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Asynchronous links in the PBC and M-nets
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Abstract. This paper aims at introducing an extension of M-nets, a
fully compositional class of high-level Petri nets, and of its low-level
counter part, Petri Boxes Calculus (PBC). We introduce a new operator
with nice algebraic properties which allows to express asynchronous com-
munications in a simple and flexible way. With this extension, asynchro-
nous communications become at least as simple to express as (existing)
synchronous ones. Finally, we show how this extension can be used in
order to specify systems with timing constraints.

Keywords: Petri Net, Petri Box Calculus, M-Net, Semantics, Timed
Specification.

1 Introduction

M-nets, constructed at the top of the algebra of Petri boxes [4,3,13], are
a fruitful class of high-level Petri nets which nicely unfold into low-level
nets and thus allow to represent large (possibly infinite) systems in a clear
and compact way. They are widely used now as a semantic domain for
concurrent system specifications, programming languages, or protocols,
cf. [6,7,11,1,14,2,12]. The most original aspect of M-nets with respect to
other high-level net classes is their full compositionality, thanks to their
interfaces, and a set of various net operations defined for them. Their
interest is augmented by the ability to use in practice an associated tool,
PEP [5], which also offers various implemented verification and analysis
methods.

This paper defines a possibility to express asynchronous communica-
tion links at the M-net and PBC algebras level by introducing a new op-
erator (tie). This extension mainly concerns the labelling of transitions,
and now, in addition to usual synchronous communications (with the
synchronisation operator sy), transitions may also export or import data
through asynchronous links. It turns out that the tie operator has nice
algebraic properties: idempotence, commutativity with itself and with the
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synchronisation, and also coherence (i.e., commutativity) with respect to
the unfolding. These properties allow to preserve the full compositionnal-
ity of the model.

As an application, we present a modeling of discrete time constraints
in the M-nets. This allows to specify time-constrained systems and to
analyse their unfoldings with existing tools (e.g., PEP). We use a high-
level featured clock which handles counting requests for the rest of the
system. Asynchronous links are used to perform the necessary communi-
cations between the actions related to each request.

The next three sections briefly introduce M-nets and PBC, including
the basis for our extension. Then, sections 5 and 6 give the definitions
and the algebraic properties of the tie operation. Section 7 is devoted to
the application of asynchronous links to discrete time modelling.

2 Basic Definitions

Let E be a set. A multiset over E is a function µ : E → IN ; µ is finite if
{e ∈ E | µ(e) > 0} is finite. We denote byMf (E) the set of finite multi-
sets over E, by ⊕ and ª the sum and difference of multi-sets, respectively.
¯ is used to relate an element of E to the number of its occurences in a
multi-set over E; in particular, a multi-set µ over E may be written as⊕

e∈E µ(e) ¯ e, or in extended set notation, e.g., {a, a, b} for µ(a) = 2,
µ(b) = 1 and µ(e) = 0 for all e ∈ E \ {a, b}. We may also write e ∈ µ for
µ(e) > 0.

Let Val and Var be fixed but suitably large disjoint sets of values and
variables, respectively. The set of all well-formed predicates built from the
sets Val, Var and a suitable set of operators is denoted by Pr.

We assume the existence of fixed disjoint sets Ah of high-level action
symbols (for transition synchronous communications) and B of tie symbols
(for transition asynchronous links). We assume that each element A ∈
Ah has an arity ar(A), and that there exists a bijection ̂ on Ah (called

conjugation), with
̂̂
A = A, Â 6= A and ar(A) = ar(Â). We also assume

that each element b ∈ B has a type type(b) ⊆ Val.
A high-level action is a construct A(a1, . . . , aar(A)) where A ∈ Ah

(notice that we could have Â instead of A) and ai ∈ Val ∪ Var (1 ≤
i ≤ ar(A)). A typical high-level action is, for instance, A(a1, a2, 5) where
A ∈ Ah and a1, a2 are variables. The set of all high-level actions is denoted
by AXh.

Similarly, a low-level action is a construct A(v1, . . . , vn) ∈ AXh, where
vi ∈ Val for all i ∈ {1, . . . , n}. The set of all low-level actions is denoted by
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Al. As for high-level case, we assume that Al is provided with a bijection
,̂ with analogous constraints; moreover, we will write Â(v1, . . . , var(A))

instead of ̂A(v1, . . . , var(A)).

A high-level link over b is a construct bd(a), where b ∈ B, d ∈ {+,−}
is a link direction symbol, and a ∈ Val ∪ Var. The set of all high-level
links is denoted by Bh and the set of all low-level links is denoted by
Bl = {b

d(v) | b ∈ B, d ∈ {+,−}, v ∈ Val}.
The deletion is defined for a multi-set of links β ∈ Mf (Bh) and a tie

symbol b ∈ B, as

β del b = β ª




⊕

l∈Mf ({bd(a)|d∈{+,−},a∈Var∪Val})

l


 ,

and analogously for low-level links.
A binding is a mapping σ:Var → Val and an evaluation of an entity

η (which can be a variable, a vector or a (multi-)set of variables, a set of
predicates, a (multi-)set of high-level actions, etc.) through σ is defined
as usual and denoted by η[σ]. For instance, if σ = (a1 7→ 2, a2 7→ 3),
the evaluation of high-level action A(a1, a2, 5) through σ is the low-level
action A(2, 3, 5). Similarly, the high-level link b+(a1) evaluates through σ

to the low-level link b+(2) and the predicate a1 = 2 to true.

3 Petri Boxes and M-nets

Petri Boxes are introduced in [4,3,6] as labeled place/transition Petri nets
satisfying some constraints, in order to model concurrent systems and
programming languages with full compositionality.

Definition 1. A (low-level) labeled net is a quadruple L = (S, T,W, λ),
where S is a set of places, T is a set of transitions, such that S ∩T = ∅,
W : (S × T ) ∪ (T × S) → IN is a weight function, and λ is a function,
called the labeling of L, such that:

– ∀s ∈ S:λ(s) ∈ {e, i, x} gives the place status (entry, internal or exit,
respectively);

– ∀t ∈ T :λ(t) = α(t).β(t) gives the transition label, where α(t) ∈
Mf (Al) and β(t) ∈Mf (Bl).

The behavior of such a net, starting from the entry marking (just
one token in each e-place), is determined by the usual definitions for
place/transition Petri nets.
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M-nets are a mixture of colored net features and low-level labeled net
ones. They can be viewed as abbreviations of the latter.

Definition 2. An M-net is a triple (S, T, ι), where S and T are disjoint
sets of places and transitions, and ι is an inscription function with do-
main S ∪ (S × T ) ∪ (T × S) ∪ T such that:

– for every place s ∈ S, ι(s) is a pair λ(s).τ(s), where λ(s) ∈ {e, i, x} is
the label of s, and τ(s) ⊆ Val, is the type of s;

– for every transition t ∈ T , ι(t) = λ(t).γ(t), with λ(t) = α(t).β(t),
the label of t, where α(t) ∈ Mf (AXh) is the action label and β(t) ∈
Mf (Bh) is the link label; γ(t), the guard of t, is a finite set of predi-
cates from Pr;

– for every arc (s, t) ∈ (S×T ) : ι((s, t)) ∈Mf (Val∪Var) is a multi-set
of variables or values (analogously for arcs (t, s) ∈ (T × S)).
ι((s, t)) will generally be abbreviated as ι(s, t).

A marking of an M-net (S, T, ι) is a mapping M :S →Mf (Val) which
associates to each place s ∈ S a multi-set of values from τ(s). In particular,
we shall distinguish (like for low-level nets) the entry marking, where
M(s) = τ(s) if λ(s) = e and the empty (multi-)set otherwise.

The transition rule specifies the circumstances under which a mark-
ing M ′ is reachable from a marking M . A transition t is enabled at a
marking M if there is an enabling binding σ for variables in the in-
scription of t (making the guard true) and in arcs around t such that
∀s ∈ S : ι(s, t)[σ] ≤ M(s), i.e., there are enough tokens of each type
to satisfy the required flow. The effect of an occurrence of t, under an
enabling binding σ, is to remove tokens from its input places and to add
tokens to its output places, according to the evaluation of arcs’ annota-
tions under σ.

The unfolding operation associates a labeled low-level net (see e.g. [4])
U(N) with every M-net N , as well as a marking U(M) of U(N) with every
marking M of N .

Definition 3. Let N = (S, T, ι); then U(N) = (U(S),U(T ),W, λ) is de-
fined as follows:

– U(S) = {sv | s ∈ S and v ∈ τ(s)},
and for each sv ∈ U(S) : λ(sv) = λ(s);

– U(T ) = {tσ | t ∈ T and σ is an enabling binding of t},
and for each tσ ∈ U(T ) : λ(tσ) = λ(t)[σ];

– W (sv, tσ) =
∑

a∈ι(s,t) ∧ a[σ]=v ι(s, t)(a), and analogously for W (tσ, sv).
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Let M be a marking of N . U(M) is defined as follows: for every place
sv ∈ U(S), (U(M)) (sv) = (M(s)) (v). Thus, each elementary place sv ∈
U(S) contains as many tokens as the number of occurrences of v in the
marking M(s).

4 Box and M-net algebras

The same operations are defined on both box and M-net levels. They can
be divided in two categories: the control flow ones and the communica-
tion ones. The first group, which consists of sequential (;) and parallel
(‖) compositions, choice ( ) and iteration ([∗∗]), can be synthesized from
refinement meta-operation [8,9] and they will not be concerned by our
extension. The second group concerns the operations which are based
on transition composition, and will be directly concerned here, so we in-
troduce them with some details. Only low-level operations are defined
formally while we give some intuition for the high-level (M-net) opera-
tions. We illustrate the low-level synchronization and restriction on an
example and we refer to [6] for further illustrations.

...
i

...

t1
{Â(2, 3)}.
{b+(2)}.∅

e

t2
{A(2, 3), C(1)}.
{b+(2)}.∅

x
L (fragment)

(t1, t2)

...
i

...

t1
{Â(2, 3)}.
{b+(2)}.∅

e

t2
{A(2, 3), C(1)}.
{b+(2)}.∅

{C(1)}.
{b+(2), b+(2)}.∅

x
L sy A(2, 3)

(t1, t2)

...
i

...

e

{C(1)}.
{b+(2), b+(2)}.∅

x
(L sy A(2, 3)) rs A(2, 3)

Fig. 1. Synchronization and restriction in PBC.
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A synchronization LsyAl, with Al ∈ Al, adds transitions to the net L,
and can be characterized as CCS-like synchronization, extended to multi-
sets of actions. Intuitively, the synchronization operation of an M-net
consists of a repetition of certain basic synchronizations. An example of
such a basic synchronization over low-level action A(2, 3) of the (fragment
of) net L is given in figure 1. Transitions t1 and t2 which contain actions
A(2, 3) and Â(2, 3) in their labels can be synchronized overA(2, 3) yielding
a new transition (t1, t2). The repetition of such basic synchronizations
over A(2, 3), for all matching pairs of transitions (containing A(2, 3) and
Â(2, 3)), yields the synchronization of a net over A(2, 3). In M-nets, the
actions A(a1, a2) and Â(a′1, a

′
2) can synchronize through renaming and

unification of their parameters.

Definition 4. Let L = (S, T,W, λ) be a low-level net and Al ∈ Al a
low-level action. The synchronization L syAl, is defined as the smallest1

low-level net L′ = (S′, T ′,W ′, λ′), satisfying:

– S′ = S, T ′ ⊇ T , and W ′|(S×T )∪(T×S) = W ;

– if transitions t1 and t2 of L
′ are such that Al ∈ α′(t1) and Âl ∈ α′(t2),

then L′ contains also a transition t with its adjacent arcs satisfying:

• λ′(t) =
(
α′(t1)⊕ α′(t2)ª {Al, Âl}

)
.
(
β′(t1)⊕ β′(t2)

)
,

• ∀s ∈ S′:W ′(s, t) = W ′(s, t1)⊕W ′(s, t2)
and W ′(t, s) = W ′(t1, s)⊕W ′(t2, s).

The lowest part of figure 1 shows the restriction of L sy A(2, 3) over
the action A(2, 3) which returns a net in which all transitions whose labels
contain at least one action A(2, 3) or Â(2, 3) are deleted (together with
their surrounding arcs). The synchronization followed by the restriction
is called scoping : [[a : L]] = (L sy a) rs a, for an action a.

5 Asynchronous link operator: tie

In this section, we introduce a new M-net algebra operator, tie, devoted to
express asynchronous links between transitions. We give first an example
in the high-level, and then, define it formally in both high and low-levels.

In figure 2, operator tie takes an M-net N and a tie symbol b (we as-
sume that type(b) = {1, 2}), and gives an M-netN tieb which is likeN but
has an additional internal place sb of the same type as b, and additional
arcs between sb and transitions which carry in their label (high-level)

1 with respect to the net inclusion, and up to renaming of variables.
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{a1}

{a1}

{1}

{1}

{1}

{a3}

e.{1, 2} e.{1}

x.{1, 2}

x.{1, 2}

i.{1}

t1 t2

t3

{A(a1, a2)}.{b
+(a1)}.∅ {C(1)}.{b−(1), b+(1)}.∅

∅.{b−(a3)}.∅

N

{a1}

{a1}

{1}

{1}

{1}

{a3}

{a1}
{1}

{1}

{a3}

i.{1, 2}

e.{1, 2} e.{1}

x.{1, 2}

x.{1, 2}

i.{1}

sbt1 t2

t3

{A(a1, a2)}.∅.∅ {C(1)}.∅.∅

∅.∅.∅

N tie b

Fig. 2. High-level tie operation.

links over b. The inscriptions of these arcs are (multi-)sets of variables or
values corresponding to links over b, and the labels of concerned transi-
tions are as before minus all links over b. For instance, the arc from t1 to
sb is inscribed by {a1} because there is a link b+(a1) in the link label of
t1, which means that the variable a1 has to be exported through b.

Definition 5. Let N = (S, T, ι) be an M-net and b ∈ B a tie symbol.
N tie b is an M-net N ′ = (S′, T ′, ι′) such that:

– S′ = S ] {sb}, and ∀s ∈ S ′: ι′(s) =

{
i.type(b) if s = sb,

ι(s) otherwise;

– T ′ = T and ∀t ∈ T ′: ι′(t) = α(t).(β(t) del b).γ(t),
if ι(t) = α(t).β(t).γ(t);
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– ∀s ∈ S′ and ∀t ∈ T ′ we have:

• ι′(s, t) =





⊕

a∈Var∪Val

β(t)(b−(a))¯ a if s = sb,

ι(s, t) otherwise,

• ι′(t, s) =





⊕

a∈Var∪Val

β(t)(b+(a))¯ a if s = sb,

ι(t, s) otherwise.

The tie operation in the low-level is defined similarly. In that case, a
place is created for each value in type(b) and arcs are added accordingly.

Definition 6. Let L = (S, T,W, λ) be a low-level net and b ∈ B a tie
symbol. L tie b is a low-level net L′ = (S′, T ′,W ′, λ′) such that:

– S′ = S ] {sb,v | v ∈ type(b)}, and ∀s ∈ S ′:λ′(s) =

{
λ(s) if s ∈ S,

i otherwise;

– T ′ = T and ∀t ∈ T ′:λ′(t) = α(t).(β(t) del b), if λ(t) = α(t).β(t);

– ∀s ∈ S′, ∀t ∈ T ′ and ∀v ∈ type(b) we have:

• W ′(s, t) =





∑

v∈Val

β(t)(b−(v)) if s = sb,v ∈ S′ \ S,

W (s, t) otherwise,

• W ′(t, s) =





∑

v∈Val

β(t)(b+(v)) if s = sb,v ∈ S′ \ S,

W (t, s) otherwise.

6 Properties

Theorem 1. Let L be a low-level net, Al ∈ Al and b1, b2 ∈ B. Then:

1. (L tie b1) tie b1 = L tie b1 (idempotence)

2. (L tie b1) tie b2 = (L tie b2) tie b1 (commutativity)

3. (L tie b1) sy Al = (L sy Al) tie b1 (commutativity with
synchronization)

Proof. 1. By definition 6, operation tie makes desired links and removes
concerned tie symbols from the transitions labels. A second appli-
cation of tie over the same tie symbol does not change anything in
the net.

2. By definition 6, operations tie for different tie symbols are totally
independent, the order of applications has no importance.
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3. By definition 6 and 4, when tie is applied first, it creates arcs which
are inherited by the new transitions created by sy. Conversely, if sy
is applied first, it transmits links to the new transitions, allowing tie
to create the expected arcs.

Since operation tie is commutative, it naturally extends to a set of tie
symbols.

Theorem 2. Let N be an M-net, and b ∈ B. Then:
U(N tie b) = U(N) tie b.

Proof. It is enough to remark that the high-level tie operation creates a
place sb with type type(b) and adds arcs to/from transitions which carry
links on b in their inscriptions. The unfolding gives for this new place a
set of places {sb,v | v ∈ type(b)}, and the set of arcs to/from transitions
tσ. The weight of an arc between place sb,v and transition tσ corresponds
to the multiplicity of value v in the evaluation through σ of the high-level
arc inscription between sb and t. By definition, this is exactly what is
done by the low-level tie operation.

Now, corollary 1 comes directly from the two above theorems and
from the commutativity of synchronization with unfolding [6] (notice that,
after the introduction of links, it is obvious that this commutativity is
preserved).

Corollary 1. Let N be an M-net, Ah ∈ Ah and b1, b2 ∈ B. Then:

1. (N tie b1) tie b1 = N tie b1 (idempotence)
2. (N tie b1) tie b2 = (N tie b2) tie b1 (commutativity)
3. (N tie b1) sy Ah ≡ (N sy Ah) tie b1 (commutativity with

synchronization)
where ≡ identifies M-nets which are equivalent modulo renaming of
variables [6].

7 An application to discrete time modeling

The newly introduced tie operator has an immediate application in a
modeling of discrete time within M-nets. A clock is built over principles
described in [10,15]: an arbitrary event (i.e., a transition occurrence) is
counted and used to build the time scale which all the system refers to.
Two points can be puzzling: the time scale is not even and the clock can
be frozen to allow the system meeting its deadlines. Both these points are
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discussed in [10] and are shown to be irrelevant in the context of Petri
nets used for specification (by opposition to programming).

Our clock (which actually is a server) is implemented by the M-net
Nclock depicted in figure 3. It can handle concurrent counting requests
for different parts of the system: each request is assigned an identifier
which is allocated by the clock on a start action; next, this identifier can
be used to perform check actions which allows to retrieve current pulse-
count for the request; finally, a stop can delete the request, sending back
the pulse-count again.

e.{•} x.{•}

i

t0

{înit}.∅.∅

t4

{ĉlose}.∅.∅

t1{ŝtart(q, d)}.∅.∅ t3 {ŝtop(q, c)}.∅.∅

pulse

∅.∅.{cq 6= dq | q ∈ Q}

t2

{ ̂check(q, c)}.∅.∅
• •

Q× (⊥, 0, ω) Q× (⊥, 0, ω)

(q,⊥, 0, ω)

(q,>, d, 0)

{(q, bq, dq, cq) | q ∈ Q} {(q, bq, dq, cq + 1) | q ∈ Q}

(q,⊥, 0, ω)

(q,>, d, c)

(q, b, d, c) (q, b, d, c)

Fig. 3. The M-net Nclock: the place i is labeled i.Q× {⊥,>} × ĨN × ĨN .

The clock Nclock, depicted in figure 3, works as follows:

– it starts when the transition t0 fires and put tokens in the central
place of Nclock, each token being a tuple (q, b, d, c), corresponding to
a request, where q ∈ Q is the identifier for the request, b ∈ {⊥,>}
tells if the request is idle (b = ⊥) or in use (b = >), d is the maximum
number of pulse to count for the request and c is the current pulse-
count. Both d and c are values in ĨN = IN ∪ω where ω is greater than
any integer and ω + 1 = ω;

– a request begins when t1 fires. start has two parameters: the request
identifier, q, is sent to the client which provides the duration, d, as
the maximum pulse-count for the request;

– next, the current pulse-count can be checked with transition t2: the
identifier is provided by the client which gets the current pulse-count
returned back through c;
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– t3 is used to stop a request, it acts like t2 but also sets the request’s
token idle;

– the clock can be terminated with transition t4;

– at any time, provided its guard is true, pulse can fire, incrementing the
pulse-count for all requests. This explains the idle value (q,⊥, 0, ω) for
the tokens in i: it does neither change after a pulse since ω = ω+1 nor
affect the guard on pulse because ω 6= 0. This guard is used to prevent
pulse from firing if a request is about to end (pulse-count is equal to
the maximum announced on start), this ensures a timed sub-net will
always meet its deadline if it has been announced on start.

In order to use this clock, one just has to add “clock actions” (start,
check and stop) on the transitions intended to be timed and asynchronous
links should be used to transport the request identifiers between a start

and the corresponding check(s) and stop(s), like in figure 4.

t5 t6 t7

{start(q, 3)}.
{h+

1 (q)}.∅

{start(q′, ω),
check(q, c), write(c)}.
{h−1 (q), h

+

1 (q), h
+

2 (q
′)}.∅

{stop(q, c), stop(q′, c′)}.
{h−1 (q), h

−
2 (q

′)}.
{c′ = 1}

e.{•} i.{•} i.{•} x.{•}

Fig. 4. An example of time-constrained M-net.

In the net of figure 4, we specify the following constraints:

– the start(q, 3) on t5 corresponds to the stop(q, c) on t7 (thanks to the
links on h1) so there can be at most 3 pulses between t5 and t7 because
of the guard on pulse;

– similarly, there must be exactly 1 pulse between t6 and t7 (here we
use the links on h2 to transmit the identifier) but the constraint is
expressed through the guard on t7. In this case, since the deadline
was not announced in the start, it is possible to have a deadlock if the
system runs too slow, i.e., does not meet its deadline;

– on t6, we use a check for the request started on t5 (the identifier is
imported and exported on h1) to retrieve the pulse count between
t5 and t6. This count is sent to another part of the system with the
action write(c) which should be synchronized with a ŵrite, in a piece
of the specification not represented here.
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8 Conclusion

We presented an extension of M-nets and PBC in order to cope with
asynchronous communications at the (net) algebra level. This extension
led to a simple and elegant mean to model discrete time within M-nets, so
we hope it would be useful to work with timed specifications. Moreover, we
could expect to apply asynchronous links for a wider range of applications.
In particular, we yet study: real-time programming with B(PN)2 [7] (a
parallel programming language with M-nets and PBC semantics), discrete
timed automata simulation and a new implementation of B(PN)2’s FIFO
channels.
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A Specifying a railroad crossing with timed M-nets

We intend to specify a system with the following characteristics:

– it has n parallel and one-way tracks;
– each track has two sensors, one to detect when a train approaches (it
raises the signal app) and the other to detect when the train leaves
(then it raises far);

– when a train activates the first sensor, it takes between 3 and 5 time
units to reach the gates, then it takes 4 to 6 time units to leave the
second sensor (which is activated at this moment);

– gates go up when they receive the signal up and go down on the
occurrence of down. The latter signal is taken in consideration as
soon as emitted (this may cause a direction change) while the former
is delayed to the next time the gates will be down;

– the gates take 3 time units to raise or lower fully;
– trains are distant enough: for one track, there cannot be two app

without a far between;
– neither trains nor gates are supposed to break down.

Signals are implemented with actions. The system’s specification is an
M-net Nsystem built from the sub-nets Ncontrol for the controller, Ngates

for the gates and N i
track (1 ≤ i ≤ n) for ith railway. We define

Nsystem =
[[
{app, far, down, up} : Ncontrol‖Ngates‖N

1
track‖ · · · ‖N

n
track

]]
,

so the complete specification can be obtained as:

[[
{init, start, check, stop, close} : Nclock

∥∥∥ (Ninit;Nsystem;Nclose)
]]

,

where Nclock is the clock from the figure 3 and Ninit and Nclose are single-
transition M-nets with the inscriptions {init}.∅.∅ and {close}.∅.∅, respec-
tively.

In the following, all the figures are simplified: if not specified, places
have type {•} and arcs carry {•}; places with name e are entry places and
places x are exit places, any other place is internal. We also omit ∅.∅.∅
annotations for some transitions.
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s1 s2 s3 s4

e x

t1 t2 t3

t4

te {âpp, start(q, 5)}.
{h+

1 (q)}.∅
{stop(q, t), start(q′, 6)}.
{h−1 (q), h

+

2 (q
′)}.{t ≥ 3}

{stop(q′, t′), f̂ar}.
{h−2 (q

′)}.{t′ ≥ 4}

Fig. 5. The M-net N ′i
track used to specify the ith track.

s5 s6

s7 s8 e

xt5 t6

t7 t8 t9

t10 t11 te

{down}.∅.∅ {up, start(q, 3)}.{h+(q)}.∅

{stop(q, t)}.
{h−(q), b−(d)}.

{t = d}

{down, stop(q, t), start(q′, t)}.
{h−(q), h+(q′), b+(t)}.∅

{stop(q, t)}.
{h−(q)}.{t = 3}

{down}.∅.∅ {start(q, 3), down}.{h+(q), b+(3)}.∅

Fig. 6. The M-net N ′
gates used to specify the gates.

n

n + 1

0 n n− 1

1

0

s5

e x

t12

t13

t14

te

{app, d̂own}.∅.∅

{far}.∅.{n > 1}

{far, ûp}.∅.∅

i.{0, . . . , n}

Fig. 7. The M-net Ncontrol which specifies a simplified version of the con-
troller.
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A.1 Tracks

All tracks N i
track (1 ≤ i ≤ n) are identical: N i

track = N ′i
track tie {h1, h2}

where N ′i
track is the M-net depicted in figure 5. We also define type(h1) =

type(h2) = Q where Q is the set of all request identifiers.

Places and transitions can be interpreted as follows:

– s1, a train is far away, before the crossing;

– t1, the train reaches the first sensor which raises the app signal. This
also starts a counting request for 5 pulses at most (i.e., the maximum
needed for the train to reach the gates);

– s2, the train is between the first sensor and the gates;

– t3, the train reaches the gates, the guard ensures it took at least 3
pulses. Another counting request is started to specify the time until
the train leaves;

– s3, the train is in the gates or between the gates and the second sensor;

– t3, the train leaves the second sensor which raises the signal far;

– s4, the trains has left the area of study;

– t4 is used to “produce” a new train on the same track.

We can notice that this M-net, like other parts of the system, runs
endless because the system itself should be endless.

A.2 The gates

Like for the tracks, we use an auxiliary M-net shown in figure 6 and
assume that type(h) = Q and type(b) = {0, . . . , 3}. With this net, we
define: Ngates = N ′

gates tie {h, b}.

The net starts with the transition ti, holding a token in s8 which
means that the gates are open. Then, a standard run is a loop on t11, s7

(the gates are going down), t7, s5 (the gates are down), t6, s6 (the gates
are going up), t9 and return to s8. Since a down signal can occur while
the gates are opening, we need transition t8 which implies a backward
movement. When such an interruption occurs, we specify the fact that
the gates are not completely open by retrieving the time passed since the
last up signal. This time is t from action stop(q, t) on t8 and it is exported
over the link symbol b. So, t7 can import it to have a valid guard: if the
gates raise during d time units, they need exactly d to go down. In the
standard looping run, t11 exports 3 which is the time required for a full
coming down.
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This example shows that asynchronous links are useful not only for
request identifiers but also for other purpose: here, we transmit the du-
ration for the raising/lowering of the gates through an asynchronous link
and it leads to a smaller M-net which focuses on the control flow while
the less interesting information is hidden in links.

A.3 The controller

The specifications of the controller does not need asynchronous links so
we restrict it to the minimum because it is less important for the example.
Our simplification leads to a sequencing of signal receptions, but since the
parallel version of the controller is actually more complex, we prefer to
restrict ourselves to what is given here.

The (simplified) controller is depicted in figure 7. After the initializa-
tion, the place s9 holds the token 0 which means that there is no train
in the area of study (i.e., between the two sensors on each track). Each
time an app signal is received, it is translated into a down signal for the
gates and the number of trains in s9 is increased by 1 (transition t12).
When a far is received, two situations are possible: if there is 1 in s9, we
know that the last train has just left and the signal up is emitted while
the train-count is set to 0 (transition t14); if there is more than one train,
transition t13 just decreases the train-count and no up is relayed.
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