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Laboratoire de Physique Moléculaire, UMR CNRS 6624. Faculté des Sciences - La Bouloie,
Université de Franche-Comté, 25080 Besancon cedex, France.”
(Dated: November 17, 2006)

A special attention is paid to characterize the two-vibron bound state dynamics of an anharmonic
molecular nanostructure coupled with a set of optical phonons. It is shown that the vibron-phonon
coupling is responsible for a new dressing mechanism. The vibrons are accompanied by virtual
phonons which account for the scaling of each phonon coordinate and for the dilatation of the
corresponding wave function. As a result, the dynamics of the dressed vibrons is governed by an
effective Hamiltonian whose frequency, anharmonicity and hopping constant depend on the number
of optical phonons. The two-vibron bound states are defined according to a mean field procedure
in which the number of phonons is fixed to their thermal average value. However, the thermal
fluctuations of the number of phonons yield a vibron Hamiltonian equivalent to the Hamiltonian of
a disordered lattice and they favor the localization of the bound states. For a weak vibron-phonon
coupling, the localization results from quantum interferences and it follows a universal behavior.
By contrast, for a strong coupling, the localization originates in the occurrence of infinite potential
barriers which confine the bound states onto clusters whose number and size are controlled by the

temperature.

PACS numbers: 03.65.Ge, 63.20.Ry, 63.22.+m

I. INTRODUCTION

In a series of recent papers [1-7], it has been suggested
that the nonlinear dynamics of high frequency vibrational
excitons (vibrons) could play a key role for the infor-
mation transfer in adsorbed molecular nanostructures.
This feature was first pointed out by Davydov [8] to ex-
plain the energy flows in proteins. The vibron dynamics
was described by a nonlinear Schrodinger equation (NLS)
whose continuum limit leads to the so called Davydov’s
soliton. In addition, the discrete NLS equation supports
discrete breathers which correspond to time-periodic and
spatially localized solutions resulting from the interplay
between the discreteness and the nonlinearity. Since dis-
crete breathers yield a local accumulation of the vibra-
tional energy which might be pinned in the lattice or may
travel through it, they are expected to be of fundamental
importance [9-11]. However, in spite of the great inter-
ests that solitons and breathers have attracted, no clear
evidence has yet been found for their existence in real
molecular lattices.

By contrast, two-vibron bound states (TVBS) have
been observed in several molecular adsorbates such as
H/Si(111) [12, 13], H/C(111) [14], CO/NaCl(100) [15],
CO/Ru(001) [16-20] and H/Ni(111) [21]. In quantum
lattices, the nonlinearity yields the interaction between
the vibrons and favors the formation of bound states.
When two vibrons are excited, a bound state corresponds
to the trapping of two quanta over only a few neighboring
molecules with a resulting energy which is lesser than the
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energy of two quanta lying far apart. The lateral interac-
tion yields a motion of such a state from one molecule to
another, thus leading to the occurrence of a delocalized
wave packet with a well-defined momentum. TVBS are
the first quantum states which experience the nonlinear-
ity and they can be viewed as the quantum counterpart
of breathers or soliton excitations [3-6, 22-27].

In a general way, two main nonlinear sources con-
tribute significantly to the occurrence of bound states.
The first contribution originates in the intramolecular an-
harmonicity of each molecule. As shown by Kimball et
al. [24], this effect can be accounted within the stan-
dard perturbative theory. The intramolecular potential
is expanded up to the fourth order with respect to the
internal coordinate and a unitary transformation is per-
formed to keep the vibron-conserving terms, only. The
resulting Hamiltonian is a Bose version of the Hubbard
model with attractive interactions [2-6].

The second contribution results from the coupling be-
tween the vibrons and the low frequency external modes
of the system. Usually, this effect is described by a
Frohlich type Hamiltonian [28] in which the vibrons in-
teract with a phonon bath responsible for a modulation
of the vibrational frequency of each molecule. These
phonons are supposed to be harmonic and the vibron-
phonon coupling Hamiltonian exhibits a linear depen-
dence with respect to the phonon coordinates. As a con-
sequence the vibron dynamics is governed by the so-called
dressing effect according to the small polaron formalism
[20-37]. Since the vibron bandwidth is usually smaller
than the phonon cutoff frequency, the non-adiabatic limit
is reached. Therefore, during its propagation, a vibron
leads to a lattice distortion, essentially located on a sin-
gle site, which follows instantaneously the vibron. The



vibron dressed by the lattice distortion, i.e. dressed by a
virtual cloud of phonons, forms the small polaron.

In the present work, a new dressing mechanism is in-
troduced to describe the TVBS dynamics in a molecu-
lar lattice adsorbed on a surface. Indeed, it has been
shown by Persson and co-workers [38-45] that the high
frequency stretching mode of each admolecule is prefer-
entially coupled with a low frequency local mode. Such a
mode, which can be viewed as an optical phonon, refers
either to the frustrated translational motion of the cen-
ter of mass of the admolecule or to its frustrated rota-
tional motion. In that context, since the admolecules
are adsorbed onto high symmetry adsorption sites, the
vibron-phonon coupling depends in a quadratic way on
the phonon coordinates. As a result, the creation of vi-
brons is accompanied by a modification of the phonon
states responsible for a new kind of dressing.

The paper is organized as follows. In Sec. II, the
Hamiltonian to describe the vibron-phonon dynamics in
an adsorbed nanowire is introduced. In Sec. III, we first
realize a unitary transformation within the zero vibron
hopping constant limit to remove the vibron-phonon in-
teraction and to reach a dressed vibron point of view.
Then, this transformation is applied to the full Hamil-
tonian and a mean field procedure is used to define an
effective Hamiltonian for the dressed vibrons. Finally, a
random lattice model is established to characterize the
coupling between these dressed vibrons and the remain-
ing phonons. In Sec. IV, a numerical analysis of this
model is presented where a special attention is paid to
characterize the TVBS dynamics. The results are dis-
cussed and interpreted in Sec. V.

II. THE VIBRON-PHONON HAMILTONIAN

Let us consider a one-dimensional nanostructure
formed by N molecules adsorbed on a well-organized sub-
strate. Each molecule n behaves as a high frequency
anharmonic oscillator described by the internal coordi-
nate ¢, and by the standard vibron operators b}, and b,.
Within the model introduced by Kimball et al. [24], the
vibron Hamiltonian H, is written as (using the conven-
tion A =1),

Hy =" woblbn — AbbLbnby + ®[bhbays + Hee] (1)

where H.c. denotes the Hermitian conjugate, wp is the
internal frequency, A is the intramolecular anharmonicity
and ® is the hopping constant between nearest neighbor
molecules.

The vibron Hamiltonian H, conserves the vibron pop-
ulation so that the Hilbert space E, can be written as the
tensor product B, g®FE, 1®FE, 2®...QEy m..., where E,
denotes the subspace connected to the presence of m vi-
brational quanta. In this paper, we focus our attention
on the two quanta states belonging to the subspace E, »
whose dimension N (N + 1)/2 represents the number of

ways for distributing two indistinguishable quanta onto
N sites. The diagonalization H, shows that the lattice
supports both two-vibron free states (TVFS) and two-
vibron bound states (TVBS) (see for instance Refs. [2-
6, 24, 26]). TVFS describe two independent vibrons de-
localized over the lattice and the energy of which belongs
to an energy continuum. By contrast, in a TVBS, the two
quanta are trapped close to each other so that a localiza-
tion of the separating distance between the two vibrons
takes place. However, the lateral interaction yields a mo-
tion of the center of mass which is delocalized over the
lattice.

By following Persson and co-workers [38-45], we as-
sume that the internal vibration of nth molecule interacts
with a low frequency local mode. This mode corresponds
to an optical phonon with mass M, frequency g, coor-
dinate X,, and momentum P,,. Within the harmonic ap-
proximation, the set of optical phonons is characterized
by the Hamiltonian Hj, written as

H—Zﬂ(p—%—i—ﬁ) (2)
P DI

where z, = /MQo/hX, and p, = 1/\/ MQohP, de-
note the reduced coordinate and momentum, respec-
tively. Note that H, can be expressed in terms of the
standard phonon operators al, = (z, — ip,)/v2 and
an = (Tn + ipn)/V2 as H, = 3, Qlalan, + 1/2).
The Hamiltonian H), describes N independent oscilla-
tors whose Hilbert space F, can be written as the tensor
product of the Hilbert space of each local mode. The
eigenstates of H, are thus expressed as | p1,p2, ..., Pn)
where p, denotes the number of low-frequency optical
phonons onto the n th local mode.

According to Persson and co-workers, the frequency of
the nth stretching mode depends on the local mode co-
ordinate z,. By assuming that the molecule is adsorbed
onto a high symmetry adsorption site, such a dependence
is invariant under the transformation x,, —» —x, so that
the modulation is proportional to z2 at the lowest order.
The coupling Hamiltonian between the vibrons and the
optical phonons is thus expressed as

1
AH =" iAmibLbn (3)

where A denotes the vibron-phonon coupling parameter.

For small adsorbed molecules, the anharmonic param-
eter, usually close to the gas phase value, ranges between
10 — 40 cm~! whereas the vibron bandwidth is typically
lesser than or about to 10 cm~!. For instance, for the
CO/Ru system (see Ref.[5] and references therein), the
anharmonicity is A = 15.56 cm™! and the hopping con-
stant is & = 3.82 cm™!. For the H/Si(111) system, the
vibron bandwidth is equal to 10 cm~! and the anhar-
monicity was found to be A = 34 cm™! [12, 13]. The
characteristics of the low frequency local mode depend
on both the adsorbed molecule and the substrate. For



CO/Ni [38-40], the phonon corresponds to a frustrated
rotation of the admolecule with a frequency Q¢ = 235
cm~ 1. The strength of the vibron-phonon coupling is
about A = 40 cm™!. By contrast, for CO/Ru [40-44],
the local mode refers to the frustrated translation of the
admolecule parallel to the surface. The corresponding
frequency is Qg = 47 cm~! and the vibron-phonon cou-
pling is A = —6 cm~!. For H/Si [45], the frequency of
the optical phonon is Qg = 210 cm™! and the vibron-
phonon coupling is A = —10 cm™!. Note that in all
these situations, each low frequency local mode strongly
interacts with the phonons of the substrate which results
in a short lifetime of about a few picoseconds.

Finally, the full Hamiltonian H = H,+H,+ AH yields
a rather simple model for the vibron-phonon dynamics in
an adsorbed nanowire. Nevertheless, it cannot be solved
exactly due to the anharmonic vibron-phonon coupling
AH and the following section is devoted to its simplifi-
cation.

III. THEORETICAL BACKGROUND

A. The zero hopping constant limit: phonon
dilatation and dressed vibrons

To understand the influence of the vibron-phonon cou-
pling, let us first neglect the vibron hopping constant ®
in Eq.(1). As a result, the system reduces to a set of N
independent sites and the Hamiltonian describing the n
th site is written as

x2 A,
on =22t 4
9 + 2)+ 2$nbnbn (4)

[N

H,, = wobl b, — AbIZb2 + Qo (

A natural basis to describe the n th site is formed by
the eigenstates of H, when A = 0. A particular eigen-
state, denoted | vp, pp), refers to the presence of v, high
frequency vibrons and p, optical phonons. Therefore,
Eq.(4) shows that the vibron-phonon coupling conserves
the vibron number. By contrast, it induces the creation
and the destruction of optical phonons and yields fluctu-
ations of the phonon number. Such transitions originate
in the modification of the potential energy of the n th
local mode, i.e. Qoz2 — (R + Av,)r?, when a non
vanishing vibron population is created onto the n th site.

To account for this modification, let us introduce the
following unitary transformation

U’I’L — eia(Nﬂ)[%’Fiznpn] (5)

where 8(N,,) is an operator which depends on the vibron
population N,, = bl b,, only. The transformation Up,
known as the dilatation operator, yields a scaling of both
the local mode coordinate and momentum as

Unz™Ul =
Unpi U = ™/ Nplt (6)

n

efma (N")-'If:ln

At this step, 8(N,,) remains an unknown operator which
is determined in order to remove the vibron-phonon cou-
pling term occurring in Eq.(4). By transforming the
Hamiltonian H,, it is straightforward to show that the
required operator is defined as

A
o, V! (7)

The transformed local Hamiltonian H,, = U, H,U} is
finally written as

B(N,) = ©

1 In[1 +

2 2
H,, = wobl b, — AbI?b2 + Q(Nn)(% + %”) (8)

where Q(N,) = Qo4/1 + QAON’E'

The transformation Eq.(5) yields an exact diagonal-
ization of the local Hamiltonian within the unperturbed
basis | vn, pn). The eigenstates of the n th site are thus
defined as | ¥(vn,pn)) = U} | vn,pn) so that the corre-
sponding wave functions are written as

Vo pm (@n, Tn) = Xu, (@n) X

1400 3 1 (v i) (9)
Qo Qo

where x,, (qn) is the v, th wave function of the high

frequency vibration and where ¢, (z,) is the p, th wave

function of the unperturbed low frequency mode. The

associated eigenvalues are expressed as

(v, Pn) = wotn — Ava(vn — 1) + Qon)(pn + 3) (10)

The meaning of Egs.(9) and (10) can be understood as
follows. When the high frequency mode is in its ground
state, i.e. v, = 0, both the local Hamiltonian H, and
its transformation under the dilatation operator H, are
identical. They describe the unperturbed low frequency
local mode whose eigenstates refer to a fixed number p,,
of unperturbed phonons with frequency 9. When v,, vi-
brons are created onto the n th site, the potential energy
of the local mode is modified and a scaling of the local
mode coordinate occurs. This scaling corresponds to a
dilatation of the corresponding wave function (Eq.(9))
and to a frequency which depends on the vibron num-
ber (Eq.(10)). However, a dilated state can be expressed
as a superimposition of unperturbed phonon states (see
Appendix A). Therefore, in a strong analogy with the
standard polaron formalism, the dilatation of the phonon
is equivalent to the occurrence of a virtual cloud of un-
perturbed phonons responsible for the dressing of the vi-
brons. This dressing modifies both the vibrational fre-
quency and the anharmonic parameter of the high fre-
quency mode which, in turn, depend on the number of
dilated phonons. For instance, when the n th site ex-
hibits p, dilated phonons, the fundamental frequency of
the internal mode defined as wo1 = €(1,pn) — €(0,py) is
expressed as

1
wor = wo + dw(pn + 5) (11)



where dw = Q(1) — Qo. In the same way, the anharmonic
parameter which accounts for the shift between wg; =
€(1,p,) — €(0,pn) and wor = €(2,p,) — €(1,py) is written
as

1
A'=A+6A(pn +3) (12)

where 64 = (2Q(1) — Q(2) — Q) /2

B. Mean field procedure and effective Hamiltonian

When turning on the vibron hopping constant ®, an
exact diagonalization of the Hamiltonian H cannot be
reached. Nevertheless, the vibron-phonon coupling can
be partially removed by generalizing the previous pro-
cedure and by introducing the unitary transformation
U =1, Un. The transformed Hamiltonian is thus writ-
ten as

H = ;wobgbn — Ab}bbnby, + Q(Nn)(%i + “"”2_%)
+ 2[00, bl bpt1 + H.oc] (13)
where @f is the dressed operator defined as
@i — e~ [0(N2) =0 (NoFD)][3+iznpn] (14)

In this dressed vibron point of view (Eq.(13)), the non
diagonal vibron-phonon coupling remains through the
modulation of the lateral terms by the dressing operators
OF. These operators depend on the phonon coordinates
in a highly nonlinear way and do not conserve the phonon
numbers.

To overcome these difficulties, a mean field procedure
is applied by following the small polaron theory [29-37].
To proceed, we take advantage of the fact that the op-
tical phonons strongly interact with the phonons of the
substrate which act as a thermal bath. As a result, when
no vibron is excited in the nanowire, the unperturbed
optical phonons are supposed to be in thermal equilib-
rium at the temperature T imposed by the substrate. In
that context, the mean field procedure consists in sub-
stituting the vibron-phonon coupling terms occurring in
Eq.(13) by their average values. As a result, the trans-
formed Hamiltonian H is expressed as the sum of three
separated contributions as

H=H, +H,+AH (15)

where H, =< (H — H,) > denotes the effective Hamilto-
nian of the dressed vibrons and where AH = H—H,— <

(H - H,) > stands for the remaining part of the vibron-
phonon interaction. The symbol < ... > represents the
thermal average over the unperturbed phonons. The ef-
fective dressed vibron Hamiltonian is written as

. . 1
H, =) woblbn — Ab202 + (UNR) — Qo)(np + 5)

+ @010, ,)blbyy1 + Hel (16)

where np = (exp(Q/kT)) — 1) ! is the Bose number.

The remaining coupling term AH is splitted into two
contributions as

AHy =) (UN,) — Q)(ahan — np) (17)

AH, =) 3[(050,; — (050, )b b1 + Hel

Within the mean field approach developed for the small
polaron theory, the dynamics of the dressed vibrons is
described by the effective Hamiltonian H., only. The
remaining vibron-phonon coupling AH which is respon-
sible for dephasing mechanisms, is usually addressed in a
second step by using a standard perturbative theory. In
the present problem, the situation differs slightly because
although the remaining coupling AH> can be effectively
neglected, the interaction AH; has to be included to de-
scribe the vibron dynamics.

To clarify this feature, let us take advantage of the
small value of the vibron-phonon coupling when com-
pared with the optical phonon frequency. Indeed, this
assumption appears to be rather good for nanowires in-
volving small molecules since for CO/Ni, CO/Ru and
H/Si the ratio | A | /g is estimated to be 0.17 [38-
40], 0.12 [40-44] and 0.05 [45], respectively. Therefore,
this approximation allows us to linearize Eq.(7) so that
O(N,) ~ AN, /4. The expansion of the dressing op-
erators with respect to A clearly shows that AH, scales
as ®A/Qy whereas the interaction AH; is typically pro-
portional to A. Consequently, the coupling AH, can be
disregarded whereas AH;, whose strength is typically of
about the vibron hopping constant, must be conserved.

In the weak | A | /Qp limit, the average value of the
dressing operator < ©F > reduces to a c-number in-
dependent on the site position (see Appendix B). The
effective Hamiltonian is thus characterized by an effec-
tive hopping constant for the dressed vibrons, ® = & <
00,4 >, expressed as

P
sinh%ﬁ) coth?(32%) + coshz(ﬁ)

$ = (18)

Finally, the restriction to the two-vibron subspace is
achieved by expanding the term Q(bfb,) in a normal
ordering where, in each term of the expansion, all the
creation operators are to the left of the annihilation op-

erators. After some algebraic manipulations the trans-
formed Hamiltonian is approximated as

A

H ~ H,+H,
+ > [dwblb, — 5ABB.(alan —np)  (19)

where

H, =) @oblby — AbJ202 + &[b b i1 + H.c] (20)



In Eq. (20), G0 = wo + dw(np +1/2) and A = A +
0A(np +1/2) (see Egs.(11) and (12)).

The Hamiltonian H, (Eq.(20)) is the restriction to
the two-vibron subspace of the effective Hamiltonian H,
(Eq.(16)) in the weak | A | /Qo limit. The dressing effect,
responsible for a shift of both the vibrational frequency
and the anharmonic parameter, reduces the vibron hop-
ping constant. The last term in Eq.(19) characterizes
the remaining coupling AH; which accounts for the fact
that both the vibrational frequency and the anharmonic
parameter of each admolecule depends on the number of
dilated phonons (see Sec. IIL.A.).

C. The random lattice model for the vibron
dynamics

As shown in the previous section, the vibron-phonon
dynamics in the weak | A | /Qp limit is described by
the Hamiltonian Eq.(19) which the knowledge allows us
to compute in principle any observable. In practice, we
are interested in the characterization of the vibron re-
sponse to a given external excitation which usually in-
volves a specific correlation function between vibron op-
erators [46]. To compute such a response function, it is
necessary to account for the fact that the optical phonons
are in thermal equilibrium at temperature T'. Therefore,
a statistical average has to be realized according to the
initial density matrix p, defined as

o—Hp /KT

Pp = Tp(e—Hy/RTY (21)
These calculations are greatly simplified since the Hamil-
tonian H (Eq.(19)) is block diagonal in the basis formed
by the eigenstates | p1,pa,-..,Pn...) of the unperturbed
phonon Hamiltonian H,. Therefore, when the phonons
are in a particular eigenstate | p1,pa, ..., Pn...), the vibron
dynamics is described by the Hamiltonian (see Eq.(19))

h({pn}) = He + ) _[0wblby, — SABD|(pn — ns) (22)

By solving Eq.(22), the required observable can be eas-
ily determined for a given configuration of the phonon
numbers. Then, the thermal average is achieved by per-
forming a statistics over the different phonon eigenstates
according to the Boltzmann density matrix Eq.(21).
Consequently, Eq.(22) clearly shows that the vibron
dynamics in the nanowire is equivalent to the dynam-
ics in a disordered lattice in which both the frequencies
and the anharmonicities of the admolecules are inhomo-
geneously distributed. These dynamical parameters de-
pend on the number of dilated phonons {p,} which can
be viewed as a set of independent random variables dis-
tributed according to the geometric law (see Eq.(21))

P(pn) = (1 - exp(— %) exp(~ 22%)  (29)

Energy (cm'1 )

Energy (cm'1)

FIG. 1: Two-vibron energy spectrum for ® = 4cm ', A = 15
ecm™, Qy=50cm !, A=—-6cm™!, (a) T =100 K and (b)
T =300 K

Therefore, averaging over the phonon bath is equivalent
to perform the average over a frozen disorder whose re-
alization is specified by the set of phonon numbers.

The following section is thus devoted to a numerical
analysis of the random Hamiltonian Eq.(22) with a spe-
cial emphasis on the influence of the disorder on the
TVBS.

IV. NUMERICAL RESULTS

In this section, the random Hamiltonian Eq.(22) is di-
agonalized to characterize the two-vibron states of the
adsorbed nanowire. The diagonalization is achieved by
using the number state method [26] which was success-
fully applied to molecular adsorbates [2-6]. Within this
method, the two-vibron eigenstate is expanded as

| lIJoz) = Z lIJa(nhTL?) | n11n2) (24)

ni,ne>ny

where {| n1,n2)} denotes a local basis set normalized and
symmetrized according to the restriction ny > nq due to
the indistinguishable nature of the vibrons. A particular
vector | my,m2) characterizes two vibrons located onto
the sites n; and ns, respectively.

When the disordered nature of Eq.(22) is disregarded,
i.e. when we restrict our attention to the effective vi-
bron Hamiltonian H., the diagonalization is simplified
by taking advantage of the lattice periodicity. Indeed,
the two-vibron wave function is invariant with respect to
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FIG. 2: Temperature dependence of (a) the effective vibron
hopping constant &, (b) the vibron frequency shift and (c) the
vibron anharmonicity shift for ® = 4 cm ~!, A = 15 cm™!,
Q =50 cm™', A = —6 cm™" (full line), A = —10 cm™"!
(dashed line) and A =6 cm™" (dotted line).

a translation along the lattice and it can be expanded as
a Bloch wave as

U,(ni,n1 +m) = ik(n1+m/2) lI’oc,lc:(rn) (25)

1
— e
2
where the momentum k, which belongs to the first Bril-
louin zone of the molecular lattice, is associated to the
motion of the center of mass of the two vibrons. The
resulting wave function ¥, ,(m) refers to the degree of
freedom m which characterizes the distance between the
two vibrons. Since k is a good quantum number, the ef-
fective Hamiltonian is block diagonal and the Schrodinger
equation can be solved for each k value.

The two-vibron energy spectrum of the effective Hamil-
tonian H, (Eq.(20)) is shown in Fig. 1 for ® =4 cm ~!,
A=15cm™, Qy =50 cm™' and A = —6 cm™!. This
spectrum, centered onto the frequency 2w, exibits the
two-vibron dispersion curves drawn in the first Brillouin
zone of the lattice. When T = 100 K (Fig. 1a), the
spectrum is formed by an energy continuum symmetri-
cally located around 2wy which is redshifted of about
8.97 cm™! from 2wg. The TVFS bandwidth is equal to
31.89 cm~!. This continuum contains the states describ-
ing two independent vibrons and called two-vibron free
states (TVFS). The energy spectrum shows a single band
located below the continuum over the entire Brillouin
zone. This band contains the TVBS which describe two
vibrons trapped around the same site and which the cen-
ter of mass propagates with a wave vector k. The binding

energy of TVBS, i.e. the gap between the zero wave vec-
tor TVBS and the bottom of the TVFS continuum, is
equal to 18.33 cm~! whereas its bandwidth is about 3.94
cm™L,

When T = 300 K (Fig. 1b), the spectrum displays the
same features as observed in Fig. 1a. However, the main
difference is a strong redshift of both the TVFS contin-
uum and the TVBS. Indeed, the continuum is centered
around 2y which is now redshifted of about 25.94 cm !
from 2wy. The TVFS bandwidth has been slightly re-
duced to 31.45 cm™!. The binding energy of TVBS is
equal to 18.98 cm~—! whereas its bandwidth is equal to
3.78 cm™1.

The influence of the temperature on the two-vibron en-
ergy spectrum can be understood from the knowledge of
the behavior of the dynamical parameters which govern
the vibron dynamics. This statement is illustrated in Fig.
2 which displays the temperature dependence of the effec-
tive hopping constant ® (Fig. 2a) , of the frequency shift
dw (Fig. 2b) and of the anharmonicity shift 6 A (Fig. 2c).
The parameters are ® =4 cm ~!, A =15 cm™!, Qg = 50
cm™ A= —6 cm™! (full line), A = —10 cm~! (dashed
line) and A = 6 cm™! (dotted line). As shown in Fig.
2a, & decreases with the temperature as in the standard
small polaron formalism. It depends quadratical on the
vibron-phonon coupling parameter A and it decreases as
| A | increases. Nevertheless, due to the small value of

the ratio | A | /Qo, ® exhibits a very small temperature
dependence. For instance, when A = +6 gm_l, it varies
from ® = 3.99 cm~! when T = 3 K to & = 3.93 cm™!
when T' = 300 K. By contrast, the frequency shift dw
strongly depends on the temperature and on the sign of
A. Tt produces a blueshift for positive A values and a red-
shift for negative A values. For instance, when A = —6
ecm™!, §w varies from —4.48 cm™! when T = 100 K to
—12.97 cm—! when T = 300 K. As shown in Fig. 2c,
the anharmonicity shift increases with the temperature
whatever the sign of the the vibron-phonon coupling A
but it does not depends on the absolute value of A. For
small | A | values, the anharmonicity shift is rather small
since it varies from 0.16 cm™! when T' = 100 K to 0.45
cm~! when T = 300 K for A = —6 cm™!. Nevertheless,
stronger A value produces a more important shift.

In Fig. 3, the behavior of the zero wave vector TVBS
frequency (Fig. 3a), of the TVBS binding energy (Fig.
3b) and of the TVBS bandwidth (Fig. 3c) is shown for
the same set of parameters as in Fig. 2. The temperature
dependence of the zero wave vector TVBS frequency is
essentially due to its strong depends on the frequency
shift dw (see Fig. 2b). As a result, the bottom of the
TVBS band is redshifted for negative A values whereas it
is blueshifted for positive A values. By contrast, both the
TVBS binding energy and the TVBS bandwidth exhibit
a rather small temperature dependence. Whatever the
sign of the vibron-phonon coupling A, the binding energy
increases with the temperature whereas the bandwidth
decreases with the temperature.

Let us now consider the nature of the two-vibron eigen-
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and A = 6 cm™" (dotted line).

states connected to the random Hamiltonian Eq.(22).
Note that to simplify the discussion, we shall restrict our
attention to negative A values, only. As mentioned pre-
viously, this Hamiltonian describes the dynamics of two
vibrons moving on a disordered lattice characterized by
a set of random frequencies and random anharmonic pa-
rameters. From the standard localization theory, it is well
known that the main consequence of randomness is the
occurrence of localized states. As discussed in numerous
papers (see for instance Ref. [47-49]), a way to discrimi-
nate between localized or extended states is based on the
analysis of the corresponding inverse participation ratio
(IPR). In terms of the ath wave function ¥,(n1,ns2), the
IPR is defined as

Io= 3 | Taln,ma) | (26)

ni,n2

In an ordered lattice extended states are characterized
by an infinitesimally small IPR whereas, in a disorder
lattice, the IPR of strongly localized states is close to
unity.

In addition to the IPR, a useful quantity to analyse
the two-vibron states is the mean value < m, > of the
separating distance between two vibrons. For the a th
eigenstate, it is defined as

<My >= Z (n2 —mn1) | Tu(n,na) |? (27)

ni,n2

A small < m, > value indicates that the state refers
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FIG. 4: (a) IPR and (b) mean separating distance for N = 51,
®=3cm ' A=15cm™ !, Qo =50cm™, A = —4cm™’
and T =50 K.

to two trapped vibrons whereas large < m, > values
characterize vibrons far from each other.

Fig. 4 shows the IPR (Fig. 4a) and the mean separat-
ing distance (Fig. 4b) for each two-vibron eigenenergy
centered around 2wq. The lattice size is fixed to N = 51
and the parameters are ® = 3 cm ~!, A = 15 cm™ 1,
D =50cm™!, A = —4 cm~! and T = 50 K. To simplify
the presentation, only five random configurations have
been reported on the figures. The figures clearly discrim-
inate between two kind of states. As shown in Fig. 4a,
a set of states form an energy continuum located around
2wo. These states are characterized by a rather weak
IPR smaller than 0.2. Moreover, the separating distance
between two vibrons varies typically between 5 and 40
which indicates that these states refer to two vibrons far
from each other (Fig. 4b). Consequently, the continuum
contains the TVFS which are slightly perturbed by the
disorder. Note that the most important IRP values occur
at the center and at the edges of the continuum.

Below the continuum, several bands take place. All
these bands contain states in which the two vibrons are
trapped close to each other (Fig. 4b). The first band,
located around —2@ — 2A, corresponds to the TVBS of
the effective Hamiltonian modified by the randomness.
Fig. 4a clearly shows that most of the TVBS have an
IPR lower than 0.5 so that they appears more sensitive
to the disorder than the TVFS. In addition, some TVBS
are characterized by a strong IPR, close to 0.9, and they
thus refer to strongly localized states.

The next band, which is redshifted of about A from
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the TVBS band, contain bound states strongly localized.
Because they lie around the energy —2wy — 24 — 20w,
they correspond to two trapped vibrons localized on a
site where a single dilated phonon has been thermally ex-
cited. However, the occurrence of several eigenenergies,
i.e. a nonvanishing bandwidth, is the signature of the
presence of clusters involving two dilated phonons located
onto two nearest neighbor sites. The following bands,
which are shifted of about 2A and 3A from the TVBS
band, describe two trapped vibrons localized onto sites
containing successively two dilated phonons and three
dilated phonons. The strong IPR values indicate that
these states are strongly localized. Note that for this
small temperature, the probability for the excitation of
more than one dilated phonon is relatively weak so that
these band do not contain a lot of states.

The influence of the temperature is illustrated in Fig.
5 where T' = 150 K. The other parameters are equal
to those used in Fig. 4. In that case, the TVFS ex-
perience a strong perturbation since most of them are
characterized by an important IPR value. Nevertheless,
a lot of states with a small IPR value remain, especially
close to the band center. In fact, the strongly perturbed
states are redshifted from the center of the band and lie
in the frequency range of both the TVBS band and the
following bands. Nevertheless, since these states refer to
vibrons localized far from each other, they do not inter-
fere with bound states. For the bound states, the main
difference with the situation illustrated in Fig. 4 is an in-
crease of the IPR which corresponds to an enhancement

¥(n,n)
|

FIG. 6: The first twenty-one TVBS wave functions for N =
61, =3cm ', A=12cm™}, Qo =50cm™}, A = —4
cm~! and T = 50 K. The corresponding phonon distribution
is shown in the bottom of the figure where an open circle, a
full circle and a full gray square account for the occurrence of
zero, one and two dilated phonons, respectively

of the localization. In addition, the figure clearly shows
the occurrence of several bands which refer to trapped vi-
brons localized onto sites where a large number of dilated
phonons is excited. Note that the TVBS binding energy
exhibits a blushifted when compared with the situation
illustrated in Fig. 4.

Let us now focus how attention on the nature of the
TVBS. In Fig. 6, the wave function ¥,(nq,n1) of the
first twenty-one states belonging to the TVBS band have
been reported. For this simulation, the parameters are
®=3cm L, A=12cm !, Q =50cm !, A =—4
em™! and T = 50 K. The lattice size is fixed to N = 61
and a single random configuration has been considered.
The corresponding distribution of the dilated phonons is
shown in the bottom of the figure where an open cir-
cle, a full circle and a full gray square account for the
occurrence of zero, one and two dilated phonons, respec-
tively. Note that starting from the bottom of the figure,
the wave functions are plotted according to an increase of
their energy. The figure shows that the TVBS wave func-
tions are localized at nonoverlapping segments. Some of
these wave functions can be grouped into local sets in-
volving states localized on the same segment. For each
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set, the wave functions are similar to those of a single
particle confined in a box. They have an almost perfect
symmetry and the number of nodes increases with the
energy. The confinement takes place between two sites
which contain a nonvanishing number of dilated phonons.
For instance, such a situation occurs for the segment con-
fined between the sites 11 and 21. By contrast, other
states are not strictly confined between two defects but
extend over a segment which contain sites where dilated
phonons are excited. This situation takes place between
the sites 26 and 46.

At this step, to perform a more efficient average over
a large number of random configurations, let us consider
the following procedure to analyse the TVBS dynamics.
For molecular adsorbates the intramolecular anharmonic-
ity is usually stronger than the vibron hopping constant.
Therefore, the mean separating distance between two vi-
brons in a bound state almost vanishes (see Figs. 4 and 5)
so that two trapped vibrons can be viewed as a single par-
ticle. The dynamics of that particle is well represented by
considering the reduction of the full Hamiltonian to the
subspace generated by the basis set | n) =| n,n). Con-

sequently, from Eqgs.(20) and (22), this reduced Hamilto-
nian is expressed as

N

@2
A

hrvps = ZGn |n)(n|——(n)(n+1]|+H.c) (28)

where the energy for a vibron pair located on the nth site
is a random variable defined as

N

en=2(@0 — A— ‘I;; + (6w — 84 (pn —np))  (29)

and where $2 / A is the effective vibron pair hopping con-
stant [6]. It describes the transtion amplitude for the
pair to realize a hop from the state | n,n) to the state
| n+1,n+ 1) via | n,n + 1). Within this approach, the
dimension of h1yvpg, equal to the number of sites IV, as
been strongly reduced when compared with the dimen-
sion of the full two-vibron subspace equal to N(N +1)/2.

Fig. 7 shows a detailed analysis of the TVBS IPR
in a lattice containing N = 200 sites and for 40 ran-
dom configurations. The parameters are ® = 3 cm ~!,
A=15cm™!, Qy=50cm™ and T = 50 K. For A = —1
cm~! (Fig. 7a), most of the TVBS appear weakly per-
turbed by the disorder and are characterized by an IPR
lower than 0.2. These states are uniformly distributed in
the band. Nevertheless, the lattice supports states with
a rather large IPR which ranges between 0.2 and 0.9.
When A = —6 cm~! (Fig. 7b), the IPR of the TVBS
behave differently. The figure clearly shows a kind of
structure symmetrical distributed around the center of
the band in which the eigenenergies are condensed into
local groups. Each group is characterized by a given max-
imum value of the IPR. For instance, the group located
at the center of the band contains states which the IPR
ranges between 0 and 1. Then two groups, character-
ized by a maximum IRP equal to 0.5, are respectively
redshifted and blueshifted of about 0.6 cm™! from the
center of the band. Note that this shift is about the hop-
ping constant ®2/A of the vibron pair. This behavior
clearly indicates the occurrence of a transition which dis-
criminates between two kind of TVBS depending on the
strength of the vibron-phonon coupling.

In Fig. 8, the behavior of the distribution P(I) of
the IPR of the TVBS is illustrated for ® = 3 cm ~!,
A=15cm™! and Qg = 50 cm™! and for two values of
the vibron-phonon coupling equal to A = —1 cm ™! and
A = —6 cm™!, respectively. Three temperatures have
been considered, i.e. T = 40 K (Fig. 8a), T = 100
K (Fig. 8b) and T = 200 K (Fig. 8c). To build the
distribution, we use a lattice formed by N = 200 sites
and 400 random configurations were accumulated. At
low temperature and weak vibron-phonon coupling (Fig.
8a), the IPR exhibits a continuous distribution which is
maximum for I = 0.05 and which decreases exponen-
tially for large IPR values. For A = —6 cm™!, the shape
of the distribution slightly changes. It appears almost
continuous for small IPR values and it reaches a maxi-
mum for I = 0.08. Then, it decreases by exhibiting a
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structure characterized by peaks with small amplitudes.
At T =100 K (Fig. 8b), the IPR distribution is always
continuous for A = —1 ¢cm~! but its maximum occurs
for I = 0.17. By contrast, when A = —6 cm™!, the
continuous nature of the distribution has clearly disap-
peared. It is formed by peaks which the most intense
is located at I = 0.5. Finally, when T = 200 K (Fig.
8c), the continuous nature of the IPR distribution for
a weak vibron-phonon coupling remains although some
small amplitude oscillations occur. The maximum of the
distribution takes place for I = 0.34. For a strong vibron-
phonon coupling, the distribution exhibits 6 peaks which
the most intense occurs for I = 0.5.

Finally, Fig. 9 shows the behavior of the average IPR
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of the TVBS as a function of A for T'=40 K, T = 100
K, T =200 K and T = 300 K. The parameters are those
used in Fig. 8. Whatever the temperature, the average
IPR exhibits two regimes depending on the strength of
the vibron-phonon coupling. For small | A | values, it in-
creases with | A | according to a linear law. Then, above
a critical value, the average IPR becomes almost inde-
pendent on the vibron-phonon coupling and it reaches a
constant value. This constant value strongly depends on
the temperature and it increases as the temperature in-
creases. Note that the critical value decreases with the
temperature. In other words, below a critical value, both
the vibron-phonon coupling and the temperature are re-
sponsible for an enhancement of the TVBS localization.
By contrast, above the critical value, the vibron-phonon
coupling does not significantly affect the localized nature
of the TVBS. Nevertheless, the localization still depends
on the temperature which, as previously, enhances the
localization.

V. DISCUSSION

Within the standard small polaron approach, the lin-
ear dependence of the vibron-phonon coupling with re-
spect to the low frequency mode coordinates leads to the
occurrence of a lattice distortion on the site where the
vibrons have been created. In an adsorbed nanowire, we
have shown that the quadratic dependence of the vibron-
phonon coupling with the local mode coordinates favors
a fully different dressing mechanism. Indeed, when no
vibron is excited, each lattice site is occupied by a local
mode whose eigenstates are described by unperturbed
phonons. The creation of one or two vibrons on the
nth site is thus responsible for the scaling of the coor-
dinate and for the dilation of wave function of the nth
local mode. Since a dilated state corresponds to a super-
imposition of unperturbed phonons, a virtual cloud of
phonons accompanies the creation of the vibrons. This
dressing manifests itself by a dependence on the phonon
numbers of the dynamical parameters (internal frequency
and intramolecular anharmonicity) which govern the vi-
bron dynamics.

Because the low frequency modes are assumed to
be in thermal equilibrium due to thier coupling with
the phonons of the substrate, we applied a mean field
procedure and we defined an effective Hamiltonian H,
(Eq.(20)) for the dressed vibrons by fixing the number
of dilated phonons to their average value. In that case,
as shown in Figs. 1, 2 and 3, the properties of the
bound states depend on both the temperature and the
vibron-phonon coupling A. More precisely, it has been
shown that the TVBS band exhibits a strong frequency
shift with the temperature. Negative A values induce
a redshift whereas a blueshift takes place for positive A
values. This behavior originates in the frequency shift
wo — wo + dw(np + 1/2) experienced by each high fre-
quency mode due to the dressing mechanism. Because



the vibron-phonon coupling strength is usually smaller
than the phonon frequency, this shift is proportional to
the vibron-phonon coupling and it scales as dw ~ A (see
Eq.(11)). By contrast, both the TVBS binding energy
and the TVBS bandwidth do not significantly change
with the temperature. The weak temperature depen-
dence of the TVBS binding energy results from the small
modification of the intramolecular anharmonicity for the
dressed admolecules. Indeed, the dressing induces a shift
0A(npg+1/2) of the anharmonic parameter (see Eq.(12))
governed by the constant A ~ A?/8Q. In the same
way, at the lowest order with respect to A /€y, the correc-
tion of the effective hopping constant scales as ®(A/Qq)?
so that it yields rather small modifications of the TVBS
bandwidth with respect to that occurring for undressed
bound states.

These features clearly indicate that the present dress-
ing mechanism is rather different than the dressing expe-
rienced by the vibrons described within the small polaron
formalism. Indeed, in this latter case, a similar redshift
affects both the frequency and the anharmonicity of each
molecule. This redshift is given by the so-called small
polaron binding energy which is temperature indepen-
dent and proportional to the square of the vibron-phonon
coupling. By contrast, in the small polaron model, the
effective hopping constant is drastically modified and it
strongly decreases with the temperature.

The remaining coupling between the dressed vibrons
and the dilated phonons account for the thermal fluctu-
ations of the number of dilated phonons. This coupling
results in a vibron Hamiltonian equivalent to the Hamil-
tonian of a disordered lattice in which both the frequency
and the anharmonicity of the admolecules are inhomoge-
neously distributed. These parameters depend on the
phonon numbers which form a set of independent ran-
dom variables. In one-dimension, it is well-known that
this kind of Hamiltonian leads to the localization of the
vibron states. By localization, it is meant that disorder
can trap the vibrons by quantum interference to a finite
region so that all the states turned out to be localized,
even if the disorder is infinitesimally small.

To discuss and interpret our numerical results, let us
focus our attention on the influence of the disorder on
the TVBS, only. The ideal lattice is obtained when no
phonon is excited so that all the sites are equivalent. The
randomness occurs when defects take place on the differ-
ent sites. A particular defect corresponds to a site on
which the number of phonons p, does not vanish. Con-
sequently, on this site, both the frequency and the an-
harmonicity of the corresponding admolecule are shifted
form their value in the ideal lattice.

When a single defect is present, the lattice supports a
localized TVBS which refer to two trapped vibrons lo-
calized around the defect. The energy of this state de-
pends on the number of excited phonons and it is shifted
from the TVBS band of about 2(dw — 0A)p, ~ Ap,.
When several defects occur, some of them can form clus-
ters corresponding to defects located onto nearest neigh-
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bor sites. If in a given cluster all the sites exhibit the
same number of phonons, the different localized states
hybridize to form a finite bandwidth band called an impu-
rity band. Since the number of phonons follows the Boltz-
mann distribution, the temperature control the number
of phonons as well as the size of the clusters. Therefore,
at low temperature, the lattice essentially supports a di-
lute set of defects containing a small number of phonons.
We thus observe the occurrence of a few impurity bands
with basically zero bandwidth. By contrast, when the
temperature increases, the number of phonons per defect
increases as well as the size of the clusters. Consequently,
several impurity bands take place with a significant band-
width.

In addtion to create impurity bands, the disorder
strongly affects the TVBS described by the effective
Hamiltonian. When compared with the standard local-
ization theory, we observed the occurrence of a transition
which discriminates between two kinds of localization de-
pending on the strength of vibron-phonon coupling .

For small | A | values, most of the TVBS are weakly
perturbed by the disorder. They are characterized by a
rather small IPR value and they are almost uniformly
distributed in the TVBS band. Nevertheless, the lat-
tice supports some strongly localized states whose IPR is
close to unity (Fig. 7a). Consequently, the distribution
of the TPR is continuous. It is peaked around a rather
small IPR value and falls off exponentially for large IPR
values (Fig. 8). In fact, this specific behavior of the IPR
distribution exhibits a universal character which has been
determined in previous theoretical works [50, 51]. Indeed,
from Fig. 8, it is straightforward to show that the con-
tinuous distribution is well reproduced by the following
universal expression

P(I) = 4n%¢ i(mz GAIE — 35%) exp(—2n%52I¢)  (30)
j=1

where ¢ denotes an effective localization length. This
universal behavior indicates that the localization of the
TVBS results form the quantum interferences which orig-
inate in the scattering of the TVBS by the inhomoge-
neous defect distribution. From Eq.(30), the average
value of the IPR is expressed in terms of the effective
localization length as < I >= 1/6£. As shown in Fig.
9, the average IPR increases linearly with | A | for small
vibron-phonon coupling. This behavior depends on the
temperature and a fit of the numerical data allows us to
determine the expression of < I > in terms of both the
temperature and the hopping constant for bound states.
As the result, the effective localization length is approx-
imately expressed as

A

Qo P2
~ 0.92— X —
¢ kT A |A]

(31)

The decrease of the localization length with both the tem-
perature and the vibron-phonon coupling results from the



enhancement of the disordered nature of the lattice. By
contrast, the breather-like behavior of the bound states
manifests itself by an increase of the localization because
the anharmonicity prevents the propagation of the vibron
pair.

For strong values of the vibron-phonon coupling
strength, the IPR of the TVBS form of structure sym-
metrical distributed around the center of the band in
which the eigenenergies are condensed into local groups.
Each group is characterized by a given maximum value
of the TPR (Fig.7b) and the corresponding IPR, distribu-
tion exhibits a discrete character involving several peaks
(Fig. 8). Finally, the average IPR appears almost inde-
pendent on the vibron-phonon coupling but it increases
with the temperature. To intepret these features, let us
mention that for a strong vibron-phonon coupling each
defect in the lattice behaves as an infinite potential bar-
rier which prevents the propagation of the vibron pair.
Consequently, for a given defect distribution, the lattice
exhibits a set of clusters free from defects. A given clus-
ter, characterized by its size L, is formed by a set of L
nearest neighbor sites without defect. Such a cluster is
thus responsible for the confinement of the vibron pair
which behaves as a single particle confined in a box. In
that case, the TVBS are the eigenstates of the confined
pair.

From the TVBS reduced Hamiltonian (Eq.(28)), it is
straightforward to show that the eigenenergies for a pair
confined in a cluster with size L are defined as

$2 pr
wp(L) =€ — QI cos(L n 1)

(32)

where p = 1,..,L and where ¢¢ =< ¢, >. The cor-
responding eigenfunctions are stationnary states written

as
U, 1(n) = 2 sin( P ) (33)
P TN L1 L

For these eigenstates localized in a region of size L, the
IPR is defined as

1.5 0.5
Ip(L) = I+t L—H(sp,(L—i-l)/Z (34)
These set of equations allows us to reproduce the behav-
ior observed in Fig. 7b. Indeed, for each L values, the
states corresponding to p = (L + 1)/2 are located in the
center of the TVBS band. They are characterized by an
IPR equal to 1/(L + 1) which varies from 1 for L = 1 to
zero for L tends to infinity. All these values of the IPR are
condensed in the central peak observed in Fig. 7b. Then,
the energy of the states corresponding to p = (L + 1)/3
are shifted from the central peak of about &2 / A. They
are characterized by an IPR equal to 1.5/(L + 1) which
varies from 0.5 for L = 2 to zero for L tends to infinity.
This procedure allows us to reproduce all the features
observed in Fig. 7b. Consequently, in this strong vibron-
phonon coupling regime, the TVBS correspond to all the
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possible combinations for stationary states confined on
clusters of different sizes. However, each configuration
does not occur with the same probability since the tem-
perature controls both the number of clusters and the
value of their size. From the standard percolation theory,
the probability for the occurrence of a cluster of size L
free from defect, i.e. free form dilated phonons, is defined
as p(L) = L(1 — Q)?Q%L~1, where Q = 1 — exp(—Qg/kT)
is the probability for a site to be free from defect. The
different observations are thus weighted by the distribu-
tion p(L). In particular the average value of the IPR
defined as < I >= Y"7°, Y0 | o(L)I,(L)/L is written
as

(1-Q)°
1+Q

2 Q 6Q?

Eq.(35) reproduces the behavior of the average IPR
which appears independent on the vibron-phonon cou-
pling. As observed in Fig. 9, it increases with the tem-
perature and behaves as < I >~ 1 — ) when () tends to
zero, i.e. when kT >> Q.

These results clearly establish the occurrence of a tran-
sition between two kinds of localization. For small | A |
values, the localization of the TVBS results from quan-
tum interferences and it follows a universal behavior. By
contrast, for strong | A | values, the localization orig-
inates in the occurrence of inifinite potential barriers
which confine the vibron pair onto clusters whose both
number and size are controlled by the temperature. This
transition takes place for a critical value A, of the vibron-
phonon coupling. From our numerical data, it appears
that the behavior of A, is well reproduced by the follow-
ing law

n( ) (35)

_ 2 0 0.48
A, =211 ~ (o) (36)
Although Eq.(36) does not have any physical significa-
tion, it clearly shows that A, decreases with both the
temperature and the intramolecular anharmonicity. The
temperature dependence indicates that the confinement
of the vibron pair is due to effective potential barriers
which the high depends on the temperature. Indeed, the
thermal fluctuations of the number of dilated phonons
produces an effective frequency shift for each defect which
the amplitude increases with the temperature. By con-
trast, the influence of the intramolecular anharmonicity
characterizes the breather-like behavior of the TVBS. As
when the anharmonicity is increased, their capacity to
delocalize decreases so that the influence of the disorder
is enhanced.

APPENDIX A: PHONON DILATATION AND
DRESSED VIBRON

To understand the dressing effect produced by the local
dilatation of the phonon field, let us consider the single



vibron fundamental eigenstate of the local Hamiltonian
H, (Eq.(4)). This state, expressed in terms of the uni-
tary transformation Eq.(5) as | ¥(1,,0,)) = U, (6(1)) |
1,,0,), appears as a linear superimposition of unper-
turbed phonon states as

| ¥(15,00)) = prn | 1, pn) (A1)

where §,, = (p, | Un(—6(1)) | 0,,) denotes the weight of
the state involving p,, unperturbed phonons. After some
algebraic calculations, it is straightforward to show that
this weight is written as

_ 1 p! (= tanh(8(1))
(p/2)!'\ cosh(6(1)) 2
for even p values whereas &, = 0 for odd p values. There-

fore, by introducing Eq.(A2) into Eq.(A1), the single vi-
bron state is finally expressed as

& P2 (A2)

exp(— tanhé&(l)) a;t_g)

cosh(A(1))

| lI’(lnaon)) = | 1n50n> (A3)

APPENDIX B: AVERAGE DRESSING
OPERATOR

By assuming the optical phonons in thermal equilib-
rium at the temperature T, the average value of the n th
dressing operator is expressed in terms of the dilatation
operator U, as

<0 >= Z (pn | Un () | pn) (1 — e P gmPn
Pn=0
(B1)
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where aif = (N,,) — 6(N,, ¥ 1). Within the coordinate
representation, Eq.(B1) can be rewritten in terms of the
wave functions ¢,, (z) connected to the n th harmonic
mode and defined as

67w2/2

r) = ———=H,
(ppn() \/m Pn

where H,, (z) denotes the p, th Hermite polynomial.
Therefore, by taking into account on the scaling intro-
duced by the dilatation operator, i.e. Up(a)pp, () —
e=%%p, (e=°z), Eq.(B1) is rewritten as

(z) (B2)

9T e a2
N

(e_a-,:lE :L') e_pnﬁQO

<0f> = (1- e_‘m")e_o‘f/2

S Lo, )P (B3)

Pr! 2
pn=0
Therefore, by using the Mehler’s Hermite polynomial for-
mula

2zyw — (22 + y*)w?

1— w2) /2
(1 —w?) ™2 exp( T

) (B4)

it is straightforward to show that the average value of
the dressing operator is finally written as

<Of >=
1

\/cosh2(a$/2) + coth® (80 /2) sinh?(ai /2)

(B5)
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