) with s0 = −1 and s = σc, we obtain for all c ∈ (0, c1)

a2 = −2σc lnuc(σc) − 2 ln c− 2

∫ −1

σc

lnuc(η)dη

≤ −2σc lnuc(σc) − 2 ln c− 2(−1 − σc) lnuc(σc) = −2 ln c+ 2 lnuc(σc),

from which, we derive that for c < c1 we have

2 lnuc(σc) ≥ 2 ln c− a2. (5.19)
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On the other hand, for c < c1, using (3.6) we obtain

u′c(sc)
2 = a2 − 2sc ln 2c− 2 ln c− 2

∫ −1

sc

lnuc(η)dη

≥ a2 − 2sc ln 2c− 2 ln c− 2(−1 − sc) ln 2c = a2 − 2 ln 2,

hence
u′c(sc) ≤ −

√
a2 − 2 ln 2. (5.20)

Consequently, using successively (5.14), (5.4), (5.2), (5.19) and (5.20), we obtain, for c < c1 and
s ∈ K−

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c− 2

∫ sc

s
lnuc(η)dη − 2

∫ −1

sc

lnuc(η)dη

≤ a2 − 2s ln(c+ (s+ 1)u′c(s)) − 2 ln c− 2
u′

c(sc)
− 2(−1 − sc) lnuc(σc)

≤ a2 + 2
δ ln

(
1 + 1

δ |u′c(s)|
)
− 2 ln c+ 2√

a2−2 ln 2
+ (1 + sc)(2 ln c− a2)

≤ −sca
2 + 2

δ ln
(
1 + 1

δ |u′c(s)|
)

+ 2sc ln c+ 2√
a2−2 ln 2

,

and with (5.15) we obtain, for c ∈ (0, c1) and all s ∈ K−

a2 + 2 ln δ + 2 ln 1
c ≤ u′c(s)

2 ≤ 2√
a2−2 ln 2

− sca
2 − 2sc ln 1

c + 2
δ ln

(
1 + 1

δ |u′c(s)|
)
.

Hence, using (5.18), we see that (5.17) holds in this case too. The relation (2.10) on K− =[
−1

δ ,−1 − 2δ
]

is obtained exactly as in the previous case. �

5.2. Proof of Theorem 2.2, item 4. We need the following result whose proof is postponed
to the end of this section.

Lemma 5.2. Let a ∈ R ∪ {+∞} and let (an)n∈N be a sequence such that limn→+∞ an = a.
Let (cn)n∈N be another sequence of real number such that cn > 0 for all n ∈ N. Set un =
u( · ; an, 0, cn). For all s ∈ [−1, 0) fixed, the following holds:

1. If a = 0, lim
n→+∞

cn = 0 and the sequence (ln)n∈N given by

ln := sup
σ∈[−1,0)

|u′n(σ)|,

is bounded, then lim
n→+∞

un(s) = u∗(s).

2. If a ∈ R
∗ and lim

n→+∞
cn = 0, then lim

n→+∞
un(s) = u

|a|
− (s) = |a|3u−(sa−2).

3. If a = +∞ and lim
n→+∞

cn
an

= 0, then lim
n→+∞

un(s) = +∞.

Proof of Theorem 2.2, item 4. Set un = u( · ;αn,−1, γn), an = u′n(0−) and cn = un(0−).
We define un(0) by its limit cn if necessary.

By the continuous dependence of solutions of ODEs with respect to initial conditions, we have
for all s < 0 fixed, un(s) → u−(s) and u′n(s) → u′−(s) as n→ +∞. Since un is convex on [−1, 0],
un has a minimum at some sn ∈ (−1, 0] that satisfies limn→+∞ sn = limn→+∞ un(sn) = 0.
Besides, integrating

αn ≤ u′n(s) ≤ an, (5.21)

on [sn, 0], we obtain
−αnsn ≤ cn − un(sn) ≤ −ansn. (5.22)

Case 1. Suppose first that cn is non zero for an infinite number of values of n. Considering a
subsequence if necessary, we may assume without loss of generality that cn > 0 for all n.
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If (an) were unbounded, then considering once again a subsequence if necessary, we may
assume without loss of generality that (an) is a positive sequence that tends to +∞ as n→ +∞,
hence cn

an
→ 0 by (5.22). By Lemma 5.2, item 3, we would obtain a contradiction with un(−1) =

γn → u−(−1). This shows that the sequence (an) is bounded. From (5.22), the sequence (cn)
tends to 0. Let a be one of the cluster points of (an).
• If a = 0, then because of (5.21), the assumptions of Lemma 5.2, item 1 would be satisfied.
Since u− and u∗ cannot coincide on the whole [−1, 0), we obtain once again a contradiction.

• If a 6= 0, then item 2 of Lemma 5.2 yields u− = u
|a|
− on [−1, 0), hence |a| = 1.

Case 2. If cn is non-zero only for a finite number of values of n, then considering once again
a subsequence if necessary, we may assume without loss of generality that cn = 0 for all n,
therefore either un belongs to the family (uσ

−)σ>0 or un = u∗. Since un → u− on [−1, 0), it
follows that for all n large enough, un = uσn

− for some σn ∈ (0,+∞) and necessarily σn → 1 as

n→ +∞. Therefore, an =
(
uσn
−
)′

(0−) = −σn → −1. �

The proof of Lemma 5.2 needs two technical results. The first one (Proposition 5.3) follows
from elementary computations. The second one (Proposition 5.4) uses the deep asymptotic
result given by Proposition 2.3.

Proposition 5.3. Let a < 0. Let (an)n∈N, (bn)n∈N, (cn)n∈N be sequences such that an < 0,
bn ≤ 0, cn > 0, lim

n→+∞
an = a, lim

n→+∞
bn = 0, lim

n→+∞
cn = 0 and lim

n→+∞
bn ln cn = 0. Then, for all

s < 0, we have
lim

n→+∞
u(s; an, bn, cn) = −a3u−(sa−2).

Proof. The solution un(s) := u(s; an, bn, cn) is defined for all s < 0 and satisfies un(s) > 0.
Thus we have u′′n(s) = − s

un(s) > 0. Integrating twice we obtain

un(s) ≥ cn + an(s− bn), for all s < 0, (5.23)

hence 0 < u′′n(s) ≤ −s
cn+an(s−bn) for all s < bn. Integrating once we obtain for all s < bn

an − 1

an
(s− bn) +

cn − anbn
a2

n

ln
an(s− bn) + cn

cn
≤ u′n(s) ≤ an. (5.24)

Integrating once again we obtain for all s < bn

un(s) ≤ cn + an(s− bn) − 1

2an
(s− bn)2

+
cn − anbn

a3
n

(
(an(s− bn) + cn) ln

an(s− bn) + cn
cn

− an(s− bn)

)
. (5.25)

Since bn ln cn → 0 as n→ +∞, a close examination of (5.24) and (5.25) shows that the sequence
(un) is uniformly equicontinuous and bounded on [−1,−δ] for all δ > 0 and n large enough.
Therefore, some subsequence unk

converges to some function u, which is a solution of (2.2),
because

u′′(s) = lim
k→+∞

u′′nk
(s) = lim

k→+∞

(
− s

unk
(s)

)
= − s

u(s)
,

uniformly on each compact subset of [−1, 0). Going to the limit in equations (5.23) and (5.25),
we obtain as ≤ u(s) ≤ as− 1

2as
2 for all s < 0. We deduce that u(0−) = 0 and u′(0−) = a. By the

uniqueness of uσ
− : s 7→ σ3u−(σ−2s) as solution of (2.2) with condition uσ

−(0−) = 0,
(
uσ
−
)′

(0−) =
−σ, we obtain that u = uσ

− with σ = −a.
We proved that any cluster point of the uniformly equicontinuous sequence (un) has to be

equal to this u, hence (un) converges to u. �
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Proposition 5.4. Assume that a > 0 and ε > 0. Then u(s; a, 0, ε) reaches its minimum at
s = −κ(ε), where κ(ε) > 0 and, as ε→ 0, we have

κ(ε) =
ε

a
(1 + o(1)) and u(−κ(ε); a, 0, ε) = exp

(
− a3

2ε

(
1 + o(1)

))
.

Moreover, we have

u(εs; a, 0, ε) = ε (|as+ 1| + o(1)) and u′(εs; a, 0, ε) = a sgn(as+ 1) + o(1)

as ε→ 0, uniformly on any compact subset of (−∞,− 1
a) ∪ (− 1

a , 0].

Proof. Let us set c(ε) = u(−κ(ε); a, 0, ε). For convenience, we omit the dependence in ε of κ
and c and we write o(1) for a function of ε tending to 0 with ε. By the similarity property (2.5),
we have

u(εs; a, 0, ε) = κ3/2u
(εs
κ

;
a

κ1/2
, 0,

ε

κ3/2

)
.

On the other hand, we have

u(εs; a, 0, ε) = u(εs; 0,−κ, c) = κ3/2u
(εs
κ

; 0,−1,
c

κ3/2

)
. (5.26)

Thus, u′
(
0; 0,−1, c

κ3/2

)
= a

κ1/2 and u
(
0; 0,−1, c

κ3/2

)
= ε

κ3/2 . Formula (3.3) with s0 = −κ and
s = 0 yields

a =

∫ 0

−κ

−η
u(η; a, 0, ε)

dη.

Since c ≤ u(s; a, 0, ε) ≤ ε for all s ∈ [−κ, 0], we have κ2

2ε ≤ a ≤ κ2

2c . Hence, 0 < κ ≤
√

2εa and
c

κ3/2 ≤
√

κ
2a . Thus, c

κ3/2 = o(1). By Proposition 2.3 we have

a

κ1/2
=

√
2 ln

κ3/2

c
(1 + o(1)) and

ε

κ3/2
=

√
2 ln

κ3/2

c
(1 + o(1)), (5.27)

hence κ = ε
a(1 + o(1)). From (5.27) we deduce

a2

κ
=
(
2 ln

1

c
+ 3 lnκ

)
(1 + o(1)) =

(
2 ln

1

c

)
(1 + o(1)),

thus,

c = exp
(
− a2

2κ
(1 + o(1))

)
= exp

(
− a3

2ε
(1 + o(1))

)
.

From (5.26), (5.27), Proposition 2.3 and ε
κ = a(1 + o(1)), we have

u(εs; a,0, ε) = κ3/2u
(
as(1 + o(1)); 0,−1,

c

κ3/2

)

= κ3/2

√
2 ln

κ3/2

c

∣∣as(1 + o(1)) + 1
∣∣(1 + o(1)) = ε(|as+ 1| + o(1)),

uniformly on any compact subset of (−∞,− 1
a)∪ (− 1

a , 0]. Similarly, from (5.27) and Proposition
2.3, we have

u′(εs; a, 0, ε) = κ1/2u′
(
as(1 + o(1)); 0,−1,

c

κ3/2

)

= κ1/2

√
2 ln

κ3/2

c
sgn(as(1 + o(1)) + 1)(1 + o(1))

= a sgn(as+ 1) + o(1),

uniformly on any compact subset of (−∞,− 1
a) ∪ (− 1

a , 0]. This completes the proof. �

Proof of Lemma 5.2. Let s ∈ [0, 1) be fixed.
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1. By contradiction, if it were not the case, then there would exist a subsequence (unk
(s))n∈N

such that any possible cluster point would be different from u∗(s). However, the sequence of
functions (unk

)n∈N is uniformly equicontinuous and bounded on [−1, 0], therefore has at least a
cluster point u which is a Crocco solution and satisfies u(0−) = u′(0−) = 0. This would imply
u = u∗ and the contradiction.

2. If a < 0, the result follows from Proposition 5.3 with bn = 0. If a > 0, let bn = −2 cn
an

,

ãn = u′n(bn) and c̃n = un(bn). Set rn = an
a . From (2.5), we have

c̃n = r3nu(εnσ; a, 0, εn) with σ = − 2
a , εn = r−3

n cn → 0.

By Proposition 5.4, we have

c̃n = r3nεn
(
|aσ + 1| + o(1)

)
= cn(1 + o(1)).

Thus, c̃n ∼ cn → 0 and bn ln c̃n → 0. Similarly, we prove that ãn → −a. Since un(s) =
u(s; ãn, bn, c̃n), the result follows from Proposition 5.3.
3. We have un(s) = a3

nu(sa
−2
n ; 1, 0, cna

−3
n ) and cna

−3
n → 0 as n→ +∞. Therefore, by Proposi-

tion 5.4, un has a minimum at some sn satisfying

sna
−2
n = −cna−3

n (1 + o(1)),

hence, sn = −cna−1
n (1 + o(1)). Again from Proposition 5.4, we obtain that un takes the value

cn at another point s̃n < 0 satisfying

s̃n = −2cna
−1
n (1 + o(1)) and ãn := u′n(s̃n) = −an(1 + o(1)).

Since, un(s) ≥ −ãn(s− s̃n) + cn, we obtain un(s) → +∞ as n→ +∞.

5.3. Last proofs.
Proof of Theorem 2.2, item 1. Let u denote the solution of (2.2 - 2.3) with b < 0 and c > 0.

By Proposition 3.1, u is defined at least on [b, 0). By (2.11) we have u(s) = (−s)3/2y(− ln(−s)),
and by Theorem 2.4 item 1, y(t) → 2√

3
as t → −∞. It follows that u is defined at least on

(−∞, b] and u(s) ∼ 2√
3
(−s)3/2 as s → −∞. Section 9.2 contains an alternative proof that uses

only the Crocco equation. �

Proof of Theorem 2.2, item 2. For an existence proof, let (x, y) ∈ Γ∞. Thanks to Theorem
2.4, item 4 (2), the Crocco solution ux,y := u( · ;x,−1, y) satisfies ux,y(0

−) = 0 and u′x,y(0
−) =

−δ < 0. Now, the solution u− : s 7→ δ−3ux,y(δ
2s) satisfies u−(0−) = 0 and u′−(0−) = −1. For

any σ > 0, the Crocco solution uσ
− : s 7→ σ3u−(σ−2s) satisfies uσ

−(0−) = 0 and (uσ
−)′(0−) = −σ.

Uniqueness follows from the fact that Γ∞ corresponds to a unique family (uσ)σ>0 of solutions
of the Crocco equation. �

Proof of Theorem 2.5. The continuity outside of Γ∞ ∪ {S∗} comes from the fact that Λ is
non-zero on this set (see Theorem 2.4, item 4) and from Proposition 3.2. The continuity at S∗

will be shown at the end of the proof.
We now study the discontinuity on Γ∞. Consider first the point (a, c) where a = u−(−1) and

c = u′−(−1). Let (αn, γn)n∈N be a sequence tending to (a, c) either from the convex side of Γ∞, or
from its concave side (this means in particular (αn, γn) /∈ Γ∞). Let us set un = u( · ;αn,−1, γn),
an = u′n(0) and cn = un(0) > 0. Let us notice that

Λ̃(αn, γn) = Λ(αn,−1, γn) = Λ(an, 0, cn).

Let kn = a3
n

cn
. By Theorem 2.4, items 5 and 6, we have kn → −∞ on the convex side and

kn → +∞ on the concave side, as n→ +∞. Therefore, cn = k−1
n a3

n → 0 on both sides.
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By Theorem 2.2, item 4, the sequence (an)n∈N is bounded and has at most two cluster points:
−1 and 1. Without loss of generality, we can assume that an 6= 0. Since kn is positive on the
concave side and negative on the convex side of Γ∞, we obtain that:

• On the convex side, an has only −1 has a cluster point and is bounded, hence tends to
−1. Since the solution un is concave for s > 0 we have Λ(an, 0, cn) ≤ − cn

an
→ 0.

• On the concave side, u′n(0) tends to +1, hence from Proposition 3.3 we obtain

Λ(an, 0, cn) = a2
nΛ(1, 0, k−1

n ) → λ+.

For another point (a, c) on Γ∞, let t be such that a = x−(t), c = y−(t). By (2.16), the

discontinuity of Λ̃ at (a, c) is equal to λ+e
t.

As the point (a, c) → S∗, then t→ −∞ and the discontinuity tends to 0. This implies that Λ̃
is continuous at S∗.

Proof of Proposition 2.6, items 2. In this proof, the notation a1 refers to Proposition 1.1,
item 2, i.e., a1 is the first point counted from the right of intersection of Γ∞ and I∞ (defined
by y = − 2

x), the first branch of the orbit Γ∞ included in the North region is the graph of the
function y = R1(x) defined for x ≤ a1, see Figure 8, right. Let ψ be the function defined for
a < 0 by

ψ(a) = −2

a
if a ∈ [a1, 0), ψ(a) = R1(a) if a ≤ a1.

We have to prove that for all a < 0, Λ̃a : c 7→ Λ(a,−1, c) is increasing on [ψ(a),+∞).
Let a < 0 and c2 > c1 > ψ(a). Let ui(s) = u(s; a,−1, ci), i = 1, 2, and let (xi(t), yi(t)) denote

the corresponding solutions of system (2.12). Since the orbit of (x1, y1) is on the left of the one

of (x2, y2), we deduce that k1 < k2(< 0), where ki =
u′i(0)3

ui(0)
. Thus we have

u′1(0) < σu′2(0), where σ :=

(
u1(0)

u2(0)

)1/3

. (5.28)
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s0−1

c2r

c1r

Figure 23. On the left: two solutions of (2.12) with initial conditions on the same
vertical ray. If their associated Crocco solutions (on the right) were crossing, then this
would yield a contradiction.

By contradiction, let us suppose that there exists s ∈ [−1, 0] such that u1(s) ≥ u2(s) and
consider

s0 := inf{s > −1 : u1(s) ≥ u2(s)}.
Then, we have u1(s0) = u2(s0) and u1(s) < u2(s) for all s ∈ [−1, s0), hence u′2(s0) ≤ u′1(s0).
This means that y1(t0) = y2(t0) and x1(t0) ≥ x2(t0), where t0 = − ln(−s0). This is impossible
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(see Figure 23) and thus u1(s) < u2(s) for all s ∈ [−1, 0] and then u1(0) < u2(0). Consequently
σ < 1, hence from item 1 of this Proposition 2.6 and (5.28) we obtain

Λ̃(a, c1) = Λ(a,−1, c1) = Λ(u′1(0), 0, u1(0)) < Λ(σu′2(0), 0, u1(0))

<
1

σ2
Λ(σu′2(0), 0, u1(0)) =

1

σ2
Λ(σu′2(0), 0, σ3u2(0))

= Λ(u′2(0), 0, u2(0)) = Λ(a,−1, c2) = Λ̃(a, c2). (5.29)

Proof of Proposition 2.6, item 3. The proof is very similar to that of item 2. Let c1 be the
first point (counted from below) of intersection of Γ∞ and I0 (defined by y = −2

3x), so that the
first branch of the orbit Γ∞ included in the East and in the North regions is the graph of the
function x = x∞(y) introduced in Section 4.2 and defined for y ≥ c1. Observe that x∞ is the
inverse function of R1 introduced in Section 2.4 only on the interval

[
− 2

a1
,+∞

)
. Let φ be the

function defined for c > 0 by

φ(c) = −3c

2
if c ∈ (0, c1], φ(c) = x∞(c) if c ≥ c1.

Let c > 0 and a2 > a1 > φ(c). We have to prove that Λ̃(a1, c) < Λ̃(a2, c).
Consider ui = u( · ; ai,−1, c), i = 1, 2 and let (xi(t), yi(t)) denote the corresponding solutions

of (2.12). Since the orbit of (x1, y1) is on the left of the one of (x2, y2), we have k1 < k2, where

ki =
u′i(0)3

ui(0)
. Thus we have

u′1(0) < σu′2(0), with σ :=

(
u1(0)

u2(0)

)1/3

. (5.30)

As before, we prove by contradiction that u1(s) < u2(s) for all s ∈ [−1, 0]. A fortiori we have

u1(0) < u2(0), and thus σ < 1. Item 1 and (5.30) yield Λ̃(a1, c) < Λ̃(a2, c) similarly to (5.29).

Proof of Proposition 2.7. We use the notation u = u( · ; a,−1, c). Concerning formula (2.17),
by Proposition 2.3 we have

u(0) ∼
√

2 ln
1

c
and u′(0) ∼

√
2 ln

1

c
as c→ 0,

hence u(0)
u′(0)3

→ 0 as c→ 0. Then by the similarity (2.15):

Λ̃(a, c) = Λ(a,−1, c) = Λ(u′(0), 0, u(0))

= u′(0)2Λ

(
1, 0,

u(0)

u′(0)3

)
∼ u′(0)2λ+ ∼ 2λ+ ln

1

c
.

Formula (2.18) results from Proposition 3.4 with b = −1.

6. Canard solutions

Two important properties of the Crocco equation are, on the one hand the behavior of solu-
tions starting close to u− at t = −1, as expressed in Theorem 2.2 item 4, and on the other hand
the behavior of solutions starting close to 0 at t = −1, as described in Proposition 2.3. In the
previous section, we first proved in details Proposition 2.3, then deduced Proposition 5.4, and
finally deduced Theorem 2.2 item 4. As a consequence, both properties are closely related, and
the link is the invariance property (1.3).
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In this section, we present another proof of these results, based on the asymptotic behavior,
as ε→ 0+, of solutions of the ODE with small parameter ε > 0

U
d2U

dS2
+ εS = 0. (6.1)

We will describe the solutions of this equation and deduce Proposition 2.3 and Proposition 5.4
from this study. We hope that this alternative viewpoint will help the reader to have a new
insight of the asymptotic properties of Crocco solutions.

Equation (6.1) can be transformed into a slow-fast system (see system (6.9) below) which
has canard solutions. Canard solutions are special trajectories of slow-fast systems that first
move near the stable part of the slow manifold, then move near the unstable part of it. These
solutions were first discovered by E. Benôıt, J.-L. Callot, F. Diener and M. Diener and studied in
the framework of Non-standard Analysis, see [6, 16, 56] for historical comments and references.
Related to canard solutions is also the important phenomenon of stability loss delay in dynamical
bifurcations, see [2] pp. 179-192 and [5]. The study of canard solutions has also been made in the
framework of classical asymptotic analysis [18], center manifold theory [17] and Gevrey complex
asymptotics [20].

In the present context, the situation is particularly simple and does not need the whole theory
of canards. Therefore, we provide a complete proof.

6.1. Canard solutions of equation (6.1). We have the following result.

Theorem 6.1. 1. Let A ∈ R, B ≤ 0 and C > 0 be given and let U(S, ε) denote the solution of
(6.1) with initial conditions

U(B) = C,
dU

dS
(B) = A. (6.2)

Then we have

U(S, ε) = |A(S −B) + C| + o(1) and
dU

dS
(S, ε) = A sgn(A(S −B) + C) + o(1),

as ε→ 0, uniformly for S in any compact subset of (−∞, 0] \ {B − C/A}.
If A < 0 and AB −C > 0 (or A > 0), then U(S, ε) reaches its minimum at K(ε) < 0 satisfying

K(ε) = B − C

A
+ o(1) and U(K(ε), ε) = exp

(
A3 + o(1)

2(AB − C)ε

)
, (6.3)

as ε→ 0.

2. Let A ∈ R and K < 0 be given and let U(S, ε) denote a solution of (6.1) with initial
conditions satisfying

U(K) = exp

(
A2 + o(1)

2Kε

)
,

dU

dS
(K) = o(1). (6.4)

Then we have

U(S, ε) = |A(S −K)| + o(1) and
dU

dS
(S, ε) = |A|sgn(S −K) + o(1),

as ε→ 0, uniformly for S in any compact subset of (−∞,K) ∪ (K, 0].

A complete proof of this result will be given in Section 6.2 ; we give here an idea of proof
of item 1. Except near the axis U = 0, and for bounded values of S, U ′′ is close to 0, i.e., the
solutions are almost affine. Therefore, as long as A(S − B) + C is positive, the approximation
(6.3) is valid and quite natural indeed. What is less obvious is that the solution satisfies the
same approximation after its passage near the axis, like a light ray reflecting on a mirror.
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Figure 24. Above: schematic graphs of the solution of (6.1 - 6.2) in the limit ε → 0,
respectively in the variables (S,U), the variables (U, V ) and (S, V ). Below: the numerical
solution corresponding to ε = 0.1, A = −2, B = −1 and C = 1.

To see what happens near U = 0, the best way is first to rewrite (6.1 - 6.2) as a first order
initial value problem

dU

dS
= V,

dV

dS
= −ε S

U
, U(B) = C, V (B) = A, (6.5)

and then to choose V as independent variable, i.e.,

ε
dS

dV
= −U

S
, ε

dU

dV
= −V U

S
, S(A) = B, U(A) = C. (6.6)

Consider for instance the case A,B < 0 and C < AB. Then, in the U, V variables, V remains
close to A until U is close to 0, where V suddenly changes its value from its entry value A to
some exit value, meanwhile U and S remain almost constant, respectively close to 0, and close
to S0 = B − C

A < 0, see Figure 24. With this approximation for S = S(V ), the second equation
of (6.6) appears as a singularly perturbed ODE exhibiting canards with a symmetric entry-exit
relationship. Actually, this second equation can be rewritten in the integral form

U(V ) = U(0) exp
(
− 1

ε

∫ V

0

v dv

S(v)

)
= U(0) exp

(
− V 2(1 + o(1))

2
(
B − C

A

)
ε

)
,

as long as U(V ) is small. In fact, this approximation remains valid in the boundary layers

located near V = ±A. Using V (A) = C = exp(o(1)
ε ), we deduce that U(0) is exponentially small

compared to ε. Precisely we have

U(0) = exp
(A2(1 + o(1))

2
(
B − C

A

)
ε

)
.

It follows that U(V ) is exponentially small for all fixed V ∈ (A,−A) and that U is bounded
below for some V close to −A, i.e., with a reflection angle opposite to the incident angle. We
refer the reader to the next section for a more precise and complete proof.

6.2. Proof of Theorem 6.1. For the sake of simplicity, the notation o(1) implicitely means
‘as ε→ 0’.

Proof of item 1. The solution U of (6.1 - 6.2) is defined for all S < 0, and satisfies U(S, ε) > 0.
If both A < 0 and AB − C < 0, then U is decreasing. If A < 0 and AB − C > 0 (or A > 0),
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then there exists K(ε) < 0 such that U is decreasing on (−∞,K(ε)] and increasing on [K(ε), 0).
Assume that A < 0 and AB−C > 0 (the other cases are similar). By the continuous dependence
of the solutions with respect to the parameters, for all L and B0, such that L < B0 < B − C

A ,
we have

dU

dS
(S, ε) = A+ o(1) and U(S, ε) = A(S −B) + C + o(1), (6.7)

uniformly for S ∈ [L,B0]. Notice that L and B0 are fixed but may be chosen as close to −∞,
resp. B − C

A , as we want. The problem now is to determine the asymptotic behavior of U(S, ε)

for S ≥ B0. Consider (6.5). Since dV
dS > 0 for all S < 0 and U > 0, we can use V as an

independent variable. Hence, for all S < 0 and U > 0, the functions S(V, ε) and U(V, ε) are
solutions of (6.6). Notice that

S(V ) = constant, U(V ) = 0, (6.8)

are solutions of the system in (6.6) but these solutions do not correspond to actual solutions of
the system in (6.5). Let us study the asymptotic behavior of the solutions which satisfy U > 0.
In order to transform system (6.6) into a slow-fast system in R

3 with two slow variables and one
fast variable, we use the variable T = V S − U instead of U . Then (6.6) becomes

ε
dS

dV
=
T − V S

S
,

dT

dV
= S, S(A) = B, T (A) = AB − C. (6.9)

6T

*
S

jV

r(A,B,AB−C)
**

s

**

Figure 25. The approximation of the solution of problem (6.9) given by Tikhonov’s
theory.

This is a singularly perturbed system whose slow manifold is the surface defined by T = V S.
This slow manifold is attracting for V < 0 and repulsive for V > 0. Tikhonov’s theorem
(see [45, 38] and [52] Section 39) describes the behavior of the solution (S(V, ε), T (V, ε)) of
(6.9) in the following manner. There is a fast transition (see Figure 25) taking the trajec-
tory (V, S(V, ε), T (V, ε)), from its initial point (A,B,AB − C), to a o(1)-neighborhood of the
point

(
A,B − C

A , AB − C
)

of the slow manifold, followed by a slow transition near the solution

S0(V ) = B − C
A , T0(V ) =

(
B − C

A

)
V of the reduced problem

S =
T

V
,

dT

dV
= S, T (A) = AB − C.

More precisely, for any A0 and A1, such that A < A0 < A1 < 0, we have

S(V, ε) = B − C

A
+ o(1) uniformly for V ∈ [A0, A1], (6.10)

T (V, ε) =

(
B − C

A

)
V + o(1) uniformly for V ∈ [A,A1].



44 Bernard Brighi, Augustin Fruchard and Tewfik Sari

Notice that A0 (resp. A1) is fixed but may be chosen as close to A (resp. 0) as we want. The
approximation for S does not hold near A because of the boundary layer at A. We deduce that

U(V, ε) = V S(V, ε) − T (V, ε) = o(1) uniformly for V ∈ [A0, A1]. (6.11)

A priori, Tikhonov’s theorem applies only for V < 0, because if V > 0, then the slow manifold
becomes repulsive. However, we will see that (6.11) still holds for positive values of V . This is
the so-called bifurcation delay [5]. The slow manifold is foliated by the explicit solutions

S(V ) = S0 = constant, T (V ) = V S0,

corresponding to the solutions (6.8). These solutions are canard solutions: they follow the
attracting part, then the repulsive part, of the slow manifold. Knowing the entry value V = A
of the solution T (V, ε) in a small neighborhood of the slow manifold, we want to compute the
exit value for which the solution is again far from the slow manifold. Since U = V S − T > 0,
we use the new variable W = ε lnU . Then (6.6) becomes

dS

dV
= −eW/ε

εS
,

dW

dV
= −V

S
, (6.12)

with initial conditions

S(A, ε) = B, W (A, ε) = ε ln(C). (6.13)

Since W < 0 and S < 0, we have

lim
ε→0

eW/ε

εS
= 0. (6.14)

Thus (6.12) is a regular perturbation of

dS

dV
= 0,

dW

dV
= −V

S
. (6.15)

Let S0,W0 < 0 be fixed. By the continuous dependence of the solutions with respect to

–5

–4

–3

–2

–1

1

–2 –1 1 2

-
V

6W

Figure 26. On the left: the vector field (6.15) in restriction to the invariant plane
S = S0. On the right: the numerical solution of (6.12) corresponding to ε = 0.1,
A = −2, B = −1 and C = 1 in the variables V,W .

parameters, any solution (S(V, ε),W (V, ε)) of (6.12) such that S(0, ε) = S0 +o(1) and W (0, ε) =
W0 + o(1), satisfies

S(V, ε) = S0 + o(1) and W (V, ε) =
−V 2

2S0
+W0 + o(1), (6.16)
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uniformly for V in any compact subset of (−V0, V0), where V0 =
√

2S0W0, see Figure 26. If
in addition the solution satisfies the initial condition (6.13), then the values of S0 and W0 are
obtained from (6.10) and from ε ln(C) = o(1). As a consequence, we have

S(V, ε) = B − C

A
+ o(1), W (V, ε) =

A(A2 − V 2)

2(AB − C)
+ o(1),

uniformly for V ∈ [A0,−A0]. Hence, we have U(V, ε) = o(1) uniformly for V ∈ [A0,−A0]. Recall
that U = V S − T represents the ‘vertical distance’ between the solution of (6.9) and the slow
manifold T = V S. Since A0 may be chosen as close to A as we want, we conclude that the exit
of the solution from the neighborhood of the slow manifold holds asymptotically for V = −A.
In other words, U(S, ε) is far away from 0 for S ≥ B1 > B − C

A , where B1 is as close to B − C
A

as we want and we have

V (S, ε) = −A+ o(1) uniformly for S ∈ [B1, 0]. (6.17)

Since U
(
B − C

A , ε
)

= o(1), we have

U(S, ε) = −A
(
S −B +

C

A

)
+ o(1) uniformly for S ∈ [B1, 0]. (6.18)

Using (6.7), (6.17) and (6.18) we conclude that

U(S, ε) = |A(S −B) + C| + o(1),
dU

dS
(S, ε) = A sgn(A(S −B) + C) + o(1),

uniformly for S ∈ [L,B0]∪[B1, 0], see Figure 24. The minimum of U(S, ε) is reached for S = K(ε)
which corresponds to V = 0. Hence,

K(ε) = B − C

A
+ o(1), U(K(ε), ε) = exp

(
W (0, ε)

ε

)
= exp

(
A3 + o(1)

2(AB − C)ε

)
.

Proof of item 2. Let U = U(S, ε) be a solution of (6.1) with initial conditions satisfying (6.4).
In the variables (V, S,W ), we have

dS

dV
= −eW/ε

εS
,

dW

dV
= −V

S
, S(V0) = K, W (V0) =

A2 + o(1)

2K
,

where V0 := dU
dS (K) = o(1). Using (6.14) and the continuous dependence of the solutions with

respect to parameters and initial conditions, we deduce that, for any A0 such that 0 < A0 < |A|,
we have

S(V, ε) = K + o(1) and W (V, ε) =
A2 − V 2

2K
+ o(1),

uniformly for V ∈ [A0,−A0]. It follows that U(V, ε) = o(1) uniformly for V ∈ [A0,−A0]. Since
A0 may be chosen as close to |A| as we want, we deduce that the entry of the corresponding
solution (V, S(V, ε), T (V, ε)) near the slow manifold T = SV holds for V = −|A| and its exit
holds asymptotically for V = |A|. In other words, U(S, ε) is far away from 0 for S ≤ B0 < K
and S ≥ B1 > K, where B0 and B1 are as close to K as we want. Thus, we have

V (S, ε) = |A|sgn(S −K) + o(1), U(S, ε) = |A(S −K)| + o(1),

uniformly for S ∈ [L,B0] ∩ [B1, 0].
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6.3. From Theorem 6.1 to Propositions 5.4 and 2.3.
Proof of Proposition 5.4. The solution u(s; a, 0, ε) is defined for all s ≤ 0 and is positive.
The function U(S, ε), defined by

U(S, ε) =
1

ε
u (εS; a, 0, ε),

is the solution of the initial value problem

U
d2U

dS2
+ εS = 0, U(0) = 1,

dU

dS
(0) = a.

By Theorem 6.1, item 1, U(S, ε) reaches its minimum at K(ε), with K(ε) < 0 and we have

K(ε) = −1

a
+ o(1), U(K(ε), ε) = exp

−a3 + o(1)

2ε
as ε→ 0.

Hence, as ε→ 0, we have κ(ε) = −εK(ε) = ε(1/a+ o(1)) and, using

ε = exp
ε ln ε

ε
= exp

o(1)

ε
,

we obtain

c(ε) := u(−κ(ε), ε) = εU(K(ε), ε) = ε exp
−a3 + o(1)

2ε
= exp

−a3 + o(1)

2ε
.

Given L < 0, we have

U(S, ε) = |aS + 1| + o(1) and
dU

dS
(S, ε) = a sgn(aS + 1) + o(1),

uniformly for S in any compact subset of [L,−1/a) ∪ (−1/a, 0]. As a consequence, we have

u(εS; a, 0, ε) = ε (|aS + 1| + o(1)) and u′(εS; a, 0, ε) = a sgn(aS + 1) + o(1),

uniformly for S in any compact subset of [L,−1/a) ∪ (−1/a, 0]. �

Proof of Proposition 2.3. The solution u(s; a,−1, c) is defined for all s < 0 and is positive.
The function U(S, ε), defined by

U(S, ε) =
√
εu (S; a,−1, c), where

1

ε
= 2 ln

1

c
,

is the solution of the initial value problem

U
d2U

dS2
+ εS = 0, U(−1) =

√
ε exp

−1

2ε
,

dU

dS
(−1) =

√
εa.

By Theorem 6.1, item 2, we have

U(S, ε) = |S + 1| + o(1) and
dU

dS
(S, ε) = sgn(S + 1) + o(1),

uniformly for S in any compact subset of (−∞,−1) ∪ (−1, 0], as ε → 0. Hence, as c → 0, we
have

u(s; a,−1, c) =
1√
ε

(|s+ 1| + o(1)) ,

and

u′(s; a,−1, c) =
1√
ε

(sgn(s+ 1) + o(1)) ,

uniformly for s in any compact subset of (−∞,−1) ∪ (−1, 0]. �
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7. From Crocco to Blasius

In this section, we investigate the way to recover a solution of the Blasius initial value problem
(1.5) from a Crocco solution, and also to obtain the asymptotic behavior of Blasius solutions
from the one of Crocco solutions. Our point of view, here, is to forget what we know about
Blasius solutions, and to show that the properties of these solutions can be deduced from the
properties of Crocco solutions. Some of the results of this section were obtained by J. Wang, W.
Gao and Z. Zhang [51] in the more general case of the Falkner-Skan equation but with restrictive
boundary conditions.

Proposition 7.1. Let c > 0 and u = u( · ; a, b, c) be the solution of

u′′ = − s

u
, u(b) = c, u′(b) = a, (7.1)

and let [b, L(a, b, c)) denote its right maximal interval of existence.

1. Set λ = L(a, b, c). Then λ ∈ [0,+∞) and u(s) → 0 as s→ λ, s < λ. In addition, if λ > 0,
then u′(s) → −∞ as s→ λ, s < λ, and we have

u′(s) ∼ −
√
−2λ ln(λ− s) and u(s) ∼ (λ− s)

√
−2λ ln(λ− s), (7.2)

as s→ λ, s < λ.

2. The solution f of the second order initial value problem

f ′′ = u(f ′), f(0) = −a, f ′(0) = b, (7.3)

is the solution of (1.5). The function f is defined on [0,+∞) and is given by

f(t) = −a+

∫ t

0
g(τ)dτ, (7.4)

where g is implicitly defined by

t =

∫ g(t)

b

dη

u(η)
. (7.5)

Moreover, f ′(t) → L(a, b, c) as t→ +∞.

Remark. The interesting property of Crocco solutions (7.2) is somewhat surprising insofar as
the asymptotic behavior is not sufficient to separate different solutions with the same λ, see
Figure 27.
Proof. Let us notice that u is convex on [b, λ) ∩ (−∞, 0] and concave on [b, λ) ∩ [0,+∞).

1. First, we show that λ is finite. For contradiction, suppose that λ = +∞. Since u is
positive, and concave on [b,+∞) ∩ [0,+∞), we necessarily have u′ > 0 on this interval. Let
s0 ∈ [b,+∞) ∩ [0,+∞). Using (3.3) and the concavity of u we obtain

−u′(s0) < u′(s) − u′(s0) = −
∫ s

s0

η

u(η)
dη < −

∫ s

s0

η

u(s0) + u′(s0)(η − s0)
dη,

for all s > s0, hence, with α0 = s0 − u(s0)
u′(s0) , we derive

u′(s0)
2 >

∫ s

s0

η

η − α0
dη = s− s0 + α0 ln

s− α0

s0 − α0
,

for all s > s0. Since the right hand side of this inequality tends to +∞ as s→ +∞, this gives a
contradiction. Hence, λ is finite and necessarily, by (7.1), we have u(s) → 0 as s→ λ, s < λ.
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Figure 27. Several Crocco solutions with the same maximal right boundary λ = 1.
All of them have the same asymptotic behavior near λ, given by (7.2).

Next, we show that λ ≥ 0. On the contrary, choosing s0 ∈ [b, λ) such that u(s) < 1 for
s ∈ [s0, λ), and using (3.6) we obtain for such a s

−u′(s0)2 ≤ u′(s)2 − u′(s0)
2 = −2s lnu(s) + 2s0 lnu(s0) + 2

∫ s

s0

lnu(η)dη

≤ −2s lnu(s) + 2s0 lnu(s0),

which gives a contradiction since −2s lnu(s) → −∞ as s→ λ.
Moreover, for λ > 0, the concavity of u close to λ shows that u′(s) → µ ∈ [−∞, 0) as s→ λ.

If µ is finite, then u(s) ∼ µ(λ − s) as s → λ, hence identity (3.3) gives a contradiction. Thus
µ = −∞. It remains to prove (7.2). Since u(s) → 0 and u′(s) → −∞ as s → λ, the integral∫ λ

lnu(η)dη converges, and then from (3.6) we easily obtain that u′(s)2 ∼ −2s lnu(s) as s→ λ,
hence

u′(s) ∼ −
√

2λ
√
− lnu(s) as s→ λ. (7.6)

On the other hand, for s close enough to λ, integration by parts gives
∫ λ

s

u′(η)√
− lnu(η)

dη = − u(s)√
− lnu(s)

+
1

2

∫ λ

s

u′(η)

(− lnu(η))3/2
dη,

from which together with (7.6) we obtain

u(s)√
− lnu(s)

∼
√

2λ(λ− s) as s→ λ. (7.7)

Taking the logarithm of each side of (7.7) we arrive to

lnu(s) ∼ ln(λ− s) as s→ λ. (7.8)

Combining (7.6), (7.7) and (7.8) we obtain (7.2).
2. Let f be the solution of problem (7.3). Differentiating with respect to t we obtain f ′′′(t) =

u′(f ′(t))f ′′(t). Using (3.3) we can write

u′(f ′(t)) = a−
∫ f ′(t)

b

η

u(η)
dη
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= a−
∫ t

0

f ′(τ)
u(f ′(τ))

f ′′(τ)dτ = a−
∫ t

0
f ′(τ)dτ = −f(t).

Thus, f is a solution of the Blasius equation f ′′′ = −ff ′′. From (7.3) we obtain f ′′(0) = c.
Hence f is the solution of (1.5). Denote by [0, T ) its right maximal interval of existence.

Since (7.3) is equivalent to integrate successively g′ = u(g) and f ′ = g with the initial
conditions g(0) = b and f(0) = −a, we obtain (7.5) (recall that u > 0, so that, formula (7.5)
defines g(t) implicitly) and (7.4). Moreover, g is the inverse function of

v : s 7→
∫ s

b

dη

u(η)
.

The function v is defined on [b, λ) and v(s) → +∞ as s→ λ. Indeed, in the case λ > 0, thanks

to (7.2) we have u(s) ∼ (λ − s)
√

−2λ ln(λ− s) as s → λ and the integral
∫
0

dx
x
√

ln x
diverges. If

λ = 0, then either u(s) ∼ µs (for some µ < 0) as s→ 0, or u(s) = 2√
3
(−s)3/2, and in both cases,

we obtain v(s) → +∞ as s → 0. Therefore, g and f are defined on [0,+∞) and g(t) = f ′(t)
tends to λ as t→ +∞.

The following result, already given by P. Hartman [26, 27] for λ = 1 (in the more general case
of the Falkner-Skan equation) concerns the asymptotic behavior of the solutions of (1.1 - 1.2). It
can be very easily proved from the behavior near λ of the solution u of (2.2), as described by
(7.2).

Proposition 7.2. Let a, b ∈ R, λ > 0 and f be a solution of the Blasius problem (1.1 - 1.2).
There exist constants κ1 and κ2 in R such that

f ′′(t) ∼ λt(λ− f ′(t)) and λ− f ′(t) ∼ κ1

t
exp

{
− λt2

2
+ κ2t

}
, (7.9)

as t→ +∞.

Proof. Using (7.2) and the relations u(f ′(t)) = f ′′(t) and u′(f ′(t)) = −f(t) we obtain

f ′′(t) = u(f ′(t)) ∼ (λ− f ′(t))
√

−2λ ln(λ− f ′(t)) as t→ +∞, (7.10)

and
f(t) = −u′(f ′(t)) ∼

√
−2λ ln(λ− f ′(t)) as t→ +∞, (7.11)

Combining (7.10), (7.11) and the fact that f(t) ∼ λt as t → +∞, we obtain the first part of
(7.9), and also

ln(λ− f ′(t)) ∼ −λt
2

2
as t→ +∞. (7.12)

In other words,

λ− f ′(t) = exp
{
− λt2

2
(1 + o(1))

}
as t→ +∞. (7.13)

By successive integration, we deduce from (7.13) that there exist constants µ < −a and ν ∈ R

such that

f(t) = λt+ µ+O
(

exp
{
− λt2

2
(1 + o(1))

})
as t→ +∞,

and

F (t) =
λt2

2
+ µt+ ν + o(1) as t→ +∞,

where F is the anti-derivative of f such that F (0) = 0. To conclude, we use (2.1) with τ = 0 to
obtain

f ′′(t) ∼ f ′′(0) exp
{
− λt2

2
− µt− ν

}
as t→ +∞.
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Hence, with κ1 = 1
λf

′′(0)e−ν and κ2 = −µ, the second part of (7.9) follows from the first one.

8. The concave case

Here, the word “concave” refers to Blasius solutions and concerns the boundary value problem
(1.1 - 1.2) with λ < b. Notice that, if f is a concave Blasius solution with associated Crocco
solution u, then t 7→ −f(−t) is a convex Blasius solution with associated Crocco solution −u.
However the boundary value problem has changed and needs a separate treatment.

Let a, b ∈ R, c ∈ (−∞, 0) and f( · ; a, b, c) be the solution of the initial value problem (1.5)
rewritten below

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′′(0) = c.

Denote by [0, Ta,b,c) the right maximal interval of existence of f( · ; a, b, c). Since f ′′( · ; a, b, c) < 0
if c < 0 and f ′′( · ; a, b, 0) = 0 the following limit exists

Λ(a, b, c) := lim
t→Ta,b,c

f ′(t; a, b, c) ∈ [−∞, b).

For c < 0, we associate to f( · ; a, b, c) the Crocco solution u( · ; a, b, c) of (2.2 - 2.3). Precisely,
if c < 0, then the Crocco changes of variable f ′′ = u(f ′) yields u := u( · ; a, b, c) satisfying
u′(f ′) = −f and

u′′ = − s

u
on (Λ(a, b, c), b], u(b) = c, u′(b) = a, u < 0.

Lemma 8.1. Let a, b ∈ R and c ∈ (−∞, 0). If Λ(a, b, c) is finite, then we have Ta,b,c = +∞,
Λ(a, b, c) ≥ 0 and u(s; a, b, c) → 0 as s → Λ(a, b, c), s > Λ(a, b, c). If in addition Λ(a, b, c) > 0,
then u′(s; a, b, c) → −∞ as s→ Λ(a, b, c), s > Λ(a, b, c).

Proof. Let us suppose that Λ(a, b, c) and Ta,b,c are finite. Then f(t; a, b, c) has a limit as t →
Ta,b,c, and due to (2.1), it is so for f ′′(t; a, b, c). This contradicts the fact that f( · ; a, b, c) cannot
be extended after Ta,b,c. Therefore, Ta,b,c = +∞. If now Λ(a, b, c) < 0, then there exists t0 ≥ 0
such that f(t; a, b, c) ≤ −1 for t ≥ t0. From (2.1) we obtain |f ′′(t; a, b, c)| ≥ |f ′′(t0; a, b, c)|et−t0 ,
hence f ′′(t; a, b, c) → −∞, as t → +∞, which contradicts the fact that f ′(t; a, b, c) has a finite
limit as t→ +∞. Finally, we have

lim
s→Λ(a,b,c)

u(s; a, b, c) = lim
t→+∞

f ′′(t; a, b, c) = 0,

and, if Λ(a, b, c) > 0, then

lim
s→Λ(a,b,c)

u′(s; a, b, c) = lim
t→+∞

(−f(t; a, b, c)) = −∞.

This completes the proof.

Remark. From Lemma 8.1, we see that indeed (Λ(a, b, c), b] is the left maximal interval of
existence of u( · ; a, b, c).
Lemma 8.2. Let a ∈ R, b ∈ [0,+∞) and c1, c2 ∈ (−∞, 0) such that one at least among
Λ(a, b, c1) and Λ(a, b, c2) is finite. If c1 < c2, then we have Λ(a, b, c1) < Λ(a, b, c2).

Proof. Suppose c1 < c2 < 0 and Λ(a, b, c1) ≥ Λ(a, b, c2). Hence, Λ(a, b, c1) is finite and
nonnegative by Lemma 8.1. For i = 1, 2 set ui = u( · ; a, b, ci), and w = u2 − u1. We have
w(b) = c2 − c1 > 0, w′(b) = a− a = 0, and

∀ s ∈ (Λ(a, b, c1), b], w
′′(s) = u′′2(s) − u′′1(s) =

−s
u2(s)

+
s

u1(s)
=

sw(s)

u1(s)u2(s)
.
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Figure 28. Concave solutions of Blasius equation (1.1) on the left, the corresponding
Crocco solutions on the right, for a = 1, b = 2 and respectively c = −0.7, c = −1.

Therefore, as long as w is positive, w is convex, and so decreasing in such a way that w remains
greater than c2 − c1 on (Λ(a, b, c1), b]. However,

lim
s→Λ(a,b,c1)
s>Λ(a,b,c1)

w(s) = lim
s→Λ(a,b,c1)
s>Λ(a,b,c1)

u2(s) ≤ 0.

This is a contradiction.

Let us set

c∗(a, b) = sup{c < 0 ; Λ(a, b, c) = −∞}, (8.1)

with the convention sup ∅ = −∞. As a consequence of Lemma 8.2, if c < c∗(a, b), then
Λ(a, b, c) = −∞ and if c ∈ (c∗(a, b), 0), then Λ(a, b, c) is finite.

Lemma 8.3. Let a, b ∈ R. If b ≤ 0, then c∗(a, b) = 0, and if b > 0, then −∞ < c∗(a, b) < 0.

Proof. If b ≤ 0, then for all c < 0, we have Λ(a, b, c) < 0 and using Lemma 8.1 we obtain
Λ(a, b, c) = −∞. Since, moreover Λ(a, b, 0) = b, we deduce c∗(a, b) = 0.

Suppose now b > 0. For c < 0, set u = u( · ; a, b, c). From (3.5) with s0 = b we obtain for
s ∈ (Λ(a, b, c), b] ∩ [0,+∞)

u(s)2 = c2 + 2ac(s− b) + 2

∫ b

s
(η − s)u′(η)2dη − 1

3
(b− s)2(2b+ s) ≥ c2 − 2|ac|b− b3.

Thus, for −c large enough, we obtain that u cannot vanish on [0, b], which implies that Λ(a, b, c) <
0. From Lemma 8.1 we obtain Λ(a, b, c) = −∞ for −c large enough, hence c∗(a, b) > −∞.

To obtain the inequality c∗(a, b) < 0, we have to distinguish between the cases a ≤ 0 and
a > 0. First of all, let us remark that using the convexity of u on (Λ(a, b, c), b] ∩ [0,+∞), we
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have
∀ η ∈ (Λ(a, b, c), b] ∩ [0,+∞), c+ a(η − b) ≤ u(η) < 0. (8.2)

• If a ≤ 0, then (8.2) gives c ≤ u(η) < 0 for η ∈ (Λ(a, b, c), b] ∩ [0,+∞), hence using (3.4) for
s ∈ (Λ(a, b, c), b] ∩ [0,+∞)

u(s) = c+ a(s− b) +

∫ b

s

η(s− η)

u(η)
dη

≥ c+
1

c

∫ b

s
η(s− η)dη = c− 1

6c
(b− s)2(2b+ s). (8.3)

Since the right hand side of (8.3) is positive for s = 0 and −b3/2 < c < 0, we have, for such a c,
that Λ(a, b, c) > 0. Hence, c∗(a, b) < 0.

• If a > 0, then using (8.2) and (3.3), for s ∈ (Λ(a, b, c), b] ∩ [0,+∞), we get

a− u′(s) = −
∫ b

s

η

u(η)
dη ≥ −

∫ b

s

η

c+ a(η − b)
dη.

Hence, for s ∈ (Λ(a, b, c), b] ∩ [0,+∞), we deduce

u′(s) ≤ a+
b

a

∫ b

s

dη

c+ a(η − b)
= a− b

a
ln
(
1 +

a

c
(s− b)

)
.

Integrating, we obtain for s ∈ (Λ(a, b, c), b] ∩ [0,+∞)

u(s) ≥ c−
(
a+

b

a

)
(b− s) − b

a

( c
a

+ s− b
)

ln
(
1 +

a

c
(s− b)

)
. (8.4)

Since the right hand side of (8.4) is positive for s = 0 and −c sufficiently small, we obtain, for
such a c, that Λ(a, b, c) > 0. Hence, c∗(a, b) < 0 in this case too.

Proposition 8.4. If (a, b, c) ∈ R × R × (−∞, 0) is such that Λ(a, b, c) ∈ (0, b), then Λ is
continuous at (a, b, c).

Proof. We have Λ(a, b, c) = inf{f ′(t; a, b, c) ; 0 ≤ t < Ta,b,c}, hence Λ is upper semicontinuous
on R × R × (−∞, 0).

Now, to prove that Λ is lower semicontinuous at (a, b, c) ∈ R × R × (−∞, 0), let us set
λ = Λ(a, b, c), consider ε ∈ (0, λ) and a sequence (an, bn, cn) which converges to (a, b, c), and set
λn = Λ(an, bn, cn). Since λ ∈ (0, b), we have

lim
s→λ
s>λ

(
s− u(s)

u′(s)

)
= λ,

hence there exists s0 ∈ (λ, b) such that s0 − u(s0)
u′(s0) > λ− ε

2 . The upper semicontinuity of Λ shows

that there exists n0 ∈ N such that λn < s0 for n ≥ n0. Moreover, since un(s0) → u(s0) and
u′n(s0) → u′(s0) as n→ +∞, there exists n1 ≥ n0 such that

∀n ≥ n1, s0 −
un(s0)

u′n(s0)
> λ− ε > 0.

Since un is negative and convex on (λn, b] ∩ [0,+∞), we have un(s) ≥ un(s0) + u′n(s0)(s − s0).

Because the right hand side of this inequality vanishes for s = s0 − un(s0)
u′

n(s0) , we necessarily have

λn ≥ λ− ε for n ≥ n1. This completes the proof.

Proposition 8.5. Let a ∈ R and b > 0. The function c 7−→ Λ(a, b, c) is an increasing one-to-one
mapping from [c∗(a, b), 0) onto [0, b).
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Proof. Set c∗ = c∗(a, b). Taking into account Lemma 8.2 and Proposition 8.4, it is sufficient to
prove that

lim
c→c∗
c>c∗

Λ(a, b, c) = 0 and lim
c→0−

Λ(a, b, c) = b. (8.5)

Let us set λc = Λ(a, b, c). For the first equality, since the map c 7→ λc is upper semicontinuous
and increasing on (c∗, 0), then λc → λc∗ as c → c∗, c > c∗ and λc∗ ≥ 0. On the other hand,
for c < c∗, we have λc = −∞. Hence, the map c 7→ λc is not continuous at c∗, and thus, from
Proposition 8.4, we obtain λc∗ = 0.

To obtain the second equality of (8.5) for a ≤ 0, let us take −c sufficiently small to have
λc > 0. Letting s→ λc in (8.3), we obtain

0 ≥ c− 1

6c
(b− λc)

2(2b+ λc).

Hence, (b − λc)
2(2b + λc) ≤ 6c2 and λc → b as c → 0−. For a > 0, using (8.4) we obtain in a

similar way

0 ≥ c−
(
a+

b

a

)
(b− λc) −

b

a

( c
a

+ λc − b
)

ln
(
1 +

a

c
(λc − b)

)
,

and hence we obtain a contradiction if λc 6→ b as c→ 0−.

Corollary 8.6. Let a ∈ R, b ∈ R and λ ∈ (−∞, b). The Blasius boundary problem (1.1 - 1.2)
has exactly one (concave) solution when 0 ≤ λ < b, and no solution for λ < 0, whatever b > 0
or b ≤ 0.

Proof. This follows immediately from Proposition 8.5 and Lemma 8.1. �

To finish this section, we give in a very quick way the asymptotic behavior of f(t; a, b, c) as
t → Ta,b,c when c < c∗(a, b). This behavior was already obtained by W.A. Coppel [14] and N.
Ishimura and S. Matsui [35].

Proposition 8.7. Let a, b ∈ R. If c ∈ (−∞, c∗(a, b)), then T := Ta,b,c is finite and we have

f ′(t; a, b, c) ∼ −3

(T − t)2
and f(t; a, b, c) ∼ −3

T − t
as t→ T. (8.6)

Proof. Let f = f( · ; a, b, c) and u = u( · ; a, b, c). We have Λ(a, b, c) = −∞ and −u is a positive
solution of (2.2) on (−∞, b]. Thanks to item 1 of Theorem 2.2, we have −u(s) ∼ u∗(s) as
s→ −∞. In other words,

−f ′′(t) ∼ 2√
3
(−f ′(t))3/2 as t→ T,

hence,

−1

2

−f ′′(t)
(−f ′(t))3/2

→ 1√
3

as t→ T.

Then for all ε > 0, there exists tε > 0 such that for t ∈ (tε, T ) and all τ ∈ (t, T ), we have

1√
3
(τ − t)(1 − ε) ≤ 1√

−f ′(τ)
− 1√

−f ′(t)
≤ 1√

3
(τ − t)(1 + ε).

Letting τ → T , this yields T < +∞ and

3

(1 + ε)(T − t)2
≤ −f ′(t) ≤ 3

(1 − ε)(T − t)2
.

Now, (8.6) follows.
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9. Final remarks, alternative proofs and historical comments

9.1. Vanishing Crocco solutions. We consider here the Crocco equation in its non-resolved
form uu′′ + s = 0 and we describe solutions that vanish somewhere.

Proposition 9.1. 1. If s 7→ u(s) is a C2 function that has a zero at some point s0 and that
satisfies u(s)u′′(s) + s = 0 in a neighborhood of s0, then we must have s0 = 0.

2. There is a unique function w that is analytic in a neighborhood of 0, and such that w(0) = 0,
w′(0) = 1 and w(s)w′′(s) + s = 0. This function w is defined on (−∞, λ+) by

w(s) =





−u−(s) if s < 0
0 if s = 0
u+(s) if s ∈ (0, λ+).

3. The Taylor series
∑

n≥1 ans
n of w is given recursively by

a1 = 1, a2 = −1

2
, an+1 = − 1

n(n+ 1)

n−1∑

k=1

k(k + 1)ak+1an−k+1. (9.1)

The radius of convergence of this series is equal to λ+. The first terms are given by

w(s) = s− 1

2
s2 − 1

12
s3 − 1

36
s4 − 17

1440
s5 − 247

43200
s6 − 1819

604800
s7 +O(s9),

4. All other functions u that are analytic in a neighborhood of 0 and such that u(0) = 0, and
u(s)u′′(s) + s = 0, are given by u(s) = σ3w(s/σ2) for σ 6= 0 and s < σ2λ+.

Proof. Statement 1 is immediate because otherwise u′′(s0) would be infinite.
Concerning statement 3, if we look for a formal series

∑
ans

n solution of the Crocco equation
with a0 = 0, a1 = 1, then we obtain the recursion formula (9.1).

We now prove by the majorant method that this series has a non-zero radius of convergence.
Let (cn) be the majorizing sequence defined recursively by

c0 = 1, c1 =
1

2
, cn =

n−1∑

k=1

ckcn−k for n ≥ 2.

This is a majorizing sequence in the sense that we have |an+1| ≤ cn. This is easily obtained by
recursion. Now, let us set

ĝ(s) =
+∞∑

n=0

cns
n.

We have

ĝ(s)2 =

+∞∑

n=0

(
n∑

k=0

ckcn−k

)
sn = 3ĝ(s) − 2 − s

2
,

hence ĝ is the formal expansion of the function g : s 7→ 1
2

(
3 −

√
1 − 2s

)
. This shows that the

series ĝ has a radius of convergence equal to 1
2 , hence the radius R of our formal Crocco solution

satisfies R ≥ 1
2 .

Moreover, Formula (9.1) shows that the an are of constant sign for n > 1; therefore the sum
of the series must have its first singularity on [0,+∞) at s = R, hence R = λ+.

In this manner, we have constructed an analytic Crocco solution with the required properties.
Its uniqueness follows from that of the formal series solution. This proves statement 2.

For statement 4, if u is such an analytic solution, then σ := u′(0) must be non-zero (otherwise
u would coincide with u∗ which is not analytic at s = 0). As for the case σ = 1, looking for a
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Figure 29. The solutions w and y. As s→ λ+ ≈ 1.303918, w(s) → 0 and y(s) → −1.

formal solution with prescribed derivative at s = 0 leads to uniqueness, hence to the function
s 7→ σ3w(s/σ2).

Remark. The fact that Crocco equation uu′′ + s = 0 has a solution w that is analytic in a
neighborhood of s = 0 with w(0) = 0, w′(0) = 1 is not a surprise: the change of variables w(s) =
(1 + y(s))s yields the equation sy′′ = −2y′ − 1

1+y with initial conditions y(0) = 0, y′(0) = −1
2 ;

see Figure 29 for the graphs of w and y. Written as a differential system in ~y := (y, y′)

s
d~y

ds
= ~f(s, ~y) with ~f(s, y1, y2) :=

(
sy1,−2y2 − 1

1+y1

)
,

it has a singularity of the first kind, hence satisfies the assumptions of Theorem V-2-7 of [29],
page 118. This proves that our formal solution is convergent for |s| small enough. However, for
completeness we preferred to provide a direct proof based on the majorant method.

9.2. Alternative proofs. The aim of this section is to present three results that can be proved
directly from the Crocco equation, i.e., without the use of the vector field (2.12).

9.2.1. Solutions u− and u∗ are unique. (Theorem 2.2, item 2 and Theorem 2.4 item 4, first
point). Let µ ≤ 0. Suppose that u1 and u2 are two positive solutions of the Crocco equation
(2.2) on (−∞, 0) such that u1(0

−) = u2(0
−) = 0 and u′1(0

−) = u′2(0
−) = µ. If µ = 0, we will

take u1 = u∗. Let us set w = u1 − u2. We have w(0−) = w′(0−) = 0 and

∀ s < 0, w′′(s) =
sw(s)

u1(s)u2(s)
. (9.2)

Integrating twice yields

∀ s < 0, w(s) =

∫ 0

s

η(η − s)w(η)

u1(η)u2(η)
dη,

which shows that for all s < 0, w has to vanish between s and 0. In particular, there exists an
increasing sequence sn < 0 tending to 0 such that w(sn) = 0. Now, multiplying (9.2) by w′ and
integrating, we obtain for all s < 0 and all sn > s that

w′(sn)2 − w′(s)2 = − sw(s)2

u1(s)u2(s)

−
∫ sn

s

(
1 − ηu′1(η)

u1(η)
− ηu′2(η)

u2(η)

)
w(η)2

u1(η)u2(η)
dη. (9.3)
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If µ < 0, then ui(η) ∼ µη as η → 0−, for i = 1, 2, hence there exists δ < 0 such that

∀ η ∈ (δ, 0),
ηu′i(η)
ui(η)

≥ 3

4
,

for i = 1, 2. If µ = 0, then for all η < 0 we have

1 − ηu′1(η)
u1(η)

= 1 − η
√

3(−η)−1/2

2√
3
(−η)−3/2

= −1

2
.

Therefore, in both cases, equality (9.3) shows that w′(sn)2 −w′(s)2 ≥ 0 for all s ∈ (δ, 0) and all
sn ∈ (s, 0). Taking the limit as n → +∞, we obtain w′(s)2 ≤ 0, hence w′ = 0 on (δ, 0). This
yields w = 0 and completes the proof. �

9.2.2. Any Crocco solution of (2.2 - 2.3) with b < 0 and c > 0 is defined at least on (−∞, 0)
and is asymptotic to u∗ as s → −∞. (Theorem 2.2, item 1). Let u be a solution of (2.2 - 2.3)
with b < 0 < c and (s−, s+) be its maximal interval of existence. From Proposition 7.1, s+ is
non-negative. We now prove by contradiction that s− = −∞. Assume that s− is finite; then by
convexity, u(s) tends to a limit l ∈ [0,+∞] as s→ s−.

If l 6= 0 (l finite or not), then u′′(s) = − s
u(s) tends to − s−

l ∈ [0,+∞) as s→ s−, hence u′ and

u would have a finite limit, contradicting the maximality of (s−, s+).
If l = 0, then by convexity u is increasing on (s−, 0). Identity (3.5) then gives, for an arbitrary

s0 ∈ (s−, 0),

u′(s0)
2 − u′(s)2 = −2s0 lnu(s0) + 2s lnu(s) + 2

∫ s0

s
lnu(η)dη

≥ −2s0 lnu(s0) + 2s lnu(s) + 2(s− s0) lnu(s)

= −2s0(lnu(s0) − lnu(s)) → +∞ as s→ s−,

hence a contradiction. This shows that u is defined at least on (−∞, 0).
For the asymptotic, we construct by induction sequences αn > 0, βn > 0 and sn < 0 such

that for all n ≥ 1, we have

∀ s ≤ sn, αn(−s)3 ≤ u(s)2 ≤ βn(−s)3, (9.4)

and

lim
n→+∞

αn = lim
n→+∞

βn =
4

3
. (9.5)

First of all, thanks to (3.5) we have

∀ s ≤ 0, u(s)2 = u(0)2 + 2u(0)u′(0)s+ 2

∫ 0

s
(η − s)u′(η)2dη − 1

3
s3

≥ u(0)2 + 2u(0)u′(0)s− 1

3
s3.

Therefore, there exists σ0 < 0 such that

∀ s ≤ σ0, u(s)2 ≥ 1

4
(−s)3.

Coming back to (2.2) we obtain u′′(s) ≤ 2(−s)−1/2 for s ≤ σ0 and integrating twice we easily
see that there exists s1 ≤ σ0 such that

∀ s ≤ s1, u(s) ≤ 3(−s)3/2.
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So (9.4) holds for n = 1 with α1 = 1
4 and β1 = 9. Suppose now that for a given integer n, we

have αn, βn and sn such that (9.4) holds. Starting from (2.2) and using the first inequality of

(9.4), we obtain u′′(s) ≤ 1√
αn

(−s)−1/2. Integration gives

∃An, Bn > 0, ∀ s < sn, u′(s)2 ≤ 4

αn
(−s) +An(−s)1/2 +Bn.

Thus there exists σn ≤ sn such that

∀ s ≤ σn, u′(s)2 ≤
(

4

αn
+

1

3n

)
(−s).

From (3.5) we then obtain, for all s ≤ σn,

u(s)2 = u(σn)2 + 2u(σn)u′(σn)s+ 2

∫ σn

s
(η − s)u′(η)2dη

− 1

3
(s− σn)2(s+ 2σn) ≤

(
1 +

4

αn
+

1

3n

)
(−s)3

3
+ s2εn(s),

where εn is bounded on (−∞, 0). Hence, there exists τn ≤ σn such that

∀ s ≤ τn, u(s)2 ≤ 1

3

(
1 +

4

αn
+

1

2n

)
(−s)3.

Similarly, using the right inequality of (9.4) and the same method, we obtain

∃ τ̃n ≤ σn, ∀ s ≤ τ̃n, u(s)2 ≥ 1

3

(
1 +

4

βn
− 1

2n

)
(−s)3.

Choosing sn+1 := min(τn, τ̃n), we obtain (9.4) at order n+ 1 with

αn+1 :=
1

3

(
1 +

4

βn
− 1

2n

)
and βn+1 :=

1

3

(
1 +

4

αn
+

1

2n

)
.

Since α1 = 1
4 and β1 = 9, we obtain α2 = 1

3 · 17
18 > α1 and β2 = 1

3 · 35
2 < β1. Then by recursion,

we obtain that the sequence (αn) increases and that (βn) decreases. Because αn ≤ βn these
sequences converge, respectively to α and β, which satisfy

α =
1

3

(
1 +

4

β

)
and β =

1

3

(
1 +

4

α

)
.

Thus α = β = 4
3 . Finally, (9.5) holds and (9.4) gives u(s) ∼ 2√

3
(−s)3/2 as s→ −∞.

9.2.3. The function Λ̃ is continuous at (a∗, c∗) =
(
−
√

3, 2/
√

3
)
. (First assertion of Theorem 2.5).

Consider a sequence (an, cn) tending to (a∗, c∗), and set λn = Λ̃(an, cn) and un = u( · ; an,−1, cn).
Writing (3.6) for s0 = −1 and s ∈ [−1, 0] we obtain

u′n(s)2 = a2
n − 2s lnun(s) − 2 ln cn + 2

∫ s

−1
lnun(τ)dτ. (9.6)

Then we obtain

2

∫ 0

−1
su′n(s)2ds = −a2

n + 2 ln cn − 6

∫ 0

−1
s2 lnun(s)ds,

and thus (3.5) written for s0 = −1 and s = 0 gives

un(0)2 − c2n − 2cnan = −2

∫ 0

−1
su′n(s)2ds+

2

3
, (9.7)
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= a2
n − 2 ln cn + 6

∫ 0

−1
s2 lnun(s)ds+

2

3
. (9.8)

We claim that there is a constant C1 > 0 such that

∀n ∈ N, ∀s ∈ [−1, 0], 0 < un(s) ≤ C1. (9.9)

On the contrary, it would exist a subsequence unk
(0) that tends to +∞ as k → +∞ and thus

for k large enough we should have unk
(τ) < unk

(0) for y ∈ [b, 0] and thanks to (9.8),

unk
(0)2 − c2nk

− cnk
ank

≤ 2

3
− ln cnk

+ lnunk
(0),

which gives a contradiction as k → +∞. Hence (9.9) holds. Coming back to (9.6) we derive
that there exists a constant C2 such that

∀n ∈ N, ∀s ∈ [−1, 0], |u′n(s)| ≤ C2. (9.10)

Using (9.7), (9.10), the fact that for all s ∈ [−1, 0), u′n(s) → u′∗(s) as n→ +∞, and the Lebesgue
dominated convergence theorem, we obtain that

un(0)2 → c2∗ + 2c∗a∗ − 2

∫ 0

−1
su′∗(s)

2ds+
2

3
= u∗(0)2 = 0 as n→ +∞,

and un(0) → 0 as n→ +∞.
Moreover, taking into account (9.9) and applying the Fatou’s Lemma to the nonnegative

functions gn = lnC1 − lnun, we easily derive that

lim sup
n→+∞

∫ 0

−1
lnun(s)ds ≤

∫ 0

−1
lnu∗(s)ds.

Then using (9.6) for s = 0 leads to

0 ≤ lim sup
n→+∞

u′n(0)2 ≤ a2
∗ − 2 ln c∗ + 2

∫ 0

−1
lnu∗(s)ds = u′∗(0)2 = 0,

and u′n(0) → 0 as n→ +∞.

To conclude, let us set αn = max
(
u′n(0), un(0)1/3

)
. By Proposition 2.6, item 1 and similarity

(2.15), we have

0 ≤ λn = Λ(u′n(0), 0, un(0)) ≤ Λ(αn, 0, α
3
n) = α2

nΛ(1, 0, 1) → 0 as n→ +∞,

since αn → 0 as n→ +∞. This completes the proof.

9.3. Additional results on concave Blasius solutions. We give here some precisions about
concave Blasius solutions, in particular, on the function c∗ : (a, b) 7→ sup{c < 0 ; Λ(a, b, c) =
−∞} introduced in (8.1).

Proposition 9.2. 1. Consider the first order differential equation

dy

dx
=

3y − 2x

x+ 2
y

,

in the region y < 0 and xy > −2. This equation has a unique solution x 7→ y∗(x) which is
defined for −∞ < x < +∞ and satisfies y∗(x) ∼ x as x → −∞. Moreover, this function y∗ is
concave, increasing and y∗(x) → 0 as x→ +∞.

2. For b > 0, we have

c∗(a, b) = b3/2y∗(b
−1/2a). (9.11)
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Proof. We start from the Crocco equation (2.2). The change of variables

x(t) = e−t/2u′
(
et
)
, y(t) = e−3t/2u

(
et
)
,

leads to the system

ẋ = −1

2
x− 1

y
, ẏ = x− 3

2
y. (9.12)

Since concave Blasius solutions correspond to negative Crocco solutions, we consider this system
only for y < 0. The initial conditions u(b) = c, u′(b) = a, with b > 0, correspond to

x(ln b) = b−1/2a, y(ln b) = b−3/2c. (9.13)

-x
6y

�Γ∗

Figure 30. The phase portrait of (9.12).

Notice that the vector field (9.12) describes Crocco equation only for s > 0. This vector field
has no stationary point. A phase plane analysis similar to that of Section 4 shows that there
is one and only one orbit, denoted by Γ∗ (see Figure 30) with the property that any solution

(x, y) that parametrizes Γ∗ is such that x(t)
y(t) tends to 1 as t → −∞. The orbit Γ∗ is the graph

of the function y = y∗(x) defined in the proposition. Let (x, y) denote the solution with initial
condition (9.13) and (t−, t+) denote its maximal interval of definition. Depending on (a, b, c),
the following cases occur.
• If c < b3/2y∗(b−1/2a) (i.e., the trajectory is below Γ∗), then t− = −∞, t+ is finite and we have

lim
t→−∞

y(t) = −∞, lim
t→t+

y(t) = 0.

Consequently, the maximal interval of definition of u( · ; a, b, c) is (−∞, et+). It follows that
f( · ; a, b, c) is defined on (−∞, Ta,b,c) with 0 < Ta,b,c < +∞ and we obtain Λ(a, b, c) = −∞. For
an illustration of this case, see the bottom of Figure 28.
• If c > b3/2y∗(b−1/2a), then t− and t+ are finite and

lim
t→t−

y(t) = 0, lim
t→t+

y(t) = 0.

It follows that the maximal interval of definition of u( · ; a, b, c) is (et− , et+), hence f( · ; a, b, c) is
defined on (−∞,+∞) and we obtain Λ(a, b, c) = et− . See the top of Figure 28.

• If c = b3/2y∗(b−1/2a), then t− = −∞, t+ is finite and we have

lim
t→−∞

y(t) = −∞, lim
t→t+

y(t) = 0.
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Therefore, the maximal interval of definition of u( · ; a, b, c) is (0, et+), hence f( · ; a, b, c) is defined
on (−∞,+∞) and Λ(a, b, c) = 0. This proves (9.11).

9.4. Reduction of the Blasius equation to a planar vector field. The Blasius differential
equation f ′′′ + ff ′′ = 0, of order three, can be reduced to a planar autonomous vector field
because it is invariant by the group of transformations f(t) 7→ κf(κt). Setting

g(ξ) =
f ′(t)
f(t)2

, h(ξ) =
f ′′(t)
f(t)3

,
dξ

dt
= f, (9.14)

we obtain the equations
dg

dξ
= h− 2g2,

dh

dξ
= −h(1 + 3g). (9.15)

The change of variables (9.14) was considered in [12] in the more general case of equation
f ′′′ +(m+1)ff ′′−2mf ′2 = 0 where m is a real parameter. See also [25]. Formulae (9.14) define
a change of variables only when the Blasius solution f does not vanish. To a vanishing Blasius
solution correspond up to three orbits of the vector field (9.15). These orbits are oriented in
the sense of increasing time ξ when f is positive and in the sense of decreasing time ξ when f
is negative. It is difficult to follow the function f in the plane (g, h) because the values of t for
which f(t) = 0 correspond to points at infinity of the vector field (9.15) or to the non-elementary
singular point (0,0) of this vector field.

The reduction of the Blasius equation to a first order equation appeared first in [55], p. 389,
and is attributed by H. Weyl to J. von Neumann. Setting

f = e−s, f ′ = e−2sθ, 2θ − dθ

ds
= τ, (9.16)

von Neumann obtains the equation

dτ

dθ
=
τ

θ

1 + τ + θ

2θ − τ
. (9.17)

Notice that from (9.16) we deduce that

θ =
f ′

f2
= g,

dθ

ds
=

2f ′

f2
− f ′′

ff ′
, τ =

f ′′

ff ′
=
h

g
.

Hence, equations (9.17) and (9.15) are equivalent through the change of variables θ = g, τ = h/g.
The interest of equation (9.17) and formulae (9.16) is that solving Blasius equation amounts to
solving a first order equation, followed by two quadratures. After determining τ(θ) from equation
(9.17) one find s(θ), and then t(θ) from

ds

dθ
=

1

2θ − τ(θ)
,

dt

dθ
=

−es(θ)
θ(2θ − τ(θ))

.

Hence t = t(θ), f = e−s(θ) parametrizes the solution f to the Blasius equation.
Following von Neumann and Weyl, many authors reduced also the Blasius equation to a first

order equation or a planar vector field using various change of variables. Among these authors,
we can cite B. Punnis, W.A. Coppel and Y.M. Treve. Setting

x = f, y = f ′, U =
y

x2
, V =

1

x

dy

dx
, (9.18)

Punnis [42], p. 168, obtains the equation

dV

dU
=
V

U

1 + U + V

2U − V
. (9.19)
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From (9.18) we deduce that U = g, V = h
g . Hence the variables U and V of Punnis are the same

than the variables θ and τ of von Neumann. This is not surprising since the first order equation
(9.19) obtained by Punnis is the same as the first order equation (9.17) of von Neumann. Setting

f = es, f ′ = e2sx, y =
dx

ds
,

dσ

ds
= −1

x
,

Coppel [14], p. 124, obtains the planar vector field

dx

dσ
= −xy, dy

dσ
= 2x+ y + 6x2 + 7xy + y2. (9.20)

Notice that equations (9.20) and (9.15) are equivalent through the change of variables σ =
−ξ + Const, x = g and y = h

g − 2g. Setting

u2 =
f ′

f2
, u1u2 = −f

′′

f3
,

dξ

dt
= f,

Treve [47], p. 1220, obtains the planar vector field

du1

dξ
= −u1(1 − u1 + u2),

du2

dξ
= −u2(u1 + 2u2). (9.21)

Notice that equations (9.21) and (9.15) are equivalent through the change of variables u1 = −h
g

and u2 = g. See Section 9.5 for more historical informations and a review of the main results
obtained with the help of the vector fields (9.17), (9.19), (9.20) and (9.21).

We already noticed that the solutions of the vector (9.15) going to infinity are of particular
interest, because they correspond to vanishing Blasius functions. Hence, it should be interesting
to study these solutions using the methods of Poincaré. This has been done by some authors,
in particular B. Punnis [42] and Y.M. Treve [47]. Setting X = − 1

V and Y = −U
V in equation

(9.19), Punnis obtains equation

dY

dX
=
Y

X

X − Y − 2

X + Y − 1
. (9.22)

This last equation was previously obtained by C.W. Jones [36]. This author transformed first
the Blasius equation into the Crocco equation (without any reference to the work of Crocco [15])

and then, setting X = su′

u and Y = s2

uu′ , he obtains equation (9.22). The reason why the Blasius
equation reduces to the first order equation (9.22) using two apparently different ways becomes
clear when we express all the new variables in terms of f and its derivatives. Actually, Punnis

used U = f ′

f2 , V = f ′′

ff ′ , and then

X = − 1

V
= −ff

′

f ′′
, Y = −U

V
= − f ′2

ff ′′
.

On the other hand, Jones used s = f ′, u = f ′′, u′ = −f , and then

X =
su′

u
= −ff

′

f ′′
, Y =

s2

uu′
= − f ′2

ff ′′
.

Thus, the variables X and Y of Punnis and Jones are identical. Compared to our present work
and our variables x, y given by (2.11), these variables are in fact X = −x

y , Y = 1
xy .

9.5. Historical comments.



62 Bernard Brighi, Augustin Fruchard and Tewfik Sari

9.5.1. The original question. As we said in the introduction, the Blasius problem (rewritten
here for convenience)

f ′′′ + ff ′′ = 0 on [0,+∞),

f(0) = −a, f ′(0) = b, lim
t→+∞

f ′(t) = λ,
(Pa,b,λ)

first appears, with a = b = 0 and λ = 2, in [7], see also [8]. Without worrying about existence or
uniqueness of solution, Blasius is mainly interested in the computation of the value α := f ′′(0).
In the framework of our article, α is such that Λ(0, 0, α) = 2. By the similarity (2.15), α and

λ1 := Λ(0, 0, 1) are thus linked by α2/3λ1 = 2.
To compute α, Blasius makes use of the formal solution

f(t) =
+∞∑

n=0

(−1)n cn
(3n+ 2)!

t3n+2, (9.23)

where the coefficients cn are given by

c0 = α and cn+1 =
n∑

j=1

(
3n+ 2

3j

)
cjcn−j .

Thus, the few first terms are c1 = α2, c2 = 11α3, c3 = 375α4, c4 = 27897α5. The presence
of the term (3n + 2)! at the denominator in the sum (9.23) leads Blasius to believe that the
power solution converges for all t ∈ R. He then makes use of this power series around t = 0
and of certain asymptotic expression for large values of t, adjusting the constant α so as to
connect both expressions in a middle region. In this way, Blasius obtains the (erroneous) bounds
1.326 < α < 1.327.

In 1912, in a short note, C. Töpfer [46] comes back to the paper of Blasius [8] and solves
numerically the Blasius equation with initial conditions f(0) = f ′(0) = 0, f ′′(0) = 1, by using
the so-called Runge-Kutta method. He then arrives, without detailing his computations, at the
value α ≈ 1.32824, contradicting the bounds obtained by Blasius. We must notice that neither
Blasius, nor Töpfer justify thoroughly the accuracy of their computations.

Thereafter, L. Bairstow [3], with the power series, obtains α ≈ 1.340, S. Goldstein [23]
obtains α ≈ 1.328, V.M. Falkner [19], by a finite difference method, yields the value α ≈
1.3282306, L. Howarth [28] gives α ≈ 1.328228, and up today, much efforts have been made to
get approximated value of α or λ1.

From 1968, the Crocco formulation is also used to compute α. For example, A.J. Callegari
and M.B. Friedman [13] formulate the Blasius problem in terms of the Crocco variables, show
that this problem has an analytical solution, and give the following inequalities: 1.32822 < α <
1.32828. These bounds for α correspond to 1.65515 < λ1 < 1.65520. In 1991, K. Vajravelu, E.
Soewono and R.N. Mohapatra [49] use the method of Runge-Kutta and a shooting technique
to solve numerically the Crocco formulation of the Blasius problem (P0,0,1) and obtain the
erroneous value α ≈ 1.32880 which corresponds to λ1 ≈ 1.65473. In 1999, J.P. Boyd [9] considers
the Blasius equation in the complex plane and gives α ≈ 1, 32822934486.

9.5.2. About the radius of convergence of the Blasius series. In 1941, H. Weyl [54] proves that
the radius of convergence of the power series (9.23) with c0 = 1 is between 2.620 and 3.915 and
chooses to make use of a process of successive and alternating approximations defined by g0 = 0
and gn+1 = Φ(gn) where

Φ(g)(t) = exp

{
−1

2

∫ t

0
(t− ζ)2g(ζ)dζ

}
. (9.24)

In this way, he proves that α < 1.368 and says that g3 is a pretty good approximation of f ′′.
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In 1947, A. Oudart [41] p.123, who seems to be unaware of the paper of Weyl [54], asks the
question of knowing if the Blasius formal solution converges on the whole line R, or not. J.
Kuntzmann [37] gives the answer and proves that the radius of convergence R of the power
series expansion (9.23) with c0 = 1 is between 2.884 and 3.203.

In 1948, A. Ostrowski [40] improves these bounds. Using two methods, one based on the
elementary proof of Borel of the Picard theorem and the second based on majorant series, he
provides the bounds 3.1 < R < 3.18, and announces also that the upper bound can be brought
down to 3.14.

If f is the solution of the Blasius equation with initial conditions f(0) = f ′(0) = 0 and
f ′′(0) = 1, then the function g : t 7→ −f(−t) also is a solution of the Blasius equation, and
satisfies g(0) = g′(0) = 0, g′′(0) < 0. Hence, g does not exist up to +∞, see Section 8. In term
of f , this means that f cannot be extended on the whole interval (−∞, 0]. This point of view
allows to recover the fact that the radius R is necessarily finite. In [50], W. Walter, introducing
appropriate super- and subsolutions, shows that g stops to exist somewhere between 3.098 and
3.151.

Recently, in [9], J.P. Boyd announces R ≈ 3.1273479, confirmed by calculations of P. Fuchs
[21]. Surprisingly, we did not find in the literature any formula relating the asymptotic behavior
of the cn to the radius R. Actually, a study of the Blasius series (9.23) in the complex plane,
however out of the scope of the present article, shows that cn

(3n+2)! ∼ 9
R3n+3 . Using (2.14), P.

Fuchs [21] obtained that there exist A and ϕ in R such that

cn
(3n+ 2)!

=
9

R3n+3

(
1 +

A

n2
cos
(√

2 lnn+ ϕ
)

+O
(
n−3

))
as n→ +∞.

A more complete analysis of the singularities would even give a whole asymptotic expansion of
cn. This approach would give very quickly an estimate for R.

9.5.3. Existence and uniqueness of the solution of the restricted problem (P0,0,λ). The questions
of existence and uniqueness of the Blasius problem with a = b = 0 is evoked for the first time
in 1942, by H. Weyl [55] who proves that the integral operator Φ defined by (9.24) has a fix
point g and that f ′′ = g with initial conditions f(0) = f ′(0) = 0 yields a solution of the Blasius
equation defined on the whole interval [0,+∞). This solution satisfies f ′′(0) = 1 and f ′(t) tends

to a positive limit β as t→ +∞. The function t 7→ κf(κt), where κ =
√

2/β, is then the unique
solution of the problem (P0,0,2).

In 1960, W.A. Coppel [14], in a long paper essentially concerned with the Falkner-Skan
equation

f ′′′ + ff ′′ + δ(1 − f ′2) = 0, (9.25)

with δ > 0, devotes a section to the Blasius equation, and shows by differential inequalities
that any convex Blasius solution f does exist up to +∞, that f ′(t) has a nonnegative limit as
t → +∞ and that f(t) is positive for all large t. Then he deduces that there are only three
possibilities as t→ +∞:

either f(t) → 0, f ′(t) → 0, f ′′(t) → 0,
or f(t) → µ, f ′(t) → 0, f ′′(t) → 0, (µ > 0),
or f(t) ∼ βt, f ′(t) → β, f ′′(t) → 0, (β > 0).

Using the vector field (9.20), Coppel obtains that the only solutions of the first type are f(t) =
3

t+t0
with t0 ∈ R. He finally notices that f is of the last type if f ′(0) ≥ 0, or if f ′(0) < 0 and

f(0) ≤ 0, and that the Blasius problem (P0,0,1) has one and only one solution.
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Coppel also studies the concave solutions of the Blasius equation, and obtains the following
possibilities:

f(t) → −∞, f ′(t) → −∞, f ′′(t) → −∞, as t→ T,
or f(t) → µ, f ′(t) → 0, f ′′(t) → 0, as t→ +∞, (µ > 0),
or f(t) ∼ βt, f ′(t) → β, f ′′(t) → 0, as t→ +∞, (β > 0).

Using the same vector field (9.20), he then proves that the solution of the first type satisfies

f(t) ∼ − 3

T − t
as t→ T, t < T. (9.26)

Moreover, he proves that for any µ > 0 and γ 6= 0, the equation of Blasius has one and only one
solution defined for all sufficiently large t such that f(t) → µ and f ′′(t) ∼ γe−µx as t → +∞.
His method is quite tedious and makes use of the following integro-differential equation

F ′′(t) = γe−µx +

∫ +∞

x
eµ(ζ−x)F (ζ)F ′′(ζ)dζ,

(with F = f − µ) solving it by the usual fix point argument.
B. Punnis [42] uses (9.22) to show that the solution of the Blasius problem (P0,0,2) has the

asymptotic form f(t) ∼ 3
T−t as t→ T , t > T for some T < 0. Coppel (see [14] p. 135) expresses

doubts about the arguments of Punnis for proving this behavior, and precisely says that the
reasons for asserting that the path in the phase-space necessarily tends to the critical point(

3
2 ,−1

2

)
are not clear to him.

9.5.4. Existence and uniqueness for the general problem. In the general case a, b ∈ R, the ques-
tions of existence and uniqueness depend on λ < b (concave case) or λ > b (convex case).
The concave case is rarely considered, essentially because the physical situations corresponding
to it appears later. In particular, in the seventies, the Blasius problem (P0,1,0) arises in the
framework of free convection in a porous medium. In 2000, Z. Belhachmi, B. Brighi and K.
Taous [4] prove that the Blasius problem (Pa,b,λ) with a ∈ R, b ∈ R and λ < b has one and
only one solution if b > 0 and λ ∈ [0, b], and no solutions if λ < 0. The authors prove directly
on the Blasius equation that if b ≤ 0, then any solution f of the Blasius equation verifying
f ′′(0) = c < 0 does not exist up to +∞, and that if b > 0, then there exists a negative real
number c∗ = c∗(a, b) such that the function c 7→ Λ(a, b, c) is one-to-one and increasing from
[c∗, 0] onto [0, b]. In the present paper, for completeness, we gave in Section 8 a proof of the
same result with the use of Crocco equation.

In the concave case, the question of uniqueness for the Blasius problem, is easy to solve,
because, if there is a pair of distinct solutions f1, f2 and if f ′′1 (0) > f ′′2 (0), then the function
g = f ′1 − f ′2 satisfies g(0) = g(+∞) = 0 and g′(0) > 0. It follows that g has a positive maximum
at some point t0 > 0 such that g(t) > 0 for 0 < t < t0, but then we obtain

g′′(t0) = f ′′′1 (t0) − f ′′′2 (t0) = −f ′′1 (t0)

∫ t0

0
g(t)dt > 0,

and a contradiction. We see also that this argument does not work for convex solutions, and
we will see below that the situation in this latter case is indeed very different. Let us finally
notice that, in 1967, Y.M. Treve [47] studies the Blasius equation with initial conditions given
by f(0) = 1, f ′(0) = b > 0 and f ′′(0) = c < 0. Using the vector field (9.21) corresponding to
the Blasius equation, Treve shows that there are values of c for which the solutions behave at
infinity as mentioned by Coppel [14].

In the convex case, the results of existence and uniqueness for b ≥ 0 are scattered in many
papers concerned with the Falkner-Skan equation (9.25). Let us give some key steps. In 1945,
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R. Iglisch and D. Grohne [34] obtain existence for a ≤ a∗ ≈ 1.2385, b = 0, λ = 1. In 1964, P.
Hartman [27] completes this result and proves existence for a ∈ R, 0 < b < 1 and λ = 1. In
1971, K.K. Tam [44] considers the Blasius problem (Pa,0,1) with a ≤ 0, but his work contains
some mistakes. Moreover, in spite of the title, the approach is not so elementary.

The proofs of uniqueness of the solution of the problem (Pa,b,λ) depend on the introduction
of some changes of variables. In the case a ∈ R, b ≥ 0 and λ > b, the first change of variables for
a uniqueness result consists of setting z = f and v = f ′. Blasius equation is then transformed
into

v′′ = −v
′

v
(v′ + z),

where ′ denotes the derivation with respect to z. To our knowledge, the first author to consider
this transformation is S. Furuya [22] in 1953, who obtains uniqueness for the Falkner-Skan
equation (9.25) (with 0 ≤ δ ≤ 1) subjected to the boundary conditions f(0) = f ′(0) = 0 and
f ′(t) → λ > 0 as t → +∞. It is easy to see that his proof can be extended to the case
f(0) = −a ≥ 0. This is done in 1954 by R. Iglisch [33] for all δ ≥ 0. Moreover, Iglish proves, by
an additional argument, that uniqueness also holds for a ∈ (0, a∗]. In [14], the uniqueness proof
given by Coppel for the Falkner-Skan equation, contains the Blasius problem (Pa,b,λ) for a ≤ 0,
b ≥ 0 and λ > b. See also W.R. Utz [48].

To overcome the difficulty appearing for a > 0, P. Hartman [27] sets z = f and v = f ′2,
arrives to the equation

v′′ = − zv
′

√
v
, (9.27)

and obtains uniqueness for all a ∈ R and b ≥ 0. His proof, given for the Falkner-Skan equation,
is quite complicated and depends on the introduction of suitable further transformations, but
looking carefully, in the case of Blasius equation, the proof of P. Hartman can be simplified,
and the successive transformations reduce to the Crocco transformation. Notice also that the
equation (9.27) is used by N. Ishimura and S. Matsui [35] to prove the asymptotic (9.26).

For b ≥ 0, the Crocco equation is the most elementary way to obtain uniqueness for all
a. Indeed, let us assume that f1, f2 are two distinct solutions of the Blasius problem, set
ci = f ′′i (0) (i = 1, 2) and suppose that c1 > c2. We obtain u1, u2 : [b, λ) → R solutions of the
Crocco equation, and if w = u1 − u2 we have

∀ s ∈ (b, λ), w′′(s) = u′′1(s) − u′′2(s) =
−s
u1(s)

+
s

u2(s)
=

sw(s)

u1(s)u2(s)
.

Because u1 and u2 are positive, we obtain w′′ > 0 as long as w > 0. Since w(0) = c1 − c2 > 0
and w′(0) = a − a = 0 we obtain that w increases, hence a contradiction with the fact that
w(s) → 0 as s → λ. These arguments are more or less used by A.J. Callegari, M.B. Friedman
[13] and K. Vajravelu, E. Soewono and R.N. Mohapatra [49].
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