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Abstract. This paper introduces a new semantics for FIFO buffers (usu-
ally called channels) in a parallel programming language, B(PN)2. This
semantics is given in terms of M-nets, which form an algebra of labelled
high-level Petri nets. The proposed approach uses the asynchronous link
operator, newly introduced in the algebra of M-nets, and repairs some
drawbacks of the original M-net semantics. Channels are now fully ex-
pressible within the algebra (it was not the case), they are significantly
smaller (in number of places), and they offer several other advantages.
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1 Overview

B(PN)2 [6] is a general purpose parallel programming language provided with
features like parallel composition, iteration, guarded commands, communications
through FIFO buffers or shared variables, procedures [9] and, more recently, real-
time extensions with abortable blocks and exceptions [12, 13].
The semantics of B(PN)2 is traditionally given in terms of Petri nets, using

a low-level nets algebra called Petri Box Calculus [4, 3] or its high-level version
called M-nets [5]. These two levels are related by an unfolding operation which
transforms an M-net in a low-level net having an equivalent behavior. In this
paper, we focus on the M-net semantics since it is much more compact and
intuitive. Using PEP toolkit [8, 17], one may input a B(PN)2 program and
automatically generate its M-net or low-level net semantics in order to simulate
its behavior or to model-check it against some properties.
The purpose of this paper is to propose a new M-net semantics for channels

in B(PN)2. This semantics uses asynchronous links capabilities newly introduced
in M-nets and Petri Box Calculus [11]. The proposed semantics has three main
advantages: it is completely expressible in the algebra of M-nets (using only
trivial nets as base cases), its size (in terms of the number of places in the un-
folding) is considerably smaller than the original semantics and finally, it avoids
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the “availability defect” of the original semantics (a message sent to a channel
was not immediately available for receiving). The solution given here improves
what was proposed in [16] by simplifying again the semantics.
B(PN)2 is presented in [6] and its M-net semantics is fully developed in [9].

In the following, we focus on the intuition in order to keep the paper compact
but as complete as possible.

2 M-nets primer

M-nets form a class of labelled high-level Petri nets which were introduced in [5]
and are now widely used as a semantic domain for concurrent system specifica-
tions, programming languages or protocols [1, 2, 7, 9, 12, 13, 14, 15]. The most
interesting features of M-nets, with respect to other classes of high-level Petri
nets, is their full compositionality, thanks to their algebraic structure. As a con-
sequence, an M-net is built out of sub-nets with arbitrary “hand-made” nets as
base cases.
A place in an M-net is labelled with its type (a set of values) which indicates

the tokens that the place may hold. In order to define an algebra of M-nets,
each place also has a status in {e, i, x} which reflects whether it is an entry, an
internal or an exit place. An M-net is initially marked by its entry marking,
in which entry places hold one token from their type and the other places are
unmarked. Then, tokens are expected to flow from the entry places to the exit
ones. A transition t is labelled with a triple α(t).β(t).γ(t) where α(t) contains
synchronous communication actions, β(t) carries asynchronous links annotations
and γ(t) is a guard which is a set of conditions for allowing or not the firing
of t. Finally, arcs are labelled by multi-sets of annotations indicating what they
transport on firing.
When a transition t fires, variables in its label and on its surrounding arcs

are bound to values, with respect to its guard γ(t), the types of its inputs and
output places and the type of its asynchronous links annotations. Transition
t is allowed to fire only if such a coherent binding can be found using tokens
actually available in its input places. When firing occurs, tokens are consumed
and produced coherently with respect to the binding.
M-net algebra provides various operations for control flow and communica-

tions setup as listed in figure 1. Let us give more details about communications.
Scoping an M-net is the way to perform synchronous communications be-

tween its transitions. Figure 2 gives an illustration of scoping in a trivial case:
in M-net N , transition t1 carries an action A(x) and t2 has an Â(y); the M-net
resulting from scoping [[A : N ]] has one transition t1t2 which is a mix of t1 and
t2 such that x and y are unified (here to x) in order to allow an actual com-
munication. (x and y may also be constants in which case unification is only
possible when x = y.) In a more complex M-net, all maching pairs of transitions
such as t1 and t2 in figure 2 are considered by the scoping. In the general case,
annotations α are multi-sets of actions.
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N1;N2 sequence N1 runs then N2 does
N1‖N2 parallel composition N1 runs concurrently with N2

N1¤N2 choice N1 or N2 runs but not both
[N1 ∗N2 ∗N3] iteration N1 runs once (initialization), then N2 runs

zero or more times (loop) and finally N3

runs once (termination)
[[A : N ]] scoping sets-up synchronous communications

between transitions
N tie b asynchronous links makes asynchronous links between

transitions

Fig. 1. Selected operations of the M-nets algebra.
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Fig. 2. An example of scoping. (Variables x and y have been unified to x.)

Asynchronous links are available through links annotations. A transition may
export an item x on a link symbol b thanks to a link b+(x); such an exported item
may be imported later with a link b−(y). (Here again, x and y may be constants
or variables.) Figure 3 gives a basic example of an asynchronous communication
between two transitions. In a more complex M-net N , there would be also a
single place sb for all the links on b and all the transitions in N with a link b+(x)
(resp. b−(y)) would be attached an arc to (resp. from) sb. In general, annotations
β are multi-sets of links. In order to give a type to the places added by operator
tie, each link symbol b is associated a type which becomes the type of any place
created by an application of tie b.
Notice that synchronous and asynchronous communications are allowed on

the same transition, this does not mean that a communication can be both
synchronous and asynchronous, but only that a transition can perform both kinds
of communications, by different ways, at the same time. We will see an example
of this in the proposed semantics for channels. Notice also that scoping and
asynchronous links are commutative (each one with itself), so we use extended
notations such as [[{A,A′} : N ]] or N tie {b, b′}.
In the following, in order to avoid many figures, α(t).β(t).γ(t) will denote an

M-net with a lonely transition t annotated by α(t).β(t).γ(t) and having only one
input place and one output place, both of type {•} (see figure 4).
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Fig. 3. An example of asynchronous link. (Link symbol b has type {1, 2}.)
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Fig. 4. A simple M-net, denoted by α(t).β(t).γ(t) in this paper.

3 B(PN)2 and its M-net semantics

Figure 5 gives a fragment of the syntax of B(PN)2, semantics is given composi-
tionally: a functionMnet gives an M-net for each fragment of a B(PN)2 program.
The definition of Mnet is recursive on the syntax; base case is either an atomic
action, giving an M-net like on figure 4 where t would be labelled in order to im-
plement the action, or a declaration which semantics is given using some special
“hand-made” resource M-nets (like for channels in the next section).

program ::= program block (main program)
block ::= begin scope end (block with private declarations)
scope ::= com (arbitrary command)

| vardecl ; scope (variable or channel declaration)
| procdecl ; scope (procedure declaration)

vardecl ::= var ident set (variable declaration)
| var ident chan k of set (channel declaration)

Fig. 5. A fragment of the syntax of B(PN)2 (procdecl and com are not detailed
here).

A B(PN)2 program is basically a block which may start with some local
declarations (variables, channels or procedures), followed by a command which
may contain sub-commands and possibly nested blocks. A variable is named
with an identifier ident and takes its value from the set given in its declaration;
a channel is declared similarly but with an additional capacity k, it may be
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0 for handshake communication, k ∈ N for a k-bounded channel or ∞ for an
unbounded channel.
The semantics for such a block is obtained from the semantics of its com-

ponents: we just put in parallel the M-net for the command and the M-net for
all the declarations; then we scope on communication actions in order to allow
private communications between the components. There is an additional ter-

mination net which is appended to the command M-net with the purpose to
terminate the nets for the declarations. Terminating such a net consists in clean-
ing it for a possible re-usage. The semantics of any declared resource X contains
a transition with an action X̂t which performs the cleaning, so the termination
net just consists in a parallel composition of M-nets such as {Xt}.∅.∅.
In the next section, we show and discuss the original semantics for a channel

declaration.

4 Original channels in B(PN)2

Channels for B(PN)2 were proposed in [6] and reworked in [5] with the M-
net semantics depicted in figure 6. There are actually three different semantics,
depending on the capacity k of the channel: N0, N1 and Nk. Three actions are
available for a block which declares a channel C (regardless to its capacity):
Ĉ! for sending, Ĉ? for receiving and Ĉt for terminating it when the program
leaves the block. In order to communicate with the channel, the M-net which
implements the program carry actions C! or C?. Action Ct can be found in the
associated termination net.
In figure 6, transitions are named coherently on M-nets N0, N1 and Nk so,

excepted when specified, the following description is generic.
The first action on the channel can be performed on transition t1. For N0

this means sending (with an action C! in the program) and receiving (action C?)
on the same transition (it is handshake communication), the guard ensures that
the communication is actual; for N1 and Nk a value is stored in the channel.
Transitions t2 and t′2 are for sending and receiving. In N0, both actions are

performed on the same transition t2. For N1 or Nk, these actions are separated.
In N1 a value ε /∈ set is used to denote an empty channel. Annotations on arcs
ensure that one value can be sent to the channel only if place i holds value ε. The
guards ensure that only values in set are stored in the channel and that ε is never
used in a receiving. ForNk, the situation is more complex since the queue that the
channel actually stores is encoded into structured tokens which are k-bounded
lists. These lists are stored in i1 whose type setk contains all sequences of at
most k values from set, plus an additional ε for the empty sequence. Transition
t2 adds a value at the end of the list. When place i2 holds an ε, transition t4 may
extract the head of the list in i1 and store it in i2. On the other side, transition
t′2 in Nk is like t

′

2 in N1.
Transitions t3 and t′3 are for channels termination (whenever they have been

used or not).
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{Ĉt}.∅.∅

list y

x.{•}

•
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Fig. 6. Original semantics for a channel declaration “var C chan k of set”. For
capacity k = 0 (handshake communication) we use the M-net in the top, for
k = 1 we use the M-net in the middle and for k > 1, including k =∞, the M-net
in the bottom.
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For Nk, it is easy to see that the mechanism is quite complex since it requires
lists manipulations. Unfortunately, k-bounded channels are certainly the most
commonly used. . . Moreover, an important drawback in Nk may be pointed out:
the program has to wait for the firing of t4 before to be able to receive a value
which yet has been sent to the channel.
Let us conclude the current section with a remark on the size of the unfolded

M-nets. As far as places are concerned, the unfolding operation produces one
low-level place for each value of the type of each place in the M-net. As a direct
consequence, unfolding Nk leads to 1 + |set|k places just for i1; the other places
unfold in either 1 or 1 + |set| low-level places. So, we can state that the number
of places in the unfolding of Nk is O(|set|

k).

5 A new semantics for channels

First of all, let us eliminate the case of capacity k = 0 (handshake communica-
tions): the semantics for this particular case remains the same. Thus we give its
expression (for a declared channel C) as follows:

Mnet(var C chan 0 of set) =
(
{Ĉt}.∅.∅

)
¤

[
{Ĉ!(x), Ĉ?(x)}.∅.{x ∈ set}

∗ {Ĉ!(x), Ĉ?(x)}.∅.{x ∈ set}

∗ {Ĉt}.∅.∅
]

(As explained before, notations as {Ĉt}.∅.∅ stand for an M-net like on figure 4
with label {Ĉt}.∅.∅ on its transition.)
For an unbounded capacity, we implement the channel as two parallel tran-

sitions, one for sending and one for receiving, sharing a place where the data is
stored in numbered pairs (x, n) where x ∈ set is the data to store and n ∈ N is
its number. Each transition maintains a counter in order to know the number
for the next data to be sent and the next to be received. The numbered pairs
and the counters are implemented trough asynchronous links. So we have:

Mnet(var C chan ∞ of set) =
(
{Ĉt}.∅.∅; {Ĉ ′t}.∅.∅

)

¤

( [[
{I, T} : core

]]
tie {d, ns, nr}

)

where the asynchronous links on d are used to store the data sent to the channel,
and links on ns and nr implement the counter for the next value to send and
the next to receive respectively. Actions I and T are used internally in order to
synchronize initialization and termination in the send and receive parts.
The main part core is defined as follows:

core = [init ∗ send ∗ terminate] ‖ [wait i ∗ receive ∗ wait t]

It is made of two concurrent iteration, the first is used for sending data to the
channel and the other for receiving data from the channel. Part init is composed



8 Franck Pommereau and Christian Stehno

of an unique transition which fires when the first sent takes place, is also sets
up the counters and it is synchronized with wait i so both iteration start concur-
rently. Symmetrically, terminate is used when the resource net for the channel
has to be terminated, it clears all the tokens and it is synchronized with wait t

so all the net terminates. Parts send and receive do exactly what their names
suggest.

init = {I, Ĉ!(x)}.{nr+(0), ns+(1), d+((x, 0))}.{x ∈ set}

wait i = {Î}.∅.∅

send = {Ĉ!(x)}.{ns−(n), ns+(n+ 1), d+((x, n))}.{x ∈ set}

receive = {Ĉ?(x)}.{nr−(n), nr+(n+ 1), d−((x, n))}.∅

wait t = {T̂}.∅.∅

Part terminate is the most complicated: it must clear all the tokens in the
channel net. Since this number of tokens is not fixed, we must proceed in a
loop which relies on the counters in ns and nr in order to know when the net
is cleared. This way, termination is not atomic, this is not really a problem if
we use a second termination symbol Ĉ ′t which synchronizes with the program in
order to notify the end of the termination. In other words, where termination was
done with a single action Ct, it is now done with a sequence {Ct}.∅.∅; {C

′

t}.∅.∅
instead. So we have:

terminate =
[

{Ĉt}.∅.∅

∗ ∅.{nr−(n), nr+(n+ 1), d−((x, n))}.∅

∗ {Ĉ ′t}.{nr
−(n), ns−(m)}.{n = m}

]

The semantics for channels of bounded capacity is obtained by simulating a
ring buffer. The numbered pairs (x, n) become triples (x, n, b) where b ∈ {⊥,>},
each triple is a slot in the ring buffer, it is marked empty when b = ⊥ and
occupied when b = >. By marking the slots this way, we avoid comparisons
between the counters which would disallow concurrent sending and receiving.
So, we have:

Mnet(var C chan k of set) =
(
{Ĉt}.∅.∅

)
¤

( [[
{I, T} : core

]]
tie {d, ns, nr}

)
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with the sub-parts being:

core = [init ∗ send ∗ terminate] ‖ [wait i ∗ receive ∗ wait t]

init = {I, Ĉ!(x)}.{nr+(0), ns+(1), d+((x, 0,>)),
d+((x, 1,⊥)), . . . , d+((x, k − 1,⊥))}.{x ∈ set}

wait i = {Î}.∅.∅

send = {Ĉ!(x)}.{ns−(n), ns+((n+ 1) mod k),
d−((x, n,⊥)), d+((x, n,>))}.{x ∈ set}

receive = {Ĉ?(x)}.{nr−(n), nr+((n+ 1) mod k),
d−((x, n,>)), d+((x, n,⊥))}.∅

terminate = {T, Ĉt}.{nr
−(n), ns−(m), d−((x0, 0, b0)),

. . . , d−((xk−1, k − 1, bk−1))}.∅

wait t = {T̂}.∅.∅

Notice that the termination is now atomic since we have a fixed number of
tokens to remove. Notice also that the counters are incremented modulo k so we
really have a ring buffer.
Let us consider the size of the unfolding for this net. We can safely ignore

the places created for the control flow by the combination operators since there
is a fixed number of such places and they all have type {•}. We just have to
consider the places added by asynchronous links: places for ns and nr have
type {0, . . . , k − 1} so they unfold in k low-level places; place for d has type
set × {0, . . . , k − 1} × {⊥,>} so it unfolds in 2k|set| low-level places. So the
unfolding of this net has O(k|set|) places which is a significant improvement
with respect to the original semantics. With respect to the semantics proposed
in [16], the comparison is harder since the unfolding had k(|set|+ 4) places and
here it is 2k(|set| + 1). Depending on the size of k and set, the new semantics
may lead to bigger unfolding or the contrary. Nevertheless, this new semantics
improves the one proposed in [16] because the termination is now atomic and
not done with an iteration. Moreover, we believe that it is really simpler and
much easier to understand.

6 Concluding remarks

We can see that the new proposed semantics has several advantages with respect
to the original one. First, there is no need for complex list management and the
program does not have to wait anymore before to receive an actually sent value:
it is now immediately available. The new semantics is more homogeneous since
exceptions are now for k = 0 and k =∞ (instead of k = 0 and k = 1) which we
feel to be exceptions intrinsically : a handshake is not a buffered communication
and an unbounded buffer is certainly not realistic.
Moreover, unfolding the M-net for a channel gives now a low-level net with a

number of places in O(k|set|) while the original semantics unfolded into O(|set|k)
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places. This is a great improvement, especially when considering the model-
checking of a B(PN)2 program with channels. The implementation in PEP of
the new channel semantics is already planned.
Finally, it is fully expressed in the algebra, with no more“hand-made”M-nets.

This application of tie tends to show that it is an efficient way to introduce some
places with arbitrary types, the control flow being left under the responsibility
of the algebra. This allows avoiding the use of “hand-made” M-nets has it is
strongly suggested in [10] which gives the semantics of the complete B(PN)2

language without any “hand-made”M-net.
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