FIFO buffers is hot tie sauce
Franck Pommereau, Christian Stehno

To cite this version:
Franck Pommereau, Christian Stehno. FIFO buffers is hot tie sauce. 2001. hal-00114692

HAL Id: hal-00114692
https://hal.science/hal-00114692
Submitted on 17 Nov 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
FIFO buffers in hot tie sauce

Franck Pommereau\(^1\) and Christian Stehno\(^2\)

\(^1\) LACL, Université Paris 12,
61 avenue du Général de Gaulle,
94010 Créteil, France.
pommereau@univ-paris12.fr

\(^2\) Fachbereich Informatik, Carl-von-Ossietzky-Universität Oldenburg
POBox 2503, D-26111 Oldenburg, Germany.
Christian.Stehno@informatik.uni-oldenburg.de

Abstract. This paper introduces a new semantics for FIFO buffers (usually called *channels*) in a parallel programming language, B(PN)\(^2\). This semantics is given in terms of M-nets, which form an algebra of labelled high-level Petri nets. The proposed approach uses the asynchronous link operator, newly introduced in the algebra of M-nets, and repairs some drawbacks of the original M-net semantics. Channels are now fully expressible within the algebra (it was not the case), they are significantly smaller (in number of places), and they offer several other advantages.

Keywords. Parallel programming, Petri nets, process algebras, FIFO buffers, semantics.

1 Overview

B(PN)\(^2\) [6] is a general purpose parallel programming language provided with features like parallel composition, iteration, guarded commands, communications through FIFO buffers or shared variables, procedures [9] and, more recently, real-time extensions with abortable blocks and exceptions [12, 13].

The semantics of B(PN)\(^2\) is traditionally given in terms of Petri nets, using a low-level nets algebra called Petri Box Calculus [4, 3] or its high-level version called M-nets [5]. These two levels are related by an unfolding operation which transforms an M-net in a low-level net having an equivalent behavior. In this paper, we focus on the M-net semantics since it is much more compact and intuitive. Using PEP toolkit [8, 17], one may input a B(PN)\(^2\) program and automatically generate its M-net or low-level net semantics in order to simulate its behavior or to model-check it against some properties.

The purpose of this paper is to propose a new M-net semantics for channels in B(PN)\(^2\). This semantics uses asynchronous links capabilities newly introduced in M-nets and Petri Box Calculus [11]. The proposed semantics has three main advantages: it is completely expressible in the algebra of M-nets (using only trivial nets as base cases), its size (in terms of the number of places in the unfolding) is considerably smaller than the original semantics and finally, it avoids
the “availability defect” of the original semantics (a message sent to a channel was not immediately available for receiving). The solution given here improves what was proposed in [16] by simplifying again the semantics.

B(PN)² is presented in [6] and its M-net semantics is fully developed in [9]. In the following, we focus on the intuition in order to keep the paper compact but as complete as possible.

2 M-nets primer

M-nets form a class of labelled high-level Petri nets which were introduced in [5] and are now widely used as a semantic domain for concurrent system specifications, programming languages or protocols [1, 2, 7, 9, 12, 13, 14, 15]. The most interesting features of M-nets, with respect to other classes of high-level Petri nets, is their full compositionality, thanks to their algebraic structure. As a consequence, an M-net is built out of sub-nets with arbitrary “hand-made” nets as base cases.

A place in an M-net is labelled with its type (a set of values) which indicates the tokens that the place may hold. In order to define an algebra of M-nets, each place also has a status in \{e, i, x\} which reflects whether it is an entry, an internal or an exit place. An M-net is initially marked by its entry marking, in which entry places hold one token from their type and the other places are unmarked. Then, tokens are expected to flow from the entry places to the exit ones. A transition \(t \) is labelled with a triple \(\alpha(t), \beta(t), \gamma(t) \) where \(\alpha(t) \) contains synchronous communication actions, \(\beta(t) \) carries asynchronous links annotations and \(\gamma(t) \) is a guard which is a set of conditions for allowing or not the firing of \(t \). Finally, arcs are labelled by multi-sets of annotations indicating what they transport on firing.

When a transition \(t \) fires, variables in its label and on its surrounding arcs are bound to values, with respect to its guard \(\gamma(t) \), the types of its inputs and output places and the type of its asynchronous links annotations. Transition \(t \) is allowed to fire only if such a coherent binding can be found using tokens actually available in its input places. When firing occurs, tokens are consumed and produced coherently with respect to the binding.

M-net algebra provides various operations for control flow and communications setup as listed in figure 1. Let us give more details about communications.

Scoping an M-net is the way to perform synchronous communications between its transitions. Figure 2 gives an illustration of scoping in a trivial case: in M-net \(N \), transition \(t_1 \) carries an action \(A(x) \) and \(t_2 \) has an \(\tilde{A}(y) \); the M-net resulting from scoping \([A : N]\) has one transition \(t_1t_2 \) which is a mix of \(t_1 \) and \(t_2 \) such that \(x \) and \(y \) are unified (here to \(x \)) in order to allow an actual communication. (\(x \) and \(y \) may also be constants in which case unification is only possible when \(x = y \).) In a more complex M-net, all matching pairs of transitions such as \(t_1 \) and \(t_2 \) in figure 2 are considered by the scoping. In the general case, annotations \(\alpha \) are multi-sets of actions.
\[N_1; N_2 \text{ sequence} \quad N_1 \text{ runs then } N_2 \text{ does} \]
\[N_1 \parallel N_2 \text{ parallel composition} \quad N_1 \text{ runs concurrently with } N_2 \]
\[N_1 \triangleright N_2 \text{ choice} \quad N_1 \text{ or } N_2 \text{ runs but not both} \]
\[[N_1 * N_2 * N_3] \text{ iteration} \quad N_1 \text{ runs once (initialization), then } N_2 \text{ runs zero or more times (loop) and finally } N_3 \text{ runs once (termination)} \]
\[[A : N] \text{ scoping} \quad \text{sets-up synchronous communications between transitions} \]
\[N \text{ tie } b \text{ asynchronous links} \quad \text{makes asynchronous links between transitions} \]

Fig. 1. Selected operations of the M-nets algebra.

Asynchronous links are available through links annotations. A transition may export an item \(x \) on a link symbol \(b \) thanks to a link \(b^+(x) \); such an exported item may be imported later with a link \(b^-(y) \). (Here again, \(x \) and \(y \) may be constants or variables.) Figure 3 gives a basic example of an asynchronous communication between two transitions. In a more complex M-net \(N \), there would be also a single place \(s_b \) for all the links on \(b \) and all the transitions in \(N \) with a link \(b^+(x) \) (resp. \(b^-(y) \)) would be attached an arc to (resp. from) \(s_b \). In general, annotations \(\beta \) are multi-sets of links. In order to give a type to the places added by operator \(\text{tie} \), each link symbol \(b \) is associated a type which becomes the type of any place created by an application of \(\text{tie} \).

Notice that synchronous and asynchronous communications are allowed on the same transition, this does not mean that a communication can be both synchronous and asynchronous, but only that a transition can perform both kinds of communications, by different ways, at the same time. We will see an example of this in the proposed semantics for channels. Notice also that scoping and asynchronous links are commutative (each one with itself), so we use extended notations such as \([\{A, A'\} : N]\) or \(N \text{ tie } b, b'\).

In the following, in order to avoid many figures, \(\alpha(t) . \beta(t) . \gamma(t) \) will denote an M-net with a lonely transition \(t \) annotated by \(\alpha(t) . \beta(t) . \gamma(t) \) and having only one input place and one output place, both of type \(\{\bullet\} \) (see figure 4).
3 B(PN)2 and its M-net semantics

Figure 5 gives a fragment of the syntax of B(PN)2, semantics is given compositionally: a function Mnet gives an M-net for each fragment of a B(PN)2 program. The definition of Mnet is recursive on the syntax; base case is either an atomic action, giving an M-net like on figure 4 where t would be labelled in order to implement the action, or a declaration which semantics is given using some special “hand-made” resource M-nets (like for channels in the next section).

A B(PN)2 program is basically a block which may start with some local declarations (variables, channels or procedures), followed by a command which may contain sub-commands and possibly nested blocks. A variable is named with an identifier ident and takes its value from the set given in its declaration; a channel is declared similarly but with an additional capacity k, it may be
0 for handshake communication, $k \in \mathbb{N}$ for a k-bounded channel or ∞ for an unbounded channel.

The semantics for such a block is obtained from the semantics of its components: we just put in parallel the M-net for the command and the M-net for all the declarations; then we scope on communication actions in order to allow private communications between the components. There is an additional termination net which is appended to the command M-net with the purpose to terminate the nets for the declarations. Terminating such a net consists in cleaning it for a possible re-usage. The semantics of any declared resource X contains a transition with an action X_t which performs the cleaning, so the termination net just consists in a parallel composition of M-nets such as $\{X_t\}.0.0$.

In the next section, we show and discuss the original semantics for a channel declaration.

4 Original channels in B(PN)2

Channels for B(PN)2 were proposed in [6] and reworked in [5] with the M-net semantics depicted in figure 6. There are actually three different semantics, depending on the capacity k of the channel: N_0, N_1 and N_k. Three actions are available for a block which declares a channel C (regardless to its capacity): \overline{C}! for sending, \overline{C}? for receiving and \overline{C}_t for terminating it when the program leaves the block. In order to communicate with the channel, the M-net which implements the program carry actions C! or C?.

In the next section, we show and discuss the original semantics for a channel declaration.
Fig. 6. Original semantics for a channel declaration \texttt{var C chan k of set}. For capacity $k = 0$ (handshake communication) we use the M-net in the top, for $k = 1$ we use the M-net in the middle and for $k > 1$, including $k = \infty$, the M-net in the bottom.
For N_k, it is easy to see that the mechanism is quite complex since it requires lists manipulations. Unfortunately, k-bounded channels are certainly the most commonly used... Moreover, an important drawback in N_k may be pointed out: the program has to wait for the firing of t_4 before to be able to receive a value which yet has been sent to the channel.

Let us conclude the current section with a remark on the size of the unfolded M-nets. As far as places are concerned, the unfolding operation produces one low-level place for each value of the type of each place in the M-net. As a direct consequence, unfolding N_k leads to $1 + |set|^k$ places just for i_1; the other places unfold in either 1 or $1 + |set|$ low-level places. So, we can state that the number of places in the unfolding of N_k is $O(|set|^k)$.

5 A new semantics for channels

First of all, let us eliminate the case of capacity $k = 0$ (handshake communications): the semantics for this particular case remains the same. Thus we give its expression (for a declared channel C) as follows:

$$
\text{Mnet(var C chan 0 of set) = } \left(\{\widehat{C}_t\}, \emptyset, \emptyset \right) \square \left[\begin{array}{l}
\{\widehat{C}_!(x), \widehat{C}_?(x)\}, \emptyset, \{x \in set\} \\
\times \{\widehat{C}_!(x), \widehat{C}_?(x)\}, \emptyset, \{x \in set\} \\
\times \{\widehat{C}_t\}, \emptyset, \emptyset \end{array} \right]
$$

(As explained before, notations as $\{\widehat{C}_t\}, \emptyset, \emptyset$ stand for an M-net like on figure 4 with label $\{\widehat{C}_t\}, \emptyset, \emptyset$ on its transition.)

For an unbounded capacity, we implement the channel as two parallel transitions, one for sending and one for receiving, sharing a place where the data is stored in numbered pairs (x, n) where $x \in set$ is the data to store and $n \in \mathbb{N}$ is its number. Each transition maintains a counter in order to know the number for the next data to be sent and the next to be received. The numbered pairs and the counters are implemented through asynchronous links. So we have:

$$
\text{Mnet(var C chan } \infty \text{ of set) = } \left(\{\widehat{C}_t\}, \emptyset, \emptyset; \{\widehat{C}'_t\}, \emptyset, \emptyset \right) \\
\square \left(\{I, T\} : \text{core} \right) \text{tie } \{d, ns, nr\}
$$

where the asynchronous links on d are used to store the data sent to the channel, and links on ns and nr implement the counter for the next value to send and the next to receive respectively. Actions I and T are used internally in order to synchronize initialization and termination in the send and receive parts.

The main part core is defined as follows:

$$
core = [\text{init} * \text{send} * \text{terminate}] \parallel [\text{wait}_i * \text{receive} * \text{wait}_i]
$$

It is made of two concurrent iteration, the first is used for sending data to the channel and the other for receiving data from the channel. Part init is composed
of an unique transition which fires when the first sent takes place, is also sets up the counters and it is synchronized with \(wait_i \) so both iteration start concurrently. Symmetrically, \(terminate \) is used when the resource net for the channel has to be terminated, it clears all the tokens and it is synchronized with \(wait_t \) so all the net terminates. Parts \(send \) and \(receive \) do exactly what their names suggest.

\[
\begin{align*}
\text{init} &= \{ I, \widehat{C}!(x) \}, \{ nr^+(0), ns^+(1), d^+((x, 0)) \}, \{ x \in \text{set} \} \\
\text{wait}_i &= \{ \widehat{I} \}, \emptyset, \emptyset \\
\text{send} &= \{ \widehat{C}!(x) \}, \{ ns^-(n), ns^+(n + 1), d^+((x, n)) \}, \{ x \in \text{set} \} \\
\text{receive} &= \{ \widehat{C}?!(x) \}, \{ nr^-(n), nr^+(n + 1), d^-((x, n)) \}, \emptyset \\
\text{wait}_t &= \{ \widehat{T} \}, \emptyset, \emptyset
\end{align*}
\]

Part \(terminate \) is the most complicated: it must clear all the tokens in the channel net. Since this number of tokens is not fixed, we must proceed in a loop which relies on the counters in \(ns \) and \(nr \) in order to know when the net is cleared. This way, termination is not atomic, this is not really a problem if we use a second termination symbol \(C_0 \) which synchronizes with the program in order to notify the end of the termination. In other words, where termination was done with a single action \(C_t \), it is now done with a sequence \(\{ C_t \}, \emptyset, \emptyset; \{ C'_t \}, \emptyset, \emptyset \) instead. So we have:

\[
\text{terminate} = \left[\begin{align*}
\{ \widehat{C}_t \}, \emptyset, \emptyset \\
&\ast \emptyset, \{ nr^-(n), nr^+(n + 1), d^-((x, n)) \}, \emptyset \\
&\ast \{ \widehat{C}'_t \}, \{ nr^-(n), ns^-(m) \}, \{ n = m \}
\end{align*} \right]
\]

The semantics for channels of bounded capacity is obtained by simulating a ring buffer. The numbered pairs \((x, n)\) become triples \((x, n, b)\) where \(b \in \{ \bot, \top \}\), each triple is a slot in the ring buffer, it is marked empty when \(b = \bot\) and occupied when \(b = \top\). By marking the slots this way, we avoid comparisons between the counters which would disallow concurrent sending and receiving. So, we have:

\[
\text{Mnet(var} \ C \ \text{chan} k \ \text{of} \ \text{set}) = \left(\{ \widehat{C}_t \}, \emptyset, \emptyset \right) \quad \square \quad \left(\begin{array}{l}
\{ I, T \} : \text{core} \\
\text{tie} \{ d, ns, nr \}
\end{array} \right)
\]

with the sub-parts being:

\[
\text{core} = [\text{init} * \text{send} * \text{terminate}] \parallel [\text{wait}_{i} * \text{receive} * \text{wait}_{t}]
\]

\[
\text{init} = \{I, C! (x)\}, \{nr^{-}(0), ns^{+}(1), d^{+}((x, 0, \top)), d^{+}((x, 1, \bot)), \ldots, d^{+}((x, k - 1, \bot))\}, \{x \in \text{set}\}
\]

\[
\text{wait}_{i} = \{\hat{T}\}, \emptyset, \emptyset
\]

\[
\text{send} = \{C! (x)\}, \{ns^{-}(n), ns^{+}((n + 1) \mod k), d^{+}((x, n, \bot)), d^{+}((x, n, \top))\}, \{x \in \text{set}\}
\]

\[
\text{receive} = \{C? (x)\}, \{nr^{-}(n), nr^{+}((n + 1) \mod k), d^{+}((x, n, \top)), d^{+}((x, n, \bot))\}, \emptyset
\]

\[
\text{terminate} = \{T, \hat{T}\}, \{nr^{-}(n), ns^{-}(m), d^{-}((x_0, 0, b_0)), \ldots, d^{-}((x_{k-1}, k - 1, b_{k-1}))\}, \emptyset
\]

\[
\text{wait}_{t} = \{\hat{T}\}, \emptyset, \emptyset
\]

Notice that the termination is now atomic since we have a fixed number of tokens to remove. Notice also that the counters are incremented modulo \(k\) so we really have a ring buffer.

Let us consider the size of the unfolding for this net. We can safely ignore the places created for the control flow by the combination operators since there is a fixed number of such places and they all have type \{"\}. We just have to consider the places added by asynchronous links: places for \(ns\) and \(nr\) have type \(\{0, \ldots, k - 1\}\) so they unfold in \(k\) low-level places; place for \(d\) has type \(\text{set} \times \{0, \ldots, k - 1\} \times \{\bot, \top\}\) so it unfolds in \(2k|\text{set}|\) low-level places. So the unfolding of this net has \(O(k|\text{set}|)\) places which is a significant improvement with respect to the original semantics. With respect to the semantics proposed in [16], the comparison is harder since the unfolding had \(k(|\text{set}| + 4)\) places and here it is \(2k(|\text{set}| + 1)\). Depending on the size of \(k\) and \(\text{set}\), the new semantics may lead to bigger unfolding or the contrary. Nevertheless, this new semantics improves the one proposed in [16] because the termination is now atomic and not done with an iteration. Moreover, we believe that it is really simpler and much easier to understand.

6 Concluding remarks

We can see that the new proposed semantics has several advantages with respect to the original one. First, there is no need for complex list management and the program does not have to wait anymore before to receive an actually sent value: it is now immediately available. The new semantics is more homogeneous since exceptions are now for \(k = 0\) and \(k = \infty\) (instead of \(k = 0\) and \(k = 1\)) which we feel to be exceptions intrinsically: a handshake is not a buffered communication and an unbounded buffer is certainly not realistic.

Moreover, unfolding the M-net for a channel gives now a low-level net with a number of places in \(O(k|\text{set}|)\) while the original semantics unfolded into \(O(|\text{set}|^k)\)
places. This is a great improvement, especially when considering the model-checking of a B(PN)2 program with channels. The implementation in PEP of the new channel semantics is already planned.

Finally, it is fully expressed in the algebra, with no more “hand-made” M-nets. This application of tie tends to show that it is an efficient way to introduce some places with arbitrary types, the control flow being left under the responsibility of the algebra. This allows avoiding the use of “hand-made” M-nets has it is strongly suggested in [10] which gives the semantics of the complete B(PN)2 language without any “hand-made” M-net.

References