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ON THE BLASIUS PROBLEM

B. BRIGHI, A. FRUCHARD, T. SARI

Dedicated to the centenary of Blasius’ Thesis

Abstract. The Blasius problem f ′′′ + ff ′′ = 0 on [0, +∞[, f(0) = −a, f ′(0) = b, f ′(+∞) = λ is
exhaustively investigated. In particular the difficult and scarcely studied case b < 0 ≤ λ is analyzed in
details, in which the shape and the number of solutions is determined. The method is first to reduce to
the Crocco equation u′′ = − s

u
and then to use an associated autonomous planar vector field. The most

useful properties of Crocco solutions appear to be related to canard solutions of a slow fast vector field.

Key words. Blasius equation, Crocco equation, boundary value problem on infinite interval, canard
solution.
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1. Introduction.

Given a, b, λ ∈ R, the boundary value problem

f ′′′ + ff ′′ = 0 on [0,+∞[, (1)

f(0) = −a, f ′(0) = b, lim
t→+∞

f ′(t) = λ (2)

arises for the first time, with a = b = 0, λ = 2, in 1907 in the PhD thesis of Blasius [7], and plays
a central role in fluid mechanics. Equation (1) was obtained using a similarity transform and enabled
successful treatment of the laminar boundary layer on a flat plate. In this way, Blasius accomplished one
of the most significant developments in fluid mechanics in the twentieth century.

More general boundary conditions are physically relevant. For the laminar flow over a flat plate with
suction or blowing, the problem to be solved is (1 - 2) with a ∈ R

∗, b = 0 and λ = 1 (see for example [31]
and [32]).

With a ∈ R, b = 1 and λ = 0, the Blasius problem (1 - 2) appears in the context of free convection
about a vertical flat plate embedded in a porous medium. With the same boundary conditions, it also
appears within the framework of boundary layer flow adjacent to a stretching wall. For a survey, see [11]
and the references therein.

In the study of mixed convection in porous media, the Blasius problem (1 - 2) is considered with a = 0,
b ∈ R and λ = 1 (see [1]). The case b < 0 arises also in the boundary layer problem for a flat plate moving
at steady speed opposite in direction to that of a uniform mainstream, with a = 0 and λ = 1 (see [50]).

Due to the following classical similarity property of Blasius equation (1)

if f is a solution, so is t 7→ σf(σt) for all σ ∈ R, (3)

we see that, in the case a = b = 0, the value λ = 2 can be replaced by any positive number. In that case,
H. Weyl [52] proves that (1 - 2) has one and only one solution. The method, following an argument first
advanced by C. Töpfer [43], is very elementary but uses strongly the fact that a = b = 0. See also B.
Brighi [10], P. Hartmann [25].

In the general case, the approach is different according to the sign of λ − b. If f is a solution of (1)
on some interval J , since this equation can be seen as a linear homogeneous first order ODE for f ′′,
we deduce that f ′′ cannot vanish without being identically equal to 0 on J . Therefore the study of the
problem (1 - 2) naturally splits into three cases: affine, concave or convex, depending on λ = b, λ < b or
λ > b. The affine case is quickly solved: if λ = b, then (1 - 2) has one and only one solution given by
f(t) = bt − a. The concave case is well known. In fact, by a direct approach, Z. Belhachmi, B. Brighi,
K. Taous [4] proved that the Blasius boundary value problem (1 - 2) has exactly one (concave) solution
if 0 ≤ λ < b, and no solution if λ < 0. For the sake of completeness, we provide a proof of this result in
Section 8.

In the convex case, the situation is quite different, and the proofs of uniqueness of the solution of (1 - 2)
depend on the introduction of suitable changes of variable, see Section 9.5. The most powerful among
them is the so-called Crocco transformation, see L. Crocco [16]. This change of variable, detailed in the
section 2.1, consists of choosing s = f ′ as independent variable and expressing u = f ′′ as a function of s.
This yields the Crocco equation

d2u

ds2
= − s

u
. (4)

As we will see in Section 3.6, the Crocco change of variables provides an alternative, elementary and very
short uniqueness proof of the solution of (1 - 2), for b ≥ 0 and all a ∈ R. See also A.J. Callegari, M.B.
Friedman [13] and K. Vajravelu, E. Soewono, R.N. Mohapatra [46].

In the case b < 0, the Crocco transformation is still valid and, using it, nonuniqueness for the problem
(1 - 2) is mentioned for the first time by M.Y. Hussaini, W.D. Laikin [29], but only supported by numerical
investigations. Some partial proofs are then given by M.Y. Hussaini, W.D. Laikin, A. Nachman [30] and
by E. Soewono, K. Vajravelu, R.N. Mohapatra [40].

In this article we will focus on the case b < 0 and λ > b. In order to study the solutions of (1 - 2), we
use the shooting method: let f( · ; a, b, c) denote the solution of the following initial value problem with
c > 0

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′′(0) = c. (5)



ON THE BLASIUS PROBLEM 3

In Proposition 3.1 we prove that f is defined at least for t ∈ [0,+∞[ and that its derivative f ′ has a finite
and nonnegative limit as t→ +∞. In the whole article, Λ(a, b, c) denotes this limit

Λ(a, b, c) := lim
t→+∞

f ′(t; a, b, c) ∈ [0,+∞[.

As we will see later (cf. Proposition 2.1) Λ(a, b, c) is also the right bound of existence of the solution of
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Figure 1. On the left, the Blasius solution f( · ;−2,−1, 1); on the right, the corre-
sponding Crocco solution.

(4) with initial conditions u(b) = c, u′(b) = a; see Figure 1 for a comparison between a Blasius solution
and the corresponding Crocco solution.

Our strategy will be, for b < 0 and for any value of a, to count the number of values of c for which
Λ(a, b, c) equals some given value λ. Due to (3), we can assume that b = −1 without restriction, and we
use the notation

Λ̃ : R×]0,+∞[→ [0,+∞[, (a, c) 7→ Λ(a,−1, c).

Some useful properties of this function Λ̃ are stated in Section 2.3. In particular we show that Λ̃ is
continuous on the upper half-plane, except on a spiraling curve Γ∞; see Figure 2 for an illustration of
this discontinuity. We also prove that Γ∞ is of class C∞ without inflexion point, see Theorem 2.4-7.
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Figure 2. A sketch of the spiral Γ∞ and two numerical Crocco solutions with initial
conditions u1(−1) = c1, u

′
1(−1) = a and u2(−1) = c2, u

′
2(−1) = a, where (a, c1) and

(a, c2) are on the convex and on the concave sides of Γ∞ respectively. The values chosen
are a = −2, c1 = 1.78 and c2 = 1.62. The sequence (an) and the ray Ra in the sketch
on the left are defined in Proposition 1.1 and in (9).

The statement of our main result requires to introduce some new functions. For that purpose we use
the Crocco equation (4). In addition to its explicit solution u∗(s) = 2√

3
(−s)3/2, two other solutions,

denoted by u− and u+, will play an important role in our study: u− is the unique solution of (4) on
]−∞, 0[ with boundary conditions u−(0−) = 0, u′−(0−) = −1 and u+ is the unique solution of (4) on
]0,+∞[ with initial conditions u+(0+) = 0, u′+(0+) = 1; see Figure 3. Here and in the sequel, the
notation ϕ(0−), resp. ϕ(0+), stands for the limit of ϕ(s) as s→ 0, s < 0, resp. s > 0.

Let ]0, λ+[ denote the maximal interval of definition of u+; numerical computations give λ+ ≈ 1.303918.

With these solutions, we now give more details about the discontinuity of Λ̃ on Γ∞. First we have the
following parametrization of Γ∞

Γ∞ =
{(

(−s)−1/2u′−(s), (−s)−3/2u−(s)
)

; s < 0
}
.

Secondly, the discontinuity of Λ̃ at a point
(
(−s)−1/2u′−(s), (−s)−3/2u−(s)

)
on Γ∞ is as follows (see

Theorem 2.5): on the convex side of Γ∞, Λ̃ tends to 0, whereas on the concave side, Λ̃ tends to −λ+

s . It
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Figure 3. The graphs of u− on the left and of u+ on the right.

follows that for all λ > 0 there is a unique point on Γ∞, namely with s = −λ+

λ , where Λ̃ takes values
respectively 0 and λ on each side of Γ∞. Let A(λ) denote the abscissa of this point. In other words, we
have

A : ]0,+∞[ → ]−∞, 0[ , λ 7→
√

λ
λ+

u′−

(
−λ+

λ

)
. (6)

See Figure 4 for a numerical graph of A and Figure 7 for a sketch showing the oscillations near λ = 0.
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Figure 4. On the left: the graph of A. On the right: enlargement near (0,−
√

3).

This function A satisfies the following properties.

Proposition 1.1. 1. The function A is C∞ and has an infinite sequence of extremal points (λn)n≥1

decreasing to 0: local minima at λ2n and local maxima at λ2n+1.

2. Let A(λn) = an denote these extremal values. Sequences (a2n) and (a2n+1) are adjacent, i.e. (a2n)
increases, (a2n+1) decreases and they have the same limit.

3. The asymptotic behavior of A is described as follows:

A(λ) ∼ −
√

λ
λ+

as λ→ +∞,

and there exists α, β ∈ R such that

A(λ) = −
√

3 + λ

(
α cos

lnλ√
2

+ β sin
lnλ√

2
+ o(1)

)
as λ → 0. (7)

The proof is given in Section 2.4. As a consequence of (7), the common limit of (a2n) and (a2n+1) is

a∞ := −
√

3, and sequences (λn) and (an +
√

3) are asymptotically geometric:

lim
n→+∞

λn+1

λn
= e−π

√
2, lim

n→+∞
an+1 +

√
3

an +
√

3
= −e−π

√
2. (8)

Given a ∈ R, λ > 0 and b = −1, counting the number of solutions of the Blasius Problem (1 - 2)

amounts to counting the number of times the function Λ̃ takes the value λ on a vertical ray

Ra := {a}×]0,+∞[. (9)

For that purpose, we introduce the function

Λ̃a : ]0,+∞[→ [0,+∞[, c 7→ Λ̃(a, c) = Λ(a,−1, c).
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Figure 6. Numerical graphs of Λ̃a : c 7→ Λ(a,−1, c), successively for a = −3, a =
−1.7324 ≈ a2, a = −1.7027 ≈ a1 and a = 0.

Figure 6 shows some graphs of Λ̃a for miscellaneous values of a.
The description below is succint. We refer to Section 2.4 for proofs, additional details and explanatory

figures.
Let n ≥ 1 be such that a is between an−2 and an, possibly a = an (with the convention a−1 =

+∞, a0 = −∞). Then the ray Ra crosses n− 1 times the spiral Γ∞ (if a = an, there is an n-th point of
contact but without crossing, hence without creating any discontinuity for Λa).

First assume that n is even. As we will see in Lemmata 2.10 and 2.12, the graph of Λ̃a consists of n
pieces: n

2 − 1 on the left, one “central” and n
2 on the right. On the central part, it turns out that, if a is

close to an then Λ̃a has a minimum close to 0. Therefore we consider dn ∈ [an−2, an[ as close to an−2 as

possible such that, for any a ∈ ]dn, an], Λ̃a attains its infimum on this central part, at some (possibly non
unique) abscissa c = Cn(a). Let µn ∈ ]λn−1, λn−2] (with λ1 < µ2 ≤ +∞) be such that dn = A(µn). For

a ∈ ]dn, an], we define Λn(a) as the minimum of Λ̃a on the central part. This yields a continuous map
Λn : ]dn, an] → [0, µn[, satisfying Λn(an) = 0 and Λn(a) → µn as a→ d+

n .

If n is odd (Lemmata 2.9 and 2.11) then the graph of Λ̃a still consists of n pieces: n−1
2 on the left,

one central and n−1
2 on the right. In the same manner, we consider dn ∈ ]an, an−2] as close to an−2 as
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possible such that, for any a ∈ [an, dn[, Λ̃a attains its infimum on its central part. We already know that
d1 = +∞. For n ≥ 2, let µn ∈ ]λn−1, λn−2] be such that dn = A(µn). We define Λn(a) as the minimum

of Λ̃a on its central part for a ∈ [an, dn[. With the convention µ1 = +∞, this yields a continuous map
Λn : [an, dn[→ [0, µn[, still satisfying Λn(an) = 0 and Λn(a) → µn as a → d−n . See Figure 7 for sketches
of graphs of these Λn. We now present our main result.

Theorem 1.2. Consider the Blasius Problem (1 - 2) in the convex case b < λ, and in the case b = −1,
i.e. the boundary value problem

f ′′′ + ff ′′ = 0, f(0) = a, f ′(0) = −1, f ′(+∞) = λ > −1. (10)

This problem has no solution if and only if:

(i) either −1 < λ < 0 (ii) or a > a1 and 0 ≤ λ < Λ1(a).

Let n ∈ N \ {0}. Problem (10) has at least n solutions if (λ, a) belongs to one of the regions marked n in
Figure 7 right, in other words, if:

• either a = A(λ) with µn+1 ≤ λ < µn,
• or λ = Λn(a) with a ∈ [an, dn[, if n is odd, a ∈ ]dn, an] if n is even,
• or (λ, a) is in the region below the graphs of Λ2 and A in the case n = 1, and in the region

between the graphs of Λn−1,Λn+1 and A in the case n ≥ 2.

If λ = 0 and a = −
√

3 then Problem (10) has infinitely many solutions.
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Figure 7. In the (λ, a) plane, a lower bound of the number of solutions of (10). On
the left, a sketch of the graphs of the functions A and Λn, on the right the conjectured
number of solutions of (10). We stress that the distances are not respected: due to (8)

with eπ
√

2 ≈ 85, on the true graph of A no more than one extremal point is visible, see
Figure 4.

The proof is given in Section 2.4. In the affine case λ = −1 there is a unique solution f : t 7→ −t− a.
By Corollary 8.6 there is no solution in the case λ < −1. At the end of this section 2.4, we will also
comment the following conjecture.

Conjecture 1.3. The lower bounds above are sharp. In other words the expression “at least” in Theorem
1.2 can be replaced by “exactly”.

In addition, we formulate two other conjectures. The first one is motivated by numerical experiments.

Conjecture 1.4. For all n ∈ N we have dn+2 6= an; in particular, the constants d2 and µ2 are finite. For
any n ≥ 2 the function Λn is monotonous, increasing if n is odd, decreasing if n is even.

Conjecture 1.5. The function Λ̃ is of class C∞ outside Γ∞∪{S∗} and its minima Λn are non degenerate,

i.e.
∂2Λ̃

∂c2
(a, Cn(a)) 6= 0, so that the functions Cn and Λn are C∞, too.
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We already know that Λ1 is increasing at least on [0,+∞[, see statement (ii) of Lemma 2.9. Observe

also that our Conjecture 1.5 would already imply that dn+2 6= an for all n ≥ 1. Indeed, if Λ̃ is of class

C1 and a is between an and an+2, a close to an, then a computation shows that the central part of Λ̃a

would be C1-close to a small segment of slope λnan

a2
n−3 , thus monotonous. See Figures 12, 13 and 14 for an

illustration.

The proofs of Proposition 1.1 and Theorem 1.2, given in Section 2.4, need several intermediate results
stated in Sections 2.1 to 2.3 whose proofs are postponed to Sections 3 to 5. We first use the Crocco
change of variables, then another change of variables leads to an autonomous planar vector field. In
Section 3, are collected results for the Blasius Problem in the already known cases, as well as some useful
preliminaries. Section 4 is devoted to a thorough study of the vector field and Section 5 deals with some
further deeper results on the Crocco equation (4). In Section 6, we present an alternative proof of these
“deeper results”, using properties of canard solutions of a related singularly perturbed differential system
in R

3. The precise link between the Blasius and Crocco problem is explained in Section 7. In Section 8,
we treat the already known concave case for the sake of completeness, and also because the use of the
Crocco equation provides new shorter proofs. We end the article in Section 9 with additional results,
alternative proofs and historical comments. Blasius equation gave rise to a great number of publications.
Some of them treat more general equations, some others are incomplete or contain only numerical results.

Therefore our historical comments are not exhaustive. However, our result about the description of Λ̃
and its consequence on the number of solutions of the boundary value problem (1 - 2) are new to our
knowledge.

Acknowledgements. The authors wish to thank Prof. Reinhard Schäfke for numerous and fruitful
discussions about this work.

2. Our strategy of proof.

2.1. The Crocco change of variables. A basic property of the Blasius equation is that, besides affine
solutions (f ′′ = 0), all other solutions f are such that f ′′ does not vanish. Indeed, solving (1) as a linear
differential equation for f ′′ yields

f ′′(t) = f ′′(t0) exp

{
−
∫ t

t0

f(τ)dτ

}
. (11)

which shows that f ′′ cannot vanish without being identically zero. It follows that t 7→ f ′(t) is a diffeo-
morphism for non affine solutions.

The Crocco change of variable consists of expressing f ′′ as a function of f ′: if we put u = f ′′ ◦ (f ′)−1

then differentiating u(f ′) = f ′′ (the variable t is omitted for simplicity) we obtain u′(f ′)f ′′ = f ′′′ = −ff ′′

hence u′(f ′) = −f . Differentiating once again we obtain u′′(f ′)f ′′ = −f ′, i.e. equation (4), rewritten
below for the reader’s convenience (with the independent variable f ′ denoted by s)

u′′ = − s

u
. (12)

We stress that, by construction, a Crocco solution cannot vanish. Actually we had to divide twice by
f ′′ = u to obtain (12). In Section 9.1 we study solutions of the almost equivalent equation uu′′ + s = 0
that vanish somewhere.

The Crocco change of variable yields the following characterization of Λ, see Section 3.2 for the proof.

Proposition 2.1. For all a, b ∈ R and c > 0, [b,Λ(a, b, c)[ is the maximal right interval of existence of
the solution u := u( · ; a, b, c) of (12) with initial condition

u(b) = c, u′(b) = a. (13)

Moreover u(s) tends to 0 as s→ Λ(a, b, c), s < Λ(a, b, c). If Λ(a, b, c) > 0 then we also have u′(s) → −∞
as s→ Λ(a, b, c), s < Λ(a, b, c).

This means that, in terms of Crocco equation, boundary conditions (2) become

u′(b) = a, lim
s→λ

u(s) = 0.

The similarity property (3) implies

if u is a solution of (12), so is uσ : s 7→ σ3u(σ−2s) for all σ 6= 0, (14)

which can be rewritten as
u(σ2s;σa, σ2b, σ3c) = σ3u(s; a, b, c). (15)
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It is easy to check that only one positive solution of (12), denoted by u∗, is self-similar by (14), i.e.

u∗(s) = σ3u∗(σ−2s) for all s, σ, s < 0 < σ, namely

u∗(s) = 2√
3
(−s)3/2. (16)

We will see that u∗ is also the unique solution of (12) on ]−∞, 0[ such that u∗(0−) = u∗′(0−) = 0, see
item 4 (i) of Theorem 2.4.

We now present the main result of this section. The difficult and important statement 4 is the key to
analyze the discontinuity of Λ, as described below in the second part of Theorem 2.5.

Theorem 2.2. 1. Every solution of (12 - 13) with b < 0 and c > 0 is defined at least on ]−∞, 0[ and is
asymptotic to u∗ as t→ −∞.

2. There is a unique solution of (12) on ]−∞, 0[, denoted by u−, with boundary conditions

u−(0−) = 0, u′−(0−) = −1. (17)

Similarly, for any σ > 0 there is a unique solution of (12) on ]−∞, 0[ with boundary conditions u(0−) =
0, u′(0−) = −σ, namely s 7→ σ3u−(σ−2s).

3. There is a unique solution u+ of (12) with initial conditions

u+(0+) = 0, u′+(0+) = 1, (18)

defined on some maximal interval ]0, λ+[, with 1 < λ+ < s0, where s0 ≈ 1.43 is the positive root of
equation (2s− 4) ln

(
1 − s

2

)
= s.

4. For every sequence ((αn, γn))n∈N which tends to (u′−(−1), u−(−1)), the sequence
(u′(0−;αn,−1, γn))n∈N is bounded and has at most two cluster points: 1 and −1.

Statements 1 and 2 are proved in Section 5.3, statement 3 is proved in 3.5, and statement 4 in 5.2.
Besides, we have the following asymptotic formulae for Crocco solutions starting close to u = 0 at s = −1.

Proposition 2.3. For any a ∈ R fixed, we have:

u′(s; a,−1, c) ∼
√

2 ln 1
c sgn(s+ 1) as c→ 0+, (19)

u(s; a,−1, c) ∼
√

2 ln 1
c |s+ 1| as c→ 0+, (20)

uniformly for s in any compact subset of ]−∞,−1[∪ ]−1, 0].

The proof is in Section 5.1.

2.2. The associated vector field. The similarity property (14) allows to reduce Crocco equation to a
system of autonomous differential equation. The change of variables

x(t) = et/2u′
(
−e−t

)
, y(t) = e3t/2u

(
−e−t

)
(21)

leads to the system

ẋ =
1

2
x+

1

y
, ẏ = x+

3

2
y. (22)

The phase portrait of this system is depicted in Figure 8. Since this system is invariant by the change
(x, y) 7→ (−x,−y) we will consider it only for y > 0; this corresponds to positive Crocco solutions and to
convex Blasius solutions. The initial conditions (13) with b = −1 correspond to

x(0) = a, y(0) = c. (23)

Notice that this vector field describes the Crocco equation (12) only for s < 0. In Section 9.3, we introduce
an analogous vector field for s > 0.

Because the transformation u 7→ uσ given by (14) (for σ > 0) corresponds to a shift by t 7→ t − lnσ
in (21), to each orbit {(x(t), y(t)); t ∈ R} of some solution of (22) corresponds a whole family (uσ)σ>0 of
solutions of (12) connected by the similarity (14).

In particular, the unique stationary point S∗ =
(
−
√

3, 2√
3

)
corresponds to u∗ given by (16), which is

the unique positive Crocco solution invariant by (14). To the solution u− given by (17) corresponds a
solution of (22), denoted by (x−, y−). Remark that, with s = −e−t, we have

x−(t)

y−(t)
=

−su′−(s)

u−(s)
→ −1 as t→ +∞,

hence (x−, y−) parametrizes the orbit Γ∞ of item 3 below.



ON THE BLASIUS PROBLEM 9

Γ∞

S∗

-x

6y

�	
y = R1(x)

xy = −2

@Iy = L1(x)

@R
y = R2(x)

Γ∞

S∗

-
xa2 a3 a1

Figure 8. On the left: the phase portrait of (22). On the right: sketch of enlargement
of Γ∞ near S∗. The functions Ln and Rn are defined in Section 2.4.

In Section 4 we will prove the following result.

Theorem 2.4. 1. All solutions are defined on R and tend to S∗ as t→ −∞.

2. More precisely, for any solution (x, y) of (22) there exist A,B ∈ R such that

x(t) = −
√

3 + et

(
A cos

t√
2

+B sin
t√
2

+ o(1)

)
as t → −∞. (24)

3. There is one and only one orbit, denoted by Γ∞, such that any solution (x, y) parametrizing Γ∞
satisfies that x(t)

y(t) tends to −1 as t→ +∞.

There is one and only one orbit, denoted by Γ0, such that any solution (x, y) parametrizing Γ0 satisfies
that x(t) tends to 0 as t→ +∞.
For all non constant solutions (x, y), y(t) tends to +∞ as t→ +∞.

For all solutions (x, y) except those on Γ∞ ∪{S∗}, x(t)
y(t) tends to 0 as t→ +∞. In particular, all solutions

(x, y), except those on Γ∞ ∪ {S∗}, eventually leave the region x+ y ≤ 0.

4. In terms of positive Crocco solutions, this means that we have the following equivalences

(1) (a, c) = S∗ if and only if u(0−; a,−1, c) = 0 and u′(0−; a,−1, c) = 0,
(2) (a, c) ∈ Γ∞ if and only if u(0−; a,−1, c) = 0 and u′(0−; a,−1, c) < 0,
(3) (a, c) /∈ Γ∞ ∪ {S∗} if and only if u(0; a,−1, c) > 0.

5. For all solutions (x, y) except those on Γ∞, x(t)3

y(t) has a limit k ∈ R as t→ +∞.

6. Conversely, for any k ∈ R \
{
− 9

2

}
there is one and only one orbit, denoted by Γk, such that

lim
t→+∞

x(t)3

y(t)
= k for all solutions (x, y) that parametrize Γk. For k = − 9

2 there are two orbits: S∗

and a second one denoted by Γ−9/2.

7. If k ≥ 0 or k = ∞ then Γk has no inflexion point; if k < 0 then Γk has exactly one inflexion point.

2.3. Properties of the function Λ. In this section, we state the properties of Λ needed for the proof of
Theorem 1.2 and for arguments justifying our Conjecture 1.3. First, the similarity property (3) implies

for all σ > 0, Λ(σa, σ2b, σ3c) = σ2Λ(a, b, c). (25)

Therefore, as far as possible, properties of Λ for b < 0 will be stated below using the function Λ̃ : (a, c) 7→
Λ(a,−1, c), as said in the introduction.

Theorem 2.5. The function Λ̃ is continuous on (R×]0,+∞[) \ Γ∞.

On Γ∞, the discontinuity of Λ̃ is described as follows. If (a, c) belongs to Γ∞, then for all sequences

((αn, γn))n∈N which tend to (a, c) on the convex side of Γ∞, the sequence (Λ̃(αn, γn))n∈N tends to 0,
whereas for all sequences ((αn, γn))n∈N which tend to (a, c) on the concave side of Γ∞, the sequence

(Λ̃(αn, γn))n∈N tends to λ+e
t, where t ∈ R is such that a = x−(t), c = y−(t).

As a consequence, for all λ > 0 there is a unique point on Γ∞, with abscissa equal to A(λ), such that Λ̃
jumps from 0 on the convex side of Γ∞, to λ on its concave side.
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The proof is in Section 5.3. Besides this important regularity property we have some monotony
properties.

Proposition 2.6. 1. For nonnegative b, the functions a 7→ Λ(a, b, c) and c 7→ Λ(a, b, c) are increasing.

2. In the region above both Γ∞ and the hyperbola ac+ 2 = 0, the function c 7→ Λ̃(a, c) is increasing.

3. In the region on the right of both Γ∞ and the straight line 2a+ 3c = 0, a 7→ Λ̃(a, c) is increasing.

Statement 1 is proved in Section 3.4; statements 2 and 3 are proved in 5.3. At last, we present

asymptotic properties of Λ̃.

Proposition 2.7. For all a ∈ R fixed, we have

Λ̃(a, c) ∼ 2λ+ ln 1
c as c→ 0, (26)

Λ̃(a, c) ∼ c2/3Λ(0, 0, 1) as c→ +∞. (27)

The proof is given in Section 5.3. Numerical computations give Λ(0, 0, 1) ≈ 1.655193.

2.4. Back to the Blasius problem. In this section, we first prove Proposition 1.1. Then we write Γ∞
as a union of graphs. Next, we describe the graph of Λ̃a in accordance with the relative position of a and
an and we give details about the functions Λn. These descriptions are then used to prove Theorem 1.2.
At last, we explain which elements lead us to state our Conjecture 1.3. Of course the results stated in
the Sections 2.1 to 2.3 will be used all along this section.

Proof of Proposition 1.1. As already announced in the introduction, the last item of Theorem 2.5 shows

that, for all λ ∈ ]0,+∞[, there is a unique point (x−(t), y−(t)) on Γ∞, namely with t = ln
(

λ
λ+

)
, such

that Λ̃ takes values respectively 0 and λ on each side of Γ∞. We recall that, by definition, the abscissa
of this point is

x−
(
ln
(

λ
λ+

))
= A(λ). (28)

Then, using (24) with et = λ
λ+

, we obtain (7). The asymptotic behavior as t→ +∞ simply follows from

(6) and from lim
s→0−

u′−(s) = −1. Due to (28), the nth extremum an of the function A, counted from the

right is also the nth extremum of the function x− with time reversed, i.e. with t from +∞ to −∞, see
Figure 8. Because Γ∞ has no inflexion point, we have

a2 < a4 < a6 < ... < −
√

3 < ... < a3 < a1

and items 1 and 2 follow.

We now describe the curve Γ∞ as an union of graphs. Since Γ∞ has no inflexion point and S∗ is a
focus, for all n ≥ 1, with the convention a0 = −∞, there exist functions

Ln : [a2n, a2n−1] → R, Rn : [a2n−2, a2n−1] → R

such that (see Figure 8 right for the graphs of R1, R2 and L1)

• Γ∞ is the union of the graphs of the mappings x 7→ Ln(x) and x 7→ Rn(x),
• the functions Ln are convex and the functions Rn are concave,
• for all n ≥ 1, we have

Ln−1(x) ≤ Ln(x) ≤ − 2

x
≤ Rn(x) ≤ Rn−1(x), (29)

where each inequality holds for all x such that both functions are defined, and is strict if x is not
an end point an,

• at the end points of the intervals we have

Rn(a2n−1) = Ln(a2n−1) = − 2

a2n−1
, Rn+1(a2n) = Ln(a2n) = − 2

a2n
. (30)

Since the function t 7→ x(t) is decreasing under the hyperbola xy = −2 and increasing above this
hyperbola, from (28) we deduce that the map λ 7→ A(λ) is increasing on each interval [λ2n, λ2n−1] and
decreasing on each [λ2n−1, λ2n−2]. Hence for all n ≥ 1, with the convention λ0 = +∞, there exist
one-to-one mappings

ln : [a2n, a2n−1] → [λ2n, λ2n−1], rn : [a2n−2, a2n−1] → [λ2n−1, λ2n−2],

such that the graph of λ 7→ A(λ) is the union of the graphs of a 7→ ln(a) and a 7→ rn(a), see Figure 7 left
for the graphs of r1, r2 and l1.
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For all n ≥ 1, we have

rn+1(a) ≤ ln(a) ≤ rn(a), (31)

where each inequality holds for all a where both functions are defined, and is strict except at the end
points of the intervals. At the end points we have

ln(a2n) = rn+1(a2n) = λ2n, ln(a2n−1) = rn(a2n−1) = λ2n−1

An immediate consequence of Theorem 2.5 is the following.

Lemma 2.8. At a point (a,Rn(a)) on Γ∞, Λ̃ jumps from 0 on the convex side of Γ∞ to rn(a) on the

concave side. At a point (a, Ln(a)), Λ̃ jumps from 0 on the convex side to ln(a) on the concave side.

Let us now describe the functions Λn. We recall that, roughly speaking, Λn(a) is the minimum of Λ̃a

on its central part, when this minimum is reached.

6λ

-
c0 C1(a)

Λ1(a)

λ = Λ̃a(c)

Figure 9. A schematic graph of Λ̃a : c 7→ Λ(a,−1, c) in the case a > a1. For conve-
nience, explanatory figures 9, 10 and 11 are schematic. See Figure 6 and Figures 12 to
15 for numerical graphs; e.g. the present figure may be compared to Figure 6, bottom
right.

Lemma 2.9. Consider the case a ≥ a1.

(1) The function Λ̃a is continuous on ]0,+∞[, tends to +∞ as c → 0+ and as c → +∞. As a

consequence, Λ̃a attains its minimum on ]0,+∞[, denoted by Λ1(a).
(2) The function Λ1 is continuous on [a1,+∞[ and increasing at least on [0,+∞[.
(3) We have Λ1(a1) = 0 and Λ1(a) ≥ a2λ+ for all a > 0. In particular, Λ1(a) tends to +∞ as

a→ +∞.

Proof. (i) If a > a1, then the ray Ra does not cross Γ∞ and Λ̃a is continuous. If a = a1, then the

ray Ra touches Γ∞, without crossing it, at
(
a1,− 2

a1

)
, hence without creating any discontinuity, and

Λ̃a(− 2
a1

) = 0. Due to Proposition 2.7, Λ̃a(c) tends to +∞ as c → 0+ and as c → +∞, hence Λ̃a has (at

least) one global minimum Λ1(a), which is reached for some value c = C1(a), see Figure 9. The function
Λ1 is defined on [a1,+∞[ and satisfies Λ1(a1) = 0.

(ii) As for all fixed c the map a 7→ Λ̃(a, c) is continuous on [a1,+∞[, this is also the case for Λ1 (even
though C1 may not be continuous).
Furthermore, if 0 ≤ a < a′ then, using item 3 of Proposition 2.6, we obtain

Λ̃1(a) = min
c>0

Λ̃(a, c) ≤ Λ̃(a, C1(a
′)) < Λ̃(a′, C1(a

′)) = min
c>0

Λ̃(a′, c) = Λ̃1(a
′).

(iii) Set u := u( · ; a,−1, C1(a)). We have u(0) ≥ a and u′(0) ≥ a, therefore by item 1 of Proposition 2.6

Λ1(a) = Λ(u′(0), 0, u(0)) ≥ Λ(a, 0, a) = a2Λ(1, 0, a−2) ≥ a2λ+.

Lemma 2.10. Consider the case a ≤ a2.

(1) The function Λ̃a has one discontinuity at c = R1(a).

(2) As c→ 0+, Λ̃a(c) tends to +∞; as c→ R1(a)
−, Λ̃a(c) tends to r1(a).

(3) The function Λ̃ is increasing on [R1(a),+∞[ from Λ̃a(R1(a)) = 0 to +∞.
(4) There exists d2 ∈ [−∞, a2[ such that

• for all a ∈ ]d2, a2], Λ̃a reaches its minimum on ]0, R1(a)[, denoted by Λ2(a),
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6λ

-
c0 C2(a)

Λ2(a)

R1(a)

q

r1(a) (

6λ

-
c0 R1(a)

q

r1(a) (

Figure 10. Sketches of graphs of Λ̃a in the case a < a2. On the left: a close to −∞,
on the right: a close to a2. For numerical graphs, see the top of Figure 6.

• for a = d2 the infimum of Λ̃a on ]0, R1(a)[ is equal to µ2 := r1(d2) (with the convention
r1(−∞) = +∞).

(5) The function Λ2 : ]d2, a2] → [0, µ2[ is continuous.

Proof. (i) If a < a2 then the ray Ra crosses Γ∞ once. By Lemma 2.8, Λ̃a has a discontinuity at
c = R1(a) and jumps down from r1(a) to 0. If a = a2 then the ray touches Γ∞ also at (a2,− 2

a2
) but

without discontinuity.

(ii) follows from (26) and item (i).

(iii) follows from (27) and Proposition 2.6.

(iv) If a = a2, then Λ̃a has an isolated zero at c = − 2
a2

. Thus by continuity of Λ̃, for a < a2, and a close

to a2, Λ̃a has a local minimum close to 0 for some (possibly non unique) value c = C2(a) close to − 2
a2

and Λ2(a) = Λ̃(C2(a)), see Figure 10.

Now let d2 ∈ [−∞, a2[ be the infimum of those values d such that for all a ∈ ]d, a2], Λ̃a reaches its
minimum Λ2(a) on ]0, R1(a)[. By construction, we have Λ2(d2) = µ2 = r1(d2), see Figure 7.

(v) As for all fixed c the map a 7→ Λ̃(a, c) is continuous on [a1,+∞[, this is also the case for Λ2.

Lemma 2.11. Consider the case a ∈ [a2n+1, a2n−1[ with n ≥ 1.

(1) The function Λ̃a has 2n discontinuities at c = Rk(a) and c = Lk(a), with 1 ≤ k ≤ n, which satisfy
L1(a) < · · · < Ln(a) < − 2

a < Rn(a) < · · · < R1(a).

(2) As c→ 0+, Λ̃a(c) tends to +∞. On [R1(a),+∞[, Λ̃a increases from 0 to +∞.

(3) As c→ Rk(a)−, Λ̃a(c) tends to rk(a); as c→ Lk(a)+, Λ̃a(c) tends to lk(a).
(4) We have 0 < ln(a) < rn(a) < · · · < l1(a) < r1(a).
(5) There exists d2n+1 ∈ ]a2n+1, a2n−1] such that

• for all a ∈ [a2n+1, d2n+1[, the minimum of Λ̃a on ]Ln(a), Rn(a)[ is reached and denoted by
Λ2n+1(a), for some c = C2n+1(a) possibly non unique,

• for a = d2n+1 the infimum of Λ̃a on ]Ln(a), Rn(a)[ is equal to µ2n+1 := ln(d2n+1).
(6) The function Λ2n+1 : [a2n+1, d2n+1[→ [0, µ2n+1[ is continuous.

6λ

-
c0

q

)l1(a)

L1(a) −2

a3

R1(a)
q

r1(a) (

6λ

λ1

-
c−2

a1

0
q

(

q

)

Figure 11. Sketches of graphs of Λ̃a in the case a3 ≤ a < a1. On the left a close to a3,
on the right, a close to a1. Compare with Figure 14 top left and Figures 12 bottom,
respectively.

Proof. (i) The ray Ra crosses Γ∞ 2n times, hence Λ̃a has 2n discontinuities. The inequalities result from
(29).

(ii) results from Propositions 2.6 and 2.7.
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(iii) results from Lemma 2.8.

(iv) results from (31).

(v) If a = a2n+1 then we have Λ̃a(− 2
a2n+1

) = 0, but there is no discontinuity at this point. Moreover,

Λ̃a(c) tends to the value rn(a) > 0 and ln(a) > 0 as c→ Rn(a)− and c→ Ln(a)+ respectively. Hence for

a > a2n+1, a close to a2n+1 Λ̃a reaches its minimum on ]Ln(a), Rn(a)[. This minimum Λ2n+1(a) is close
to 0, attained for some c = C2n+1(a) (possibly non unique, but necessarily close to − 2

a2n+1
) see Figure

11 for the case n = 1.
Let d2n+1 ∈] a2n+1, a2n−1], be the supremum of those values d such that for all a ∈ [a2n+1, d[, Λ2n+1(a)

achieves its minimum on ]Ln(a), Rn(a)[. By construction, Λ2n+1(a) tends to µ2n+1 = ln(d2n+1) as
a→ d2n+1, see Figure 7.

(vi) As for all fixed c the map a 7→ Λ̃(a, c) is continuous on [a1,+∞[, this is also the case for Λ2n+1.

0

0.1
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0.3

0.4

1 1.1 1.2 1.3 1.4 1.5 0

0.1

0.2

0.3

0.4

1 1.1 1.2 1.3 1.4 1.5

0

0.1

0.2

0.3

0.4

1 1.1 1.2 1.3 1.4 1.5 0

0.1

0.2

0.3

0.4

1 1.1 1.2 1.3 1.4 1.5

Figure 12. Scenario of bifurcation of the graphs of Λ̃a near a1 ≈ −1.702704. Top left:
a = −1.68, top right: a = −1.7027, bottom left: a = −1.7028, bottom right: a = −1.705.

Similarly, we have the following result, stated without proof; see Figure 13.

Lemma 2.12. Consider the case a ∈ ]a2n, a2n+2] with n ≥ 1.

(1) The function Λ̃a has 2n+1 discontinuities at c = Lk(a), 1 ≤ k ≤ n and c = Rk(a) 1 ≤ k ≤ n+1,
such that 0 < L1(a) < · · · < Ln(a) < − 2

a < Rn+1(a) < · · · < R1(a).

(2) As c→ 0+, Λ̃a(c) tends to +∞. On [R1(a),+∞[, Λ̃a is increasing from 0 to +∞.

(3) At each c = Rk(a) the function Λ̃a jumps from 0 to lk(a) and at each c = Lk(a) it jumps down
from rk(a) to 0, where lk and rk satisfy 0 < rn+1(a) < ln(a) < rn(a) < · · · < l1(a) < r1(a).

(4) Let d2n+2 ∈] a2n, a2n+2] be the infimum of d such that for all a ∈ ]d, a2n+2], Λ2n+1(a) achieves its
minimum on ]Ln(a), Rn+1(a)[, denoted by Λ2n+2(a). This yields a continuous function Λ2n+2 :
]d2n+2, a2n+2] → [0, µ2n+2[ such that Λ2n+2(a) tends to µ2n+2 as a → d2n+2, with µ2n+2 :=
rn+1(d2n+2).

In the case a = −
√

3, the ray Ra crosses Γ∞ infinitely times, and we have the following result, once
again stated without proof; see Figure 15.

Lemma 2.13. Consider the case a = −
√

3. The function Λ̃a has infinitely many discontinuities at
c = Ln(a) and c = Rn(a) with n ≥ 1, such that

0 < L1(a) < · · · < Ln(a) < · · · < 2√
3
< · · · < Rn(a) < · · · < R1(a).
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Figure 13. Scenario of bifurcation of the graphs of Λ̃a near a2 ≈ −1.7324. Top left:
a = −1.7323, top right: a = −1.73238, bottom left: a = −1.7324, bottom right: a =
−1.733.
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Figure 14. Scenario of bifurcation of the graphs of Λ̃a, near a3 ≈ −1.7320463. Top
left: a = −1.73204, top right: a = −1.732046, bottom left: a = −1.732047, bottom
right: a = −1.732048.

As c → 0+, Λ̃a(c) tends to +∞. On [R1(a),+∞[, Λ̃a is increasing from 0 to +∞. At each c = Rn(a)

the function Λ̃a jumps from 0 to ln(a) and at each c = Ln(a) it jumps down from rn(a) to 0, where the
sequences (ln)n∈N and (rn)n∈N satisfy

0 < · · · < ln(a) < rn(a) < · · · < l1(a) < r1(a).
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Figure 15. Numerical graph of Λ̃a for a = −
√

3, with successive enlargements.

¿From (30), we see that, as a increases and crosses the value a2n−1, Rn(a) and Ln(a) collapse and
two discontinuities disappear. This scenario of bifurcation is displayed on Figures 12 and 14 for the
cases n = 1 and n = 2. Similarly, as a decreases and crosses a2n, Rn+1(a) and Ln(a) collapse and two
discontinuities disappear. This scenario of bifurcation is displayed on Figure 13 for the case n = 1.

Proof of Theorem 1.2. If −1 < λ < 0 then there is no solution by Proposition 3.1. If λ ≥ 0, we have to

count the number of solutions of the equation Λ̃a(c) = λ. A simple glance at the graph of Λ̃a shows the
following.
The case a ≥ a1. From Lemma 2.9 we deduce that Problem (10) has no solution if and only if 0 ≤ λ <
Λ1(a) and that this problem has at least one solution (satisfying f ′′(0) = C1(a)) if λ = Λ1(a), and at
least two solutions if λ > Λ1(a); see Figure 9.

The case a ≤ a2. ¿From Lemma 2.10 we see that this case splits into two subcases. In the first case
d2 < a ≤ a2, we have the following:

• if 0 ≤ λ < Λ2(a) then Problem (10) has at least one solution;
• if λ = Λ2(a) then (10) has at least two solutions;
• if Λ2(a) < λ < r1(a) then (10) has at least three solutions;
• if r1(a) ≤ λ then (10) has at least two solutions; see Figure 10, right.

In the second case a ≤ d2:

• if 0 ≤ λ ≤ r1(a) then (10) has at least one solutions;
• if r1(a) < λ then (10) has at least two solutions, see Figure 10, left.

The case a ∈ [a2n+1, a2n−1[, n ≥ 1. ¿From Lemma 2.10 we deduce that if a2n+1 ≤ a < d2n+1, then the
number of solutions of Problem (10) is at least equal to

• 2n, if 0 ≤ λ < Λ2n+1(a);
• 2n+ 1, if λ = Λ2n+1(a);
• 2n+ 2, if Λ2n+1(a) < λ < ln(a);
• 2n+ 1, if ln(a) ≤ λ < rn(a);
• 2k, if rk(a) ≤ λ < ln−1(a), where 2 ≥ k ≥ n;
• and 2, if r1(a) ≤ λ; see Figure 11 left for the case n = 1.

If d2n+1 ≤ a < a2n−1, then the number of solutions of Problem (10) is at least equal to

• 2n, if 0 ≤ λ ≤ ln(a);
• 2n+ 1, if ln(a) ≤ λ < rn(a);
• 2k, if rk(a) ≤ λ < ln−1(a), where 2 ≥ k ≥ n;
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• and 2, if r1(a) ≤ λ; see Figure 11 right for the case n = 1.

The case a ∈ ]a2n, a2n+2], n ≥ 1 is completely analogous to the former one.

The case a = −
√

3. By Lemma 2.13, Problem (10) admits as many solutions as possible for sufficiently
small values of λ, and infinitely many solutions for λ = 0.

Comments on Conjecture 1.3. Some numerical experiments and a deeper study which are beyond the
scope of the present article convinced us of the following assertion.

Conjecture 2.14. Let n ≥ 1. If d2n+1 ≤ a < a2n−1 then the function Λ̃a is increasing on its central
part ]Ln(a), Rn(a)[.

If a2n+1 ≤ a < d2n+1, then Λ̃a has a unique minimum on ]Ln(a), Rn(a)[ for c = C2n+1(a). Moreover,

the function Λ̃a is decreasing on the interval ]Ln(a), C2n+1(a)] and increasing on [C2n+1(a), Rn(a)[.

Similarly, if a2n < a ≤ d2n+2 then Λ̃a is increasing on ]Ln(a), Rn+1(a)[ and if d2n+2 < a ≤ a2n+2,

then Λ̃a has a unique minimum on ]Ln(a), Rn+1(a)[ for c = C2n+2(a), Λ̃a is decreasing on the interval
]Ln(a), C2n+2(a)] and increasing on [C2n+2(a), Rn+1(a)[.

For all a ∈ R, on all parts of the graph of Λ̃a, except the central one, the function Λ̃a is monotonous,
decreasing on each part on the left of the central part, increasing on the right.

This would imply our Conjecture 1.3.

3. Preliminary results.

In this section, we present some basic results on the Blasius problem (1 - 2) in the convex case, i.e. for
λ > b. Most of these results are already known; however we tried to give, as far as possible, new shorter
proofs. In particular in the case b ≥ 0, we prove (cf. Corollary 3.6) that the Blasius problem has no
solution if λ < 0 or if b = 0 < a and λ ≤ a2λ+ and a unique solution in the following cases:

(i) b > 0 and λ > b, (ii) b = 0 and a ≤ 0 < λ, (iii) b = 0 < a and λ > a2λ+.

We first show the existence of our function Λ and we prove its continuity and monotony properties.

3.1. Definition of the function Λ. Let a, b ∈ R and c ∈ ]0,+∞[. We recall that f( · ; a, b, c) is the
solution of the initial value problem (5). Let [0, Ta,b,c[ denote its right maximal interval of existence. We
also have set

Λ(a, b, c) := lim
t→Ta,b,c

f ′(t; a, b, c).

Proposition 3.1. If c > 0 then Ta,b,c = +∞ and Λ(a, b, c) exists, is finite and nonnegative.

Proof. The existence of Λ(a, b, c) ∈ ]b,+∞] follows from the positivity of f ′′( · ; a, b, c). We first show
that Ta,b,c = +∞. Since f := f( · ; a, b, c) is convex on [0, Ta,b,c[, we have f(t) ≥ f(t0) + f ′(t0)(t− t0) for
all t0, t ∈ [0, Ta,b,c[. Hence (11) implies

0 < f ′′(t) ≤ f ′′(t0) exp

{
−f(t0)(t− t0) − f ′(t0)

(t− t0)
2

2

}
. (32)

If Ta,b,c were finite, then f, f ′ and f ′′ would have finite limits as t → Ta,b,c, thus a contradiction. This
proves Ta,b,c = +∞.

If now Λ(a, b, c) ∈ ]b, 0[, then f(t) → −∞ as t → +∞, hence there exists t1 ≥ 0 such that f(t) ≤ −1
for t ≥ t1. ¿From (11) we obtain f ′′(t) ≥ f ′′(t1)et−t1 , hence f ′′(t) → +∞, as t→ +∞, which contradicts
the fact that f ′(t) has a finite limit as t→ +∞.

It remains to show that Λ(a, b, c) is finite. We can assume that Λ(a, b, c) 6= 0. Thus, f(t) → +∞
as t → +∞, hence there exists t2 ≥ 0 such that f(t2) = max{1, a + 1}. We have f ′(t2) > 0, hence
writing (32) for t0 = t2 we obtain 0 < f ′′(t) ≤ f ′′(t2)e−(t−t2) for all t ≥ t2. Integrating, we obtain
0 ≤ f ′(t) − f ′(t2) ≤ f ′′(t2)

(
1 − e−(t−t2)

)
for all t ≥ t2. This implies that Λ(a, b, c) is finite.

Remark. Let c > 0. From its convexity, the function f( · ; a, b, c) has a constant sign at infinity, hence
it is so for f ′′′( · ; a, b, c). Since Λ(a, b, c) is finite, we obtain

lim
t→+∞

f ′′(t; a, b, c) = 0. (33)
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3.2. Proof of Proposition 2.1. Let f := f( · ; a, b, c) be the solution of problem (5) with c = f ′′(0) > 0.
From the previous section, we know that f is defined on [0,+∞[ and that f ′′(t) > 0 for all t. Hence the

function t 7→ s = f ′(t) is increasing and defines t = (f ′)−1
(s) as a function of s.

As seen at the beginning of Section 2.1, the function

u : [b,Λ(a, b, c)[ → ]0,+∞[, s 7→ f ′′ ◦ (f ′)−1(s)

is solution of problem (12 - 13). We also saw that u′ ◦ f ′ = −f . Moreover, from (33), we have

lim
s→Λ(a,b,c)

u(s) = lim
t→+∞

f ′′(t) = 0.

This shows that u cannot be continued after Λ(a, b, c). Finally, if Λ(a, b, c) > 0, then f(t) → +∞ as
t→ +∞, hence

lim
s→Λ(a,b,c)

u′(s) = lim
t→+∞

(−f(t)) = −∞.

This completes the proof.

3.3. Useful identities. Below are some useful identities satisfied by any function u, solution of the
Crocco equation (12) on some interval I . ¿From this equation we immediately obtain that for all s0, s ∈ I
we have

u′(s) − u′(s0) = −
∫ s

s0

η

u(η)
dη (34)

and integrating once again

u(s) − u(s0) − u′(s0)(s− s0) = −
∫ s

s0

η(s− η)

u(η)
dη. (35)

Moreover, since uu′′ = (uu′)′ − u′2, it follows after integration that for all s0, s ∈ I we have

u(s)u′(s) − u(s0)u
′(s0) =

∫ s

s0

u′(η)2dη − 1

2
(s2 − s20),

and integrating again

u(s)2 − u(s0)
2 − 2u(s0)u

′(s0)(s− s0) = 2

∫ s

s0

(s− η)u′(η)2dη − 1

3
(s− s0)

2(s+ 2s0). (36)

Finally, multiplying equation (12) by 2u′ and integrating, we obtain for all s0, s ∈ I

u′(s)2 − u′(s0)
2 = −2s ln |u(s)| + 2s0 ln |u(s0)| + 2

∫ s

s0

ln |u(η)|dη. (37)

3.4. Further properties of the function Λ. Thanks to Proposition 2.1, we associate to f( · ; a, b, c)
the Crocco solution of (12 - 13), denoted u( · ; a, b, c). Precisely, u := u( · ; a, b, c) satisfies

u′′ = − s

u
on [b,Λ(a, b, c)[ u(b) = c, u′(b) = a, u > 0.

Proof of Proposition 2.6, Item 1. First, we prove that if a ∈ R and b ∈ [0,+∞[, then the function
c 7→ Λ(a, b, c) is increasing. Suppose c1 > c2 > 0 and Λ(a, b, c1) ≤ Λ(a, b, c2). For i = 1, 2 set ui :=
u( · ; a, b, ci), and set w := u1 − u2. We have w(b) = c1 − c2 > 0, w′(b) = a− a = 0, and

∀ s ∈ [b,Λ(a, b, c1)[, w
′′(s) = u′′1(s) − u′′2(s) =

−s
u1(s)

+
s

u2(s)
=

sw(s)

u1(s)u2(s)
.

Therefore, as long as w is positive, w is convex, and so increasing in such a way that w remains positive
on [b,Λ(a, b, c1)[. However, as s → Λ(a, b, c1), w(s) tends either to 0 if Λ(a, b, c1) = Λ(a, b, c2), or to
−u2(Λ(a, b, c1)) < 0 if Λ(a, b, c1) 6= Λ(a, b, c2). In both cases, this is a contradiction.

Secondly, we prove that if b ∈ [0,+∞[ and c ∈ ]0,+∞[, then the function a 7→ Λ(a, b, c) is increasing.
With the notation ui := u( · ; ai, b, c) (for i = 1, 2) and w := u1 − u2, we have w(b) = c − c = 0 and
w′(b) = a1 − a2 > 0. If Λ(a, b, c1) ≤ Λ(a, b, c2), then

∀ s ∈ [b,Λ(a, b, c1)[ w
′′(s) =

sw(s)

u1(s)u2(s)
.

and we conclude as in the previous case.

Remark. From this proof, we see that, if 0 ≤ b ≤ s, then the function c 7→ u(s; a, b, c) is increasing
(when defined).
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Proposition 3.2. If (a, b, c) ∈ R×R× ]0,+∞[ is such that Λ(a, b, c) > 0, then Λ is continuous at (a, b, c).

Proof. We have Λ(a, b, c) = sup{f ′(t; a, b, c) ; t ≥ 0}. Since for every t the function (a, b, c) 7→ f ′(t; a, b, c)
is continuous, it follows that Λ is lower semicontinuous on R × R× ]0,+∞[.

Now we argue by contradiction by assuming that Λ is not upper semicontinuous at (a, b, c). Then
there would exist a positive real number ε and a sequence (an, bn, cn) in R×R× ]0,+∞[ which converges
to (a, b, c) such that, if we set λ := Λ(a, b, c) and λn := Λ(an, bn, cn), we have

∀n ∈ N, λ+ ε ≤ λn. (38)

Let u := u( · ; a, b, c) and un := u( · ; an, bn, cn). Since λ > 0 we deduce from Proposition 2.1 that u(η) → 0
and u′(η) → −∞ as η → λ, η < λ. Hence, there exists s ∈ ]0, λ[ such that u(s) < 1 and u′(s) < − 3

ε . By

continuity with respect to the initial conditions, there exists m ∈ N such that um(s) < 2 and u′m(s) < − 2
ε .

Therefore, since um decreases and is concave on [s, λm[, we have um(λ) < 2 and u′m(λ) < − 2
ε . Hence,

∀ η ∈ [λ, λm[, um(η) ≤ um(λ) + u′m(λ)(η − λ) < 2 − 2

ε
(η − λ). (39)

Since um(η) → 0 as η → λm, η < λm, (38) and (39) give a contradiction.

3.5. Proof of Theorem 2.2, item 3. Existence. Let un = u
(
· ; 1, 0, 1

n

)
. For s > 0 small enough, we

have un(s) ≥ s
2 . On any interval [0, α] where un is defined and satisfies un(s) ≥ s

2 , we have u′′n(s) =
−s

un(s) ∈ [−2, 0]. Integrating twice, we obtain successively

1 − 2s ≤ u′n(s) ≤ 1 and
1

n
+ s− s2 ≤ un(s) ≤ 1

n
+ s. (40)

Since s
2 <

1
n + s − s2 for all s ∈

[
0, 1

2

]
, the a priori majorization principle implies that (40) is valid for

all s in this interval. This shows that the sequence (un) is uniformly equicontinuous and bounded on[
0, 1

2

]
. Ascoli’s Theorem implies that some subsequence (unk

)k∈N converges to some function u, which is
automatically solution of (12) because

u′′(s) = lim
k→+∞

u′′nk
(s) = lim

k→+∞

−s
unk

(s)
=

−s
u(s)

uniformly on each compact subset of
]
0, 1

2

]
. Moreover, (40) implies that u satisfies s − s2 ≤ u(s) ≤ s,

hence u satisfies (18). This proves the existence of u+.

Remark. Since c 7→ u(s; a, b, c) increases on ]0,+∞[ if 0 ≤ b ≤ s (cf. the remark above Proposition
3.2), we also have

u+(s) = lim
c→0

u(s; 1, 0, c). (41)

Uniqueness. Suppose that u1 and u2 are two solutions of u′′ = − s
u on some interval ]0, T [, satisfying

u(0+) = 0, u′(0+) = 1. Setting w = u1 − u2, we obtain

w′′ =
sw

u1(s)u2(s)
, w(0+) = w′(0+) = 0. (42)

Assume first that w does not vanish on ]0, T [. Without loss of generality we may assume that w > 0 on
]0, T [. Then, w is convex. This implies that w(η) = w

(
η
s s
)
≤ η

sw(s) for all η ∈ ]0, s]. Now (42) gives by
integration, for all s ∈ ]0, T [

w′(s)

w(s)
=

1

w(s)

∫ s

0

ηw(η)

u1(η)u2(η)
dη ≤ 1

s

∫ s

0

η2

u1(η)u2(η)
dη.

Since u1(η)u2(η) ∼ η2 as η → 0+, there exists ε such that for 0 ≤ s < ε we have w′(s) ≤ 2w(s). By
Gronwall lemma, we deduce that w′ = 0 on [0, ε], hence w = 0 on [0, ε], which contradicts our assumption.

Therefore, there is s0 ∈ ]0, T [ such that w(s0) = 0. Then w = 0 on [0, s0[, because on the contrary
it should exist s1 ∈ ]0, s0[ such that, for example, w(s1) > 0 and w′′(s1) ≤ 0, which contradicts (42). It
follows that w = 0 on [0, T [.

Remark. A similar proof could be done for u−, but we give a shorter indirect proof in Section 5.3.

Bounds for λ+. Let ]0, λ+[ denote the interval of existence of u+. We have to prove that 1 < λ+ < s0,
where s0 > 0 satisfies (2s0 − 4) ln

(
1 − s0

2

)
= s0, see Figure 16.

By concavity, we have u+(s) < s for all s ∈ ]0, λ+[. Thus u′′+(s) < −1 for all s ∈ ]0, λ+[. Integrating

twice we obtain u+(s) < s − s2

2 for all s ∈ ]0, λ+[. Hence u′′+(s) < − 1
1− s

2

for all s ∈ ]0, λ+[. Integrating

twice again, we obtain u+(s) < β(s) := (2s − 4) ln(1 − s
2 ) − s for all s ∈ ]0, λ+[. Thus λ+ < s0, where

s0 ≈ 1.43 is the positive root of equation β(s) = 0.
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Figure 16. The solution u+ of the Crocco equation. We have λ+ ≈ 1.304.

On the other hand for s > 0 small enough we have u+(s) > s
2 . Thus u′′+(s) > −2 as long as s > 0 and

u+(s) > s
2 . Integrating twice we obtain u+(s) > s− s2 for all s ∈ ]0, 1

2 [. Thus u′′+(s) > − 1
1−s , as long as

both s ∈ ]0, λ+[ and u+(s) > s− s2. Integrating twice again, we obtain u+(s) > α(s) := (s− 1) ln (1 − s)
as long as both s ∈ ]0, λ+[ and u+(s) > s− s2. Since α(s) > s− s2 for all s ∈ ]0, 1[, we deduce λ+ > 1.

3.6. The Blasius problem for b ≥ 0.

Proposition 3.3. It holds:

λ+ = lim
c→0+

Λ(1, 0, c) = inf
c>0

Λ(1, 0, c).

Proof. Since c 7→ Λ(1, 0, c) is increasing and positive, the expression

Λi := inf
c>0

Λ(1, 0, c)

is finite and equal to lim
c→0+

Λ(1, 0, c). Besides, the solution u+ given by (41) is defined on ]0, λ+[ and, for

c > 0, the solution u( · ; 1, 0, c) is defined on [0,Λ(1, 0, c)[. By the lower semicontinuity of the positive
maximal interval of existence of solutions of ODEs with respect to initial conditions, we obtain λ+ ≤ Λi.

By contradiction, assume that λ+ < Λi. Notice that for all c > 0 we have ]0,Λi] ⊂ ]0,Λ(1, 0, c)[.
Consider ε > 0 and B ∈ ]0, λ+[, close to λ+. Then there exists c0 > 0 such that for all c ∈ ]0, c0[

∀ s ∈ ]0, B] |u(s; 1, 0, c)− u+(s)| < ε.

Since ε can be chosen as small as we want and B as close to λ+ as we want, this would contradict the
fact that u( · ; 1, 0, c) is positive and concave on [0,Λi].

We prove below the asymptotic formula (27) of Proposition 2.7, Section 2.3 in a more general situation.
This shows, in particular, that Λ(a, b, c) → +∞ as c→ +∞.

Proposition 3.4. For all (a, b) ∈ R
2 the following holds

Λ(a, b, c) ∼ Λ(0, 0, 1)c2/3 as c→ +∞.

Proof. From (25), for c > 0, we have

c−2/3Λ(a, b, c) = Λ
(
ac−1/3, bc−2/3, 1

)
−→ Λ(0, 0, 1) as c→ +∞,

since Λ is continuous at the point (0, 0, 1).

Remark. Section 9.5 contains an historical account about this constant Λ(0, 0, 1).

Proposition 3.5. Let a ∈ R and b ≥ 0. Set µa,b = inf{Λ(a, b, c) ; c > 0}. The mapping c 7−→ Λ(a, b, c)
is increasing one-to-one from ]0,+∞[ onto ]µa,b,+∞[. Furthermore we have

µa,b =

{
b if a ≤ 0 or b > 0,

a2λ+ if a > 0 and b = 0.
(43)
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Proof. The first assertion follows from Proposition 2.6, item 1 and Propositions 3.2, 3.4. It remains to
prove (43). Notice that we have

µa,b = lim
c→0+

Λ(a, b, c).

For the remainder of the proof, let us set uc := u( · ; a, b, c) and λc := Λ(a, b, c).

• If a ≤ 0, then uc is decreasing on [b, λc[. Thanks to (35) with s0 = b, s→ λc, we obtain

c ≥ c+ a(λc − b) =

∫ λc

b

η(λc − η)

uc(η)
dη ≥ 1

c

∫ λc

b

η(λc − η)dη =
1

6c
(λc − b)2(λc + 2b),

hence λc → b as c→ 0+.

• If a > 0 and b > 0, then there exists a unique sc ∈ ]b, λc[ in which uc attains its maximum. Using
identity (35) with s0 = sc, s→ λc and the fact that uc is decreasing on [sc, λc[ we obtain as above

uc(sc) =

∫ λc

sc

η(λc − η)

uc(η)
dη ≥ 1

uc(sc)

∫ λc

sc

η(λc − η)dη =
1

6uc(sc)
(λc − sc)

2(λc + 2sc).

This and the concavity of uc yield

c+ a(sc − b) ≥ uc(sc) ≥
1√
6
(λc − sc)

√
λc + 2sc. (44)

In addition, from (34) and the concavity of uc, we obtain

a =

∫ sc

b

η

uc(η)
dη ≥ b

∫ sc

b

dη

c+ a(η − b)
=
b

a
ln
(
1 +

a

c
(sc − b)

)

and since b > 0, this leads to

0 ≤ sc − b ≤ c

a

(
ea2/b − 1

)

hence sc → b as c→ 0+. Coming back to (44) we obtain that λc → b as c→ 0+.

• If a > 0 and b = 0 then, from the similarity (25) and Proposition 3.3, we have

µa,0 = lim
c→0+

Λ(a, 0, c) = a2 lim
c→0+

Λ
(
1, 0, ca−3

)
= a2λ+.

Corollary 3.6. Let a ∈ R and b ≥ 0.
If a ≤ 0 or b > 0, then the Blasius boundary value problem (1 - 2) has one and only one solution for all
λ ∈ ]b,+∞[.
If a < 0 and b = 0, then the Blasius problem (1 - 2) has one and only one solution for all λ ∈ ]a2λ+,+∞[
and no solution for all λ ∈ ]0, a2λ+].

Proof. This follows immediately from Proposition 3.5.

4. Properties of the autonomous vector field.

This section is entirely devoted to the proof of Theorem 2.4.

4.1. The behavior near S∗. Proof of Theorem 2.4, item 1. Let (x, y) be a solution of (22 - 23) with
c > 0. Its associated Crocco solution u( · ; a,−1, c) is defined at least on [−1, 0[, hence (x, y) is defined at
least on [0,+∞[.

Besides, (22) has the same orbits as the polynomial one:

ẋ = 1 +
1

2
xy, ẏ = xy +

3

2
y2

hence no orbit of (22) can reach the horizontal axis y = 0.
The upper half plane (y > 0) is cut in four regions by the isoclines I∞ (ẋ = 0 ⇔ xy = −2) and I0

(ẏ = 0 ⇔ y = − 2
3x). On the East, x and y increase with t, on the North, x decreases and y increases,

etc., see Figure 17, left.
With the time t reversed, any solution starting in the East region must cross I0 at some point (x1, y1)

with y1 ∈
]
0, 2√

3

[
and x1 = − 3

2y1, then crosses I∞ at some (x2, y2) with y2 ∈
]
y1,

2√
3

[
and x2 = − 2

y2
,

then crosses I0 once again at (x3, y3) with x3 ∈
]
x2,−

√
3
[
, then I∞ at (x4, y4) with y4 < y3, hence

x4 ≤ x1. This gives an invariant box containing the solution for t ∈ ]−∞, t1], see Figure 17, right. As a
consequence the solution is defined for all t < 0. Because the divergence

∂

∂x

(
1

2
x+

1

y

)
+

∂

∂y

(
x+

3

2
y

)
= 2



ON THE BLASIUS PROBLEM 21

-x

6y

West
�	

North

@I

South Hj

East

��

I0

�

-
S∗

I∞

6

? -
xx2 x1

x3

0

y1

y2

y3

6y

*

r

I∞

Figure 17. On the left, the four regions delimited by the isoclines I0 and I∞; on the
right, a solution starting in the East region for negative time and its invariant box.

has a constant positive sign, there is no cycle by Dulac criterion, therefore any solution starting in the
East region must tend to the unique stationary point S∗ as t→ −∞.

With the same arguments, any solution that starts from any other region eventually visits the East as
t decreases, and we fall again in the first case.

Proof of Theorem 2.4, item 2. The linear part of the vector field at the stationary point S∗ has matrix(
1/2 −3/4
1 3/2

)
, hence S∗ is a source with simple eigenvalues 1 ± i√

2
. Therefore (24) means that x is

approximated by a solution of the linear part of our system at S∗. This is proved in the following lemma.

Lemma 4.1. Consider a C1 differential system in R
n of the form

x′ = Ax + b(x). (45)

Assume b : U ⊂ R
n → R

n satisfies b(x) = O(|x|k) as |x| → 0 for some k ∈ ]1,+∞[, where | | stands for
some norm in R

n and U is a neighborhood of 0 ∈ R
n.

Assume also that there is α > 0 such that −kα < Re(λ) < −α for all eigenvalue λ of A (with the
same k).

Then, for any solution x of (45) remaining in U and tending to 0 ∈ R
n, there exists x ∈ R

n such that

x(t) = e−tA(x + o(1)) as t→ +∞.

Proof. Although this result follows directly from the theory of normal forms (the assumptions imply
that there is no resonance), we give here an elementary proof.

Since the linear part of the system at its stationary point 0 ∈ R
n is A, the assumption on the spectrum

of A already gives x(t) = O (e−αt) as t→ +∞, hence b(x(t)) = O
(
e−kαt

)
as t→ +∞.

Let us view (45) as a linear system with b(x) considered as a “known” function. The variation of
constant formula yields, for all t > 0:

x(t) = etA

(
x(0) +

∫ t

0

e−sAb(x(s))ds

)
.

By assumption, there exists δ > 0 such that for all s > 0, ||e−sA|| = O
(
e(kα−δ)s

)
, where || || stands

for any matrix norm. Therefore we obtain e−sAb(x(s)) = O
(
e−δs

)
as s → +∞, which shows that the

integral
∫ +∞
0 e−sAb(x(s))ds converges in R

n. Now put:

x := x(0) +

∫ +∞

0

e−sAb(x(s))ds.

We obtain x(t) = etA(x(0) + r(t)) with r(t) =

∫ +∞

t

e−sAb(x(s))ds = o(1).

Remarks. 1. We stated the result for the stationary point 0 ∈ R
n but of course we have the same result

at any stationary point of type sink of any nonlinear system. In the same way we have an analogous
result as t→ −∞ for stationary points of type source.

2. The assumption on the spectrum of A is optimal: for example the system

x′ = −kx+ yk, y′ = −y
with initial conditions x(0) = 0, y(0) = 1 is solved by x(t) = te−kt, y(t) = e−t which cannot be asymptotic
to any solution of the linear part, of the form (xe−kt, ye−t).
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Our system (22), being C∞ near S∗, satisfies the assumptions of Lemma 4.1 (with time reversed

and after translation (x, y) 7→
(
x−

√
3, y + 2√

3

)
, as explained in Remark 1 above) with k = 2 and any

α ∈
]
1
2 , 1
[
. This proves (24).
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��*
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@ @
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Figure 18. The orbits Γ∞,Γ0 and their antifunnels.

4.2. The orbits Γ∞ and Γ0. Proof of Theorem 2.4, item 3. The straight line y = −x and the isocline
I−1 given by ẋ+ ẏ = 0, i.e. x+ y = − 2

3y , form a narrowing antifunnel (see Figure 18 left) with positive

divergence, thus Theorem 4.10 of [28] applies. This proves the existence and uniqueness of Γ∞.
In the same manner as for Γ∞, there is a unique orbit Γ0 in the narrowing antifunnel made of the axis

0y and the isocline I∞ (see Figure 18 right).

Now the change of variables X = x
y , Y = 1

y transforms (22) into the polynomial system

Ẋ = Y 2 −X2 −X, Ẏ = −Y
(
X +

3

2

)
. (46)

We study this system in the half plane Y ≥ 0, corresponding to y > 0. In addition to the stationary

point S =
(
− 3

2 ,
√

3
2

)
corresponding to the source S∗ of (22), system (46) has two other stationary points,

(0, 0) and (−1, 0), which lie on the axis Y = 0 and correspond then to asymptotic direction at infinity
of solutions of system (22). The linear part of the vector field (46) at the stationary point (−1, 0) has
eigenvalues 1 and − 1

2 , hence (−1, 0) is a saddle. The unstable separatrix of the saddle belongs to the axis
Y = 0. The curve Γ∞ corresponds to the stable separatrix Ws of this saddle. Using Taylor expansion for
Ws, we get that, for y large enough, Γ∞ is the graph of a function x = x∞(y) that satisfies

x∞(y) = −y − 1

2y
− 1

12y3
− 1

24y5
− 7

240y7
− 13

540y9
+O(y−11).

With the notation introduced in Section 2.4, x∞ is the inverse function of R1.
The linear part of the vector field (46) at the stationary point (0, 0) has eigenvalues −1 and − 3

2 . Hence
(0, 0) is a stable node. Let us show that all trajectories of system (46), except the part (X ≤ −1) of
the axis Y = 0, the stationary point S, and the stable separatrix W , tend to (0, 0) as t → +∞. Let

R denote the region enclosed by Ws and the lines X = − 3
2 and Y =

√
3

2 as shown on Figure 19, right.

-
X

6
Y

�1
Ws

S

−
3

2
−1 0

-
X

6
Y

R
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√

3

2

−
3

2
−1

Figure 19. On the left: the vector field (46). On the right: a sketch of the region R.
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Figure 20. On the left, the spiral Γ∞ and a trajectory of (22); on the right the corre-
sponding stable manifold Ws and the corresponding trajectory of (46). We also added
the curve I of inflexion points and I∞ on the left figure, and isoclines 0 on each figure.

Because R does not contain neither limit cycles nor stationary points other than the saddle (−1, 0), any
trajectory (X(t), Y (t)) of system (46), starting in R will cross the isocline X = − 3

2 (see Figure 20 right).
This means that the corresponding trajectory (x(t), y(t)) of system (22) will cross the isocline I0, given
by y = − 2

3x.

-
x0

6y

I−1

I

-
x0

6y

S∗

Γ0��*
Γ∞

Γk<0

Γk>0

Figure 21. On the left: the curve of inflexion points I of (22) given by (47) and the
bounding curves I−1 and 0y. On the right: the same ones with Γ0, Γ∞ and two Γk with
k < 0 and k > 0.

We claim that the corresponding orbit Γ is convex in the region y < − 2x
3 . For that purpose, we use

the following result.

Lemma 4.2. The set of inflexion points of the vector field (22) is the algebraic set of equation

4 + 4x2 + 20xy + 15y2 + 3xy3 + 3x2y2 = 0. (47)

It consists of one isolated point S∗ =
(
−
√

3, 2√
3

)
and a curve I with two branches x = x1(y) and

x = x2(y), y ∈ [2,+∞[, that satisfy

∀ y ∈ [2,+∞[ −y − 2

3y
< x2(y) ≤ x1(y) < 0. (48)

Moreover, we have x1(y) ∼ − 5
y and x2(y) + y ∼ − 1

3y as y → +∞.

As a consequence, there is no inflexion point of (22) in the region y < − 2
3x.

Proof. Inflexion points of a vector field

ẋ = h(x, y), ẏ = g(x, y).

have to satisfy

h2gx + hg(gy − hx) − g2hy = 0

where subscripts stand for the corresponding partial derivatives. To see this, if y can be written as a
function of x (otherwise permute x and y), we have y′(x) = g

h (x, y(x)), thus we obtain:

y′′(x) = 0 ⇔ h(x, y(x))
d

dx
g(x, y(x)) − g(x, y(x))

d

dx
h(x, y(x)) = 0
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⇔ h(gx + gy.y
′) − g(hx + hy.y

′) = 0,

then replace y′ by g
h and multiply by h.

In our case, we obtain that the inflexion points satisfy (47). This is a second order algebraic equation
in x, therefore its discriminant ∆ = (y2 − 4)(3y2 − 4)2 has to be nonnegative. This implies y = 2√

3
or

y ≥ 2.
For y = 2√

3
we obtain x = −

√
3, i.e. (x, y) = S∗. The case y ≥ 2 gives the two branches

x1(y) =
−y(3y2 + 20) +

√
∆

2(4 + 3y2)
, x2(y) =

−y(3y2 + 20) −
√

∆

2(4 + 3y2)
. (49)

Let us now verify the inequalities and the asymptotics. Firstly, (47) has obviously no solution with both
x and y nonnegative. The asymptotics of x1 is found when one seeks for a solution of (47) with y → +∞
and x → 0; thus two terms are in balance: 15y2 and 3xy3. We obtain successively x1(y) = O(y−1) and
5 + yx1(y) = O(y−2), hence x1(y) = − 5

y +O(y−3).

Concerning x2 the most convenient is to put x = z − y in (47). This gives

4 − y2 + 12yz + 4z2 − 3y3z + 3y2z2 = 0 ⇔ (4 − y2)(1 + 3yz) + (4 + 3y2)z2 = 0, (50)

from which it is clear that 1 + 3yz has to be positive. A fortiori 2 + 3yz has to be positive and this
gives the left inequality of (48). The asymptotics of x2 is found when one seeks for a solution of (50)
with y → +∞ and z → 0; thus two terms are in balance: −y2 and −3y3z. One obtains successively
z = O(y−1) and 1 + 3yz = O(y−2), hence x2(y) = −y − 1

3y +O(y−3).

We now return to our proof of item 3. Since Γ is convex in the region y < − 2x
3 , the trajectory

(x(t), y(t)) must cross the isocline I∞ given by xy = −2 and enter in the South region (see Figure 20
left). Hence it must cross again the isocline I0. This means that the corresponding trajectory (X(t), Y (t))
must cross again the isocline X = − 3

2 (see Figure 20 right) and enter in the region X ≥ − 3
2 , in which Y

is decreasing. Hence its tends to the stationary point (0, 0).
Consequently, any solution (x(t), y(t)) of system (22), except those corresponding to S∗ and Γ∞,

satisfies

lim
t→+∞

y(t) = +∞, lim
t→+∞

x(t)

y(t)
= 0.

This proves item 3 of Theorem 2.4.

Before going further in the proof of the remaining items, we now prove the following.

Lemma 4.3. 1. If u is a Crocco solution of (12) on ]−∞, 0[ satisfying u(0−) = 0, then for all s < 0 we

have −su
′(s)

u(s)
≤ −1.

2. If moreover u′(0−) = 0, then for all s < 0 we have −su
′(s)

u(s)
≤ −3

2
.

Proof. 1. If u is a Crocco solution such that u(0−) = 0, then by the finite-increment theorem, for all
s < 0 there exists θ ∈ ]0, 1[ such that u(s) = su′(θs). Since u′ is negative increasing on ]−∞, 0[, we obtain

∀ s < 0, −su
′(s)

u(s)
= − u′(s)

u′(θs)
≤ −1.

2. For all s < 0 we have

2u′(s)u′′(s) = −2su′(s)

u(s)
≤ −2 and u′(0−) = 0.

By integration we obtain u′(s)2 ≥ −2s, therefore u′(s) ≤ −
√
−2s. Integrating once again with u(0−) = 0

we obtain

∀ s < 0, u(s) ≥ 2
√

2

3
(−s)3/2

hence −su
′(s)

u(s)
≤ −3

2
.

Proof of Theorem 2.4, item 4. Consider (a, c) ∈ R×]0,+∞[, set u := u( · ; a,−1, c) and let (x, y)
denote the corresponding solution of (22 - 23). Notice that, if s and t are linked by s = −e−t, then

−su
′(s)

u(s)
=
x(t)

y(t)
.
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Concerning item (i), we have (a, c) = S∗ ⇔ u = u∗, which satisfies the conditions u(0−) = u′(0−) = 0.

Conversely, because S∗ is the only trajectory that satisfies x(t)
y(t) ≤ − 3

2 for all t ∈ R, by Lemma 4.3 above,

only u∗ can satisfy the required conditions. Incidentally, we proved that u∗ is the unique Crocco solution
with u∗(0−) = u∗′(0−) = 0, as claimed after (16).

For the proof of (iii), if (a, c) /∈ Γ∞ ∪{S∗}, then from item 3 proven above, x(t)
y(t) tends to 0 as t→ +∞,

i.e.
su′(s)
u(s) → 0 as s → 0−. By Lemma 4.3, u(0−) 6= 0, i.e. u is defined (at least) until 0 and u(0) 6= 0.

Conversely, if u(0) 6= 0, then k := u′(0)3

u(0) is finite, therefore (a, c) cannot be on Γ∞ (because on Γ∞ we

have u′(s)3

u(s) = x(t)3

y(t) ∼ −x(t)2 → −∞) and of course (a, c) 6= S∗ since u 6= u∗.

Now (ii) follows by exclusion.

4.3. The orbits Γk. Proof of Theorem 2.4, item 5. Along an orbit different from Γ∞ and S∗, a

corresponding Crocco solution has to satisfy u(0) > 0. Therefore
x(t)3

y(t)
=

u′(s)3

u(s)
has a limit k as

t→ +∞ i.e. s→ 0−, namely k =
u′(0)3

u(0)
.

Proof of item 6. Conversely, consider the trajectory of (22) corresponding to the Crocco solution with
u(0) = 1, u′(0) = k1/3. This shows the existence. For the uniqueness, if two Crocco solutions u1, u2

satisfy
u′

i(s)
3

ui(s)
→ k /∈

{
− 9

2 ,∞
}

as s→ 0− then the corresponding orbits of (22) are different from S∗ and

Γ∞, hence ui(0) > 0 and
u′

1(0)3

u1(0) =
u′

2(0)3

u2(0)
, therefore u2(s) = σ3u1(s

−2) with σ =
u′

1(0)
u′

2
(0) . In other words,

the corresponding orbits of (22) coincide.

Proof of item 7. We recall that the inflexion points of system (22), already described in Lemma 4.2, are
the point S∗ and the two branches given for y ≥ 2 by (49). Let us prove that the curve

I = {(x, y) : y ≥ 2, x = x1(y) or x = x2(y)}

is a barrier. We have to show that for all y > 2, we have p1(y) > 0 and p2(y) < 0 where

p1(y) = x′1(y) −
2 + yx1(y)

y(3y + 2x1(y))
, p2(y) = x′2(y) −

2 + yx2(y)

y(3y + 2x2(y))
.

By a tedious but straightforward computation we obtain

p1(y) =
2(3y2 − 4)

[
2y(7y2 − 12) + (13y2 − 4)

√
y2 − 4

]

y
√
y2 − 4(2y +

√
y2 − 4)(4 + 3y2)2

> 0,

p2(y) =
−2(3y2 − 4)

[
(2y(7y2 − 12) − (13y2 − 4)

√
y2 − 4

]

y
√
y2 − 4(2y −

√
y2 − 4)(4 + 3y2)2

< 0.

The first inequality is obvious (recall that y ≥ 2). The second inequality follows from the identity

2y(7y2 − 12)− (13y2 − 4)
√
y2 − 4 =

27y6 + 108y4 + 144y2 + 64

2y(7y2 − 12) + (13y2 − 4)
√
y2 − 4

> 0.

By Lemma 4.2, the curves x = 0 and x = x1(y) form a narrowing antifunnel which contains a unique
orbit, namely the orbit Γ0. Similarly, the curves x = −y− 2

3y (i.e. the isocline I−1) and x = x2(y) form a

narrowing antifunnel which contains a unique orbit, namely the orbit Γ∞. Thus the orbit Γ0 remains on
the right of the curve I of inflexion points and the orbit Γ∞ remains on the left of I. Consequently, the
orbit Γk has no inflexion point if k ≥ 0 and the orbit Γk crosses the curve I at one and only one point if
k < 0 (see Figure 21).
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5. Further properties of Crocco solutions.

We start with the following intermediate result.

Lemma 5.1. Let a ∈ R, c > 0 and u := u( · ; a,−1, c).

1. For all s1 ∈ [−1, 0[ such that u′(s1) > 0, we have

∀ s ∈ [s1, 0],

∫ s

s1

lnu(η)dη ≥ − 1

u′(s1)
. (51)

2. For all s1 ≤ −1 such that u′(s1) < 0, we have

∀ s ≤ s1,

∫ s1

s

lnu(η)dη ≥ 1

u′(s1)
. (52)

Proof. 1. Since u is convex on [−1, 0], one has for all η ∈ [−1, 0]

u(η) ≥ u′(s1)(η − s1) + u(s1).

Denoting α0 = u(s1) and α1 = u′(s1) we then obtain
∫ s

s1

lnu(η)dη ≥
∫ s

s1

ln(α1(η − s1) + α0)dη

=

[(
η − s1 +

α0

α1

)
ln(α1(η − s1) + α0) − η

]s

s1

=

(
s− s1 +

α0

α1

)
ln(α1(s− s1) + α0) −

α0

α1
lnα0 − (s− s1)

= (s− s1) ln(α1(s− s1) + α0) +
α0

α1
ln

(
1 +

α1

α0
(s− s1)

)
− (s− s1)

≥ (s− s1) ln(α1(s− s1)) − (s− s1) ≥ − 1

α1
,

since the function t 7−→ t ln(α1t) − t defined for t > 0 is convex and achieves its minimum for t = 1
α1

.
This completes the proof of item 1. The proof of item 2 follows the same way.

5.1. Proof of Proposition 2.3. Fix a ∈ R and set uc := u( · ; a,−1, c). Given a compact subset of
]−∞,−1[∪ ]−1, 0], we first choose δ ∈ ]0, 1

4 [ such that this compact is included in

K = K+ ∪K− with K+ =
[
− 1

δ ,−1− 2δ
]

and K− = [−1 + 2δ, 0].

¿From (36) with s0 = −1 we obtain for all s ∈ K:

uc(s)
2 ≥ c2 + 2ac(s+ 1) +

1

3
(s+ 1)2(2 − s).

Since the constant term 1
3 (s+ 1)2(2 − s) is bounded below by 2

3 (2δ)2, we have

∃ c1 ∈
]
0, δ

2

]
, ∀ s ∈ K, ∀ c ∈ ]0, c1[, uc(s) > δ. (53)

Note also that, using the convexity of uc on ]−∞, 0], we have

∀ s ≤ 0, uc(s) ≤ c+ (s+ 1)u′c(s). (54)

At this step we have to split the proof in two cases, whether s > −1 or s < −1. Although these cases are
very similar, we found more convenient to separate them, due to a great number of small differences.

Case 1. Assume first that s ∈ K+. Using (37), the fact that uc(η) ≤ uc(s) for all η ∈ [−1, s] and (54),
we obtain for all s ∈ K+ and all c ∈ ]0, c1[

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c+ 2

∫ s

−1

lnuc(η)dη (55)

≤ a2 − 2 ln c+ 2 lnuc(s) ≤ a2 − 2 ln c+ 2 ln(c+ (s+ 1)u′c(s))

≤ a2 − 2 ln c+ 2 ln(1 + u′c(s)). (56)
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In order to obtain (19) we need a converse inequality, and for that purpose we have to distinguish between
the cases a > 0 and a ≤ 0.

• If a > 0, then (51) for s1 = −1 gives

∫ s

−1

lnuc(η)dη ≥ −1

a
for all s ∈ [−1, 0]. Using (53), (55) and (56)

we deduce that for all s in K+ and all c in ]0, c1[

a2 + 2 ln δ − 2
a + 2 ln 1

c ≤ u′c(s)
2 ≤ a2 + 2 ln 1

c + 2 ln(1 + u′c(s)).

Since u′c(s) > 0 we obtain

u′c(s) ∼
√

2 ln 1
c as c→ 0 uniformly for s ∈ K+. (57)

• Assume now that a ≤ 0. From (53), if c ≤ c1, then there exist sc ∈ ]−1,−1 + 2δ[ and σc ∈ [−1, sc[
such that uc(sc) = 2c and u′c(σc) = 0, see Figure 22. Of course, one has u′c(sc) > 0. We claim that

-
s−1

6u

c

-�

σc sc

2c

Figure 22. The graph of uc near s = −1.

lim
c→0

sc = −1. (58)

Indeed, from (35) with s0 = −1, s = sc, we obtain

c− a(sc + 1) =

∫ sc

−1

−η(sc − η)

uc(η)
dη ≥ 1

2c

∫ sc

−1

(η2 − ηsc)dη =
1

12c
(sc + 1)2(2 − sc) ≥

1

6c
(sc + 1)2.

This gives (58). Moreover, on the one hand, using (37) with s0 = −1 and s = σc, we obtain for all
c ∈ ]0, c1[

−a2 = −2σc lnuc(σc) − 2 ln c+ 2

∫ σc

−1

lnuc(η)dη

≤ −2σc lnuc(σc) − 2 ln c+ 2(σc + 1) ln c = −2σc(ln uc(σc) − ln c)

from which, using σc ≤ sc ≤ − 1
2 , we derive that for c < c1 we have

lnuc(σc) ≥ ln c− a2. (59)

On the other hand, for c < c1, writing (37) with s0 = −1, s = sc, and using (59) we obtain

u′c(sc)
2 = a2 − 2sc ln 2c− 2 ln c+ 2

∫ sc

−1

lnuc(η)dη

≥ a2 − 2sc ln 2c− 2 ln c+ 2(sc + 1) lnuc(σc)

≥ −2sc ln 2 − (2sc + 1)a2 ≥ ln 2, (60)

since we have sc ≤ − 1
2 . Consequently, using (55), (51) and (60), we obtain, for c < c1

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c+ 2

∫ sc

−1

lnuc(η)dη + 2

∫ s

sc

lnuc(η)dη

≥ a2 − 2s lnuc(s) − 2 ln c+ 2(sc + 1) lnuc(σc) −
2√
ln 2

.
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Using (59), (53) and sc ≤ − 1
2 we deduce:

u′c(s)
2 ≥ 2sc ln c− 2s lnuc(s) −

2√
ln 2

≥ 2sc ln c+ 2 ln δ − 2√
ln 2

.

Altogether with (56), we have for all s ∈ K+ and all c ∈ ]0, c1[

−2sc ln 1
c + 2 ln δ − 2√

ln 2
≤ u′c(s)

2 ≤ a2 + 2 ln 1
c + 2 ln(1 + u′c(s)).

Using (58), we see that (57) follows in this case too.

To obtain (20) for s ∈ K+, let us set vc =
u′

c√
2 ln 1

c

. For all s ∈ K+ we have

uc(s)√
2 ln 1

c

=
c√

2 ln 1
c

+

∫ −1+2δ

−1

vc(η)dη +

∫ s

−1+2δ

vc(η)dη. (61)

Since vc(η) → 1 as c→ 0, uniformly on K+, we have
∫ s

−1+2δ

vc(η)dη → s+ 1 − 2δ as c→ 0 uniformly for s ∈ K+. (62)

Moreover, for all fixed η ∈ ]−1,−1 + 2δ], we have vc(η) → 1 as c→ 0, and since uc is convex on ]−∞, 0],
the function vc is increasing on [−1,−1 + 2δ] and thus

∀ η ∈ [−1,−1 + 2δ], −∞ < inf
c>0

vc(−1) ≤ vc(η) ≤ sup
c>0

vc(−1 + 2δ) <∞.

Therefore, applying the Lebesgue dominated convergence theorem, we obtain
∫ −1+2δ

−1

vc(η)dη → 2δ as c→ 0. (63)

Combining (61), (62) and (63) we obtain uc(s)√
2 ln 1

c

−→ s+ 1 as c→ 0, uniformly for s ∈ K+.

Case 2. Assume now that s ∈ K− =
[
− 1

δ ,−1 − 2δ
]
. Using (37), the fact that uc(η) ≤ uc(s) for any

η ∈ [s,−1], and (53), we obtain for all s ∈ K− and all c ∈ ]0, c1[

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c− 2

∫ −1

s

lnuc(η)dη (64)

≥ a2 − 2s lnuc(s) − 2 ln c− 2(−1− s) lnuc(s)

= a2 − 2 ln c+ 2 lnuc(s) ≥ a2 − 2 ln c+ 2 ln δ. (65)

To obtain a converse inequality, we distinguish between the cases a < 0 and a ≥ 0.

• If a < 0, then (52) for s1 = −1 implies that

∫ −1

s

lnuc(η)dη ≥ 1

a
for all s ≤ −1. Using (54) and (64)

we obtain for all s ∈ K− and all c ∈ ]0, c1[

u′c(s)
2 ≤ a2 − 2s lnuc(s) − 2 ln c− 2

a ≤ a2 − 2s ln(c+ (s+ 1)u′c(s)) − 2 ln c− 2
a

≤ a2 + 2
δ ln

(
1 + 1

δ |u′c(s)|
)
− 2 ln c− 2

a (66)

Thanks to (65) and (66) we obtain for all s ∈ K− and all c ∈ ]0, c1[

a2 + 2 ln δ + 2 ln 1
c ≤ u′c(s)

2 ≤ a2 − 2
a + 2 ln 1

c + 2
δ ln

(
1 + 1

δ |u′c(s)|
)
.

Since u′c(s) < 0, we deduce

u′c(s) ∼ −
√

2 ln 1
c as c→ 0 uniformly for s ∈ K−. (67)

• Assume now that a ≥ 0. From (53), if c ≤ c1, then there exist sc ∈
]
− 1

δ ,−1 − 2δ
[

and σc ∈ ]sc,−1]
such that uc(sc) = 2c and u′c(σc) = 0. One has u′c(sc) < 0 and, exactly as in the previous case, we show

lim
c→0

sc = −1. (68)



ON THE BLASIUS PROBLEM 29

Moreover, on the one hand, using (37) with s0 = −1 and s = σc, we obtain for all c ∈ ]0, c1[

a2 = −2σc lnuc(σc) − 2 ln c− 2

∫ −1

σc

lnuc(η)dη

≤ −2σc lnuc(σc) − 2 ln c− 2(−1− σc) lnuc(σc) = −2 ln c+ 2 lnuc(σc),

from which, we derive that for c < c1 we have

2 lnuc(σc) ≥ 2 ln c− a2. (69)

On the other hand, for c < c1, using (37) we obtain

u′c(sc)
2 = a2 − 2sc ln 2c− 2 ln c− 2

∫ −1

sc

lnuc(η)dη

≥ a2 − 2sc ln 2c− 2 ln c− 2(−1− sc) ln 2c = a2 − 2 ln 2,

hence

u′c(sc) ≤ −
√
a2 − 2 ln 2. (70)

Consequently, using successively (64), (54), (52), (69) and (70), we obtain, for c < c1 and s ∈ K−

u′c(s)
2 = a2 − 2s lnuc(s) − 2 ln c− 2

∫ sc

s

lnuc(η)dη − 2

∫ −1

sc

lnuc(η)dη

≤ a2 − 2s ln(c+ (s+ 1)u′c(s)) − 2 ln c− 2
u′

c(sc)
− 2(−1 − sc) ln uc(σc)

≤ a2 + 2
δ ln

(
1 + 1

δ |u′c(s)|
)
− 2 ln c+ 2√

a2−2 ln 2
+ (1 + sc)(2 ln c− a2)

≤ −sca
2 + 2

δ ln
(
1 + 1

δ |u′c(s)|
)

+ 2sc ln c+ 2√
a2−2 ln 2

,

and with (65) we obtain, for c ∈ ]0, c1[ and all s ∈ K−

a2 + 2 ln δ + 2 ln 1
c ≤ u′c(s)

2 ≤ 2√
a2−2 ln 2

− sca
2 − 2sc ln 1

c + 2
δ ln

(
1 + 1

δ |u′c(s)|
)

Hence, using (68), we see that (67) holds in this case too. The relation (20) on K− =
[
− 1

δ ,−1 − 2δ
]

is
obtained exactly as in the previous case.

5.2. Proof of Theorem 2.2, item 4. We need the following result whose proof is postponed to the
end of this section.

Lemma 5.2. Let a ∈ R ∪ {+∞} and let (an)n∈N be a sequence such that lim
n→+∞

an = a. Let (cn)n∈N

be another sequence of real number such that cn 6= 0 for all n ∈ N. Set un = u( · ; an, 0, cn). For all
s0 ∈ [−1, 0[ fixed, the following holds:

1. Suppose a = 0, lim
n→+∞

cn = 0 and the sequence (ln)n∈N given by ln := sup
s∈[0,1]

|u′n(s)| is bounded. Then

lim
n→+∞

un(s0) = u∗(s0).

2. If a ∈ R
∗ and lim

n→+∞
cn = 0, then lim

n→+∞
un(s0) = u

|a|
− (s0) = |a|3u−(s0a

−2).

3. If a = +∞ and lim
n→+∞

cn
an

= 0, then lim
n→+∞

un(s0) = +∞.

Proof of Theorem 2.2, item 4. Set un = u( · ;αn,−1, γn), by an := u′n(0−) and by cn := un(0−). We
define un(0) by its limit cn if necessary.
By the continuous dependence of solutions of ODEs with respect to initial conditions, we have for all
s < 0 fixed, un(s) → u−(s) as n → +∞. Since un is convex on [−1, 0], un has a minimum at some
sn ∈ ]−1, 0] that satisfies lim

n→+∞
sn = 0, and sn ≤ − cn

an
, hence lim

n→+∞
cn

an
= 0.

Suppose first that cn is non zero for an infinite number of values of n. Considering a subsequence if
necessary, we may assume without loss of generality that cn 6= 0 for all n.
• If (an) is unbounded, then considering once again a subsequence if necessary, we may assume without
loss of generality that lim

n→+∞
an = +∞. By Lemma 5.2, 3 we would obtain a contradiction with un(−1) =

γn → u−(−1). Therefore the sequence (an) is bounded. Let a be one of its cluster points.
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• If a = 0, then for n large enough we would have an ≤ u′n(s) ≤ 1 for all s ∈ [0, 1], i.e. the assumptions
of Lemma 5.2, item 1 would be satisfied, and we obtain once again a contradiction: we cannot have for
all s0 ∈ [−1, 0[ fixed u−(s0) = u∗(s0).

• If a 6= 0 then item 2 of Lemma 5.2 yields u− = u
|a|
− on [−1, 0[, hence |a| = 1.

If cn is non zero only for a finite number of values of n, then considering once again a subsequence if
necessary, we may assume without loss of generality that cn = 0 for all n, therefore un belongs to the
family uσ

− or un = u∗. Since un → u− on [−1, 0[, it follows that for n large enough, un = uσn
− for some

σn ∈ ]0,+∞[ and necessarily lim
n→+∞

σn = 1. Therefore an = uσn
− (0−) = −σn → −1.

The proof of Lemma 5.2 needs two technical results. The first one (Proposition 5.3) follows from
elementary computations. The second one (Proposition 5.4) uses the deep asymptotic result given by
Proposition 2.3.

Proposition 5.3. Let a < 0. Let (an)n∈N, (bn)n∈N, (cn)n∈N be sequences such that an < 0, bn ≤ 0,
cn > 0, lim

n→+∞
an = a, lim

n→+∞
bn = 0, lim

n→+∞
cn = 0 and lim

n→+∞
bn ln cn = 0. Then for all s < 0, we have

lim
n→+∞

u(s; an, bn, cn) = −a3u−(sa−2).

Proof. The solution un(s) := u(s; an, bn, cn) is defined for all s < 0 and satisfies un(s) > 0. Thus we
have u′′n(s) = − s

un(s) > 0. Integrating twice we obtain

un(s) ≥ cn + an(s− bn), for all s < 0, (71)

hence 0 < u′′n(s) ≤ −s
cn+an(s−bn) for all s < bn. Integrating once we obtain for all s < bn

an − 1

an
(s− bn) +

cn − anbn
a2

n

ln
an(s− bn) + cn

cn
≤ u′n(s) ≤ an. (72)

Integrating once again we obtain for all s < bn

un(s) ≤ cn + an(s− bn) − 1

2an
(s− bn)2

+
cn − anbn

a3
n

(
(an(s− bn) + cn) ln

an(s− bn) + cn
cn

− an(s− bn)

)
. (73)

Since lim
n→+∞

bn ln cn = 0, a close examination of (72) and (73) shows that the sequence (un) is uniformly

equicontinuous and bounded on [−1,−δ] for all δ > 0 and n large enough. Therefore some subsequence
unk

converges to some function u, which is a solution of (12), because

u′′(s) = lim
k→+∞

u′′nk
(s) = lim

k→+∞

(
− s

unk
(s)

)
= − s

u(s)

uniformly on each compact subset of [−1, 0[. Going to the limit in equations (71) and (73), we obtain
as ≤ u(s) ≤ as − 1

2as
2 for all s < 0. We deduce that u(0−) = 0 and u′(0−) = a. By the uniqueness of

uσ
− : s 7→ σ3u−(σ−2s) as solution of (12) with condition uσ

−(0−) = 0,
(
uσ
−
)′

(0−) = −σ, we obtain that
u = uσ

− with σ = −a.
We proved that any cluster point of the uniformly equicontinuous sequence (un) has to be equal to

this u, hence (un) converges to u.

Proposition 5.4. Assume that a > 0 and ε > 0. Then u(s; a, 0, ε) reaches its minimum at s = −κ(ε),
where κ(ε) > 0 and we have

κ(ε) =
ε

a
(1 + o(1)) and c(ε) := u(−κ(ε); a, 0, ε) = exp

(
−a

3

2ε
[1 + o(1)]

)
as ε→ 0.

Moreover, for all L < 0, we have

u(εs, a, 0, ε) = ε (|as+ 1| + o(1)) uniformly for s ∈ [L, 0], as ε→ 0.

Proof. We omit the dependence in ε of κ and c. By the similarity property (15), we have

u(εs; a, 0, ε) = κ3/2u
(εs
κ

;
a

κ1/2
, 0,

ε

κ3/2

)
. (74)

On the other hand, we have

u(εs; a, 0, ε) = u(εs; 0,−κ, c) = κ3/2u
(εs
κ

; 0,−1,
c

κ3/2

)
.
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Thus u′
(
0; 0,−1, c

κ3/2

)
= a

κ1/2 and u
(
0; 0,−1, c

κ3/2

)
= ε

κ3/2 . Formula (34) with s0 = −κ and s = 0 yields

a =

∫ 0

−κ

−η
u(η; a, 0, ε)

dη.

Since c ≤ u(s; a, 0, ε) ≤ ε for all s ∈ [−κ, 0], we have κ2

2ε ≤ a ≤ κ2

2c . Hence 0 < κ ≤
√

2εa and c
κ3/2 ≤√ κ

2a .
Thus c

κ3/2 = o(1). By Proposition 2.3 we have

a

κ1/2
=

√
2 ln

κ3/2

c
(1 + o(1)), (75)

ε

κ3/2
=

√
2 ln

κ3/2

c
(1 + o(1)). (76)

Hence κ = ε
a (1 + o(1)), as ε→ 0.

¿From (75) we deduce
a2

κ
=

(
2 ln

1

c
+ 3 lnκ

)
(1 + o(1)) =

(
2 ln

1

c

)
(1 + o(1)). Thus

c = exp

(
− a2

2κ
(1 + o(1))

)
= exp

(
−a

3

2ε
(1 + o(1))

)
as ε→ 0.

¿From (74), (76) and again Proposition 2.3, we have

u(εs; a, 0, ε) = κ3/2u
(
as(1 + o(1)), 0,−1,

c

κ3/2

)

= κ3/2

√
2 ln

κ3/2

c
|as(1 + o(1)) + 1|(1 + o(1)) = ε(|as+ 1| + o(1)).

Proof of Lemma 5.2. 1. By contradiction, if it were not the case, then there would exist a subsequence
(unk

(s0))n∈N such that any possible cluster point would be different from u∗(s0). However, the sequence
of functions (unk

)n∈N is uniformly equicontinuous and bounded on [−1, 0], therefore has at least a cluster
point u which is a Crocco solution and satisfies u(0−) = u′(0−) = 0. This would imply u = u∗ and the
contradiction.

2. If a < 0 the result follows from Proposition 5.3 with bn = 0. If a > 0, let bn = −2 cn

an
, ãn = u′n(bn)

and c̃n = un(bn). Denote rn := an

a . Since un(s) = r3nu
(
r−2
n s; a, 0, r−3

n cn
)
, by Proposition 5.4 we have

lim
n→+∞

ãn = −a, c̃n ∼ cn → 0 and lim
n→+∞

bn ln c̃n = 0. Hence the result follows from Proposition 5.3.

3. We have un(s) = a3
nu(sa

−2
n ; 1, 0, cna

−3
n ) and by hypothesis cna

−1
n → 0, a fortiori cna

−3
n → 0.

Therefore, by Proposition 5.4, un has a minimum at some sn satisfying sna
−2
n = −κ = −cna−3

n (1+ o(1)),
hence sn = −cna−1

n (1 + o(1)). Using the same Proposition 5.4, we obtain that un takes the value cn at
another point s̃n < 0 satisfying s̃n = −2cna

−1
n (1 + o(1)) and u′n(s̃n) = −an(1 + o(1)). This implies that

for n large enough, un(s0) >
1
2an|s0| → +∞ as n→ +∞ .

5.3. Last proofs. Proof of Theorem 2.2, item 1. Let u denote the solution of (12 - 13) with b < 0 and
c > 0. By Proposition 3.1, u is defined at least on [b, 0[. By (21) we have u(s) = (−s)3/2y(− ln(−s)),
and by Theorem 2.4 item 1, y(t) → 2√

3
as t → −∞. It follows that u is defined at least on ]− ∞, b]

and u(s) ∼ 2√
3
(−s)3/2 as s → −∞. Section 9.2 contains an alternative proof that uses only the Crocco

equation.

Proof of Theorem 2.2, item 2. For an existence proof, let (x, y) ∈ Γ∞. Thanks to the second equivalence
of Theorem 2.4, item 4, the corresponding Crocco solution ux,y := u( · ;x,−1, y) satisfies ux,y(0

−) = 0
and u′x,y(0

−) = −δ < 0. Now, the Crocco solution u− : s 7→ δ−3ux,y(δ
2s) satisfies u−(0−) = 0 and

u′−(0−) = −1. For any σ > 0, the Crocco solution uσ
− : s 7→ σ3u−(σ−2s) satisfies uσ

−(0−) = 0 and(
uσ
−
)′

(0−) = −σ. Uniqueness follows from the fact that Γ∞ corresponds to a unique family (uσ)σ>0 of
solutions of the Crocco equation.

Proof of Theorem 2.5. If we omit S∗, the first item results from the fact that Λ is non zero apart from
Γ∞ ∪{S∗} (see Theorem 2.4, item 4) and from Proposition 3.2. The continuity at S∗ will result from the
next item.

We now study the discontinuity on Γ∞. Consider first the point (a, c) where a = u−(−1) and c =
u′−(−1). By item 4 of Theorem 2.2, if (αn, γn)n∈N tends to (a, c) then u′(0;αn,−1, γn) has at most two

cluster points: −1 or 1. Denote by Λn = Λ̃(αn, γn) = Λ(αn,−1, γn) and by kn the k given by Theorem
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2.4 items 5 and 6, i.e. kn =
u′

n(0)3

un(0) . We have lim
n→+∞

kn = −∞ on the convex side and +∞ on the concave

side. Therefore un(0) = k−1
n u′n(0)3 → 0 on both sides. ’ Since kn is positive on the concave side and

negative on the convex side of Γ∞, we obtain that:

• On the convex side u′n(0) tends to −1. Since the solution un is concave for s > 0 we have Λn ≤ un(0)
u′

n(0) →
0.
• On the concave side u′n(0) tends to +1, hence Λn = Λ(u′n(0), 0, un(0)) → λ+.

For another point (a, c) on Γ∞, let t be such that a = x−(t), c = y−(t) and put s = −e−t, so that
a = (−s)−1/2u′−(s), c = (−s)−3/2u−(s). Then the solution u( · ; a,−1, c) is the member of the family (uσ)

with σ = (−s)−1/2. As a consequence, the discontinuity of Λ̃ at (a, c) is equal to σ2λ+ = λ+

−s = λ+e
t.

Proof of Proposition 2.6, items 2 and 3.

Item 2. Because a1 is the first point counted from the right of intersection of Γ∞ and I∞ (defined by
y = − 2

x), the first branch of the orbit Γ∞ included in the North region is the graph of the function
y = R1(x) defined for x ≤ a1, see Figure 8, right. Let ψ be the function defined for a < 0 by

ψ(a) = −2

a
if a ∈ [a1, 0[, ψ(a) = R1(a) if a ≤ a1.

We have to prove that for all a < 0, Λ̃a : c 7→ Λ(a,−1, c) is increasing on [ψ(a),+∞[.
Let a < 0 and c2 > c1 > ψ(a). Let ui(s) = u(s; a,−1, ci), i = 1, 2, and let (xi(t), yi(t)) denote the

corresponding solutions of system (22). Since the orbit of (x1, y1) is on the left of the one of (x2, y2), we

deduce that k1 < k2(< 0), where ki =
u′i(0)3

ui(0)
. Thus we have

u′1(0) < σu′2(0), where σ :=

(
u1(0)

u2(0)

)1/3

. (77)

-
x0

6y

a

c1
r

c2
r

y1(t0)=y2(t0)

x1(t0)<x2(t0)

Γ∞

I∞

M O

-
s0

6
u

s0−1

c2
r

c1
r

Figure 23. On the left: two solutions of (22) with initial conditions on the same vertical
ray. If their associated Crocco solutions (on the right) were crossing, then this would
yield a contradiction.

By contradiction, suppose that there exists s ∈ [−1, 0] such that u1(s) ≥ u2(s) and consider

s0 := inf{s > −1 : u1(s) ≥ u2(s)}.
Then we have u1(s0) = u2(s0) and u1(s) < u2(s) for all s ∈ [−1, s0[, hence u′2(s0) ≤ u′1(s0). This means
for the solutions (xi, yi) of (22), with t0 = − ln(−s0), that y1(t0) = y2(t0) and x1(t0) ≥ x2(t0) which is
impossible (see Figure 23). Thus u1(s) < u2(s) for all s ∈ [−1, 0] and then u1(0) < u2(0). Consequently
σ < 1, hence from item 1 of this Proposition 2.6 and (77) we obtain

Λ̃(a, c1) = Λ(a,−1, c1) = Λ(u′1(0), 0, u1(0)) < Λ(σu′2(0), 0, u1(0))

<
1

σ2
Λ(σu′2(0), 0, u1(0)) =

1

σ2
Λ(σu′2(0), 0, σ3u2(0)) (78)

= Λ(u′2(0), 0, u2(0)) = Λ(a,−1, c2) = Λ̃(a, c2).

Item 3. The proof is very similar to that of item 2. Let c1 be the first point (counted from below) of
intersection of Γ∞ and I0 (defined by y = − 2

3x), so that the first branch of the orbit Γ∞ included in
the East and in the North regions is the graph of the function x = x∞(y) introduced in Section 4.2 and
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defined for y ≥ c1. Observe that x∞ is the inverse function of R1 introduced in Section 2.4 only on the

interval
[
− 2

a1
,+∞

[
. Let φ be the function defined for c > 0 by

φ(c) = −3c

2
if c ∈ ]0, c1], φ(c) = x∞(c) if c ≥ c1.

Let c > 0 and a2 > a1 > ψ(c). We have to prove that Λ(a1,−1, c) < Λ(a2,−1, c).
Consider ui = u( · ; ai,−1, c), i = 1, 2 and let (xi(t), yi(t)) denote the corresponding solutions of (22).

Since the orbit of (x1, y1) is on the left of the one of (x2, y2), we have k1 < k2, where ki =
u′i(0)3

ui(0)
. Thus

we have

u′1(0) < σu′2(0), with σ :=

(
u1(0)

u2(0)

)1/3

. (79)

As before, we prove by contradiction that u1(s) < u2(s) for all s ∈ [−1, 0], a fortiori u1(0) < u2(0). Thus

σ < 1, item 1 and (79) yield Λ(a1, c) < Λ̃(a2, c) similarly to (78).

Proof of Proposition 2.7. We use the notation u := u( · ; a,−1, c). Concerning formula (26), by Proposi-

tion 2.3 we have u(0) ∼
√

2 ln 1
c and u′(0) ∼

√
2 ln 1

c as c → 0, hence u(0)
u′(0)3 → 0 as c → 0. Then by the

similarity (25):

Λ̃(a, c) = Λ(a,−1, c) = Λ(u′(0), 0, u(0))

= u′(0)2Λ

(
1, 0,

u(0)

u′(0)3

)
∼ u′(0)2λ+ ∼ 2λ+ ln

1

c
.

Formula (27) results from Proposition 3.4 with b = −1.

6. Canard solutions.

The most important property of the solutions of the Crocco equation, which allowed us to discover
the discontinuity of the function Λ(a, b, c), is item 4 of Theorem 2.2. The crucial part of its proof is
Proposition 5.4 which was deduced from Proposition 2.3. This last proposition is our main technical
result. It served us also to obtain the asymptotic behavior of the function c 7→ Λ(a, b, c) as c → 0. In
fact, both Proposition 5.4 and Proposition 2.3 are closely related to the asymptotic behavior, as ε→ 0+,
of the solutions of the ODE with small parameter ε > 0

U
d2U

dS2
+ εS = 0. (80)

Concerning Proposition 5.4, we can deduce it from the analysis of (80) in the following manner. This
proposition describes the asymptotic behavior, as ε → 0, of the solution u(s; a, 0, ε). The change of
variables u = εU, s = εS leads to (80) with condition U(0) = 1, U ′(0) = a.

Concerning Proposition 2.3, it describes the asymptotic behavior, as c→ 0, of the solution u(s; a,−1, c).
The change of variable

√
εu = U , s = S, with 1

ε = 2 ln 1
c , leads to (80) with initial conditions U(−1) =√

ε exp −1
2ε , U ′(−1) =

√
εa.

The aim of this section is to study (80) and to deduce from this study new proofs of both Proposition
2.3 and Proposition 5.4. We already gave a complete proof of Proposition 2.3 in Section 5.1; however
we give a new proof in this section because we believe that the asymptotic behavior, as ε → 0, of the
solutions of (80) gives an insight into the reasons why the asymptotic behaviors given by Propositions 2.3
and 5.4 hold.

Equation (80) can be transformed into a slow-fast system (see system (88) below) which has canard

solutions. Canard solutions are special trajectories of slow-fast systems that first move near the stable
part of the slow manifold, then move near the unstable part of it. These solutions were first discovered by
E. Benôıt, J.-L. Callot, F. Diener and M. Diener and studied in the framework of Nonstandard Analysis,
see [6, 17, 53] for historical comments and references. Related to canard solutions is also the important
and newly discovered phenomenon of stability loss delay in dynamical bifurcations, see [2] p. 179-192 and
[5]. The study of canard solutions has also been made in the framework of classical asymptotic analysis
[19], center manifold theory [18] and Gevrey complex asymptotics [21].

In the present article, the situation is particularly simple and does not need the whole theory of
canards. Therefore we provide a complete proof.
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Figure 24. Above: schematic graphs of the solution of (80 - 81) in the limit ε → 0,
respectively in the variables S,U , the variables U, V and S, V . Below: the numerical
solution corresponding to ε = 0.1, A = −2, B = −1 and C = 1.

6.1. Canard solutions of equation (80).

Theorem 6.1. 1. Let A ∈ R, B ≤ 0 and C > 0 be given and let U(S, ε) denote the solution of (80) with
initial conditions

U(B) = C,
dU

dS
(B) = A. (81)

Then for all L < 0 we have

U(S, ε) = |A(S −B) + C| + o(1) uniformly for S ∈ [L, 0] as ε→ 0.

If A < 0 and AB − C > 0 (or A > 0), then U(S, ε) reaches its minimum at K(ε) < 0 satisfying

K(ε) = B − C

A
+ o(1) and U(K(ε), ε) = exp

(
A3 + o(1)

2(AB − C)ε

)
as ε→ 0.

2. Let A ∈ R and K < 0 be given and let U(S, ε) denote the solution of (80) with initial conditions

U(K) = exp

(
A2 + o(1)

2Kε

)
,

dU

dS
(K) = o(1). (82)

Then we have
U(S, ε) = |A(S −K)| + o(1) as ε→ 0. (83)

uniformly for S in any compact subset of ]−∞, 0]

dU

dS
(S, ε) = sgn(A(S −K)) + o(1) as ε→ 0.

uniformly for S in any compact subset of ]−∞,−1[ ∪ ]−1, 0].

A complete proof of this result is given in Section 6.2, but we would like to give here an idea of proof
of item 1. Except near the axis U = 0, and for bounded values of S, U ′′ is close to 0, i.e. the solutions
are almost affine. Therefore, as long as A(S − B) + C is positive, the approximation (83) is valid and
quite natural indeed. What is less obvious is that the solution satisfies the same approximation after its
passage near the axis, like a light ray reflecting on a mirror.

To see what happens near U = 0, the best way is first to rewrite (80 - 81) as a first order initial value
problem

dU

dS
= V,

dV

dS
= −ε S

U
U(B) = C, V (B) = A, (84)

and then to choose V as independent variable, i.e.

ε
dS

dV
= −U

S
, ε

dU

dV
= −V U

S
S(A) = B, U(A) = C. (85)

Consider for instance the case A < 0 and C < AB. Then in the U, V variables, V remains close to A
until U is close to 0, where V suddenly changes its value from its “entry value” A to some exit value,
meanwhile U and S remain almost constant, close to 0, resp. S0 = B − C

A . With this approximation for
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S = S(V ), the second equation of (85) appears as a singularly perturbed ODE exhibiting canards with
a symmetric entry-exit relationship. Actually, solving this second equation as a linear one in U yields

U(V ) = U(0) exp

(
−
∫ V

0

v dv

S(v)

)
= U(0) exp

(
V 2(1 + o(1))

2
(
B − C

A

)
)

as long as U(V ) is small. This shows first that U becomes bounded below for V close to −A (i.e. with a
reflection angle opposite to the incident angle) and secondly that U(0) is exponentially small compared
to ε:

U(0) = exp

(
−A

2(1 + o(1))

2
(
B − C

A

)
)
.

We refer the reader to the next section for a more precise and complete proof.

6.2. Proof of Theorem 6.1. For the sake of simplicity, and when there is no risk of confusion, we omit
the dependence in ε.

The proof of the first item is as follows. The solution U of (80 - 81) is defined and satisfies U(S) > 0
for all S < 0. If both A < 0 and AB−C < 0, then U is decreasing. If A < 0 and AB−C > 0 (or A > 0),
then there exists K(ε) < 0 such that U is decreasing on ]−∞,K(ε)] and increasing on [K(ε), 0[. Assume
that A < 0 and AB−C > 0 (the other cases follow the same arguments). By the continuous dependence
of the solutions with respect to the parameters, for all L and B0, such that L < B0 < B − C

A , as ε → 0,
we have

dU

dS
(S, ε) = A+ o(1), U(S, ε) = A(S −B) + C + o(1), uniformly for S ∈ [L,B0]. (86)

Notice that B0 is fixed but may be chosen as close to B− C
A as we want. The problem now is to determine

the asymptotic behavior of U(S, ε) for S ≥ B0. Since dV
dS > 0 for all S < 0 and U > 0, we can use V as

an independent variable in (84). Hence, for all S < 0 and U > 0, the functions S(V, ε) and U(V, ε) are
solutions of (85). Notice that

S(V ) = constant, U(V ) = 0, (87)

are solutions of the system in (85). These solutions do not correspond to actual solutions of the system
in (84). Let us study the asymptotic behavior of the solutions which satisfy U > 0. Considered as a
system in R

3, (85) is a slow-fast system with fast variables S and U and slow variable V . We use the
slow variable T = V S − U . With this variable, problem (85) becomes

ε
dS

dV
=
T − V S

S
,

dT

dV
= S S(A) = B, T (A) = AB − C. (88)

This is a singularly perturbed system whose slow manifold is the surface T = V S. This slow manifold

6T

*
S

j
V

r(A,B,AB−C)
**

s

**

Figure 25. The approximation of the solution of problem (88) given by the Tikhonov
theory.

is attractive for V < 0 and repulsive for V > 0. The Tikhonov theorem, see [42, 36] and [49] Section 39,
describes the behavior of the solution (S(V, ε), T (V, ε)) of (88) in the following manner. There is a fast
transition (see Figure 25) taking the trajectory (V, S(V, ε), T (V, ε)), from its initial point (A,B,AB−C),
to a o(1) neighborhood of the point

(
A,B − C

A , AB − C
)

of the slow manifold, followed by a slow transition

near the solution S0(V ) = B − C
A , T0(V ) =

(
B − C

A

)
V of the reduced problem

S =
T

V
,

dT

dV
= S, T (A) = AB − C.
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More precisely, for any A0 and A1, such that A < A0 < A1 < 0, we have

S(V, ε) = B − C

A
+ o(1) uniformly for V ∈ [A0, A1], (89)

T (V, ε) =

(
B − C

A

)
V + o(1) uniformly for V ∈ [A,A1].

Notice that A0 (resp. A1) is fixed but may be chosen as close to A, (resp. 0), as we want. The
approximation for S does not hold near V = A because of the boundary layer near A. We deduce that

U(V, ε) = V S(V, ε) − T (V, ε) = o(1), uniformly for V ∈ [A0, A1]. (90)

A priori, Tikhonov theorem does not apply for V > 0, because for V > 0 the slow manifold becomes
repulsive, but we will see that (90) still hold for positive values of V . This is the so-called bifurcation
delay [5]. The slow manifold is foliated by the explicit solutions S(V ) = S0 = constant, T (V ) = V S0,
corresponding to the solutions (87). These solutions are canard solutions since they follow the attractive
part of the slow manifold and then the repulsive part of the slow manifold. Knowing the “entry” value
V = A of the solution T (V, ε) in a small neighborhood of the slow manifold, we want to compute now the
“exit” value for which the solution is again far from the slow manifold. The asymptotic behavior of the
solutions for which T < V S is obtained by using the new variable W = ε lnU . Problem (85) is equivalent
to problem

dS

dV
= −eW/ε

εS
,

dW

dV
= −V

S
S(A) = B, W (A) = ε ln(C). (91)

We have

if W < 0 and S < 0, then lim
ε→0

eW/ε

εS
= 0. (92)

By the continuous dependence of the solutions with respect to parameters we obtain that, when ε→ 0,

–5

–4

–3

–2

–1

1

–2 –1 1 2

-
V

6W

Figure 26. On the left: the vector field in the variables V,W . On the right: the
numerical solution corresponding to ε = 0.1, A = −2, B = −1 and C = 1.

the solutions of the differential system in (91) satisfy

S(V, ε) = S0 + o(1), W (V, ε) =
−V 2

2S0
+W0 + o(1) uniformly for V ∈ [−V0, V0],

where S0 < 0 and W0 < 0 are constant and V0 <
√

2S0W0. ¿From (89), and the fact that A1 can be
chosen as close to 0 as we want, we deduce that S0 = B − C

A . Hence

W (V, ε) = W (V ) + o(1), where W (V ) =
−AV 2

2(AB − C)
+W0.

The value of the constant W0 is determined from the initial condition W (A, ε) = ε ln(C); since dW
dV

remains far from 0 near W = 0 we deduce that W (A) = 0, that is, W0 = A3

2(AB−C) . Thus we have

S(V, ε) = B − C

A
+ o(1), W (V, ε) =

A(A2 − V 2)

2(AB − C)
+ o(1)

uniformly for V ∈ [A0,−A0]. Hence we have U(V, ε) = o(1) uniformly for V ∈ [A0,−A0]. Recall
that U = V S − T represents the “distance” of the solution of (88) from the slow manifold T = V S.
Since A0 may be chosen as close to A as we want, we conclude that the “exit” of the solution from the
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neighborhood of the slow manifold holds asymptotically for V = −A, that is to say, U(S, ε) is far away
from 0 for S ≥ B1 > B − C

A , where B1 is as close to B − C
A as we want and we have

V (S, ε) = −A+ o(1), uniformly for S ∈ [B1, 0].

Since U
(
B − C

A , ε
)

= o(1), we have

U(S, ε) = −A
(
S −B +

C

A

)
+ o(1), uniformly for S ∈ [B1, 0]. (93)

Using (86) and (93), together with (90) we conclude that

U(S, ε) = |A(S −B) + C| + o(1) uniformly for S ∈ [L, 0].

The minimum of U(S, ε) is reached for S = K(ε) which corresponds to V = 0. Hence

K(ε) = B − C

A
+ o(1), U(K(ε), ε) = exp

(
W (0, ε)

ε

)
= exp

(
A3 + o(1)

2(AB − C)ε

)
.

The proof of the second item begins by the analysis of the solution in the variables (V, S,W ). In these
variables, problem (80 - 82) is equivalent to problem

dS

dV
= −eW/ε

εS
,

dW

dV
= −V

S
S(V0) = K, W (V0) =

A2 + o(1)

2K
,

where V0 := dU
dS = o(1). Using (92) and the continuous dependence of the solutions with respect to

parameters and initial conditions we deduce that for any A0 such that 0 < A0 < |A|, we have

S(V, ε) = K + o(1), W (V, ε) =
A2 − V 2

2K
+ o(1) uniformly for V ∈ [A0,−A0].

We deduce that U(V, ε) = o(1) uniformly for V ∈ [A0,−A0]. Since A0 may be chosen as close to |A|
as we want, we deduce that the “entry” of the corresponding solution (V, S(V, ε), T (V, ε)) near the slow
manifold T = SV holds for V = −|A| and the “exit” of the solution from the neighborhood of the slow
manifold holds asymptotically for V = |A|, that is to say, U(S, ε) is far away from 0 for S ≤ B0 < K and
S ≥ B1 > K, where B0 and B1 are as close to K as we want. Thus we have

V (S, ε) = −|A| + o(1), uniformly for S ∈ [L,B0],

V (S, ε) = |A| + o(1), uniformly for S ∈ [B1, 0],

U(S, ε) = |A(S −K)| + o(1), uniformly for S ∈ [L, 0].

6.3. From Theorem 6.1 to Propositions 5.4 and 2.3 . Proof of Proposition 5.4. The solution
u(s; a, 0, ε) if defined for all s ≤ 0 and is positive. The function U(S, ε), defined by

U(S, ε) =
1

ε
u (εS; a, 0, ε),

is the solution of the initial value problem

U
d2U

dS2
+ εS = 0, U(0) = 1,

dU

dS
(0) = a.

By Theorem 6.1 item 1, U(S, ε) reaches its minimum at K(ε), with K(ε) < 0 and we have

K(ε) =
1

a
+ o(1), U(K(ε), ε) = exp

−a3 + o(1)

2ε
as ε→ 0.

Hence, as ε→ 0, we have κ(ε) = −εK(ε) = ε(1/a+ o(1)) and (using ε = exp e ln ε
ε = exp o(1)

ε )

c(ε) := u(−κ(ε), ε) = εU(K(ε), ε) = ε exp
−a3 + o(1)

2ε
= exp

−a3 + o(1)

2ε
,

Let L < 0, we have U(S, ε) = |aS + 1| + o(1) uniformly for S ∈ [L, 0], as ε → 0. Hence u(εS; a, 0, ε) =
ε (|aS + 1| + o(1)) uniformly for S ∈ [L, 0], as ε→ 0.

Proof of Proposition 2.3. The solution u(s; a,−1, c) if defined for all s < 0 and is positive. The function
U(S, ε), defined by

U(S, ε) =
√
εu (S; a,−1, c) where

1

ε
= 2 ln

1

c
,

is the solution of the initial value problem

U
d2U

dS2
+ εS = 0, U(−1) =

√
ε exp

−1

2ε
,

dU

dS
(−1) =

√
εa.
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By Theorem 6.1 item 2, we have U(S, ε) = |S+1|+o(1) uniformly for S in any compact subset of ]−∞, 0]
and dU

dS (S, ε) = sgn(S + 1) + o(1) uniformly for S in any compact subset of ]−∞,−1[ ∪ ]−1, 0], as ε→ 0.
Hence, as c→ 0, we have

u(s; a,−1, c) =
1√
ε

(|s+ 1| + o(1))

uniformly for s in any compact subset of ]−∞, 0] and

u′(s; a,−1, c) =
1√
ε

(sgn(s+ 1) + o(1))

uniformly for s in any compact subset of ]−∞,−1[∪ ]−1, 0].

7. From Crocco to Blasius.

In this section we investigate the way to recover a solution of the Blasius initial value problem (5) from
a Crocco solution, and also to obtain the asymptotic behavior of Blasius solutions from the one of Crocco
solutions. Our point of view, here, is to forget what we know about Blasius solutions, and to show that
the properties of these solutions can be deduced from the properties of Crocco solutions. Some of the
results of this section were obtained by J. Wang, W. Gao and Z. Zhang [48] in the more general case of
the Falkner-Skan equation but with restrictive boundary conditions.

Proposition 7.1. Let c > 0 and u := u( · ; a, b, c) be the solution of

u′′ = − s

u
, u(b) = c, u′(b) = a, (94)

and let [b, L(a, b, c)[ denote its right maximal interval of existence.

1. Set λ := L(a, b, c) . We have λ ∈ [0,+∞[ and u(s) → 0 as s → λ, s < λ. In addition, if λ > 0 then
u′(s) → −∞ as s→ λ, s < λ, and we have

u′(s) ∼ −
√
−2λ ln(λ− s) and u(s) ∼ (λ − s)

√
−2λ ln(λ− s) as s→ λ, s < λ. (95)

2. The solution f of the second order initial value problem

f ′′ = u(f ′), f(0) = −a, f ′(0) = b, (96)

is the solution of (5). The function f is defined on [0,+∞[ and is given by

f(t) = −a+

∫ t

0

g(τ)dτ (97)

where g is implicitly defined by

t =

∫ g(t)

b

dη

u(η)
. (98)

Moreover, f ′(t) → L(a, b, c) as t→ +∞.

Remark. The interesting property of Crocco solutions (95) is somewhat surprising insofar as the
asymptotic behavior is not sufficient to separate different solutions with the same λ, see Figure 27.
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Figure 27. Several Crocco solutions with the same maximal right boundary λ = 1. All
of them have the same asymptotic behavior near λ, given by (95).
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Proof. Notice that u is convex on [b, λ[∩ ]−∞, 0] and concave on [b, λ[∩ [0,∞[.

Item 1. First we show that λ is finite. By contradiction, let us suppose that λ = +∞. Since u is positive,
and concave on [b,∞[∩ [0,+∞[, we necessarily have u′ > 0 on this interval. Let s0 ∈ [b,∞[∩ [0,+∞[.
Using (34) and the concavity of u we obtain

−u′(s0) < u′(s) − u′(s0) = −
∫ s

s0

η

u(η)
dη < −

∫ s

s0

η

u(s0) + u′(s0)(η − s0)
dη,

for all s > s0, hence, with α0 = s0 − u(s0)
u′(s0) , we derive

u′(s0)
2 >

∫ s

s0

η

η − α0
dη = s− s0 + α0 ln

s− α0

s0 − α0

for all s > s0. Since the right hand side of this inequality tends to +∞ as s → +∞, this gives a
contradiction. Hence λ is finite and necessarily, by (94), we have u(s) → 0 as s→ λ, s < λ.

Next, we show that λ ≥ 0. On the contrary, choosing s0 ∈ [b, λ[ such that u(s) < 1 for s ∈ [s0, λ[, and
using (37) we obtain for such a s

−u′(s0)2 ≤ u′(s)2 − u′(s0)
2 = −2s lnu(s) + 2s0 lnu(s0) + 2

∫ s

s0

lnu(η)dη

≤ −2s lnu(s) + 2s0 lnu(s0)

which gives a contradiction since −2s lnu(s) → −∞ as s→ λ.
Now, if λ > 0, then the concavity of u close to λ shows that u′(s) → µ ∈ [−∞, 0[ as s → λ. If µ is

finite, then u(s) ∼ µ(λ− s) as s→ λ, hence identity (34) give a contradiction. Thus µ = −∞. It remains

to prove relations (95). Since u(s) → 0 and u′(s) → −∞ as s → λ, the integral

∫ λ

lnu(η)dη converges,

and then from (37) we easily obtain u′(s)2 ∼ −2s lnu(s) as s→ λ, hence

u′(s) ∼ −
√

2λ
√
− lnu(s) as s→ λ. (99)

On the other hand, for s close enough to λ, integration by parts gives
∫ λ

s

u′(η)√
− lnu(η)

dη = − u(s)√
− lnu(s)

+
1

2

∫ λ

s

u′(η)

(− lnu(η))3/2
dη

from which together with (99) we obtain

u(s)√
− lnu(s)

∼
√

2λ(λ − s) as s→ λ. (100)

Taking the logarithm of each side of (100) we arrive to

lnu(s) ∼ ln(λ− s) as s→ λ. (101)

Combining (99), (100) and (101) we obtain (95).

Item 2. Let f be the solution of problem (96). Differentiating with respect to t we obtain f ′′′(t) =
u′(f ′(t))f ′′(t). Using (34) we can write

u′(f ′(t)) = a−
∫ f ′(t)

b

η

u(η)
dη = a−

∫ t

0

f ′(τ)f ′′(τ)dτ

u(f ′(τ))
= a−

∫ t

0

f ′(τ)dτ = −f(t).

Thus f is a solution of the Blasius equation f ′′′ = −ff ′′. From (96) we obtain f ′′(0) = c. Hence f is the
solution of (5). Denote by [0, T [ its right maximal interval of existence.

Since (96) is equivalent to integrate successively g′ = u(g) and f ′ = g with the initial conditions
g(0) = b and f(0) = −a, we obtain (98) (recall that u > 0, so that, formula (98) defines g(t) implicitly)
and (97). Moreover, g is the inverse function of

v : s 7→
∫ s

b

dη

u(η)
.

The function v is defined on [b, λ[ and v(s) → +∞ as s → λ. Indeed, in the case λ > 0, thanks to (95)

we have u(s) ∼ (λ− s)
√
−2λ ln(λ− s) as s→ λ and the integral

∫

0

dx

x
√

lnx
diverges. If λ = 0 then either

u(s) ∼ µs (for some µ < 0) as s → 0, or u(s) = 2√
3
(−s)3/2, and in both cases, we obtain v(s) → +∞ as

s→ 0. Therefore, g and f are defined on [0,+∞[ and g(t) = f ′(t) tends to λ as t→ +∞.
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The following result, already given by P. Hartman [24, 25] for λ = 1 (in the more general case of the
Falkner-Skan equation) and concerning the asymptotic behavior of the solutions of (1 - 2), can be very
easily proved from the behavior near λ of the function u solution of (12) such that lim

s→λ, s<λ
u(s) = 0 as

described by (95).

Proposition 7.2. Let a, b ∈ R, λ > 0 and f be a solution of the Blasius problem (1 - 2). There exist
constants κ1 and κ2 in R such that

f ′′(t) ∼ λt(λ − f ′(t)) and λ− f ′(t) ∼ κ1

t
exp

{
−λt

2

2
+ κ2t

}
as t→ +∞. (102)

Proof. Using (95) and the relations u(f ′(t)) = f ′′(t) and u′(f ′(t)) = −f(t) we obtain

f ′′(t) = u(f ′(t)) ∼ (λ− f ′(t))
√

−2λ ln(λ − f ′(t)) as t→ +∞, (103)

and

f(t) = −u′(f ′(t)) ∼
√
−2λ ln(λ− f ′(t)) as t→ +∞, (104)

Combining (103), (104) and the fact that f(t) ∼ λt as t → +∞, we obtain the first part of (102), and
also

ln(λ− f ′(t)) ∼ −λt
2

2
as t→ +∞. (105)

In other words,

λ− f ′(t) = exp

{
−λt

2

2
(1 + o(1))

}
as t→ +∞. (106)

By successive integration, we deduce from (106) that there exist constants µ < −a and ν ∈ R such that

f(t) = λt+ µ+O

(
exp

{
−λt

2

2
(1 + o(1))

})
as t→ +∞,

and

F (t) =
λt2

2
+ µt+ ν + o(1) as t→ +∞,

where F is the anti-derivative of f such that F (0) = 0. To conclude, we use (11) with τ = 0 to obtain

f ′′(t) ∼ f ′′(0) exp

{
−λt

2

2
− µt− ν

}
as t→ +∞.

Hence, with κ1 = 1
λf

′′(0)e−ν and κ2 = −µ, the second part of (102) follows from the first one.

8. The concave case.

Here, the word “concave” refers to Blasius solutions and concerns the boundary value problem (1 - 2)
with λ < b. Notice that, if f is a concave Blasius solution with associated Crocco solution u, then
t 7→ −f(−t) is a convex Blasius solution with associated Crocco solution −u. However the boundary
value problem has changed and needs a separate treatment.

Let a, b ∈ R, c ∈ ]−∞, 0[ and f( · ; a, b, c) be the solution of the initial value problem (5) rewritten
below

f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′′(0) = c.

Denote by [0, Ta,b,c[ the right maximal interval of existence of f( · ; a, b, c). Since f ′′( · ; a, b, c) < 0 if c < 0
and f ′′( · ; a, b, 0) = 0 the following limit exists

Λ(a, b, c) := lim
t→Ta,b,c

f ′(t; a, b, c) ∈ [−∞, b[.

For c < 0, we associate to f( · ; a, b, c) the Crocco solution u( · ; a, b, c) of (12 - 13). Precisely, if c < 0 then
the Crocco changes of variable f ′′ = u(f ′) yields u := u( · ; a, b, c) satisfying u′(f ′) = −f and

u′′ = − s

u
on ]Λ(a, b, c), b] u(b) = c, u′(b) = a, u < 0.

Lemma 8.1. Let a, b ∈ R and c ∈ ]−∞, 0[. If Λ(a, b, c) is finite, then Ta,b,c = +∞, Λ(a, b, c) ≥ 0 and
u(s; a, b, c) → 0 as s→ Λ(a, b, c), s > Λ(a, b, c).

If moreover Λ(a, b, c) > 0, then u′(s; a, b, c) → −∞ as s→ Λ(a, b, c), s > Λ(a, b, c).
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Proof. Let us suppose that Λ(a, b, c) and Ta,b,c are finite. Then f(t; a, b, c) has a limit as t→ Ta,b,c, and
due to (11), it is so for f ′′(t; a, b, c). This contradicts the fact that f( · ; a, b, c) cannot be extended after
Ta,b,c. Therefore, Ta,b,c = +∞. If now Λ(a, b, c) < 0, then there exists t0 ≥ 0 such that f(t; a, b, c) ≤ −1
for t ≥ t0. From (11) we obtain |f ′′(t; a, b, c)| ≥ |f ′′(t0; a, b, c)|et−t0 , hence f ′′(t; a, b, c) → −∞, as
t→ +∞, which contradicts the fact that f ′(t; a, b, c) has a finite limit as t→ +∞. Finally, we have

lim
s→Λ(a,b,c)

u(s; a, b, c) = lim
t→+∞

f ′′(t; a, b, c) = 0

and, if Λ(a, b, c) > 0, then

lim
s→Λ(a,b,c)

u′(s; a, b, c) = lim
t→+∞

(−f(t; a, b, c)) = −∞.

This completes the proof.

Remark. From Lemma 8.1, we see that indeed ]Λ(a, b, c), b] is the left maximal interval of existence of
u( · ; a, b, c).
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Figure 28. Concave solutions of Blasius equation (1) on the left, the corresponding
Crocco solutions on the right, for a = 1, b = 2 and respectively c = −0.7, c = −1.

Lemma 8.2. Let a ∈ R, b ∈ [0,+∞[ and c1, c2 ∈ ]−∞, 0[ such that one at least among Λ(a, b, c1) and
Λ(a, b, c2) is finite. If c1 < c2, then Λ(a, b, c1) < Λ(a, b, c2).

Proof. Suppose c1 < c2 < 0 and Λ(a, b, c1) ≥ Λ(a, b, c2). Hence, Λ(a, b, c1) is finite and nonnegative
by Lemma 8.1. For i = 1, 2 set ui := u( · ; a, b, ci), and w = u2 − u1. We have w(b) = c2 − c1 > 0,
w′(b) = a− a = 0, and

∀ s ∈ ]Λ(a, b, c1), b], w
′′(s) = u′′2(s) − u′′1(s) =

−s
u2(s)

+
s

u1(s)
=

sw(s)

u1(s)u2(s)
.

Therefore, as long as w is positive, w is convex, and so decreasing in such a way that w remains greater
than c2 − c1 on ]Λ(a, b, c1), b]. However,

lim
s→Λ(a,b,c1)
s>Λ(a,b,c1)

w(s) = lim
s→Λ(a,b,c1)
s>Λ(a,b,c1)

u2(s) ≤ 0.

This is a contradiction.

Let us set
c∗(a, b) = sup{c < 0 ; Λ(a, b, c) = −∞} (107)

with the convention sup ∅ := −∞. As a consequence of Lemma 8.2, if c < c∗(a, b) then Λ(a, b, c) = −∞
and if c ∈ ]c∗(a, b), 0[ then Λ(a, b, c) is finite.
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Lemma 8.3. Let a, b ∈ R. If b ≤ 0 then c∗(a, b) = 0, and if b > 0 then −∞ < c∗(a, b) < 0.

Proof. If b ≤ 0, then for all c < 0, we have Λ(a, b, c) < 0 and using Lemma 8.1 we obtain Λ(a, b, c) = −∞.
Since, moreover Λ(a, b, 0) = b, we deduce c∗(a, b) = 0.

Suppose now b > 0. For c < 0, set u := u( · ; a, b, c). From (36) with s0 = b we obtain for s ∈
]Λ(a, b, c), b] ∩ [0,∞[

u(s)2 = c2 + 2ac(s− b) + 2

∫ b

s

(η − s)u′(η)2dη − 1

3
(b− s)2(2b+ s) ≥ c2 − 2|ac|b− b3.

Thus, for −c large enough, we obtain that u cannot vanish on [0, b], which implies that Λ(a, b, c) < 0.
From Lemma 8.1 we obtain Λ(a, b, c) = −∞ for −c large enough, hence c∗(a, b) > −∞.

To obtain the inequality c∗(a, b) < 0, we have to distinguish between the cases a ≤ 0 and a > 0. First
of all, let us remark that using the convexity of u on ]Λ(a, b, c), b] ∩ [0,∞[, we have

∀ η ∈ ]Λ(a, b, c), b] ∩ [0,∞[, c+ a(η − b) ≤ u(η) < 0. (108)

• If a ≤ 0, then (108) gives c ≤ u(η) < 0 for η ∈ ]Λ(a, b, c), b] ∩ [0,∞[, hence using (35) we obtain for
s ∈ ]Λ(a, b, c), b] ∩ [0,∞[

u(s) = c+ a(s− b) +

∫ b

s

η(s− η)

u(η)
dη

≥ c+
1

c

∫ b

s

η(s− η)dη = c− 1

6c
(b− s)2(2b+ s). (109)

Since the right hand side of (109) is positive for s = 0 and −b3/2 < c < 0, we have, for such a c, that
Λ(a, b, c) > 0. Hence c∗(a, b) < 0.

• If a > 0 then, using (108) and (34), we get for s ∈ ]Λ(a, b, c), b] ∩ [0,∞[

a− u′(s) = −
∫ b

s

η

u(η)
dη ≥ −

∫ b

s

η

c+ a(η − b)
dη.

Hence, for s ∈ ]Λ(a, b, c), b] ∩ [0,∞[, we deduce

u′(s) ≤ a+
b

a

∫ b

s

dη

c+ a(η − b)
= a− b

a
ln
(
1 +

a

c
(s− b)

)
.

Integrating, we obtain for s ∈ ]Λ(a, b, c), b] ∩ [0,∞[

u(s) ≥ c−
(
a+

b

a

)
(b− s) − b

a

( c
a

+ s− b
)

ln
(
1 +

a

c
(s− b)

)
. (110)

Since the right hand side of (110) is positive for s = 0 and −c sufficiently small, we obtain, for such a c,
that Λ(a, b, c) > 0. Hence c∗(a, b) < 0 in this case too.

Proposition 8.4. If (a, b, c) ∈ R × R× ]−∞, 0[ is such that Λ(a, b, c) ∈ ]0, b[, then Λ is continuous at
(a, b, c).

Proof. We have Λ(a, b, c) = inf{f ′(t; a, b, c) ; 0 ≤ t < Ta,b,c}, hence Λ is upper semicontinuous on
R × R× ]−∞, 0[.

Now, to prove that Λ is lower semicontinuous at (a, b, c) ∈ R × R× ]−∞, 0[, let us set λ = Λ(a, b, c),
consider ε ∈ ]0, λ[ and a sequence (an, bn, cn) which converges to (a, b, c), and set λn = Λ(an, bn, cn).
Since λ ∈ ]0, b[, we have

lim
s→λ
s>λ

(
s− u(s)

u′(s)

)
= λ,

hence there exists s0 ∈ ]λ, b[ such that s0 − u(s0)
u′(s0) > λ− ε

2 . The upper semicontinuity of Λ show that there

exists n0 ∈ N such that λn < s0 for n ≥ n0. Moreover, since un(s0) → u(s0) and u′n(s0) → u′(s0) as
n→ +∞, there exists n1 ≥ n0 such that

∀n ≥ n1, s0 −
un(s0)

u′n(s0)
> λ− ε > 0.

Since un is negative and convex on ]λn, b] ∩ [0,+∞[, we have un(s) ≥ un(s0) + u′n(s0)(s − s0). Because

the right hand side of this inequality vanishes for s = s0 − un(s0)
u′

n(s0)
, we necessarily have λn ≥ λ − ε for

n ≥ n1. This completes the proof.
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Proposition 8.5. Let a ∈ R and b > 0. The function c 7−→ Λ(a, b, c) is an increasing one-to-one mapping
from [c∗(a, b), 0[ onto [0, b[.

Proof. Set c∗ := c∗(a, b). Taking into account Lemma 8.2 and Proposition 8.4, it is sufficient to prove
that

lim
c→c∗
c>c∗

Λ(a, b, c) = 0 and lim
c→0−

Λ(a, b, c) = b. (111)

Let us set λc := Λ(a, b, c). For the first equality, since the map c 7→ λc is upper semicontinuous and
increasing on ]c∗, 0[, then λc → λc∗ as c → c∗, c > c∗ and λc∗ ≥ 0. On the other hand, for c < c∗, we
have λc = −∞. Hence the map c 7→ λc is not continuous at c∗, and thus, from Proposition 8.4, we obtain
λc∗ = 0.

To obtain the second equality of (111) for a ≤ 0, let us take −c sufficiently small to have λc > 0.
Letting s→ λc in (109), we obtain

0 ≥ c− 1

6c
(b− λc)

2(2b+ λc).

Hence, (b−λc)
2(2b+ λc) ≤ 6c2 and λc → b as c→ 0−. For a > 0, using (110) we obtain in a similar way

0 ≥ c−
(
a+

b

a

)
(b− λc) −

b

a

( c
a

+ λc − b
)

ln
(
1 +

a

c
(λc − b)

)

and hence we obtain a contradiction if λc 6→ b as c→ 0−.

Corollary 8.6. Let a ∈ R, b ∈ R and λ ∈ ]−∞, b[. The Blasius boundary problem (1 - 2) has exactly one
(concave) solution when 0 ≤ λ < b, and no solution for λ < 0, whatever b < 0 or b > 0.

Proof. This follows immediately from Proposition 8.5 and Lemma 8.1.

To finish this section, we give in a very quick way the asymptotic behavior of f(t; a, b, c) as t→ Ta,b,c

when c < c∗(a, b). This behavior was already obtained by W.A. Coppel [15] and Ishimura and Matsui
[33].

Proposition 8.7. Let a, b ∈ R. If c ∈ ]−∞, c∗(a, b)[, then T := Ta,b,c is finite and we have

f ′(t; a, b, c) ∼ −3

(T − t)2
and f(t; a, b, c) ∼ −3

T − t
as t→ T. (112)

Proof. Let f := f( · ; a, b, c) and u := u( · ; a, b, c). We have Λ(a, b, c) = −∞ and −u is a positive solution
of (12) on ]−∞, b]. Thanks to item 1 of Theorem 2.2, we have −u(s) ∼ u∗(s) as s → −∞. In other
words,

−f ′′(t) ∼ 2√
3
(−f ′(t))3/2 as t→ T,

hence

−1

2

−f ′′(t)

(−f ′(t))3/2
→ 1√

3
as t→ T.

Then, for all ε > 0, there exists tε > 0 such that for t ∈ ]tε, T [ and all τ ∈ ]t, T [, we have

1√
3
(τ − t)(1 − ε) ≤ 1√

−f ′(τ)
− 1√

−f ′(t)
≤ 1√

3
(τ − t)(1 + ε).

Letting τ → T , this yields T < +∞ and

3

(1 + ε)(T − t)2
≤ −f ′(t) ≤ 3

(1 − ε)(T − t)2
.

Now (112) follows.
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9. Final remarks, alternative proofs and historical comments.

9.1. Vanishing Crocco solutions. We consider here the Crocco equation in its non resolved form
uu′′ + s = 0 and we describe solutions that vanish somewhere.

Proposition 9.1. 1. If s 7→ u(s) is a C2 function that has a zero at some point s0 and that satisfies
u(s)u′′(s) + s = 0 in a neighborhood of s0, then we must have s0 = 0.
2. There is a unique function w analytic in a neighborhood of 0 such that w(0) = 0, w′(0) = 1 and
w(s)w′′(s) + s = 0. This function w is defined on ]−∞, λ+[ by

w(s) =





−u−(s) if s < 0
0 if s = 0
u+(s) if s ∈ ]0, λ+[

3. The Taylor series
∑

n>0

ans
n of w is given recursively by

a1 = 1, a2 = −1

2
, an+1 = − 1

n(n+ 1)

n−1∑

k=1

k(k + 1)ak+1an−k+1. (113)

The radius of convergence of this series is equal to λ+. The first terms are given by

w(s) = s− 1

2
s2 − 1

12
s3 − 1

36
s4 − 17

1440
s5 − 247

43200
s6 − 1819

604800
s7 − 21277

12700800
s8 +O(s9)

4. All other functions u analytic in a neighborhood of 0 and such that u(0) = 0, and u(s)u′′(s) + s = 0,
are given by u(s) = σ3w(s/σ2) for σ 6= 0 and s < σ2λ+.

Proof. Statement 1 is immediate because otherwise u′′(s0) would be infinite.

Concerning statement 3, if we look for a formal series
∑

n>0

ans
n solution of the Crocco equation with

a0 = 0, a1 = 1, then we obtain the recursion formula (113).
We first prove by the majorant method that this series has a nonzero radius of convergence. Let (cn)

be the majorizing sequence defined recursively by

c0 = 1, c1 =
1

2
, cn =

n−1∑

k=1

ckcn−k.

This is a majorizing sequence in the sense that, by recursion we have |an+1| ≤ cn. Now set ĝ(s) :=
+∞∑

n=0

cns
n. We have

ĝ(s)2 =

+∞∑

n=0

(
n∑

k=0

ckcn−k

)
sn = c20 + 2c0c1s+

+∞∑

n≥2

(2c0cn + cn) sn = 3ĝ(s) − 2 − s

2
,

hence ĝ is in fact the formal expansion of the function g : s 7→ 1
2

(
3 −

√
1 − 2s

)
. This shows that the

series ĝ has a radius of convergence equal to 1
2 , hence the radius R of our formal Crocco solution satisfies

R ≥ 1
2 .

Moreover Formula (113) shows that the an are of constant sign for n > 1; therefore the sum of the
series must have its first singularity on R+ at s = R, hence R = λ+.

In this manner we have constructed an analytic Crocco solution with the required properties. Its
uniqueness follows from that of the formal series solution. This proves statement 2.

For statement 4, if u is such an analytic solution, then σ := u′(0) must be nonzero (otherwise u would
coincide with u∗ which is not analytic at s = 0). As for the case σ = 1, looking for a formal solution with
prescribed derivative at s = 0 leads to uniqueness, hence to the function s 7→ σ3w(s/σ2).

Remark. The fact that Crocco equation uu′′ + s = 0 has a solution w analytic in a neighborhood of
s = 0 with w(0) = 0, w′(0) = 1 is not a surprise: the change of variables w(s) = (1 + y(s))s yields the
equation sy′′ = −2y′ − 1

1+y with initial conditions y(0) = 0, y′(0) = − 1
2 ; see Figure 29 for the graphs of

w and y. Written as a differential system in ~y := (y, y′)

s
d~y

ds
= ~f(s, ~y) with ~f(s, y1, y2) :=

(
sy1,−2y2 − 1

1+y1

)
,
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Figure 29. The solutions w and y. As s→ λ+ ≈ 1.303918, w(s) → 0 and y(s) → −1.

it has a singularity of the first kind, hence satisfies the assumptions of Theorem V-2-7 of [27], page 118.
This proves that our formal solution is convergent for |s| small enough. However, for completeness we
preferred to provide a direct proof based on the majorant method.

9.2. Alternative proofs. The aim of this section is to present three results that can be proved directly
from the Crocco equation, i.e. without the use of the vector field (22) and without Proposition 2.3.

Solutions u− and u∗ are unique (Theorem 2.2, item 2 and Theorem 2.4 item 4, first point).

Let µ ≤ 0. Suppose that u1 and u2 are two positive solutions of the Crocco equation (12) on ]−∞, 0[
such that u1(0

−) = u2(0
−) = 0 and u′1(0

−) = u′2(0
−) = µ. If µ = 0, we will take u1 = u∗. Let us set

w = u1 − u2. We have w(0−) = w′(0−) = 0 and

∀ s < 0, w′′(s) =
sw(s)

u1(s)u2(s)
. (114)

Integrating twice yields

∀ s < 0, w(s) =

∫ 0

s

η(η − s)w(η)

u1(η)u2(η)
dη,

which shows that for all s < 0, w has to vanish between s and 0. In particular, there exists an increasing
sequence sn < 0 tending to 0 such that w(sn) = 0. Now, multiplying (114) by w′ and integrating, we
obtain for all s < 0 and all sn > s that

w′(sn)2 − w′(s)2 = − sw(s)2

u1(s)u2(s)
−
∫ sn

s

(
1 − ηu′1(η)

u1(η)
− ηu′2(η)

u2(η)

)
w(η)2

u1(η)u2(η)
dη. (115)

If µ < 0, then ui(η) ∼ µη as η → 0−, for i = 1, 2, hence there exists δ < 0 such that

∀ η ∈ ]δ, 0[,
ηu′i(η)

ui(η)
≥ 3

4

for i = 1, 2. If µ = 0, then for all η < 0 we have

1− ηu′1(η)

u1(η)
= 1 − η

√
3(−η)−1/2

2√
3
(−η)−3/2

= −1

2
.

Therefore, in both cases, equality (115) shows that w′(sn)2−w′(s)2 ≥ 0 for all s ∈ ]δ, 0[ and all sn ∈ ]s, 0[.
Taking the limit as n → +∞, we obtain w′(s)2 ≤ 0, hence w′ = 0 on ]δ, 0[. This yields w = 0 and
completes the proof.

Any Crocco solution of (12 - 13) with b < 0 and c > 0 is defined at least on ]−∞, 0[ and is asymptotic to

u∗ as s→ −∞. (Theorem 2.2, item 1).

Let u be a solution of (12 - 13) with b < 0 < c and ]s−, s+[ be its maximal interval of existence. ¿From
Proposition 7.1, s+ is nonnegative. We now prove by contradiction that s− = −∞. Assume that s− is
finite; then by convexity, u(s) tends to a limit l ∈ [0,+∞] as s→ s−.

If l 6= 0 (l finite or not), then u′′(s) = − s
u(s) tends to − s−

l ∈ [0,+∞[ as s → s−, hence u′ and u would

have a finite limit, contradicting the maximality of ]s−, s+[.
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If l = 0, then by convexity u is increasing on ]s−, 0[. Identity (36) then gives, for an arbitrary s0 ∈ ]s−, 0[,

u′(s0)
2 − u′(s)2 = −2s0 lnu(s0) + 2s lnu(s) + 2

∫ s0

s

lnu(η)dη

≥ −2s0 lnu(s0) + 2s lnu(s) + 2(s− s0) ln u(s)

= −2s0(lnu(s0) − lnu(s)) → +∞ as s→ s−

hence a contradiction. This shows that u is defined at least on ]−∞, 0[.

For the asymptotic, we construct by induction sequences αn > 0, βn > 0 and sn < 0 such that for all
n ≥ 1, we have

∀ s ≤ sn, αn(−s)3 ≤ u(s)2 ≤ βn(−s)3 (116)

and

lim
n→+∞

αn = lim
n→+∞

βn =
4

3
. (117)

First of all, thanks to (36) we have

∀ s ≤ 0, u(s)2 = u(0)2 + 2u(0)u′(0)s+ 2

∫ 0

s

(η − s)u′(η)2dη − 1

3
s3

≥ u(0)2 + 2u(0)u′(0)s− 1

3
s3.

Therefore, there exists σ0 < 0 such that

∀ s ≤ σ0, u(s)
2 ≥ 1

4
(−s)3.

Coming back to (12) we obtain u′′(s) ≤ 2(−s)−1/2 for s ≤ σ0 and integrating twice we easily see that
there exists s1 ≤ σ0 such that

∀ s ≤ s1, u(s) ≤ 3(−s)3/2.

So (116) holds for n = 1 with α1 = 1
4 and β1 = 9. Suppose now that for a given integer n, we have αn,

βn and sn such that (116) holds. Starting from (12) and using the first inequality of (116), we obtain
u′′(s) ≤ 1√

αn
(−s)−1/2. Integration gives

∃An, Bn > 0, ∀ s < sn, u′(s)2 ≤ 4

αn
(−s) +An(−s)1/2 +Bn.

Thus there exists σn ≤ sn such that

∀ s ≤ σn, u
′(s)2 ≤

(
4

αn
+

1

3n

)
(−s).

¿From (36) we then obtain, for all s ≤ σn,

u(s)2 = u(σn)2 + 2u(σn)u′(σn)s+ 2

∫ σn

s

(η − s)u′(η)2dη − 1

3
(s− σn)2(s+ 2σn)

≤
(

1 +
4

αn
+

1

3n

)
(−s)3

3
+ s2εn(s)

where εn is bounded on ]−∞, 0[. Hence, there exists τn ≤ σn such that

∀ s ≤ τn, u(s)
2 ≤ 1

3

(
1 +

4

αn
+

1

2n

)
(−s)3.

Similarly, using the right inequality of (116) and the same method, we obtain

∃ τ̃n ≤ σn, ∀ s ≤ τn, u(s)
2 ≥ 1

3

(
1 +

4

βn
− 1

2n

)
(−s)3.

Choosing sn+1 := min(τn, τ̃n), we obtain (116) at order n+ 1 with

αn+1 :=
1

3

(
1 +

4

βn
− 1

2n

)
and βn+1 :=

1

3

(
1 +

4

αn
+

1

2n

)
.



ON THE BLASIUS PROBLEM 47

Since α1 = 1
4 and β1 = 9, we obtain α2 = 1

3
17
18 > α1 and β2 = 1

3
35
2 < β1. Then, by recursion, we obtain

that the sequence (αn) increases and that (βn) decreases. Because αn ≤ βn these sequences converge,
respectively to α and β, which satisfy

α =
1

3

(
1 +

4

β

)
and β =

1

3

(
1 +

4

α

)
,

from which we obtain α = β = 4
3 . Finally, (116) and (117) give u(s) ∼ 2√

3
(−s)3/2 as s→ −∞.

The function Λ̃ is continuous at (a∗, c∗) =
(
−
√

3, 2/
√

3
)

(first assertion of Theorem 2.5).

Consider a sequence (an, cn) tending to (a∗, c∗), and set λn := Λ̃(an, cn) and un := u( · ; an,−1, cn).
Writing (37) for s0 = −1 and s ∈ [−1, 0] we obtain

u′n(s)2 = a2
n − 2s lnun(s) − 2 ln cn + 2

∫ s

−1

lnun(τ)dτ. (118)

Then, we obtain

2

∫ 0

−1

su′n(s)2ds = −a2
n + 2 ln cn − 6

∫ 0

−1

s2 lnun(s)ds

and thus (36) written for s0 = −1 and s = 0 gives

un(0)2 − c2n − 2cnan = −2

∫ 0

−1

su′n(s)2ds+
2

3
, (119)

= a2
n − 2 ln cn + 6

∫ 0

−1

s2 lnun(s)ds+
2

3
. (120)

We claim that there is a constant C1 > 0 such that

∀n ∈ N, ∀s ∈ [−1, 0], 0 < un(s) ≤ C1. (121)

On the contrary, it would exist a subsequence unk
(0) going to +∞ as k → +∞ and thus for k large

enough we should have unk
(τ) < unk

(0) for y ∈ [b, 0] and thanks to (120),

unk
(0)2 − c2nk

− cnk
ank

≤ 2

3
− ln cnk

+ lnunk
(0),

which gives a contradiction as k → +∞. Hence (121) holds. Coming back to (118) we derive that there
exists a constant C2 such that

∀n ∈ N, ∀s ∈ [−1, 0], |u′n(s)| ≤ C2. (122)

Using (119), (122), the fact that for all s ∈ [−1, 0[, u′n(s) → u′∗(s) as n → +∞, and the Lebesgue
dominated convergence theorem, we obtain that

un(0)2 → c2∗ + 2c∗a∗ − 2

∫ 0

−1

su′∗(s)
2ds+

2

3
= u∗(0)2 = 0 as n→ +∞

and un(0) → 0 as n→ +∞.
Moreover, taking into account (121) and applying the Fatou’s Lemma to the nonnegative functions

gn = lnC1 − lnun, we easily derive that

lim sup
n→+∞

∫ 0

−1

lnun(s)ds ≤
∫ 0

−1

lnu∗(s)ds.

Then using (118) for s = 0 leads to

0 ≤ lim sup
n→+∞

u′n(0)2 ≤ a2
∗ − 2 ln c∗ + 2

∫ 0

−1

lnu∗(s)ds = u′∗(0)2 = 0,

and u′n(0) → 0 as n→ +∞.
To conclude, let us set αn := max

(
u′n(0), un(0)1/3

)
. By Proposition 2.6 item 1 and similarity (25), we

have

0 ≤ λn = Λ(u′n(0), 0, un(0)) ≤ Λ(αn, 0, α
3
n) = α2

nΛ(1, 0, 1) → 0 as n→ +∞,

since αn → 0 as n→ +∞. This completes the proof.



48 B. BRIGHI, A. FRUCHARD, T. SARI

9.3. Additional results on concave Blasius solutions. We give here some precisions about concave
Blasius solutions, in particular, on the function c∗ : (a, b) 7→ sup{c < 0 ; Λ(a, b, c) = −∞} introduced in
(107).

Proposition 9.2. 1. Consider the first order differential equation

dy

dx
=

3y − 2x

x+ 2
y

in the region y < 0 and xy > −2. This equation has a unique solution x 7→ y∗(x) which is defined for
−∞ < x < +∞ and satisfies y∗(x) ∼ x as x→ −∞. Moreover this function y∗ is concave, increasing and
satisfies lim

x→+∞
y∗(x) = 0.

2. For b > 0, we have

c∗(a, b) = b3/2y∗(b
−1/2a). (123)

Proof. We start from the Crocco equation (12). The change of variables

x(t) = e−t/2u′
(
et
)
, y(t) = e−3t/2u

(
et
)

leads to the system

ẋ = −1

2
x− 1

y
, ẏ = x− 3

2
y. (124)

Since concave Blasius solutions correspond to negative Crocco solutions, we consider this system only for
y < 0. The initial conditions u(b) = c, u′(b) = a, with b > 0, correspond to

x(ln b) = b−1/2a, y(ln b) = b−3/2c.

Notice that the vector field (124) describes Crocco equation only for s > 0. This vector field has no
stationary point. Using a phase plane analysis similar to the study of the vector field (22) made in
Section 4, we obtain the following results.

-x
6y

�Γ∗

Figure 30. The phase portrait of (124).

There is one and only one orbit, denoted by Γ∗ (see Figure 30) such that any solution (x, y) that

parametrizes Γ∗ satisfies that x(t)
y(t) tends to 1 as t → −∞. The orbit Γ∗ is the graph of the function

y = y∗(x) defined in the proposition. Depending on the initial condition (a, b, c), the following cases
occur.

If c < b3/2y∗(b−1/2a) (i.e. the trajectory is below Γ∗) then (x(t), y(t)) is defined on some ]−∞, tmax[
with −∞ < tmax < +∞ and satisfies

lim
t→−∞

y(t) = −∞, lim
t→tmax

y(t) = 0.

As a consequence, the maximal interval of definition of u( · ; a, b, c) is ]−∞, etmax [. It follows that f( · ; a, b, c)
is defined on ]−∞, Ta,b,c[ with 0 < Ta,b,c < +∞ and we obtain Λ(a, b, c) = −∞. For an illustration of
this case, see the bottom of Figure 28.

If c > b3/2y∗(b−1/2a) then (x(t), y(t)) is defined on some ]tmin, tmax[ with −∞ < tmin < tmax < +∞
and

lim
t→tmin

y(t) = 0, lim
t→tmax

y(t) = 0.
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It follows that the maximal interval of definition of u( · ; a, b, c) is ]etmin , etmax [, hence f( · ; a, b, c) is defined
on ]−∞,+∞[ and we obtain Λ(a, b, c) = etmin . See the top of Figure 28.

If c = b3/2y∗(b−1/2a) then (x(t), y(t)) is defined on ]−∞, tmax[ with −∞ < tmax < +∞ and satisfies

lim
t→−∞

y(t) = −∞, lim
t→tmax

y(t) = 0.

Then the maximal interval of definition of u( · ; a, b, c) is ]0, etmax [, hence f( · ; a, b, c) is defined on ]−
∞,+∞[ and Λ(a, b, c) = 0. This proves (123).

9.4. Reduction of the Blasius equation to a planar vector field. The Blasius differential equation
f ′′′ + ff ′′ = 0, of order three, can be reduced to a planar autonomous vector field because it is invariant
by the group of transformations f(t) 7→ κf(κt). Setting

g(ξ) =
f ′(t)

f(t)2
, h(ξ) =

f ′′(t)

f(t)3
,

dξ

dt
= f, (125)

we obtain the equations
dg

dξ
= h− 2g2,

dh

dξ
= −h(1 + 3g). (126)

The change of variables (125) was considered in [12] in the more general case of equation f ′′′ + (m +
1)ff ′′ − 2mf ′2 = 0 where m is a real parameter. Formulae (125) define a change of variables only when
the Blasius solution f does not vanish. To a vanishing Blasius solution correspond up to three orbits of
the vector field (126). These orbits are oriented in the sense of increasing time ξ when f is positive and
are oriented in the sense of decreasing time ξ when f is negative. It is difficult to follow the function f in
the plane (g, h) because the values of t for which f(t) = 0 correspond to points at infinity of the vector
field (126) or to the non elementary singular point (0,0) of this vector field.

The reduction of the Blasius equation to a first order equation appeared first in [52], p. 389, and is
attributed by H. Weyl to J. von Neumann. Setting

f = e−s, f ′ = e−2sθ, 2θ − dθ

ds
= τ, (127)

von Neumann obtains the equation
dτ

dθ
=
τ

θ

1 + τ + θ

2θ − τ
. (128)

Notice that from (127) we deduce that

θ =
f ′

f2
= g,

dθ

ds
=

2f ′

f2
− f ′′

ff ′ , τ =
f ′′

ff ′ =
h

g
.

Hence equations (128) and (126) are equivalent through the change of variables θ = g, τ = h/g. The
interest of equation (128) and formulae (127) is that the Blasius equation is reduced to a first order
equation followed by two quadratures. After determining τ(θ) from equation (128) one find s(θ), and
then t(θ) from

ds

dθ
=

1

2θ − τ(θ)
,

dt

dθ
=

−es(θ)

θ(2θ − τ(θ))
.

Hence, the solution f is given parametrically by t = t(θ), f = e−s(θ).
Following von Neumann and Weyl, many authors reduced also the Blasius equation to a first order

equation or a planar vector field using various change of variables. Among these authors, we can cite B.
Punnis, W.A. Coppel and Y.M. Treve. Setting

x = f, y = f ′ U =
y

x2
, V =

1

x

dy

dx
, (129)

Punnis [39], p. 168, obtains the equation

dV

dU
=
V

U

1 + U + V

2U − V
(130)

¿From (129) we deduce that U = g, V = h
g . Hence the variables U and V of Punnis are the same

than the variables θ and τ of von Neunmann. This is not surprising since the first order equation (130)
obtained by Punnis is the same as the first order equation (128) of von Neumann. Setting

f = es, f ′ = e2sx, y =
dx

ds
,

dσ

ds
= − 1

x
,
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Coppel [15], p. 124, obtains the planar vector field

dx

dσ
= −xy, dy

dσ
= 2x+ y + 6x2 + 7xy + y2. (131)

Notice that equations (131) and (126) are equivalent through the change of variables σ = −ξ + Const,
x = g, and y = h

g − 2g. Setting

u2 =
f ′

f2
, u1u2 = −f

′′

f3
,

dξ

dt
= f,

Treve [44], p. 1220, obtains the planar vector field

du1

dξ
= −u1(1 − u1 + u2),

du2

dξ
= −u2(u1 + 2u2). (132)

Notice that equations (132) and (126) are equivalent through the change of variables u1 = −h
g and u2 = g.

See Section 9.5 for more historical informations and a review of the main results obtained with the help
of the vector fields (128), (130), (131) and (132).

We already noticed that solutions of the vector (126) going to infinity are of particular interest, because
they correspond to vanishing Blasius functions. Hence, it should be interesting to study these solutions
using the methods of Poincaré. This has been done by some authors, in particular B. Punnis [39] and
Y.M. Treve [44]. Setting X = − 1

V and Y = −U
V in equation (130), Punnis obtains equation

dY

dX
=
Y

X

X − Y − 2

X + Y − 1
(133)

This last equation was previously obtained by C.W. Jones [34]. This author transformed first the Blasius
equation into the Crocco equation (without any reference to the work of Crocco [16]) and then, setting

X = su′

u and Y = s2

uu′
, he obtains equation (133). The reason why the Blasius equation reduces to the

first order equation (133) using two apparently different ways becomes clear when we express all the new

variables in terms of f and its derivatives. Actually Punnis used U = f ′

f2 , V = f ′′

ff ′
, and then

X = − 1

V
= −ff

′

f ′′ , Y = −U
V

= − f ′2

ff ′′ .

On the other hand, Jones used s = f ′, u = f ′′, u′ = −f , and then

X =
su′

u
= −ff

′

f ′′ , Y =
s2

uu′
= − f ′2

ff ′′ .

Thus, the variable X and Y of Punnis and Jones are identical. Compared to our present work and our
variables x, y given by (21), these variables are in fact X = − x

y , Y = 1
xy .

9.5. Historical comments. The original question. As we said in the introduction, the Blasius problem
(rewritten here for convenience)

f ′′′ + ff ′′ = 0 on [0,+∞[,

f(0) = −a, f ′(0) = b, lim
t→+∞

f ′(t) = λ
(Pa,b,λ)

first appears, with a = b = 0 and λ = 2, in [7], see also [8]. Without worrying about existence or
uniqueness of solution, Blasius is mainly interested in the computation of the value of α := f ′′(0). In the
framework of our article, α is such that Λ(0, 0, α) = 2. By the similarity (25), α and λ1 := Λ(0, 0, 1) are
thus linked by α2/3λ1 = 2.

To compute α, Blasius makes use of the formal solution

f(t) =

+∞∑

n=0

(−1)n cn
(3n+ 2)!

t3n+2 (134)

where the coefficients cn are given by

c0 = α and cn+1 =

n∑

j=1

(
3n+ 2

3j

)
cjcn−j .

Thus, the few first terms are c1 = α2, c2 = 11α3, c3 = 375α4, c4 = 27897α5. The presence of the term
(3n+ 2)! at the denominator in the sum (134) leads Blasius to believe that the power solution converges
for all t ∈ R. He then makes use of this power series around t = 0 and of certain asymptotic expression



ON THE BLASIUS PROBLEM 51

for large values of t, adjusting the constant α so as to connect both expressions in a middle region. In
this way, Blasius obtains the (erroneous) bounds 1.326 < α < 1.327.

In 1912, in a short note, C. Töpfer [43] comes back to the paper of Blasius [8] and solves numerically the
Blasius equation with initial conditions f(0) = f ′(0) = 0, f ′′(0) = 1, by using the so-called Runge-Kutta
method. He then arrives, without detailing his computations, at the value α ≈ 1.32824, contradicting
the bounds obtained by Blasius. We must notice that neither Blasius, nor Töpfer justify thoroughly the
accuracy of their computations.

Thereafter, L. Bairstow [3], with the power series, obtains α ≈ 1.340, S. Goldstein [23] obtains α ≈
1.328, V.M. Falkner [20], by a finite difference method, yields the value α ≈ 1.3282306, L. Howarth [26]
gives α ≈ 1.328228, and up today, much efforts have been made to get approximated value of α or λ1.

¿From 1968, the Crocco formulation is also used to compute α. For example, A.J. Callegari and M.B.
Friedman [13] formulate the Blasius problem in terms of the Crocco variables, show that this problem has
an analytical solution, and give the following inequalities: 1.32822 < α < 1.32828. These bounds for α
correspond to 1.65515 < λ1 < 1.65520. In 1991, K. Vajravelu, E. Soewono and R.N. Mohapatra [46] use
the method of Runge-Kutta and a shooting technique to solve numerically the Crocco formulation of the
Blasius problem (P0,0,1) and obtain the erroneous value α ≈ 1.32880 which corresponds to λ1 ≈ 1.65473.
In 1999, J.P. Boyd [9] considers the Blasius equation in the complex plane and gives α ≈ 1, 32822934486,
in accordance with our own calculations.

About the radius of convergence of the Blasius series. In 1941, H. Weyl [51] proves that the radius of
convergence of the power series (134) with c0 = 1 is between 2.620 and 3.915 and chooses to make use of
a process of successive and alternating approximations defined by g0 = 0 and gn+1 = Φ(gn) where

Φ(g)(t) = exp

{
−1

2

∫ t

0

(t− ζ)2g(ζ)dζ

}
. (135)

In this way, he proves that α < 1.368 and says that g3 is a pretty good approximation of f ′′.
In 1947, A. Oudart [38] p.123, who seems to be unaware of the paper of Weyl [51], asks the question

of knowing if the Blasius formal solution converges on the whole line R, or not. J. Kuntzmann [35] gives
the answer and proves that the radius of convergence R of the power series expansion (134) with c0 = 1
is between 2.884 and 3.203.

In 1948, A. Ostrowski [37] improves these bounds. Using two methods, one based on the elementary
proof of Borel of the Picard theorem and the second based on majorant series, he provides the bounds
3.1 < R < 3.18, and announces also that the upper bound can be brought down to 3.14.

If f is the solution of the Blasius equation with initial conditions f(0) = f ′(0) = 0 and f ′′(0) = 1,
then the function g : t 7→ −f(−t) also is a solution of the Blasius equation, and satisfies g(0) = g ′(0) = 0,
g′′(0) < 0. Hence g does not exist up to +∞, see Section 8. In term of f , this means that f cannot be
extended on the whole interval ]−∞, 0]. This point of view allows to recover the fact that the radius R
is necessarily finite. In [47], W. Walter, introducing appropriate super- and subsolutions, shows that g
stops to exist somewhere between 3.098 and 3.151.

Recently, in [9], J.P. Boyd announces R ≈ 3.1273479, once again confirmed by our own calculations.
Surprisingly, we did not find in the literature any formula relating the asymptotic behavior of the cn to
the radius R. Actually, a study of the Blasius series (134) in the complex plane, however out of the scope
of the present article, shows that cn

(3n+2)! ∼ 9
R3n+3 . A more complete analysis of the singularities would

even give a whole asymptotic expansion of cn. This approach would give very quickly an estimate for R.

Existence and uniqueness of the solution of the restricted problem (P0,0,λ). The questions of existence
and uniqueness of the Blasius problem with a = b = 0 is evoked for the first time in 1942, by H. Weyl
[52] who proves that the integral operator Φ defined by (135) has a fix point g and that f ′′ = g with
initial conditions f(0) = f ′(0) = 0 yields a solution of the Blasius equation defined on the whole interval
[0,+∞[. This solution satisfies f ′′(0) = 1 and f ′(t) tends to a positive limit β as t→ +∞. The function

t 7→ κf(κt), where κ =
√

2/β, is then the unique solution of the problem (P0,0,2).
In 1960, W.A. Coppel [15], in a long paper essentially concerned with the Falkner-Skan equation

f ′′′ + ff ′′ + δ(1 − f ′2) = 0 (136)

with δ > 0, devotes a section to the Blasius equation, and shows by differential inequalities that any
convex Blasius solution f does exist up to +∞, that f ′(t) has a nonnegative limit as t → +∞ and that
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f(t) is positive for all large t. Then, he deduces that there are only three possibilities as t→ +∞:

either f(t) → 0, f ′(t) → 0, f ′′(t) → 0,
or f(t) → µ, f ′(t) → 0, f ′′(t) → 0, (µ > 0),
or f(t) ∼ βt, f ′(t) → β, f ′′(t) → 0, (β > 0).

Using the vector field (131), Coppel obtains that the only solutions of the first type are f(t) = 3
t+t0

with

t0 ∈ R. He finally notices that f is of the last type if f ′(0) ≥ 0, or if f ′(0) < 0 and f(0) ≤ 0, and that
the Blasius problem (P0,0,1) has one and only one solution.

Coppel also studies the concave solutions of the Blasius equation, and obtains the following possibilities:

either f(t) → −∞, f ′(t) → −∞, f ′′(t) → −∞, as t→ T,
or f(t) → µ, f ′(t) → 0, f ′′(t) → 0, as t→ +∞, (µ > 0),
or f(t) ∼ βt, f ′(t) → β, f ′′(t) → 0, as t→ +∞, (β > 0).

Using the same vector field (131), he then proves that the solution of the first type satisfies

f(t) ∼ − 3

T − t
as t→ T, t < T. (137)

Moreover, he proves that for any µ > 0 and γ 6= 0, the equation of Blasius has one and only one solution
defined for all sufficiently large t such that f(t) → µ and f ′′(t) ∼ γe−µx as t→ +∞. His method is quite
tedious and makes use of the following integro-differential equation

F ′′(t) = γe−µx +

∫ +∞

x

eµ(ζ−x)F (ζ)F ′′(ζ)dζ,

(with F = f − µ) solving it by the usual fix point argument.
B. Punnis [39] uses (133) to show that the solution of the Blasius problem (P0,0,2) has the asymptotic

form f(t) ∼ 3
T−t as t → T , t > T for some T < 0. Coppel (see [15] p. 135) expresses doubts about the

arguments of Punnis for proving this behavior, and precisely says that the reasons for asserting that the
path in the phase-space necessarily tends to the critical point

(
3
2 ,− 1

2

)
are not clear to him.

Existence and uniqueness for the general problem. In the general case a, b ∈ R, the questions of existence
and uniqueness depend on λ < b (concave case) or λ > b (convex case).

The concave case is rarely considered, essentially because the physical situations corresponding to it
appears later. In particular, in the seventies, the Blasius problem (P0,1,0) arises in the framework of free
convection in a porous medium. In 2000, Z. Belhachmi, B. Brighi and K. Taous [4] prove that the Blasius
problem (Pa,b,λ) with a ∈ R, b ∈ R and λ < b has one and only one solution if b > 0 and λ ∈ [0, b], and no
solutions if λ < 0. The authors prove directly on the Blasius equation that if b ≤ 0 then any solution f of
the Blasius equation verifying f ′′(0) = c < 0 does not exist up to +∞, and that if b > 0 then there exists
a negative real number c∗ = c∗(a, b) such that the function c 7→ Λ(a, b, c) is one-to-one and increasing
from [c∗, 0] onto [0, b]. In the present paper, we gave in Section 8 a proof of the same result with the use
of Crocco equation for two reasons: firstly for completeness and secondly because this alternative proof
is simpler.

In the concave case, the question of uniqueness for the Blasius problem, is easy to solve, because, if
there is a pair of distinct solutions f1, f2 and if f ′′

1 (0) > f ′′
2 (0), then the function g = f ′

1 − f ′
2 satisfies

g(0) = g(∞) = 0 and g′(0) > 0. It follows that g has a positive maximum at some point t0 > 0 such that
g(t) > 0 for 0 < t < t0, but then we obtain

g′′(t0) = f ′′′
1 (t0) − f ′′′

2 (t0) = −f ′′
1 (t0)

∫ t0

0

g(t)dt > 0

and a contradiction. We see also that this argument does not work for convex solutions, and we will see
below that the situation in this latter case is indeed very different. Let us finally notice that, in 1967,
Y.M. Treve [44] studies the Blasius equation with initial conditions given by f(0) = 1, f ′(0) = b > 0 and
f ′′(0) = c < 0. Using the vector field (132) corresponding to the Blasius equation, Treve shows that there
are values of c for which the solutions behave at infinity as mentioned by Coppel [15]. See also W.R. Utz
[45].

In the convex case, the results of existence and uniqueness for b ≥ 0 are scattered in many papers
concerned with the Falkner-Skan equation (136). Let us give some key steps. In 1945, R. Iglisch and D.
Grohne [32] obtain existence for a ≤ a∗ ≈ 1.2385, b = 0, λ = 1. In 1964, P. Hartmann [25] completes
this result and proves existence for a ∈ R, 0 < b < 1 and λ = 1. In 1971, K.K. Tam considers the Blasius
problem (Pa,0,1) with a ≥ 0, but his work contains some mistakes. Moreover, in spite of the title, the
approach is not so elementary.
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The proofs of uniqueness of the solution of the problem (Pa,b,λ) depend on the introduction of some
changes of variable. In the case a ∈ R, b ≥ 0 and λ > b, the first change of variable for a uniqueness
result consists of setting z = f and v = f ′. Blasius equation is then transformed into

v′′ = −v
′

v
(v′ + z),

where ′ denotes the derivation with respect to z. To our knowledge, the first author to consider this
transformation is S. Furuya in 1953, who obtains uniqueness for the Falkner-Skan equation (136) (with
0 ≤ δ ≤ 1) subjected to the boundary conditions f(0) = f ′(0) = 0 and f ′(t) → λ > 0 as t → +∞. It
is easy to see that his proof can be extended to the case f(0) = −a ≥ 0. This is done in 1954 by R.
Iglisch [31] for all δ ≥ 0. Moreover, Iglish proves, by an additional argument, that uniqueness also holds
for a ∈ ]0, a∗]. In [15], the uniqueness proof done by Coppel for the Falkner-Skan equation, contains the
Blasius problem (Pa,b,λ) for a ≥ 0, b ≥ 0 and λ > b. See also W.R. Utz [45].

To overcome the difficulty appearing for a > 0, P. Hartmann [25] sets z = f and v = f ′2, arrives to
the equation

v′′ = − zv
′

√
v
, (138)

and obtains uniqueness for all a ∈ R and b ≥ 0. His proof, done for the Falkner-Skan equation, is quite
complicated and depends on the introduction of suitable further transformations, but looking carefully,
in the case of Blasius equation, the proof of P. Hartmann can be simplified, and the successive transfor-
mations reduce to the Crocco transformation. Notice also that the equation (138) is used by N. Ishimura
and S. Matsui [33] to prove the asymptotic (137).

For b ≥ 0, the Crocco equation is the most elementary way to obtain uniqueness for all a. Indeed,
let us assume that f1, f2 are two distinct solutions of the Blasius problem, set ci = f ′′

i (0) (i = 1, 2) and
suppose that c1 > c2. We obtain u1, u2 : [b, λ[→ R solutions of the Crocco equation, and if w = u1 − u2

we have

∀ s ∈ ]b, λ[, w′′(s) = u′′1(s) − u′′2(s) =
−s
u1(s)

+
s

u2(s)
=

sw(s)

u1(s)u2(s)
.

Because u1 and u2 are positive, we obtain w′′ > 0 as long as w > 0. Since w(0) = c1 − c2 > 0 and
w′(0) = a − a = 0 we obtain that w increases, hence a contradiction with the fact that w(s) → 0 as
s → λ. These arguments are more or less used by A.J. Callegari, M.B. Friedman [13] and K. Vajravelu,
E. Soewono and R.N. Mohapatra [46].
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Faculté des Sciences et Techniques, Université de Haute Alsace
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