
HAL Id: hal-00114687
https://hal.science/hal-00114687

Submitted on 17 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Box Calculus with Coloured Buffers
Cécile Bui Thanh, Hanna Klaudel, Franck Pommereau

To cite this version:
Cécile Bui Thanh, Hanna Klaudel, Franck Pommereau. Box Calculus with Coloured Buffers. [Research
Report] LACL, Université Paris-Est/Créteil. 2002. �hal-00114687�

https://hal.science/hal-00114687
https://hal.archives-ouvertes.fr

Box Calculus with Coloured Buffers

Cécile Bui Thanh, Hanna Klaudel, and Franck Pommereau

LACL, Université Paris 12
61, avenue du général de Gaulle

94010 Créteil, France
{bui,klaudel,pommereau}@univ-paris12.fr

Abstract. The starting point of this paper is the asynchronous box calculus with multi-
way communication (MBC), a formalism suitable for modelling compositionally distributed
systems using both synchronous and asynchronous communication and a number of control
flow operators. MBC is composed of two semantically consistent models: an algebra of low-
level Petri nets and an associate algebra of process terms whose constants and operators
directly correspond to the Petri net ones.

In this paper, we extend the Petri net algebra of MBC by allowing the communication buffers
to carry coloured tokens which can be used for both synchronous and asynchronous commu-
nications. In asynchronous ones, coloured tokens can be used through high-level links making
easy, for instance, the representation of program variables (e.g., counters), allowing a com-
pact representation of large (possibly infinite) systems. In synchronous ones, coloured tokens
may be used as parameters of synchronising actions, allowing a simple and compositional
expression of interprocess communication. We also extend the MBC process terms and their
associate structured operational semantics. The obtained high-level framework, called box
calculus with data, BCD, is coherent with respect to MBC through the unfolding operation.
Moreover, the resulting algebra of BCD terms is consistent with the net algebra in the sense
that a term and the corresponding net generate isomorphic transition systems.

Keywords. Coloured Petri nets, process algebra, synchronous and asynchronous communi-
cation, structured operational semantics.

1 Introduction

The framework within the present paper is set, is the Petri box calculus (PBC [1]) which has
been designed with the aim of allowing a compositional Petri net semantics of nondeterministic
and concurrent programming languages [4]. It was later extended into a more generic Petri net
algebra (PNA [2,3]), and afterwards to an asynchronous box calculus (ABC [6]) which introduced
asynchronous communication links [9] and then to asynchronous box calculus with multiway com-
munication (MBC [5]). The MBC model is composed of an algebra of process terms with a fully
compositional translation into labelled Petri nets (called boxes). As the main result, it was shown
that the semantics of a term obtained by the operational rules (SOS) was equivalent to the step
sequence semantics of the associated Petri net.

The operators of the MBC model relevant for this paper are the following: sequence E1 #E2

(the execution of the process E1 is followed by that of E2); choice E1¤E2 (either E1 or E2 can be
executed); parallel composition E1‖E2 (E1 and E2 can be executed concurrently); iteration E1~E2

(E1 can be executed an arbitrary number of times, and then is followed by E2); buffer restriction
E tie b (the buffer b and the related asynchronous links become private to E) and scoping E sc a (all
multi-way synchronisations involving the actions a or â are enforced and the synchronising events
may no longer be executed independently). Some of these operations are illustrated in figure 1.

A basic process term is composed of a multiaction (multiset of actions) and a multilink (mul-
tiset of links); one of them or both may be empty. For instance, {a1, â2}{b

−
1 , b

+
2 }, where a1 and

â2 are actions used for synchronisation (through the operator of scoping) while b−1 and b+2 are

2 C. Bui Thanh, H. Klaudel and F. Pommereau

.

.

{a1, â2}

⇐

b1

b2 ⇒

E1
df
= {a1, â2}{b

−
1 , b

+
2 }

.

.⇐{â1}

{}
b2

⇒

E2
df
= {â1}{}~ {}{b

−
2 }

.

.⇐

{}

⇒

{â2}

b2

⇐

⇒

b1

(E1‖E2) sc a1

Fig. 1. Example of MBC terms and (unmarked) boxes.

asynchronous links expressing the receiving of a resource from the buffer b1 and the sending to
the buffer b2. Such a term may be executed if it is in a context with sufficiently many resources in
buffers in order to satisfy all the receiving links. Its execution removes a resource from the buffer
b1, produces one in the buffer b2, and emits the multiaction {a1, â2}. A basic net corresponding to
such a term has one transition labelled {a1, â2} connected to one input and one output place and
to two buffer places labelled b1 and b2, see figure 1. The receiving link b−1 is represented by an arc
going from the buffer place b1 to the transition and the sending link b+2 is represented by the arc
from the transition to the buffer place labelled b2. Notice that the buffers in MBC may only carry
ordinary black tokens •.

1.1 An extension with coloured buffer

The motivation of the extension proposed in this paper is the will of introducing in MBC a number
of high-level features intended to ease the modelling of complex systems manipulating data such
as program variables. Such data may be expressed in MBC but in a very inefficient manner (from
the human point of view) because of the low-level aspects of the model. For instance, in order to
model a counter variable, one have to handle an MBC buffer for each possible counter value. In
our example below, it would lead to produce an infinite net since buffers may carry any value in N.
This problem may be solved by considering high-level buffers and some related high-level features.
This extension still allows to have a syntactic domain of terms (a process algebra), as well as the
associated semantics through both a class of composable Petri nets with their execution rules, and
a set of structured operational rules (SOS). It turns out that the obtained class of Petri nets was
shown sufficient to model the semantics of the high-level parallel specification language B(PN)2

[8]. It may also be used in order to express a Petri net semantics of π-calculus [10,7].
In the extension proposed here, the changes concern the syntactical level (terms), the associated

SOS rules, as well as the Petri net level (boxes). The main change at the syntactical level concerns
the form of atomic terms which are now triples αβγ, where α is a multiset of synchronous high-
level actions, β is a multiset of asynchronous high-level links and γ is a set of boolean expressions,
called a guard. For instance, an atomic term may be {a(x)}{b+(y), b+(y), b−(2)}{x ≤ y} denoted
〈a(x) | b+(y, y), b−(2) | x ≤ y〉. We illustrate our extension using an example of a producer-
consumer system based on two process terms:

Prod
df
=
(
〈ap | b

−
p (n), b

+
p (n+1), b+(x) | >〉.bp(0)~ 〈a(n) | b

−
p (n) | >〉

)
tie bp ,

Cons
df
=
(
〈ac | b

−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~

〈â(m) | b−c (k) | m−k ≤ 4〉
)
tie bc .

The producer process repetitively generates random resources on a buffer b (through the link b+(x),
where x is a free variable), updates the private counter of produced resources bp (through the links
b−p (n), b

+
p (n+1)) and emits a multiaction {ap}. The counter bp is initialised to 0 which is visible in

the term as .bp(0). The producer process may terminate at any time; it removes then the number
of produced resources through the link b−p (n), and generates the corresponding multiaction, for

Box Calculus with Coloured Buffers 3

instance {a(6)} if n = 6. The consumer process repetitively consumes a pair of the same value
from the buffer b (through the link b−(x, x)), updates the private counter of consumed resources bc
(initialised to 0) and generates the multiaction {ac}. It may terminate if the number of resources
left (produced but not yet consumed) is less or equal to 4 (which is checked through the link b−c (k)
and the guardm−k ≤ 4, wherem is the number of produced resources retrieved through the action
â(m)). The nets (boxes) of these processes are shown in figure 2, where the open buffer places are
identified by the label b and the closed buffer places by the labels bp

¦ and bc
¦ (they correspond to

the buffers bp and bc after the application of the buffer restriction tie bp and tie bc).
The system where the processes Prod and Cons operate in parallel is:

Par
df
= Prod ‖ Cons .

However, this system does not allow yet for synchronous communication between the processes
(through the conjugated actions a(n) and â(m)). This may be achieved by applying the scoping
w.r.t. a, leading to the term:

Sys
df
= (Prod ‖ Cons) sc a .

The boxes of Par and Sys (which is the initial state of Sys) are presented in figure 2. They are
all the translation of their process terms (themselves called the BCD terms or just terms).

.

.

⇐

b

0

bp
¦

t1

{ap}

t2{a(n)}

⇒

x

n

n n+1

the box of Prod .

.

⇐

b

0

bp
¦

t1

{ap}

t2{a(n)}

⇒

x

n

n n+1

⇐

0

bc
¦

t3

{ac}

t4
{â(m)}

{m−k ≤ 4}

⇒

x, x

k
kk+2

the box of Par = Prod‖Cons

.

.

⇐

b

0

bc
¦

t3

{ac}

t4
{â(m)}

{m−k ≤ 4}

⇒

x, x

k
kk+2

the box of Cons .

.

•⇐

b

0 bp
¦

t1

{ap}

t5

{n−k ≤ 4}

⇒

x

n

n
n+1

• ⇐

0 bc
¦

t3

{ac}

⇒

x, x

k

k
k+2

the box of Sys

Fig. 2. Example of BCD boxes involved in the producer-consumer example. The buffer places may
carry tokens in N while the other places may only hold •.

Notice that, in a box, places have a status (e.g., entry, exit, internal, open buffer or closed
buffer) while transitions are labelled by multiactions and guards. The multilinks present in the
term are represented in the box as arcs between a transition and the corresponding buffer places,
labelled by the arguments of the links. Each binary operator merges the open buffer places having
the same label (making asynchronous communication effective). The scoping w.r.t. a applied to the
box of Par produces the new transition t5 (visible in the box of Sys) whose empty multiaction is
omitted in the figure, and removes from the net the transitions involving a or â in their labels (t2
and t4).

In this paper, empty multiactions, guards which are always true and annotations {•} on the
arcs are omitted in the figures, as well as disconnected unmarked buffer places. The entry places

4 C. Bui Thanh, H. Klaudel and F. Pommereau

are indicated by an incoming ⇒ and the exit places by an outgoing one, the internal places have
no annotation and the buffer places are identified by the label.

1.2 Structured operational semantics

The operational semantics of terms is given through SOS rules in Plotkin’s style [12]. However,

instead of expressing the evolutions through rules modifying the structure of the terms, like a.E
a
−−−−−−−−→

E in CCS [11], the idea here is to represent the current state of the evolution using overbars and
underbars, corresponding respectively to the initial and final states of (sub)terms. This is illustrated
in figure 2, where the net on the bottom right represents the initial state of the system specified
by Sys, which corresponds to the term Sys.

There are two kinds of SOS rules: equivalence rules specifying when two distinct terms denote
the very same state, e.g.,

Prod ‖ Cons ≡ Prod ‖ Cons

and evolution rules specifying when we may have a state change, e.g.,

〈ap|b
−
p (n), b

+
p (n+1), b+(x)|>〉.bp(0)

{({ap},{n7→0,x7→3})}
−−→

〈ap|b
−
p (n), b

+
p (n+1), b+(x)|>〉.bp(1).b(3)

In order to provide more intuition about the way the BCD algebra is used, we give an example
of evolution (or execution scenario) of the system Sys. To do so, we use labelled step sequences as a
formal device for capturing concurrent behaviours (a labelled step being a multiset of multiactions
associated to bindings, which map values to variables).

Consider the box N of Sys shown in figure 2 and the following evolution:

– the producer generates the resources 2, 5 and 2 in a row (this is modelled by three firings of
the transition t1);

– the consumer consumes two resources 2 (transition t3) and the producer generates simultane-
ously the resource 4 (transition t1);

– the producer and consumer terminate (transition t5).

Such a scenario corresponds to the labelled step sequence

{({ap}, {n 7→ 0, x 7→ 2})} {({ap}, {n 7→ 1, x 7→ 5})} {({ap}, {n 7→ 2, x 7→ 2})}
{({ac}, {k 7→ 0, x 7→ 2}), ({ap}, {n 7→ 3, x 7→ 4})} {({}, {n 7→ 4, k 7→ 2})}

leading from N to a box N ′, where N ′ is N with two tokens 5 and 4 in the buffer place b, one token
in each of the exit places, and no token elsewhere. At the BCD term level, the same labelled step
sequence leads from Sys to Sys′, such that the box of Sys′ is N ′, the scenario above is detailed in
the section 7using the operational rules.

2 Preliminary definitions

2.1 Values, variables, structures and expressions

Throughout the paper we will use structures involving variables and values which can be represented
and used in BCD processes. Thus, we assume that there exists a set D containing all the data values
(or just values), usually denoted by v; in particular, D contains the set of natural numbers, the
black token •, boolean values > and ⊥, etc. We also assume the existence of a set V of variables.
The set of all the variables appearing in an arbitrary expression e is denoted var(e).

Box Calculus with Coloured Buffers 5

The structures involving values, variables and expressions are in particular tuples, sets or mul-
tisets. A multiset over a set X is a function µ : X → N. We denote by mult(X) the set of all finite
multisets µ over X, i.e., those satisfying

∑
x∈X µ(x) < ∞. We will write µ ≤ µ′ if the domain X

of µ is included in that of µ′, and if µ(x) ≤ µ′(x), for all x ∈ X. An element x ∈ X belongs to
µ, denoted x ∈ µ, if µ(x) > 0. The sum and difference of multisets, and the multiplication by a
non-negative integer are respectively denoted by +, − and · (the difference will only be applied
when the second argument is smaller or equal to the first one). A subset of X may be treated
as a multiset over X, by identifying it with its characteristic function, and a singleton set can be
identified with its sole element. A finite multiset µ over X may be written as

∑
x∈X µ(x) · x or∑

x∈X µ(x) · {x}, as well as in extended set notation, e.g., {a1, a1, a2} denotes a multiset µ such
that µ(a1) = 2, µ(a2) = 1 and µ(x) = 0 for all x ∈ X \ {a1, a2}.

In this paper, we consider several kinds of functions defined on values and variables. All these
functions are naturally extended to more complex structures (like expressions, tuples, sets, multi-
sets, multisets of tuples, etc.) by applying them component-wise to each element of the structure.
For instance, the image of a set of elements is the set of the images of the elements. Moreover, the
application of a function f to a tuple (x1, . . . , xn) is written f(x1, . . . , xn) instead of f((x1, . . . , xn)).

The expressions we consider are built over values in D, variables in V and a set of suitable
operators. An expression which always evaluates into a value in D is called a data expression and
one which evaluates to a truth value in {⊥,>} is called a boolean expression. We will denote
the set of all data expressions by E. Moreover, we shall assume that a set (or a multiset) of
boolean expressions is also a boolean expression whose truth value corresponds to truth value of
the conjunction of its constituting expressions.

A substitution is a function δ : V → D∪V extended on the domain D∪V by the identity on D.
We denote by ∆ the set of all substitutions, and by δid the identity on D ∪ V.

An expression e may be evaluated if we give first a binding of the variables occurring in e (i.e.,
belonging to var(e)). Formally, a binding σ is a substitution such that σ(x) ∈ D for all x ∈ V, which
associates a value to each variable. We shall denote σ

df
= {x 7→ 2} a binding which associates 2 to x

if the values associated to the other variables are not important in the context, for instance, for the
expression x+ 1. We denote by σ(e) the expression e in which each variable has been substituted
by the corresponding value, e.g., in our case σ(x+ 1) = 2 + 1. The evaluation of e with σ is then
denoted by eval(σ(e)); in our case eval(σ(x+ 1)) = 3.

A renaming ρ is a substitution which is a bijection on V (and the identity on D), usually denoted
by the set of variable changes it makes. For instance, we shall denote ρ = {x 7→ y, y 7→ z, z 7→ x}
if ρ is such that ρ(x) = y, ρ(y) = z, ρ(z) = x and ρ(w) = w for all w ∈ V \ {x, y, z}.

An unifier η for two expressions e1 and e2 in D∪V is here a substitution such that η(e1) = η(e2)
and:

– if {e1, e2} ⊆ V then {η(e1), η(e2)} ⊆ (var(e1) ∪ var(e2));
– for all z ∈ D ∪ V \ (var(e1) ∪ var(e2)) we have η(z) = z.

This corresponds to what is usually called a most general unifier, which is unique up to renaming
of variables. The unifiers will generally be used in the context of tuples of expressions.

2.2 Distinguished sets

We introduce now some notions and notations needed to formalise the high-level features of our
extension.

We assume that there is a finite set S of action symbols representing synchronous interface
activities used, in particular, to model handshake communication. Each action symbol a ∈ S has
the arity ar(a) corresponding to the number of parameters which are used during a synchronous
communication. We also assume that, for every a ∈ S, there exists an â in S such that ̂̂a = a and
ar(a) = ar(â). An action is composed of an action symbol and a number of parameters in V ∪ D,

6 C. Bui Thanh, H. Klaudel and F. Pommereau

for instance, if ar(a) = 2, then a(x, 1) and â(2, y) are examples of actions. Moreover, if ar(a′) = 0,
we shall write a′ instead of a′(), omitting the useless parentheses. The set of all possible actions
with parameters is A df

= {a(x̃) | a ∈ S, x̃ ∈ (D ∪ V)ar(a)}.
We consider also a finite set B of buffer symbols (or buffers) intended for asynchronous inter-

process communications. Each buffer b ∈ B is assigned a non-empty type type(b) ⊆ D, representing
all the values it can hold.1 Communications through a buffer b are represented with asynchronous
links (or just links) of the form b+(e) for sending or b−(e) for receiving (with e ∈ E). Thus, we
denote by L df

= {b+(e), b−(e) | b ∈ B, e ∈ E} the set of all possible links. Moreover, in process terms,
we will use the notations b(v), with v ∈ type(b), to denote the presence of a token v in the buffer b.

Finally, we assume there exists a set of statuses of places defined as P df
= {e, i, x}]B]B¦, where

B¦ df
= {b¦ | b ∈ B}. Each element of B¦ has a type such that for all b ∈ B, type(b¦)

df
= type(b). A

place status e denotes an entry place while i denotes an internal place and x an exit place; together,
the entry, internal and exit places are called control places. A status b ∈ B corresponds to an open
buffer place and b¦ ∈ B¦ to a closed buffer place (a buffer place after an application of the buffer
restriction operation).

2.3 Synchronous communication

We need a device to express, e.g., when concurrent events may synchronise. We use for that purpose
interface functions ϕ:mult(mult(A)) → mult(A) × ∆, interpreted as a subset of mult(mult(A)) ×
mult(A)×∆. For (Γ, α, δ) ∈ ϕ, we define ϕ(Γ)

df
= δ(α).

An example of such a function is ϕid
df
= {({α}, α, δid) | α ∈ mult(A)}. This function is used

when no synchronous interface change has to be performed.
The interface function ϕsy a is used in order to specify when concurrent events, labelled by

multi-actions α1, . . . , αk, can synchronise with respect to a ∈ S. It is possible if there exists a
({α1, . . . , αk}, α, δ) in ϕsy a and leads to create a new event labelled ϕ({α1, . . . , αk}). Formally,
ϕsy a is defined as the smallest set containing ϕid and such that, if {(Γ1, α1 + {a(x̃1)}, δ1) and
(Γ2, α2 + {â(x̃2)}, δ2)} belong to ϕsy a are such that

– there exists an unifier η for δ1(x̃1) and δ2(x̃2), and
– var(Γ1) ∩ var(Γ2) = var(α1) ∩ var(α2) = var(x̃1) ∩ var(x̃2) = ∅,

then (Γ1 + Γ2, α1 + α2, η ◦ δ1 ◦ δ2) also belongs to ϕsy a. Notice that, by construction, we always
have δ1 ◦ δ2 = δ2 ◦ δ1 because the variable changes performed by δi (for i ∈ {1, 2}) only concern
elements of var(Γi)∪ var(αi)∪ var(x̃i); thus, for j 6= i we have δi(x) 6= x⇒ δj(x) = x for all x ∈ V.

For instance, ({{a1(x), a1(3), a2(x)}, {â1(y), a3}, {â1(5)}}, {a2(x), a3}, {x 7→ 5, y 7→ 3}) ∈ ϕsy a1

means that the multiactions {a1(x), a1(3), a2(x)}, {â1(y), a3} and {â1(5)} can synchronise in a
three-way communication,2 leading to the multiaction {a2(x), a3} on which the substitution {x 7→
5, y 7→ 3} has to be applied in order to give the same parameters to the matching actions. The
fact that {{a1(x), â1(y)}, {a2(z)}} /∈ domϕsy a1

means that multiactions {a1(x), â1(y)} and {a2(z)}
cannot synchronise together. Such a function will be used to enforce CCS-like synchronisations,
but with no limitation on the number of simultaneously performed synchronisations.

Another useful interface function is ϕsc a, for a ∈ S, which allows to setup all synchronous
communications w.r.t. a but forbids the execution of events labelled by multiactions still involving
actions with a or â. Formally, ϕsc a

df
= {(Γ, α, δ) ∈ ϕsy a | ∀x̃ ∈ (D ∪ V)ar(a), a(x̃) /∈ α and â(x̃) /∈

α}. This interface function is an extension of that used in MBC to the context of actions with
parameters. One can check that if ar(a) = 0 for all a ∈ S, ϕsc a coincides with what has been
considered in MBC [5].

1 In the example given in the introduction, we assumed that type(b) = type(bp
¦) = type(bc

¦) = N.
2 a1(x) synchronising with â1(5) and a1(3) synchronising with â1(y), from what we can deduce the sub-
stitution

Box Calculus with Coloured Buffers 7

3 Labelled nets

A (marked) labelled net is, in the present framework, a tuple N
df
= (S, T, λ,M) such that:

– S and T are disjoint sets of respectively places and transitions;

– λ is a labelling for places, transitions and arcs (elements of (S×T)∪(T ×S)). For a place s ∈ S
we have λ(s) ∈ P. For a transition t ∈ T , λ(t) is an interface function ϕ or a pair α(t)γ(t) where
α(t) is a multiaction in mult(A) and γ(t) is a guard , i.e., a boolean expression. The labelling
of an arc is a multiset of data expressions representing the tokens which may flow on the arc,
an empty multiset denoting the absence of arc;

– each place s ∈ S has a type type(s), representing the tokens it can hold, which is defined as
follows: if λ(s) = b ∈ B or λ(s) = b¦ ∈ B¦ then type(s)

df
= type(b); otherwise, type(s)

df
= {•};

– M is a marking function which associates to each place s ∈ S a multiset of values which belongs
to mult(type(s)) and represents the tokens held by s.

Moreover, N is finite if both S and T are finite sets and it is simple if all its arcs are labelled by
{•}.

A binding σ is enabling for a transition t ∈ T if the guard of t evaluates to true, i.e.,
eval(σ(γ(t))) = >, and if σ respects the types of the places, i.e., for each s ∈ S, eval(σ(s, t)) ∈
mult(type(s)) and eval(σ(t, s)) ∈ mult(type(s)).

For a node r ∈ S ∪ T , we define •r
df
= {r′ ∈ S ∪ T | λ(r′, r) 6= ∅} and, similarly, r•

df
= {r′ ∈

S ∪ T | λ(r, r′) 6= ∅}. We denote by M c the marking M restricted to the control places and by
N c the net N in which all the buffer places together with their adjacent arcs have been removed.
Moreover, M e

N denotes the entry (or initial) marking of N (which only has one token • in each
entry place), while M x

N denotes its exit (or final) marking (one token in each exit place).
A marking M of N is:

– clean if M c ≥M e ⇒M c = M e and M c ≥M x ⇒M c = M x.

– ac-free if, for every transition t, there is a control place s ∈ •t such thatM(s) < 2·eval(σ(λ(s, t)))
for every binding σ which enables t, meaning that the marking of the control places does not
allow auto-concurrency.

To avoid ambiguity, we will sometimes decorate the various components of N with the index
N ; e.g., TN will denote the set of transitions of N .

3.1 Transition rule and step sequences

Let N = (S, T, λ,M) be a labelled net. A bounded transition is a pair (t, σ) where t is a transition
and σ is an enabling binding of t. A finite step sequence semantics of a labelled net N captures the
potential concurrency in the behaviour of the system modelled by N . A finite multiset of bounded
transitions U

df
= {(t1, σ1), . . . , (tk, σk)} is enabled by N if, for every place s ∈ S,

M(s) ≥
∑

(t,σ)∈U

U(t, σ) · eval(σ(λ(s, t))) .

We denote by enabled(N) the set of all steps enabled by N ; notice that we always have ∅ ∈
enabled(N). A step U ∈ enabled(N) can be executed, leading to a marking M ′ given, for every
place s ∈ S, by

M ′(s)
df
= M(s)−

∑

(t,σ)∈U

U(t, σ) · eval(σ(λ(s, t))) +
∑

(t,σ)∈U

U(t, σ) · eval(σ(λ(t, s))) .

8 C. Bui Thanh, H. Klaudel and F. Pommereau

We will denote this by N [U〉N ′, where N ′ is N with the marking changed to M ′. Labelled steps
may be obtained then through the formula3

α(U)
df
=

∑

(t,σ)∈U

U(t, σ) · (α(t), σ) .

This allows one to translate various behavioural notions defined in terms of multisets of transitions
into notions based on multisets of transition labels (labelled steps). Although we will use the same
term“step” to refer both to a transition step and to a labelled step, it will always be clear from the
context which one is meant. It may happen that two different transition steps correspond to the
same labelled step, when different transitions have the same label and the same enabling binding.

A step sequence of N is a (possibly empty) sequence of steps, ω = U1 · · ·Uk, such that there are
netsN1, . . . ,Nk satisfyingN [U1〉N1[U2〉N2 · · · [Uk〉Nk. We will denote this byN [ω〉Nk orNk ∈ [N〉,
and call Nk derivable from N and its marking MNk

reachable from MN (with the convention that
N [ω〉N if k = 0, i.e., if ω is the empty step sequence). The definition of a labelled step sequence of
N is similar.

3.2 Equality of labelled nets

Labelled nets have an important property that the variables appearing around a transition (i.e.,
in its label and in the annotations of the adjacent arcs) have only a local meaning. That means in
particular, that one may rename them consistently without changing the behaviour of the net.

More formally, if N = (S, T, λ,M) is a labelled net and t ∈ T , we define the area of t as the set
of all the annotations on t and its adjacent arcs, i.e., {λ(t)} ∪ {λ(s, t), λ(t, s) | s ∈ S}. We denote
by var(t) the set of all the variables appearing in the area of t, i.e.,

var(t)
df
= var(λ(t)) ∪ {var(λ(s, t)) | s ∈ S} ∪ {var(λ(t, s)) | s ∈ S} .

Let σ be an enabling binding of t such that (t, σ) ∈ enabled(N) and let ρ be a renaming. By the
definition of the enabling, we may always apply ρ to the area of t and the only consequence will
be that now (t, σ ◦ ρ) will belong to enabled(Nρ) where Nρ is N in which the area of t have been
renamed with ρ.

This property has two important consequences. (1) We may always rename the areas of tran-
sitions in such a way that the sets of their variables are pairwise disjoint; for technical reasons we
will consider only such labelled nets, which are called area disjoint. (2) We consider as equal the
labelled nets which are isomorphic up to renaming of their nodes (places and transitions) and up
to the renaming of variables in the areas of their transitions.

4 An algebra of boxes

Our target model is a class of labelled nets called boxes. In order to model operations on such nets,
we will use another class of labelled nets, called operator boxes, and the net substitution meta-
operator (called also refinement [2]), which allows one to substitute transitions in an operator box
by possibly complex boxes.

A box is a labelled net N such that no transition is labelled by an interface function, and N
itself is:

– ex-restricted : there is at least one entry place and at least one exit place;
– B-restricted : for every b ∈ B, there is exactly one b-labelled place;
– control-restricted : for every transition t there is at least one control place in •t, and at least one

control place in t•.

3 The guards are not considered since they all evaluate to true.

Box Calculus with Coloured Buffers 9

A box N is static (resp. dynamic) if M c
N = ∅ (resp. M c

N 6= ∅) and all the markings reachable
from M c

N , M e
N or M x

N in the net N c are both clean and ac-free. We denote Bs and Bd the set of
static and dynamic boxes, respectively.

The basic building blocks, from which other static and dynamic boxes will be constructed, are
the boxes Nαβγ , for α ∈ mult(A), β ∈ mult(L) and γ a guard (a boolean expressions). Each Nαβγ

is defined as follows. Its set of places is composed of one entry place e, one exit place x and one
place sb labelled b for each b ∈ B. It has only one transition vαβγ labelled by αγ, which has one
incoming arc labelled {•} from e and one outgoing arc to x with the same label. The other arcs
correspond to the links in β and we have:

λNαβγ
(vαβγ , sb)

df
=
∑

e∈E

β(b+(e)) · e and λNαβγ
(sb, v

αβγ)
df
=
∑

e∈E

β(b−(e)) · e ,

for each b ∈ B. The marking of Nαβγ is empty. Two examples of such boxes are given in figure 3.

.

.

⇐

b 0 bc

v1

{ac}

⇒

x, x

k

k+2

N
{ac}{b−(x),b−(x),b−c (k),b+c (k+2)}{>} .

.

⇐

0 bc

v2

{â(k)}{l−k ≤ 4}

⇒

N
{â(k)}{b−c (k)}{l−k≤4}

Fig. 3. Two examples of basic boxes, where the identities of the transitions are defined as v1 df
=

v{ac}{b
−(x),b−(x),b−c (k),b+c (k+2)}{>} and v2 df

= v{â(k)}{b
−
c (k)}{l−k≤4}.

We will use the following marking operators, which modify the marking of a box N , where b(v)
represent a token v in the open buffer place b such that v ∈ type(b) and B is a multiset of such
b(v)’s:

– N.B adds B(b(v)) tokens v to the b-labelled open buffer place of N ; in particular, N.b(v)
df
=

N.{b(v)} adds one token v to the b-labelled place of N . This operation will be called buffer
stuffing.

– N (resp.N) isN with one additional token in each entry (resp. exit) place, i.e.,MN

df
= MN+M e

N

(resp. MN
df
= MN +M x

N).

– bNc is N with all the tokens in its control places removed, and bbNcc is N with the empty
marking. Both notations extend component-wise to tuples of boxes.

4.1 Operator boxes

An operator box Ω is an unmarked, finite, simple, ex-restricted and control-restricted labelled net
with only control places (hence it is not B-restricted) and such that every transition v is labelled
by an interface function. For every operator box Ω, we will assume that its transitions v1, . . . , vn
are implicitly ordered, and then each n-tuple of nets (or terms later on) N = (N1, . . . , Nn), will be
referred to as an Ω-tuple (or, simply, a tuple); we will also use Nvi to denote Ni, for i ≤ n. The
notation N will be used in the net substitution operation, denoted by Ω(N), and defined in the
next section.

We will consider for BCD four groups of operator boxes (directly inherited from MBC) as
described below and depicted in the figure 4.

10 C. Bui Thanh, H. Klaudel and F. Pommereau

.

.

Ω¤

v¤1ϕid v¤2 ϕid

⇐

⇒ .

.

Ω~

v~2 ϕid

⇐

⇒

v~1
ϕid

.

.Ω#

⇐

v#

1
ϕid

v#

2
ϕid

⇒ .

.

Ω‖

v
‖
1

ϕid v
‖
2
ϕid

⇐

⇐

⇒

⇒ .

.

Ωϕ

vϕϕ

⇐

⇒ .

.

Ωtie b

vbϕid

⇐

⇒

Fig. 4. The operator boxes of BCD.

Sequential operators. A sequential operator box Ωsq is an operator box such that: no place is
disconnected; there is exactly one entry place, and exactly one exit place; and, for every transition
v ∈ TΩsq

, |•v| = |v•| = 1 and λΩsq
(v) = ϕid. That is, Ωsq can be thought of as a finite automaton

in which each transition will be substituted by a potentially complex box by the net substitution
operation. The domain of application of Ωsq is the set domΩsq

comprising all Ωsq -tuples of static
and dynamic boxes such that at most one box is dynamic.

Examples of sequential operator boxes are choice Ω¤, iteration Ω~ and sequence Ω# depicted
in figure 4. They are all binary, with the domain of application domΩ¤

= domΩ~ = domΩ#

df
=

(Bs)
2 ∪ (Bd×Bs)∪ (Bs×Bd). We will denote: N1¤N2

df
= Ω¤(N1, N2), N1~N2

df
= Ω~(N1, N2) and

N1 #N2
df
= Ω#(N1, N2).

Parallel composition Ω‖. This is also a binary operator box (see figure 4), but with the domain
of application domΩ‖

df
= (Bs)

2 ∪ (Bd)
2, so that its two operands may evolve concurrently. We will

denote N1‖N2
df
= Ω‖(N1, N2).

Communication interface operators. A unary communication interface operator box Ωϕ, shown in
figure 4, is parameterised by an interface function ϕ, and has the domain of application domΩϕ

df
=

Bs∪Bd. The role of Ωϕ will be to effect the change of synchronous communication interface specified
by ϕ.

An example of such operators is the scoping, which is parameterised by an action a ∈ S. We
will denote N sc a

df
= Ωsc a(N).

Buffer restriction Ωtie b. Parameterised by a buffer b ∈ B, this unary operator also has the domain
of application domΩtie b

df
= Bs ∪ Bd. Buffer restriction will hide the b-labelled open buffer place of

the box it is applied to. We will denote N tie b
df
= Ωtie b(N).

4.2 Net substitution

Throughout the rest of the paper, the identities of transitions in asynchronous boxes will play a
key role, especially when defining the SOS semantics of process terms. For such a model, transition
identities will come in the form of finite labelled trees retracing the operators used to construct a
box.

We assume that there is a set I of basic transition identities and a corresponding set of basic
labelled trees with a single node labelled with an element of I. All the transitions in the operator
boxes are assumed to be of that kind, as well as the vαβγ used for the basic boxes. To express
more complex (unordered) finite trees used as transition identities in boxes obtained through net
substitution, we will use the following linear notations:

– v /T, where v ∈ I is a basic transition identity and T is a finite set of finite labelled trees,
denotes a tree where the trees of the set T are appended to a root labelled with v;

Box Calculus with Coloured Buffers 11

– v / t denotes the tree v /{t}.

We assume that place identities may be changed at will to avoid clashes. In particular, when
applying net substitution, we will assume that the place sets of the operands are pairwise disjoint;
if this is not the case, we rename them in a consistent way. With this assumption, in the following
we shall construct new places by grouping the existing ones, e.g., if s1 and s2 are places of some
operand boxes, then (s1, s2) may be the identity of a newly constructed place.

Sequential and parallel operators. Let Ω be a sequential or the parallel operator with transitions
v1, . . . , vn, and N = (N1, . . . , Nn) = (Nv1 , . . . , Nvn) be a tuple of boxes in domΩ . Then Ω(N) = N ′

whose components are defined as follows.
The set of transitions of N ′ is the set of all trees vi / t (with t ∈ TNi

and i ∈ {1, . . . , n}). The
label of each vi / t is that of t. Each internal or closed buffer place p ∈ SNi

belongs to SN ′ , its label
and marking are unchanged and for every transition w / t, the label of the arc between p and w / t
is given by:

λN ′(p, w / t)
df
=

{
λNi

(p, t) if w = vi,
∅ otherwise,

and similarly for λN ′(w / t, p).
For every place s ∈ SΩ with •s = {u1, . . . , uk} and s• = {w1, . . . , wm}, we construct in SN ′ all

the places of the form p
df
= (x1, . . . , xk, e1, . . . , em), where each xi is an exit place of Nui , and each

ej is an entry place of Nwj . The label of p is that of s, its marking is the sum of the markings of
x1, . . . , xk, e1, . . . , em, and for every transition w / t, the arcs label are given by:

λN ′(p, w / t)
df
=





λNw
(xi, t) + λNw

(ej , t) if w ∈ •s ∩ s• and w = ui = wj ,
λNw

(xi, t) if w ∈ •s \ s• and w = ui,
λNw

(ej , t) if w ∈ s• \ •s and w = wj ,
∅ otherwise,

and similarly for λN ′(w / t, p).
For every b ∈ B, there is a unique b-labelled place pb

df
= (pbv1 , . . . , p

b
vn
) in SN ′ , where each pbvi is

the unique b-labelled place of Ni. The marking of pb is the sum of the markings of the pbvi ’s, and
for each transition w / t, the arcs labels are given by λN ′(pb, w / t)

df
= λNw

(pbw, t), and similarly for
λN ′(w / t, pb).

Communication interface operators. For a communication interface operator Ωϕ, the intuition be-
hind a triple (Γ, α, δ) in ϕ is that some interface change can be applied to any finite multiset of
transitions whose synchronous labels match the Γ . More precisely, such transitions can be syn-
chronised to yield a new transition having the synchronous label ϕ(Γ), performing the unification
of actions parameters. (Note that, since sequential operators as well as the parallel one, use the
interface function ϕid, no transition label is changed for them.) Hence, the application of a com-
munication interface operator Ωϕ to an area disjoint box N results in a labelled net which is like
N with the only difference that the set of transitions comprises all trees t

df
= vϕ /{t1, . . . , tl} such

that {t1, . . . , tl} ∈ mult(TN) and there exists (Γ, α, δ) ∈ ϕ where Γ
df
= {αN (t1), . . . , αN (tl)}. The

label of t is ϕ(Γ){δ(γN (ti)) | 1 ≤ i ≤ l}, and for a place p of Ωϕ(N), the arcs are labelled by

λΩϕ(N)(p, t)
df
=
∑l

i=1 δ(λN (p, ti)), and similarly for λΩϕ(N)(t, p).

Buffer restriction. An application of the buffer restriction operator Ωtie b to a box N results in a
labelled net like N with the only difference that the identity of each transition t ∈ TN is changed
to vb / t, the label of the only b-labelled place is changed to b¦, and a new unmarked disconnected
b-labelled place is added to SΩtie b(N).

12 C. Bui Thanh, H. Klaudel and F. Pommereau

5 An algebra of terms

We consider an algebra of process terms over the signature:

C ∪ {(·), (·)} ∪ { ‖ , # , ¤ , ~} ∪ {sc a | a ∈ S} ∪ {.b(v), tie b | b ∈ B, v ∈ type(b)}

where C
df
= {αβγ | α ∈ mult(A), β ∈ mult(L) and γ is a guard} are the constants; the binary

operators ‖, #, ¤ and ~ will be used in the infix mode; the unary operators sc a, tie b and .b(v) will
be used in the postfix mode; and (·) and (·) are two positional unary operators (the position of the
argument being given by the dot).

There are two classes of process terms corresponding to the static and dynamic boxes, viz. the
static and dynamic terms, denoted respectively by Ts and Td. Collectively, we will refer to them as
the terms, T . Their syntax is given by:

Ts E ::= αβγ | E sc a | E tie b | E.b(v) | E‖E | E ¤E | E #E | E~E

Td D ::= E | E | D sc a | D tie b | D.b(v) | D‖D | D¤E | E¤D

D #E | E #D | D~E | E~D

where αβγ ∈ C, a ∈ S, b ∈ B and v ∈ type(b).
Essentially, a term encodes the structure of a box, together with the current marking of the

control places (using overbars and underbars) and of the buffer places (using the .b(v)’s). Thus, a
term E represents E in its initial state (in terms of nets, this corresponds to the initially marked box
of E). Similarly, E represents E in its final state. An atomic term encodes as many executions as
there are distinct enabling bindings for it. A binding σ is enabling for a term αβγ if eval(σ(γ)) = >
and if for each b−(e) and b+(e) in β, eval(σ(e)) ∈ type(b).

We will use F to denote any static or dynamic term. We also use the notations bF c and
bbF cc yielding static terms, where bF c is F with all occurrences of (·) and (·) removed, and bbF cc
is bF c with all occurrences of .b(v) removed. Note that we do not need terms of the form F.B
since F.{b(v1), . . . , b(vk)} would be equivalent to F.b(v1) · · · .b(vk) (but such terms can be used as a
convenient shorthand). Note that the .b(v) notation is needed for static as well as for dynamic terms
because the dormant part of a dynamic term may still have .b(v)’s which are later needed in the
active part. For instance, D

df
= 〈a1 | b

+(1) | >〉.b(1) # 〈a2 | b−(x) | >〉 has a static component with a
.b(1) in it, and may be transformed into an equivalent D′

df
= 〈a1 | b

+(1) | >〉 # 〈a2 | b−(x) | >〉.b(1),
see section 5.2.

5.1 Denotational semantics

The denotational semantics of terms is given by a mapping box : T → Bs ∪ Bd, defined homomor-
phically by induction on their structure, following the syntax of terms. Below, αβγ ∈ C, a ∈ A,
b ∈ B, v ∈ D, una stands for any unary operator (sc a, tie b or .b(v)), and bin for any binary operator
(‖, ¤, # or ~).

box(αβγ)
df
= Nαβγ box(E)

df
= box(E) box(E)

df
= box(E)

box(F una)
df
= box(F) una box(F1 binF2)

df
= box(F1) bin box(F2) .

5.2 Structural similarity relation

We define the structural similarity relation on terms, denoted by ≡, as the least equivalence relation
on terms such that all the equations in table 1 are satisfied. Most of these rules are exactly those
of MBC.

It may be observed that, due to the rules CON1-2, ENT and EX, the equivalence relation so defined
is in fact a congruence for all the operators of the algebra. It is easy to see that the structural

Box Calculus with Coloured Buffers 13

CON1
F ≡ F

′

F una ≡ F
′
una

CON2
F1 ≡ F

′
1, F2 ≡ F

′
2

F1 binF2 ≡ F
′
1 binF

′
2

ENT
E ≡ E

′

E ≡ E′
EX

E ≡ E
′

E ≡ E
′

OPL (F.b(v)) binF ′ ≡ (F binF ′).b(v) OPR F bin(F ′.b(v)) ≡ (F binF ′).b(v)

E1 E una ≡ E una X1 E una ≡ E una

B1 (F.b(v)) una ≡ (F una).b(v) if una 6= tie b

IS1 E1 #E2 ≡ E1 #E2 IS2 E1 #E2 ≡ E1 #E2

IS3 E1 #E2 ≡ E1 #E2 REN F ≡ ρ(F) if ρ is a renaming

IPAR1 E1‖E2 ≡ E1‖E2 IPAR2 E1‖E2 ≡ E1‖E2

IC1L E1¤E2 ≡ E1¤E2 IC1R E1¤E2 ≡ E1¤E2

IC2L E1¤E2 ≡ E1¤E2 IC2R E1¤E2 ≡ E1¤E2

IIT1 E1~E2 ≡ E1~E2 IIT2 E1~E2 ≡ E1~E2

IIT3 E1~E2 ≡ E1~E2 IIT4 E1~E2 ≡ E1~E2

IIT5 E1~E2 ≡ E1~E2

Table 1. Structural similarity relation, where b ∈ B, v ∈ type(b), una stands for any unary operator
and bin stands for any binary operator.

similarity relation is closed in the domain of terms, in the sense that, if a term matches one of the
sides of any rule then, the other side defines a legal term.

In developing the operational semantics of the box algebra, we first introduce operational rules
based on transitions of the nets providing the denotational semantics of terms. Then we will
introduce the label based rules, together with the derived consistency results.

5.3 Transition and label based operational semantics

Consider the set T of all transition trees in the boxes derived through the box mapping. It is easy to
check that each t ∈ T has always the same label in all the boxes derived through the box mapping
where it occurs; it will be denoted by λ(t).

We consider first the transition based operational semantics. It has moves of the form F
U
−−−−−−−−→ F ′

such that F and F ′ are terms and U ∈ U df
= mult(T×B), where B is the set of bindings. The idea

here is that U is a valid step for the boxes associated with F and F ′, i.e., that box(F)[U〉 box(F ′).
Formally, we define a ternary relation −−−−−−−−→ which is the least relation comprising all (F,U, F ′) ∈

T × U × T such that the relations in table 2 hold. Notice that we use F
U
−−−−−−−−→ F ′ to denote

(F,U, F ′) ∈ −−−−−−−−→. In the definition of EOP we make no restriction on U1 and U2 but the domain
of application of bin will ensure that this rule will always be used with the correct static/dynamic
mixture of boxes. For instance, in the case of the choice operator, one of U1 and U2 is necessarily
empty.

For the label based operational semantics we retain first the structural similarity relation ≡

on terms without any change. Next, we define moves of the form F
Γ
−−−−−−−−→ F ′, where F and F ′ are

14 C. Bui Thanh, H. Klaudel and F. Pommereau

EA αβγ.B
{(vαβγ ,σ)}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ αβγ.B′ if





σ is an enabling binding for αβγ,

B =
∑

b−(e)∈L
β(b−(e)).b(eval(σ(e))),

B′ =
∑

b+(e)∈L
β(b+(e)).b(eval(σ(e))).

EQ1 F
{}
−−−−−−−−−→ F EQ2

F ≡ F
′
, F
′ U
−−−−−−−−−→ F

′′
, F
′′ ≡ F

′′′

F
U
−−−−−−−−−→ F

′′′

EBUF
F

U
−−−−−−−−−→ F

′

F.b(v)
U
−−−−−−−−−→ F

′
.b(v)

ETIE
F

{(t1,σ1),···,(tk,σk)}
−−−→ F

′

F tie b
{(vtie bCt1,σ1),···,(vtie bCtk,σk)}
−−→ F

′
tie b

EOP
F1

{(t1,σ1),···,(tk,σk)}
−−−→ F

′
1, F2

{(t′1,σ
′
1),···,(t′l,σ

′
l)}−−→ F

′
2

F1 binF2
{(vbinCt1,σ1),···,(vbinCtk,σk)}∪{(vbinCt′1,σ

′
1),···,(vbinCt′l,σ

′
l)}−−−→ F

′
1 binF

′
2

ESC
F

U1]...]Uk−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F
′

F sc a
{(vsc aCUT1 ,σ1),...,(vsc aCUTk ,σk)}
−−−→ F

′
sc a

if Ci for 1 ≤ i ≤ k

Table 2. Transition based operational semantics, where a ∈ S, b ∈ B, v ∈ type(b), Ci
df
=(∑

(t,σ)∈Ui
Ui(t, σ) · σ(α(t)) ∈ dom(ϕsc a)

)
∧
(
UT
i =

∑
(t,σ)∈Ui

Ui(t, σ) · t
)
∧
(
∀(t, σ) ∈ Ui, σ = σi

)

and bin stands for any binary operator.

terms as before, and Γ ∈ mult(mult(A)×B), these new rules are directly obtained from the rules
of table 2 and are given in the table 3.

6 Unfolding and main result

In this section, we define a translation from the high-level domain of BCD to the low-level domain
of MBC. Such a translation is called an unfolding and will be denoted by unf.

We introduce first the low-level sets of actions, buffers and links, used in the definition of
terms and boxes. The set of low-level actions is A`

df
= {a(d̃) | a ∈ S, d̃ ∈ Dar(a)}, that of low-

level buffers is B`
df
= {bd | d ∈ B, d ∈ type(b)}, that of low-level closed buffers is B`

¦ df
= {bd

¦ ∈
B¦, d ∈ type(b)} and that of low-level links is L`

df
= {b+d , b

−
d | b ∈ B, d ∈ type(b)}. A low-level

interface function ϕ is a mapping mult(mult(A`))→ mult(A`), identified with its graph included in
mult(mult(A`))×mult(A`).

Low-level boxes sensibly differ from high-level ones. Formally, they are tuples of the form
(S, T, λ,W,M), where the places in S are not typed and may only contain tokens •, the transitions
are labelled by multisets of low-level actions, the arcs are defined through a weight function W
representing the number of tokens flowing on the arc rather than values, the marking function
returns the number of tokens held by places instead of a multiset of values and the guards do not
exist anymore.

The unfolding of a BCD box N = (S, T, λ,M) is unf(N)
df
= (S′, T ′, λ′,W,M ′), defined has

follows:

– S′
df
= {sd ∈ S | s ∈ S, d ∈ type(s)},

– T ′
df
= {tσ | t ∈ T, σ is an enabling binding of t},

– for all sd ∈ S′, λ′(sd)
df
=




bd if λ(s) = b ∈ B,
b¦d if λ(s) = b¦ ∈ B¦,
λ(s) otherwise,

Box Calculus with Coloured Buffers 15

LA αβγ.B
{(α,σ)}
−−−−−−−−−−−−−−−−−−−−−−−→ αβγ.B′ if





σ is an enabling binding for αβγ,

B =
∑

b−(e)∈L
β(b−(e)).b(eval(σ(e))),

B′ =
∑

b+(e)∈L
β(b+(e)).b(eval(σ(e))).

LQ1 F
{}
−−−−−−−−−→ F LQ2

F ≡ F
′
, F
′ Γ
−−−−−−−−−→ F

′′
, F
′′ ≡ F

′′′

F
Γ
−−−−−−−−−→ F

′′′

LBUF
F

Γ
−−−−−−−−−→ F

′

F.b(v)
Γ
−−−−−−−−−→ F

′
.b(v)

LTIE
F

Γ
−−−−−−−−−→ F

′

F tie b
Γ
−−−−−−−−−→ F

′
tie b

LOP
F1

Γ1−−−−−−−−−→ F
′
1, F2

Γ2−−−−−−−−−→ F
′
2

F1 binF2
Γ1+Γ2−−−−−−−−−−−−−−−−−−−−→ F

′
1 binF

′
2

LSC
F

Γ1+...+Γk−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F
′

F sc a
(ϕsc a(Γα1),σ1)+...+(ϕsc a(Γαk),σk)
−−−→ F

′
sc a

if Ci for 1 ≤ i ≤ k

Table 3. Label based operational semantics for BCD, where a ∈ A, b ∈ B, v ∈ type(b), Ci
df
=(

Γα
i =

∑
(α,σ)∈Γi

Γi(α, σ) · σ(α)
)
∧
(
Γα
i ∈ dom(ϕsc a)

)
∧
(
∀(α, σ) ∈ Γi, σ = σi

)
and bin stands for

any binary BCD operator.

– for all tσ ∈ T ′, λ′(tσ)
df
= σ(α(t)),

– for all sd ∈ S′ and tσ ∈ T ′, W (sd, tσ)
df
= eval(σ(λ(s, t)))(d) and W (tσ, sd)

df
= eval(σ(λ(t, s)))(d),

– for all sd ∈ S′, M ′(sd)
df
= M(s)(d), i.e., the place sd contains as many tokens as the value d

appears in the place s.

An example of the unfolding of a box is provided in the figure 5.
Moreover, we define unf(a)

df
= {a(d̃) | d̃ ∈ Dar(a)} ⊆ A` and unf(b)

df
= {bd | d ∈ type(b)} ⊆ B`.

The steps of a high-level box can be unfolded as follows: unf(U)
df
=
∑

(t,σ)∈U U(t, σ) · tσ for any

step U . The unfolding of labelled steps is similar: unf(Γ)
df
=
∑

(α,σ)∈Γ Γ (α, σ) ·σ(α) for any labelled
step Γ .

The low-level version of terms has the following syntax, which is actually the syntax of MBC
terms:

Ts` E ::= α`β` | E sc a` | E tie b` | E.b` | E‖E | E¤E | E #E | E~E

Td` D ::= E | E | D sc a` | D tie b` | D.b` | D‖D | D¤E | E¤D

D #E | E #D | D~E | E~D

where α` ∈ mult(A`), β` ∈ mult(L`), a` ∈ A` and b` ∈ B`.
The unfolding of BCD terms is defined by induction on their syntax; the unfolding of a basic

term is the choice between all the low-level terms it encodes:

unf(αβγ)
df
=

σ∈Bαβγ

ασβσ

where Bαβγ is the set of all the bindings enabling αβγ, ασ
df
=
∑

A∈α α(A) · σ(A) and βσ
df
=∑

b∗(e)∈β,∗∈{+,−} β(b
∗(e)) · b∗

eval(σ(e)). Then, for the terms F , F1 and F2, a ∈ S, b ∈ B, d ∈ type(b)

16 C. Bui Thanh, H. Klaudel and F. Pommereau

.

.

⇐

b0b1b2
•

(bc)0 (bc)1 (bc)2 (bc)3 (bc)4

v1
σ1

{ac}

v1
σ2

{ac}

v1
σ3

{ac}
⇒

2

2
2

· · · · · ·

...

Fig. 5. A fragment of unf(N{ac}{b−(x),b−(x),b−c (k),b+c (k+2)}{>}), where σ1 = {x 7→ 0, k 7→ 0}, σ2 =

{x 7→ 0, k 7→ 1}, and σ3 = {x 7→ 0, k 7→ 2}. Notice that transition v1
σ2

is dead because place (bc)1
can never be marked.

and any binary operator bin, we define:

unf(F sc a)
df
= unf(F) sc unf(a) unf(F tie b)

df
= unf(F) tie unf(b)

unf(F.b(d))
df
= unf(F).bd unf(F1 binF2)

df
= unf(F1) bin unf(F2)

unf(F)
df
= unf(F) unf(F)

df
= unf(F)

Notice that since unf(a) is generally a set of low-level actions, sc unf(a) is in fact a shorthand for
successive applications of scoping with respect to all elements of unf(a) (which may be applied in
any order because of the commutativity of scoping). A similar remark concerns unf(b).

6.1 Relationship with the MBC model

The low-level objects defined above are almost those defined by MBC with the following syntactical
differences:

– the set A` above is denoted A in MBC, moreover, the conjugated action of a(1) is denoted â(1)

instead of â(1) in MBC;
– the symbols bd

¦, for d ∈ D, used for low-level closed buffers are all denoted [in MBC.

The BCD and MBC frameworks are very similar: both define a domain of terms with an
operational semantics and a denotational semantics. As a consequence, most semantical objects
defined in BCD are high-level versions of those defined in MBC. In particular, the function box for
the denotational semantics and the relations −−−−−−−−→ and ≡ for the operational semantics already exist
in MBC. Moreover, BCD defines the same operators as MBC except that they operate on high-level
boxes, actions and buffers. The same concerns the step sequence semantics which is defined the
same way in BCD and MBC.

The definition of the net substitution is exactly the same in BCD and MBC in the case of
sequential and parallel operators. In the case of buffer restriction Ωtie b, the only difference is that
in BCD, a label is changed from b to b¦ while in MBC, it is changed to [(which makes no difference
for the behaviour). In the case of communication interface operators, BCD uses high-level interface
functions while, MBC uses low-level ones.

Similarly, the definitions of the operational semantics in BCD and MBC are very closely related,
with however some small differences: b(v) in the BCD rules OPL and OPR becomes bv in MBC (and
analogously for the rules in table 2 and 3); the BCD rule REN has no equivalent in MBC because

Box Calculus with Coloured Buffers 17

there are no variables; the BCD rule EA allows to execute a basic term under an enabling binding,
which corresponds in MBC to an execution (through the rules EA and EOP which is necessary in
order to select a term in the choice of terms produced by the unfolding) of the low-level term
corresponding to this binding. The rules ESC are also similar even if the BCD version turns out to
be really more complicated than the MBC one. Nevertheless, the principle remains the same: in
BCD the execution of each transition based step Ui allows the execution of a transition vsc a /Ui,
which corresponds exactly to what the rule ESC in MBC allows to infer. Thus, several applications
of this rule in MBC, one for each Ui, can simulate an application of the rule ESC in BCD; exactly
as one scoping w.r.t. a ∈ A corresponds to many scoping w.r.t. the symbols in unf(a).

As a consequence, in what follows, we will use exactly the same notations for the high- and
low-level versions of operations, semantical functions, etc. For instance, we shall denote F1‖F2 the
parallel composition regardless of whether F1 and F2 are high- or low-level terms.

6.2 Consistency results

The main result of the paper is the consistency of the model w.r.t. the unfolding which states that
for any term, the semantics of its unfolding coincides with the unfolding of its semantics. Since a
term has a denotational and an operational semantics, our consistency result is twofold: the first
theorem below concerns the consistency of the box semantics while the second one concerns the
consistency of the operational semantics.

As shown in [5], the box and the SOS semantics of a MBC term are equivalent in arguably the
strongest sense (they generate isomorphic transition systems). As a direct consequence of this and
our consistency results, we can infer that the box and SOS semantics of a MBC term are equivalent
as well. More results derived from these two theorems are given in the section 6.3.

Lemma 1. Let N , N1 and N2 be high-level boxes, bin be ant binary operator, a ∈ S and b ∈ B.
We have:

1. unf(N1 binN2) = unf(N1) bin unf(N2).
2. unf(N tie b) = unf(N) tie unf(b).
3. unf(N sc a) = unf(N) sc unf(a).

These equalities are considered up to renaming of places and transitions.

Proof. (1) Let Nleft
df
= unf(N1 binN2) and Nright

df
= unf(N1) bin unf(N1). For each transition

(tvi / t)σ in Nleft, there is a corresponding transition tvi / tσ in Nright and conversely. Similarly,
the control places are of the form (x1, . . . , xk, e1, . . . , ek)• in Nleft, corresponding to the places
(x1•, . . . , xk•, e1•, . . . , ek•) in Nright. Concerning the buffer places, each (pbv1 , . . . , p

b
vn
)d in Nright

corresponds to a place ((pbv1)d, . . . , (p
b
vn
)
d
) in Nleft (with additional parentheses for a better read-

ing). One can check that the arcs are created consistently in both cases, as well as the marking.
(2) This case is very similar to the previous one. In particular, the buffer places related to b

are called (b¦)v when the buffer restriction is applied first, while they are called (bv)
¦
when the

unfolding is applied first.
(3) The result follows from the observation that a high-level interface function encodes exactly

the low-level ones which can be obtained through any binding. More precisely, for any binding σ
and any a ∈ S, the high-level interface function ϕsc a is such that:

⋃

(Γ,α,δ)∈ϕsc a

σ ◦ δ(Γ, α) =
⋃

a`∈unf(a)

ϕsc a`

where each ϕsc a` is a low-level interface function used to perform one scoping involved in sc unf(a).
On the one hand, the binding σ is necessary in order to eliminate the variables in (Γ, α), but
σ ◦ δ(Γ, α) already belongs to one ϕsc a` . On the other hand, for each (Γ, α) in any ϕsc a` , we also
already have (Γ, α, δid) in ϕsc a. ut

18 C. Bui Thanh, H. Klaudel and F. Pommereau

Theorem 1. Let N and N ′ be two boxes, U a step and Γ a labelled step. Then:

1. N [U〉N ′ ⇐⇒ unf(N)[unf(U)〉 unf(N ′).
2. N [Γ 〉N ′ ⇐⇒ unf(N)[unf(Γ)〉 unf(N ′).

Proof. (1) By definition of the unfolding because each high-level transition t which is enabled with
a binding σ appears in the unfolding as tσ which is also enabled; and conversely.

(2) Follows from point (1), by definition of labelled steps. ut

Theorem 2. Let F and F ′ be two terms, U a step and Γ a labelled step. Then:

1. unf(box(F)) = box(unf(F)).
2. F ≡ F ′ ⇐⇒ unf(F) ≡ unf(F ′).

3. F
U
−−−−−−−−→ F ′ ⇐⇒ unf(F)

unf(U)
−−−−−−−−−−−−−−−−−−−→ unf(F ′).

4. F
Γ
−−−−−−−−→ F ′ ⇐⇒ unf(F)

unf(Γ)
−−−−−−−−−−−−−−−−−−−→ unf(F ′).

Proof. (1) By induction on the syntax of terms, using the lemma 1.
(2) Assume that F ≡ F ′. For each rule in the table 1 used to derive this equivalence, there

exists an equivalent rule in MBC. The only exception is the rule REN which allows one to rename
the variables in a term, but renaming variables has no impact on the unfolding which just uses
other equivalent enabling bindings.

(3) The results comes from the direct correspondence between the BCD and MBC operational
rules. In particular, a bounded transitions (t, σ) in U corresponds to a tσ in unf(U). The case of
the high-level basic action is different because it unfolds into a choice of low-level basic actions,
so the rule EA in the high-level corresponds to the rules EA and EOP in the low-level (the involved
operator being the choice).

(4) Follows from point (3), by definition of labelled steps. ut

6.3 Other results

From the consistency results, we may derive several interesting properties of the BCD model,
directly inherited from MBC.

Corollary 1. Let N be a box and N [U〉N ′.

1. If N is static, then U = {} and N = N ′.
2. If Σ is dynamic, then U is a set of bounded transitions.

Corollary 2. Let N be a box and B, B′ in mult({b(v) | b ∈ B, v ∈ type(b)}).

1. N is static iff N.B is static, and N is dynamic iff N.B is dynamic.
2. N is dynamic iff N is static iff N is dynamic.
3. N.∅ = N , N.B.B′ = N.(B +B′), N.B = N.B and N.B = N.B.
4. If N is static or dynamic, then bNc and bbNcc are static.
5. If N is static, then bNc = N .
6. bbbbNcccc = bbbNccc = bbbNccc = bbNcc.
7. bNc.B = bN.Bc, bNc = bNc = bbNcc = bNc and
bbN.Bcc = bbNcc = bbNcc = bbNcc.

For a composite net, the property of having an empty control marking is directly linked to the
same property for the arguments.

Corollary 3. Let Ω be any sequential operator box or the parallel composition operator box Ω‖, N
be any Ω-tuple of boxes, and N be any box.

Box Calculus with Coloured Buffers 19

1. M c
Ω(N) = ∅ iff M c

Nvi
= ∅, for each vi ∈ TΩ.

2. If N ′ is Ωϕ(N) or N tie b or N.B, then M c
N ′ = ∅ iff M c

N = ∅.

The operation of net substitution always returns a syntactically valid object provided that it is
applied to operands belonging to the correct domain.

A marking M of a box N quasi-safe if, for every transition t, there is a control place s ∈ •t such
that M(s) ≤ {•}; note that this implies ac-freeness.

Corollary 4. Let Ω be any operator box and N ∈ domΩ. Then Ω(N) is a box with a clean and
ac-free marking. Moreover, if all the dynamic boxes (if any) in N have quasi-safe markings, then
the marking of Ω(N) is also quasi-safe.

Corollary 5. Let Ω be a sequential operator box, and N be an Ω-tuple of static boxes.

1. If v ∈ TΩ is such that the entry place of Ω is
•v or v•, then Ω(N) = Ω(N′), where N′ is N

with Nv replaced respectively by Nv or Nv.
2. If v ∈ TΩ is such that the exit place of Ω is

•v or v•, then Ω(N) = Ω(N′), where N′ is N with

Nv replaced respectively by Nv or Nv.

The way static and dynamic boxes are composed in BCD guarantees that the result is a static
or dynamic box when the domain of application of the operators is respected.

Corollary 6. Let Ω be an operator box of ABC and N ∈ domΩ. Then every net derivable from
Ω(N) is of the form Ω(N′), where N′ ∈ domΩ and bbN

′cc = bbNcc. Moreover, if no box in N is
dynamic, then every net derivable from Ω(N) or Ω(N) is of the form Ω(N′), where N′ ∈ domΩ

and bN′c = bNc.

Corollary 7. Every composite net of BCD is a quasi-safe static or dynamic box. Moreover, it is
static iff the marking operators (·) or (·) are not used, unless in the scope of the b·c or bb·cc operators.

Corollary 8. Let F be a box.

1. box(F) is a static or dynamic box.
2. box(F) is a static box iff F is a static term.

Corollary 9. Let F1 and F2 be two terms.

1. If F1 ≡ F2 then bF1c ≡ bF2c, bbF1cc = bbF2cc and box(F1) = box(F2).
2. If bbF1cc = bbF2cc, then box(F1) = box(F2) iff F1 ≡ F2.

That the precondition bbF1cc = bbF2cc is needed in the second part of the last result may be
justified by the counter-example F1

df
= 〈a | ∅ | >〉 sc a and F2

df
= 〈â | ∅ | >〉 sc a for which F1 6≡ F2

but box(F1) = box(F2) (no transition is left in the nets by the scoping operation).

Corollary 10. Let F be a term.

1. box(F) = bbox(F)c iff F ≡ bF c.
2. box(F) = bbox(F)c iff F ≡ bF c.

Corollary 11. Let F and F ′ be two terms. Then, F
{}
−−−−−−−−→ F ′ iff F ≡ F ′.

7 Execution scenarios

We give here the execution of the scenario presented in introduction, using the rules of the transition
based and label based operational semantics.

20 C. Bui Thanh, H. Klaudel and F. Pommereau

Sys
≡ E1, IPAR1, IIT1(
(〈ap | b

−
p (n), b

+
p (n+1), b+(x) | >〉.bp(0)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{(t1,{n7→0,x7→2})}
−−→ EA, ETIE, EOP, ESC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(1).b(2)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{(t1,{n7→0,x7→5})}
−−→ IIT2, EA, ETIE, EOP, ESC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(2).b(2).b(5)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{(t1,{n7→0,x7→2})}
−−→ IIT2, EA, ETIE, EOP, ESC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(3).b(2).b(5).b(2)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{(t3,{k 7→0,x7→2}),(t1,{n7→3,x7→4})}
−−→ IIT2, EA, ETIE, EOP, ESC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(4).b(5).b(4)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(2)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

≡ IIT3, B1(
(〈ap | b

−
p (n), b

+
p (n+1), b+(x) | >〉.b(5).b(4)~ 〈a(n) | b−p (n)|>〉).bp(4) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉~ 〈â(m) | b−c (k) | m−k ≤ 4〉.bc(2)) tie bc

)
sc a

{(t5,{n7→4,k 7→2})}
−−→ EA, EOP, ETIE, ESC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.b(5).b(4)~ 〈a(n) | b−p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉~ 〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

≡ Sys IIT5, IPAR2, X1

Fig. 6. Execution scenario using transition based SOS rules.

Box Calculus with Coloured Buffers 21

Sys
≡ E1, IPAR1, IIT1(
(〈ap | b

−
p (n), b

+
p (n+1), b+(x) | >〉.bp(0)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{({ap},{n7→0,x7→2})}
−−−→ LA, LOP, LTIE, LSC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(1).b(2)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{({ap},{n7→1,x7→5})}
−−−→ IIT2, LA, LOP, LTIE, LSC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(2).b(2).b(5)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{({ap},{n7→2,x7→2})}
−−−→ IIT2, LA, LOP, LTIE, LSC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(3).b(2).b(5).b(2)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(0)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

{({ac},{k 7→0,x7→2}),({ap},{n7→3,x7→4})}
−−−→ IIT2, LA, LOP, LTIE, LSC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.bp(4).b(5).b(4)~〈a(n) | b

−
p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉.bc(2)~〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

≡ IIT3, B1(
(〈ap | b

−
p (n), b

+
p (n+1), b+(x) | >〉.b(5).b(4)~ 〈a(n) | b−p (n)|>〉).bp(4) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉~ 〈â(m) | b−c (k) | m−k ≤ 4〉.bc(2)) tie bc

)
sc a

{({},{n7→4,k 7→2})}
−−−→ LA, LOP, LTIE, LSC(

(〈ap | b
−
p (n), b

+
p (n+1), b+(x) | >〉.b(5).b(4)~ 〈a(n) | b−p (n)|>〉) tie bp ‖

(〈ac | b
−
c (k), b

+
c (k+2), b−(x, x) | >〉~ 〈â(m) | b−c (k) | m−k ≤ 4〉) tie bc

)
sc a

≡ Sys IIT5, IPAR2, X1

Fig. 7. Execution scenario using label based SOS rules.

22 C. Bui Thanh, H. Klaudel and F. Pommereau

8 Conclusion

We presented here how the compositional framework of MBC may be efficiently extended in order
to cope with systems manipulating large data types (even infinite as show in the example). The
main change consisted in using buffers capable to carry coloured tokens. This feature was exploited
by both, asynchronous communications (which were possible through high-level links) and syn-
chronous ones (which were able to transmit high-level values through the parameters of actions).
This extension provides a real progress form a practical point of view since it allows to represent
in a very compact way systems with potentially infinite data types.

Actually, independent papers [8,7] showed that the obtained class of composable Petri nets is
powerful enough to give an elegant compositional semantics to parallel specification languages, like
B(PN)2, or formalisms, like π-calculus.

From the theoretical point of view, the obtained framework, called BCD, was shown to be a
coherent high-level counter-part of MBC in the sense that a BCD term and its unfolding (which is
an MBC term) have the same behaviour and similarly for a BCD box and its unfolding. Moreover,
for a BCD term, the semantics in terms of transition systems generated, on the one hand, by the
associated operational rules and, on the other hand, by the transition rule of the associated Petri
net, are isomorphic.

References

1. E.Best, R.Devillers and J.Hall. The Petri Box Calculus: a New Causal Algebra with Multilabel Com-
munication. Advances in Petri Nets 1992, LNCS 609, 1992.

2. E.Best, R.Devillers and M.Koutny. A Unified Model for Nets and Process Algebras. Handbook of
Process Algebra, Elsevier, 2001.

3. E.Best, R.Devillers and M.Koutny. Petri Net Algebra. EATCS Monographs on TCS, Springer, 2001.
4. E.Best and R.P.Hopkins. B(PN)2 – a Basic Petri Net Programming Notation. PARLE’93, LNCS 694,

1993.
5. C.Bui Thanh, H.Klaudel and F.Pommereau. Asynchronous Box Calculus with Multi-way Communica-

tion. LACL Tech. Report, Univ. Paris 12, 2002. Available on 〈http://www.univ-paris12.fr/lacl〉.
6. R.Devillers, H.Klaudel, M.Koutny and F.Pommereau. An Algebra of Non-safe Petri Boxes.AMAST’02,

LNCS 2422, Springer, 2002.
7. R.Devillers, H.Klaudel and M.Koutny. Compositional High-Level Petri Net Semantics of π-calculus.

Manuscript.
8. H.Klaudel Parameterized M-expression semantics of parallel procedures. DAPSYS’00, Kluwer Aca-

demic Publishers, 2000.
9. H.Klaudel and F.Pommereau. Asynchronous links in the PBC and M-nets. ASIAN’99, LNCS 1742,

Springer, 1999.
10. R.Milner, R.Parrow and J.Walker. A calculus of mobile processes, Parts I and II. Information and

Computation, 100(1), 1992.
11. R.Milner Communication and Concurrency. Prentice Hall, 1989.
12. G.D.Plotkin. A Structural Approach to Operational Semantics. Tech. Report FN-19, Computer Science

Department, Univ. of Aarhus, 1981.

	Box Calculus with Coloured Buffers

