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Abstract. This paper presents an extension of an algebra of high-level Petri nets with
operations for suspension and abortion. These operations are sound with respect to the
semantics of preemption, and can be applied to the modelling of the semantics of high-
level parallel programming languages with preemption-related features. As an illustration,
the paper gives an application to the modelling of a multi-tasking system in a parallel
programming language, which is provided with a concurrent semantics based on Petri nets
and for which implemented tools can be used.
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1. Introduction

Preemption relates to controlling the execution of the processes composing a concurrent system.
Such processes are called preemptible if they support interruption during their execution. Usu-
ally, when dealing with preemption, one distinguishes a suspension, which freezes a process but
keeps it alive for a possible resume, from an abortion, which kills a process definitively.

Preemption is an essential feature of reactive systems which can efficiently be addressed
using synchronous models and languages [2, 15]. However, very often, synchronous approaches
cannot be used for mixed control- and data-flow applications since they only deal with the
control structure. Also, in most cases, the underlying semantics is sequential (i.e., parallel
events are either simultaneous or interleaved), which is well suited to the modelling of systems
in which the computation, performed in response to an input coming from the environment, is
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relatively simple. But when the structure of the computation becomes more important than
the structure of the reaction, the sequential semantics may not be sufficient. A concurrent
semantics is often more suitable to the modelling of heterogeneous architectures which combine
software (distributed on several processors) and specialised hardware components. In particular,
in distributed systems, the synchronous paradigm is very difficult to implement.

In this paper we address the problem of modelling preemption (abortion and suspension) in
a Petri net framework, with the aim to give a concurrent semantics to parallel programming
languages. A treatment of preemption (but only abortion) has been introduced in the theory of
Petri nets with Place Chart Nets [16] which are hierarchical and whose hierarchy is completely
determined by preemption. The originality of our approach with respect to Place Chart Nets is
in providing a complete algebra of Petri nets with a number of control-flow and communication
operators.

Our starting point is a compositional model defined by the Petri Box Calculus (PBC ) [4]
in which concurrency, non-determinism, causality and a treatment of data, can be represented
explicitly. The semantic domain of PBC forms a class of labelled safe Petri nets, called boxes,
provided with a set of composition operations giving them an algebraic structure. In order to
cope with the possibly large size of the nets, higher level versions of PBC have been considered,
and in particular an algebra of M-nets (high-level Petri net version of boxes [5]) which allows
one to represent large systems in a clear and compact way. The high- and low-level domains
are related by an operation of unfolding which associates a box to each M-net. The PBC
framework also features a parallel programming language, B(PN)2 [6], which can be seen as a
“user friendly” syntax on the top of both, high- and low-level process algebras. This framework
is implemented in PEP toolkit [14, 24], allowing one to simulate the modelled systems and to
verify their properties via model checking [3, 13]. This paper aims at providing a basis for
introducing preemption in this framework.

A preemptible Petri net is expected to be able to run under a “standard mode”, which
corresponds to the normal activity of the modelled system, or under a “preemption mode”,
which corresponds to the situation in which the modelled system is interrupted (suspended
or aborted) and must stop its normal activity, possibly for another one. The two modes are
mutually exclusive and the preemption mode has the priority over the normal mode (we treat
here the case which, in the terminology of [1], is called “must” preemption). More precisely, if
two transitions tn, for normal mode, and tp, for preemption mode, are both enabled, tp should
be always preferred. This point of view naturally leads to consider priorities between transitions,
and allows us to bring to the theory of priority systems as presented in [7]. In this paper, the
M-net model is enriched by considering M-nets with priorities as pairs (N, ρ), where N is an M-
net and ρ a binary priority relation between its transitions. The M-net algebra is then extended
by two operations, which allow one to make suspendable or abortable any M-net with priorities
and which can be arbitrarily nested. These operations are orthogonal with respect to each other
since it makes sense to suspend a net comprising aborted parts or to abort a suspended net.
Moreover, they are independent of the rest of the algebra as advocated in [1]. We are particularly
interested in a sub-class of M-nets with priorities, called preemptible M-nets (PM-nets), which
fulfil some structural constraints. (Each PM-net is an M-net with priorities where the priority
relation has some suitable properties.) The behaviour of PM-nets is sound with respect to the
semantics of preemption. The proposed approach tends to be as conservative as possible with
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respect to the existing framework of M-nets. The goal is to minimise the changes necessary in
order to adapt the existing software tools to the proposed model. Notice that we do not propose,
at the level of the algebra, a way to prevent a net from being preempted. Instead, we advocate
that this kind of feature could be realized on the top of the low-level operations we provide.
The model presented in this paper is largely improved and extended with respect to its first
version from [19]. It was applied in [20] to a semantics of exceptions in B(PN)2. In this paper,
we outline another possible application of the introduced preemption operations by extending
the B(PN)2 language with tasks.

The paper is structured as follows. First, we recall briefly the definition of M-nets [5, 9, 18],
the associated algebra and their dynamic behaviour (step sequence semantics). We define then
an auxiliary class of nets called M-nets with priorities, analogous to priority systems from [7].
It consists of M-nets equipped with a binary priority relation between their transitions. The
transition rule of these nets takes into account the information about priorities and so does their
step sequence semantics. We then extend M-net operations to M-nets with priorities, giving
them an algebraic structure. Next, we define new operations for M-nets with priorities, πs and
πa, which allow one to make suspendable or abortable, respectively, any M-net with priority.
Finally, we introduce PM-nets (preemptible M-nets) as a sub-class of M-nets with priorities
having interesting structural properties. The last section is dedicated to an application in which
we extend the language B(PN)2 with tasks.

2. M-nets

An M-net N is a triple (S, T, ι), where S is the set of places, T is that of transitions, (T × S) ∪
(S × T ) is that of arcs, and ι is the annotation function on places, transitions and arcs.

The annotation of a place s is of the form ι(s) = λ(s).τ(s). λ(s) is a label, corresponding to
its status which may be: entry e, exit x or internal i. τ(s) is a type, a non-empty set of values,
from a finite set Val, which the place is allowed to carry.

The annotation of a transition t is of the form λ(t).γ(t) where λ(t) is a label, which can
be hierarchical or used for communication, and γ(t) is a guard (a finite set of predicates).
Hierarchical labels are composed out of a single hierarchical action (e.g., X ) indicating a future
refinement (i.e., a substitution) by an M-net. Communications are similar to CCS ones [22],
e.g., between transitions labelled by actions such as A(a1, . . . , an) or Â(a′1, . . . , a′n), where A is

an action symbol, Â is its conjugate and each ai and a′i is a value (in Val) or a variable (belonging
to a set Var).

Arcs are inscribed by sets of values or variables, representing what is transported by an arc
during the firing of a transition1. As usual, for any place or transition r ∈ S ∪ T , we denote by
•r its pre-set {r′ ∈ S ∪ T | ι(r′, r) 6= ∅} and, similarly, by r• = {r′ ∈ S ∪ T | ι(r, r′) 6= ∅} its
post-set.

M-nets are represented as labelled high-level Petri nets with the following simplifications
in order to keep the figures as clear as possible. Arcs with empty annotations are omitted.
An annotation {•} on an arc is omitted most of time, as well as empty labels or guards. A

1Actually, more complex structured annotations are generated by the refinement [9], but their introduction with
all details could be harmful for the intuition, so we omit them in order to streamline the presentation.
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place type {•} is also omitted. Moreover, the brackets enclosing sets are omitted when no
confusion is possible. A double-arrowed arc stands for two opposite direction arcs having the
same annotation (side-loop). Hierarchical transitions (i.e., transitions labelled by a hierarchical
action) are represented by squares with a double border. Finally, in order to reduce the number
of diagrams, we denote by λ.γ the simple M-net depicted in figure 1.
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Figure 1. M-net λ.γ.

2.1. Dynamic behaviour and concurrent semantics of M-nets

For each transition t ∈ T we shall denote by var(t) the set of all the variables occurring in the
annotations of t and its adjacent arcs. A binding for a transition t is a substitution σ : var(t)→
Val; it will be called enabling if it satisfies the guard and if the flow of tokens it implies respects
the types of the places adjacent to t. We denote by ν[σ] the evaluation of an object ν (which
may be a transition or arc annotation) under σ.

A marking M of an M-net (S, T, ι) is a mapping which associates to each place s ∈ S a set2

of values from τ(s). In particular, we shall distinguish the entry marking, denoted Me, where,
for each s ∈ S, Me(s) = τ(s) if λ(s) = e and the empty set otherwise; the exit marking Mx is
defined analogously. The dynamic behaviour of an M-net starts with its entry marking; the exit
marking corresponds to the final state.

The transition rule specifies the circumstances under which a marking M ′ is reachable from
a marking M . A transition t is enabled at a marking M (this is denoted M [t〉) if there is an
enabling binding σ of t such that ∀s ∈ S : ι(s, t)[σ] ⊆ M(s) (i.e., there are enough tokens of
each type in order to satisfy the required flow) and if its guard evaluates to true through σ. The
effect of an occurrence of t is to remove from its input places all the tokens used for the enabling
binding σ and to add to its output places the tokens according to σ. This leads to a marking
M ′ such that:

∀s ∈ S : M ′(s) = M(s)− ι(s, t)[σ] + ι(t, s)[σ].

The above transition rule defines the interleaving semantics of M-nets which is the set of all
the possible occurrence sequences. This semantics can be generalised by introducing the step
sequence semantics [12], which allows any number of transitions to occur simultaneously. Given
an M-net N = (S, T, ι), a set3 δ of bound transitions t[σ] (where t is a transitions and σ and
enabling binding of t) is called concurrently enabled at a marking M if there are enough tokens
to allow the simultaneous firing of all the transitions in δ. Such a δ is called a step. A step
sequence of N is a sequence D = δ1δ2 . . . such that there are markings M1, M2, . . . , where
M1 = Me, which satisfy Mi[δi〉Mi+1 for i ≥ 1. The set of all the step sequences of N is its step

2As we explain below, we consider only safe M-nets; this allows, in particular, to simplify some definitions. For
instance, we may use sets instead of multi-sets which are usually required.
3There is no auto-concurrency because only safe M-nets are considered.
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sequence semantics and is denoted by steps(N). It is easy to see that steps(N) is closed under
linearisation, i.e., if δ belongs to a step sequence D ∈ steps(N), then, replacing δ by any of its
linearisation gives a step sequence which is also in steps(N). For instance, a step {t1[σ1], t2[σ2]}
can be replaced by {t1[σ1]}{t2[σ2]} or {t2[σ2]}{t1[σ1]}. In the following, a step {t1[σ1], t2[σ2]}
will be denoted {t1, t2} if σ1 and σ2 are the only enabling bindings of t1 and t2, respectively.

2.2. Unfolding

The unfolding of an M-net N = (S, T, ι) is the labelled Petri net U(N) = (U(S),U(T ),W, λ),
where U(S) is the set of places, U(T ) the set of transitions, W the weight function on arcs and
λ the labelling function on places and transitions, defined as follows:

• U(S) = {(s, v) | s ∈ S and v ∈ τ(s)};

• ∀(s, v) ∈ U(S) : λ((s, v)) = λ(s);

• U(T ) = {(t, σ) | t ∈ T and σ is an enabling binding of t};

• ∀(t, σ) ∈ U(T ) : λ((t, σ)) =

{
λ(t)[σ] if t is a communication transition,

λ(t) if t is a hierarchical transition;

• ∀(t, σ) ∈ U(T ),∀(s, v) ∈ U(S) : W ((s, v), (t, σ)) =
∑

x∈ι(s,t)

ι(s, t)(x) · x[σ](v),

where x[σ](v) is the number of instances of value v occurring in the arc inscription x

evaluated under σ. In other words, the weight of the arc is the number of occurrences
of value v taken from s during a firing of t under binding σ. W ((t, σ), (s, v)) is defined
analogously.

If M is a marking of N , the marking U(M) of U(N) is such that each low-level place (s, v)
contains as many tokens as the number of occurrences of v in s.

A labelled Petri net (S, T,W, λ) is called T-restricted if, for all transition t ∈ T , we have
•t 6= ∅ 6= t•; i.e., each transition in T has at least one input and one output place. An M-net is
called T-restricted if so is its unfolding.

The unfolding can easily be extended to steps and step sequences by replacing in each step
δ, each high-level bound transition t[σ] by its unfolding (t, σ). Moreover, by definition of the
unfolding of a marking of N , it may easily be shown that unfolding the step sequence semantics
of an M-net N gives exactly the step sequence semantics obtained from U(N).

Proposition 2.1. Let N be an M-net. Then, U(steps(N)) = steps(U(N)). �

An M-net N in entry marking is called safe if so is its unfolding, i.e., every marking M of
U(N), reachable from U(Me) holds at most one token per place. Traditionally, and it is also
the case in this paper, only safe M-nets are considered since this class happens to be powerful
enough for most practical applications while guaranteeing efficient verification algorithms [11].



38 H. Klaudel and F. Pommereau / A class of composable and preemptible high-level Petri nets

2.3. Algebra of M-nets

For compositionality, we are particularly interested in a sub-class of M-nets, called ex-good M-
nets, which have at least one entry and one exit place, which are T-restricted, and such that
there are neither in-going arcs to entry places nor outgoing arcs from exit places (ex-directedness
property). The algebra of unmarked ex-good M-nets comprises the operations listed below4,
where N1, N2 and N3 are M-nets, X is a hierarchical symbol, and A is an action symbol.

N1[X ← N2] refinement [N1 ∗N2 ∗N3] iteration

N1‖N2 parallel composition N1 sy A synchronisation

N1;N2 sequence N1 rsA restriction

N1 �N2 choice N1 scA scoping

The refinement of a hierarchical transition (labelled X ) by a net is a transition substitution.
It allows the refining net to be executed each time (for every enabling binding) a hierarchical
transition in the refined net could fire5. The parallel composition puts nets side by side without
any link between them so they can execute in total concurrency. The sequential composition
allows N1 to be executed first and be followed by N2. The choice composes nets in such a way
that only one of them can be executed. The iteration composes three nets such that the first
one is executed once (initialisation), the second one is executed an arbitrary number of times
(loop), and is followed by one execution of the third one (exit). These four operators are called
the control flow ones and are defined using the refinement and special operator nets (shown in
figure 2) in which each transition is substituted by one of the arguments of the operation.
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Figure 2. The operator nets used to synthesise the control flow operators. For each operation, each
Xi-labelled transition is refined by the ith argument of the operation.

The synchronisation w.r.t. an action symbol A adds to a net new transitions anticipating
all possible synchronous communications on A. The restriction w.r.t. A removes from the net
all unsatisfied communication capabilities on A (i.e., it removes transitions having an A or an
Â in their label). The scoping w.r.t. A is defined as a synchronisation w.r.t. A, followed by a

4Actually, the algebra of M-nets comprises also operations of renaming and asynchronous links [18]. We omit them
here for the sake of simplicity. All the enrichments we introduce in this paper easily extend to these operations.
5 In order to preserve the uniqueness of names, the names of nodes in the refining net are prefixed by the name of
the refined transition (for instance, if transition t belongs to a net refined into a transition tX , its name becomes
tX .t).
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restriction w.r.t. A. It is used to setup all synchronisations w.r.t. A, making them local to the
net and no longer available for a further synchronisation. Thanks to commutativity properties
concerning synchronisation, restriction and scoping, these operators can be extended to sets of
action symbols. For instance N1 sc{A,A′} stands for (N1 scA) scA′ (or the other way around).
Detailed explanations and some examples of these operations are given in [5, 18, 9].

In the following, we only use iteration in very restricted cases, so we define a binary version
of iteration as:

N1 ∗N2 = N2 � [N1 ∗N1 ∗N2].

3. M-nets with priorities

Let N = (S, T, ι) be an M-net. A priority relation ρ ⊆ T × T is a binary relation on transitions
of N . Intuitively, (t1, t2) ∈ ρ means that during an execution of N , the firing of transition t2 is
always preferred to that of t1 when both transitions are enabled. In other words, t1 has a lower
priority than t2. We shall denote this by t1 ≺ρ t2 (or simply t1 ≺ t2 if ρ is understood from the
context).

A priority relation ρ ⊆ T×T is called well-formed if ρ∩{(t, t) | t ∈ T} = ∅ and if it is included
in a partial order over T (this amounts to say that the graph of ρ has no cycle). Intuitively, a
priority relation is meaningful if it is well-formed, i.e., if it does not specify contradictions in the
priority between transitions.

An M-net with priorities is a pair P = (N, ρ) where N = (S, T, ι) is an M-net (possibly
having some non T-restricted communication transitions) and ρ ⊆ T × T is a priority relation
over T . We call N the net part of P .

Definition 3.1. Let P = (N, ρ) be an M-net with priorities, M a marking of N = (S, T, ι) and
t a transition of N such that M [t〉; then t is ρ-enabled in P at M , denoted M [t〉ρ, if @t′ ∈ T

such that M [t′〉 and t ≺ t′.

Notice that ρ allows to disable a transition which would have been enabled with the usual
M-nets transition rule, but not the contrary. In other words, we have M [t〉ρ ⇒M [t〉.

Notice also that we do not require the priority relation ρ of M-nets with priorities to be
well-formed. It may contain, for instance, inconsistencies such as t ≺ t which always disable t.
It may also contain cycles such that t1 ≺ t2 ≺ · · · ≺ t1 in which case all ti may be enabled (with
the usual transition rule) and thus none of them would be ρ-enabled. We neither require ρ to be
transitive. However, the well-formedness of the priority relation will be a property of PM-nets:
a sub-class of M-nets with priorities, which are of major interest for our purpose.

The notion of steps and step sequences defined for M-nets cannot be directly reused for
M-nets with priorities because it would lead to inconsistencies in the semantics. Consider, for
example, the M-net with priorities P = (N, ρ) shown in figure 3 (taken from [7]); if we do not
take ρ into account, we have the step sequence semantics:

steps(N) = {∅, {t1}, {t3}, {t1, t3}, {t1}{t3}, {t3}{t1}, {t1}{t2}},

where ∅ is the empty step sequence. We can see that it contains the sequence {t1}{t3} which
violates ρ (because, after the firing of t1, t3 and t2 are both enabled and t2 has the priority). Re-
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moving this sequence is necessary but not sufficient since some inconsistency remains. Actually,
the semantics cannot contain {t1, t3} because {t1}{t3} is one of its linearisations. The consistent
step sequence semantics of P , denoted steps(P ), is thus the largest sub-set of steps(N) such
that each step sequence D ∈ steps(P ) and each of its linearisations respects ρ. For the above
example, we have:

steps(P ) = {∅, {t1}, {t3}, {t3}{t1}, {t1}{t2}}.

According to [7], this consistent step sequence semantics is one of the most concurrent semantics
that one can expect for priority systems.
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Figure 3. An M-net with priorities and its entry marking, with ρ = {(t3, t2)}.

The unfolding of M-nets with priorities is a natural extension of the unfolding of M-nets.

Definition 3.2. Let P = (N, ρ) be an M-net with priorities. The unfolding of P , U(P ), is a
pair (U(N),U(ρ)) where U(N) is the usual M-net unfolding of N and

U(ρ) = {((t, σi), (t
′, σ′

j)) | t ≺ρ t′ and (t, σi) ∈ U(t) and (t′, σ′
j) ∈ U(t′)}

where U(t) = {(t, σi) | σi is an enabling binding of t} and U(t′) = {(t′, σ′
j) | σ

′
j is an enabling

binding of t′}. The unfolding of markings is defined as for M-nets.

As before, an extension of the unfolding to consistent steps and consistent step sequences is
straightforward. By definition of the unfolding of the M-nets with priorities and of the priority
relation, we obtain easily the following proposition.

Proposition 3.1. Let P be an M-net with priorities. Then, U(steps(P )) = steps(U(P )). �

3.1. Algebra of M-nets with priorities

The extension of the M-net operations to M-nets with priorities is immediate for most of them.
However, in the case of synchronisation or refinement, several possible definitions of the resulting
priority relations may be considered. Our choice is clearly not the most general (in particular
for the refinement) but it is suitable for the definitions of the preemption operations and for that
of the sub-class of PM-nets. However, the definition of refinement allows one to refine several X
labelled transitions simultaneously as it is already the case in M-nets [9].

Definition 3.3. Let Pi = (Ni, ρi), for i ∈ {1, 2}, be M-nets with priorities, where Ni =
(Si, Ti, ιi). Moreover, let X be a hierarchical symbol, and A an action symbol. The usual M-net
operations are extended as follows for M-nets with priorities (see footnote 5 about notation tX .t):
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• P1[X ← P2] = (N1[X ← N2], ρ) where

ρ ={(t, t′) ∈ ρ1 | λ1(t) 6= X 6= λ1(t
′)}

] {(tX .t, tX .t′) | t≺ρ2
t′ and tX ∈ T1 and λ1(tX ) = X}

] {(tX .t, t′) | tX≺ρ1
t′ and λ1(tX ) = X and t ∈ T2};

• P1 sy A = (N1 sy A, ρ) where N1 sy A = (S, T, ι) and ρ is the smallest set including ρ1

such that for each t′ ∈ T resulting from a basic synchronisation of t1 with t2, and for each
t′′ ∈ T ,

– if t1 ≺ρ t′′ or t2 ≺ρ t′′, then t′ ≺ρ t′′,

– if t′′ ≺ρ t1 or t′′ ≺ρ t2, then t′′ ≺ρ t′;

• P1 rsA = (N1 rsA, ρ), where N1 rsA = (S, T, ι) and ρ = ρ1 ∩ (T × T ).

Control flow operators (sequential composition, iteration, parallel composition and choice)
are based on refinement [9] and so we do not need a special definition for them. Scoping is
defined as a synchronisation followed by a restriction: P scA = (P sy A) rsA. An example
of synchronisation with priorities is given in figure 4, it shows how priorities are inherited by
synchronisation (∅ represents an internal invisible action). In the above definition, one may notice
that synchronisation allows non well-formed priority relations to be produced. For instance, if
we add t1 ≺ t2 to the priority relation of the net given on the left of figure 4, we obtain t1 ≺ t4
after synchronisation. In section 6.2, we will see that, thanks to some structural constraints;
this kind of situation will never appear in PM-nets.
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t2 Â(a′)

x.{1, 2}

a′

e

t3 B

x

P = (N, {(t3, t2)})
.

.
e.{1, 2}

t1A(a)

x

a

e

t2 Â(a′)
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P sy A = (N sy A, {(t3, t4), (t3, t2)})

Figure 4. Example of synchronisation of an M-net with priorities. Restricting w.r.t. A would remove t1
and t2 (with their surrounding arcs) from the net and (t3, t2) from its priority relation.

4. New operations for preemption

4.1. Suspension

Thanks to priorities, suspending an arbitrary net P is quite simple: intuitively, the idea is to
embed P in a net which contains a transition with a higher priority w.r.t. all the transitions
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in P . Then, enabling this transition suspends the execution of P while disabling it resumes
the execution of P . As long as this transition stays enabled, P cannot evolve because of the
priorities. This can be done compositionally with the M-net with priorities Ps represented in
figure 5.
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Figure 5. Net Ps whose priority relation is ρs = {(tX , t2)}.

Definition 4.1. For any M-net with priorities P , we have:

πs(P ) = Ps[X ← (P sc resume)] sc sleep,

where Ps is the M-net with priorities depicted in figure 5.

Operator πs works as follows:

• P is first refined in Ps; because tX ≺ρs
t2 and thanks to the definition of refinement in

PM-nets, we have tX .t ≺ t2 for any transition t from P sc resume;

• a scoping w.r.t. sleep allows P to suspend its execution by firing a transition labelled with
an action sleep. This results in putting a token in place is and so in enabling transition
t2; thanks to priorities, P is then suspended as long as t2 remains enabled;

• P can be resumed by removing the token from is thanks to transition t3; this can be
made by any transition, external to πs(P ), with an action resume in its label which would
synchronise with t3.

Notice that the above definition states that P , before being refined into Ps, is scoped w.r.t.
resume in order to realize the communications w.r.t. the actions resume which may come from
an application of πs nested in P . The reason is that a transition external to πs(P ), which would
synchronise w.r.t. action resume, should synchronise with transition t3 and not with another
one coming from a possible πs nested in P .

In order to illustrate suspension and to show how it can be initiated from the outside of a
process, we give here a simple example of a printer. A process P is responsible for the actual
printing of the pages. We want the printer to be able to suspend printing (i.e., to suspend P )
when the paper tray is open. Printing is resumed when the tray is closed. We embed P into
an environment which allows it to be suspended thanks to a synchronisation w.r.t. an action
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.
π′

s(P ) P

ŝleep

̂suspend

sleep

̂resume

Figure 6. A simplified view of π′

s(P ).

suspend . This is performed by an operation π ′
s defined as follows and sketched in figure 6, where

we emphasise the communication interface with respect to suspension:

π′
s(P ) = πs

(((
P sc suspend ; ({term}.∅ , ∅)

) ∥∥∥ Pc

)
sc term

)

where ({term}.∅, ∅) is a PM-net with an empty priority relation, its net part being similar to
the net depicted in figure 1, and net Pc is responsible for converting repeatedly each incoming
suspend into a sleep in order to suspend the whole net π ′

s(P ):

Pc = ({ ̂suspend , sleep}.∅ , ∅) ∗ ({t̂erm}.∅ , ∅).

When P terminates, thanks to the scoping w.r.t. term , Pc is terminated too and all π′
s(P )

can terminate. Notice that operation π ′
s can be used for any M-net with priorities P , making

it externally suspendable. This shows how πs can be considered as a low-level primitive on the
top of which one can build more complex operations. Such an usage of πs is not mandatory and
this operator can be used without any restriction, as it is the case for all the other operators.

Having this suspendable printing process, we model the paper tray by M-net with priorities
(Tray , ∅) where Tray is shown in figure 7. Places s1 and s3 correspond to the state “tray closed”
and place s2 to the state “tray open”. Transitions t1 and t3 correspond to the opening of the
tray while transition t2 corresponds to its closing. The complete system is then modelled by:

P1 =
(
(π′

s(P ); ({term}.∅, ∅))
∥∥∥ (Tray , ∅)

)
sc {suspend , resume, term}.

.

.

s1

e

t1

suspend
s2

i t2

resume

t3
suspend

s3

i

t4

t̂erm
s4

x

t4

t̂erm

Figure 7. The net part Tray of the M-net with priorities which models the paper tray.
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4.2. Abortion

In order to make a net P abortable, we proceed similarly as for suspension. The main difference
is that, it is necessary to remove all the tokens from P and to produce the exit marking. Figure 8
shows net Pa used in the definition of the operation of abortion. Before refining P in Pa, each
place s of P is attached a clearing transition ts with an arc s

y
−→ ts where y is a variable in

Var (in order to match any token from s). Each such clearing transition has a higher priority
than all the other transitions outgoing from s. It is labelled with action clear and synchronised
with t2 in Pa. In order to remove the tokens from P , we exploit the side loop on transition t2

(synchronised with the clearing transitions) in such a way that each time it fires, it removes one
token from P . The clearing of P is enforced to complete before the whole abortable net can reach
its exit marking thanks to the priority t3 ≺ρa

t2 which states that each firing of t2 (actually, of a
clearing transition synchronised with t2) must occur before that of t3. The firing of t3 terminates
the process of abortion. Another difference with suspension is that, when abortion is decided,

a value e is transmitted thanks to action âbort (e). When the abortion completes, this value is
again available through the label of transition t3. This transmission of value e ∈ Val can be seen
as a reason given by a net for its abortion, it can be taken into account by its environment or
discarded. In [20], it was used for the transmission of the names of the thrown exceptions.

.

.
e tX

X

ia

i.Val

x

t1

âbort(e)

t2

ĉlear

t3

̂complete(e)

e

e

e

Figure 8. Net Pa, its priority relation being ρa = {(t3, t2)}.

We first define an auxiliary operation, delA which removes all the occurrences of A-based
actions in a net. Assuming that A has the arity k ≥ 0, if P = ((S, T, ι), ρ) is a M-net with
priorities, we define P delA as ((S, T, ι′), ρ) where ι′ is such that, for all s ∈ S and for all t ∈ T :
ι′(s) = ι(s), ι′(s, t) = ι(s, t) and ι′(t, s) = ι(t, s), and ι′(t) is ι(t) with all the occurrences of
actions A(x1, . . . , xk) removed, for all xi ∈ Var ∪ Val, for i ≤ k.

Definition 4.2. For any M-net with priorities P , we have:

πa(P ) = Pa[X ← 〈〈P del complete〉〉; (∅.∅, ∅)] sc {clear , abort},

where Pa is the M-net with priorities depicted in figure 8 and 〈〈· · ·〉〉 is an auxiliary operation
defined as follows. If P ′ = P del complete = ((S ′, T ′, ι′), ρ′) then 〈〈P ′〉〉 = ((S′′, T ′′, ι′′), ρ′′) with:

• S′′ = S′;

• T ′′ = T ′ ] {ts | s ∈ S};
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• ∀s ∈ S′′ and ∀t ∈ T ′′:

ι′′(s) = ι′(s), ι′′(t) =

{
ι′(t) if t ∈ T ′,

{clear}.∅ otherwise,

ι′′(s, t) =





ι′(s, t) if t ∈ T ′,

{y} ⊂ Var if t = ts,

∅ otherwise,

ι′′(t, s) =

{
ι′(t, s) if t ∈ T ′,

∅ otherwise,

• ρ′′ = ρ′ ] {(t, ts) | s ∈ S′ and t ∈ s•}.

The reason for using operation del complete is similar to that for using sc resume in the
definition of πs. The difference here is that scoping would remove transition t3 which should be
preserved in order to produce the exit markings of aborted sub-nets.

Notice that this definition states that a net (∅.∅, ∅) (this is the net of figure 1 with empty label,
guard, and priority relation) is added in sequence to 〈〈P del complete〉〉 before the refinement.
The reason is that 〈〈· · ·〉〉 adds clearing transitions to the exit places of P and so the result would
not be ex-directed. This sequential composition with a silent action restores ex-directedness6.

As an illustration, we show how the abortion of an M-net with priorities can be initiated by
its environment. The goal with respect to the previous example is to add a “cancel” button to
our printer in order to be able to stop the current printing job. For this purpose, we define the
following operation, sketched in figure 9:

π′
a(P ) = πa

(((
P ; ({term}.∅, ∅)

) ∥∥∥ Pk

)
sc term

)

where Pk is responsible for converting an incoming kill(e) into an abort(e). Since only one
abortion is possible, no iteration is necessary and Pk is simply defined as:

Pk = ({k̂ill(e), abort (e)}.∅, ∅) � ({t̂erm}.∅, ∅).

If the job completes when the cancel button has not been pressed, the synchronisation w.r.t.
term ensures the termination of P2.

The cancel button is modelled by M-net with priorities (Cancel , ∅) where Cancel is shown
in figure 10. Transition t1 corresponds to the pressing of the button, the printer could show a
message such as “cancelling job”; transition t2 corresponds to the end of the cancelling and the
printer could say something like “job cancelled”. Then, the complete system is obtained from
the previous one as follows:

P2 =
((

π′
a(P1) ; ({term}.∅, ∅)

) ∥∥∥
(
(Cancel , ∅) � ({t̂erm}.∅, ∅)

))
sc {kill , complete , term}.

6In general, the introduction of silent transitions is avoided in M-nets and PBC because it could allow a net to
enter a branch which is deadlocked. However, in our case, this is not a problem since we do not introduce this
silent transition before the net being made abortable but only at its end.
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Figure 9. A simplified view of π′
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Figure 10. Net part Cancel of the PM-net which models the cancel button.

5. Preemptible M-nets: PM-nets

We are now in position to define preemptible M-nets (PM-nets). They are defined as a sub-
class of M-nets with priorities with some structural constraints in order to ensure their priority
relation is always well-formed. This sub-class is reasonably wide (see section 6.2) and sound
with respect to the semantics of preemption (see section 6.1).

Definition 5.1. Let P = (N, ρ) be an M-net with priorities. P is a PM-net iff:

• N is a safe ex-good M-net and ρ = ∅, or;

• P is defined as πs(P1), πa(P1), P1[X ← P2], P1‖P2, P1;P2, P1 �P2, [P1 ∗P2 ∗P3], P1 sy A,
P1 rsA or P1 scA where P1, P2 and P3 are PM-nets, X is a hierarchical symbol and A is
an action symbol.

Proposition 5.1. Let P = (N, ρ) be a PM-net. Then, ρ is well-formed.

Proof:

We proceed by induction on the structure of PM-nets and show that no cycle is ever introduced
in the graphs of their priority relations. The nodes of such graphs are PM-net transitions and
arcs are defined by the priority relation, i.e., if t1 ≺ t2, then there is an arc from t2 to t1 in the
graph.

The property is trivial for P = (N, ∅). We assume that, the property holds for each PM-net
Pi = ((Si, Ti, ιi), ρi), for i ∈ {1, 2}. Moreover, we assume that P = ((S, T, ι), ρ), A is an action
symbol and X is a hierarchical symbol. Since control flow operators are based on refinement
and scoping on synchronisation and restriction, the only interesting cases are the following.

(1) P = P1 rsA: Obvious because ρ ⊆ ρ1 since restriction may only remove transitions from
T1.

(2) P = P1[X ← P2]. By the induction hypothesis and by the definition 3.3, the resulting
priority is as sketched on the left in figure 11. The graph of ρ1 and ρ2 are merged and the only
new arcs may be from some transitions in T1 to some in T2. Thus, no cycle can be introduced.
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(3) P = πs(P1). By the induction hypothesis and by the definition 4.1, the resulting graph
is as sketched in the middle of figure 11, where t2 comes from net Ps (see figure 5). No cycle
can be introduced.

(4) P = πa(P1). By the induction hypothesis and by definition 4.2, the resulting graph
is as sketched on the right in figure 11. In this graph, the tsi

’s are the emptying transitions

attached to places si ∈ S1, and t3 is the { ̂complete(e)}-labelled transition coming from net Pa

(see figure 8). No cycle can be introduced.
(5) P = P1 sy A. By the induction hypothesis and by the definition 3.3, the only way to

introduce a cycle in the graph of priority is through a synchronisation of transitions t1 and tk,
for 1 ≤ k, such that t1 ≺ · · · ≺ tk. Such a synchronisation may lead to a transition t with
t ≺ · · · ≺ tk−1 ≺ t (if 1 < k) or t ≺ t (if k = 1), introducing a cycle. In PM-nets, transitions
with higher priorities (like tk here) are introduced only by πs or πa treated in cases (3) and (4).
So, no cycle can be added here. ut

.

.ρ1 ρ2
...

the graph for refinement .

.

ρ1

t2
. . .

the graph for suspension .

.

ρ1|•s1

ts1

. . .

ρ1|•sk

tsk

. . .

. . .

t3

the graph for abortion

Figure 11. The graphs of the priorities relations produced by the main PM-net operators. Dashed
ovals represent the graph of the priority relation indicated inside the oval (ρ|•s being ρ restricted to the
transitions from •s).

Definition 5.2. A PM-net (N, ρ) is ex-good if N is an ex-good M-net, and safe if N is safe.

6. Properties of PM-nets and links with existing work

6.1. Soundness of preemption

Let P be an arbitrary PM-net. Intuitively, the behaviour of πs(P ) is called sound if, between
a suspend and a resume, all the transitions in πs(P ) which come from P are disabled. More
precisely, let t be a transition created in πs(P ) by the synchronisation w.r.t. sleep. If t fires, then
the only enabled transitions in πs(P ) are t2 and t3 and this remains true until t3 fires. Similarly,
the behaviour of πa(P ) is sound if, after the firing of a transition created by the synchronisation
w.r.t. abort , πa(P ) reaches its exit marking without firing any transition coming from P .

In our framework, the behaviour of πs(P ) is sound for any PM-net P . Indeed, πs(P ) starts
from its entry marking in which place is is not marked. It becomes marked only after the firing
of a transition coming from the synchronisation w.r.t. sleep of t1 and a sleep-labelled transition
in P . Then, as long as t3 does not fire, transition t2 and t3 are enabled. Priority tX ≺ρs

t2
ensures that all the transitions from P are disabled since P is refined in tX . The firing of t2 does
not change the enabled transitions; moreover, no transition is allowed to fire concurrently to t2

since the resulting step would be inconsistent. Finally, the firing of t3 removes the token from
is and the execution of πs(P ) is resumed.
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Similarly, the behaviour of πa(P ) is sound for any PM-net P . Indeed, πa(P ) starts from its
entry marking in which place ia is not marked and becomes marked only after the firing of a
transition coming from the synchronisation w.r.t. abort of t1 and an abort -labelled transition
in P . Then, the transitions coming from the synchronisation w.r.t. clear (we call T2 the set of
these transitions) can be enabled (each marked place s enables emptying transition ts) and so,
thanks to the priorities, t3 and all the transitions coming from P are disabled. Transition t3 can
fire, producing the exit marking, only when no transition in T2 is enabled, which means that
there is no more tokens in πa(P ) except one in ia. For the same reasons as in the previous case,
there is no possibility for a concurrent firing of transitions during all this emptying stage.

6.2. Other properties

Let us observe first that a PM-net which has been constructed without the preemption op-
erations is always ex-good and has an empty priority relation. This property states that the
introduced extension is conservative: it does not change the existing model if one makes no
usage of the operations introduced for preemption. This is the reason why we consider PM-nets
as a “reasonably wide” model: it contains M-nets which have already proved to be useful [3, 13].

However, in general, a PM-net P = (N, ρ) can have some crippled transitions (i.e., transitions
with no output place). They can easily be identified by their label { ̂resume}. These transitions
(belonging to the communication interface of P ) are crucial in order to be able to resume a
suspended sub-net. Therefore, these crippled transitions should be removed when not used.
Actually, in that case, the PM-net of interest is P rs resume which is ex-good. This property is
important because it shows that even if our modelling needs to relax the T-restrictness for some
transitions, the final result can always be made T-restricted.

Proposition 6.1. Let P be a PM-net. Then, P is safe and ex-directed. Moreover, P rs resume
is also T-restricted (and thus is ex-good).

Proof:

The algebra of M-nets has the property to preserve safeness: the composition of safe M-nets
is always safe. As far as markings are concerned, the only difference between M-nets an PM-
nets is the introduction of operators πs and πa. In the first case, the only problem could come
from transition t1 in Ps (see figure 5) which has no input place. But the scoping w.r.t. sleep
creates only transitions with input places from P and removes t1. Moreover, these transitions
are not allowed to be concurrent since it would lead to inconsistent steps because of priority
t1 ≺ρs

t2. In the second case, the same remark applies to transition t1 in Pa (see figure 8)

labelled âbort (e). Finally, the soundness ensures that no token is left in P after abortion, and
so, that no accumulation of tokens is possible.

Concerning ex-directedness, it is enough to say that nets Ps and Pa used in the definition of
πs and πa respectively, are ex-directedness and thus, so are the results of these operations.

The T-restrictedness of P rs resume comes from the fact that in P , the only non T-restricted
transitions are those labelled by { ̂resume}, coming from an application of πs. The other non
T-restricted transitions that one can found in nets Ps and Pa always give, by synchronisation,
T-restricted transitions. Then these crippled transitions are removed by restriction as specified
in the definition of preemption operators. ut
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The model of ex-good PM-nets may still appear somehow unsatisfactory, because of the use
of priorities. It turns out that some results in the field of semantics of priority systems may
be applied for PM-nets. In [7], the authors define a transformation of a finite safe Petri net Σ,
equipped with a priority relation ρ, into a bounded Petri net which retains as much as possible
of the concurrency of (Σ, ρ). In this context, as much as possible means that only semantics
composed of consistent steps is considered (see [7, section 3]). This result can be directly applied
to the unfolding of an ex-good finite PM-net. Then, applying the result from [8], the obtained
bounded Petri net can be transformed into a safe Petri net which has the same pomset (partially
ordered multi-sets) semantics, and we can state:

Proposition 6.2. Let P be a ex-good finite PM-net. Then, P can be transformed into a low-
level safe Petri net having the same consistent step sequence semantics. ut

Even if PM-nets can be transformed into safe Petri nets having an equivalent concurrent
semantics, the construction given in [8] leads to really huge nets, and so, is not intended to be
used in practice. Nevertheless, the above proposition is important: it means that safe Petri
nets are expressive enough to model preemption, with a concurrent semantics. Notice that this
transformation implies the loss of compositionality; this appears to be a reason for extending the
existing tools to priorities rather than using this transformation. In practice, it should be possible
to modify the existing model checker of PEP [10, 14] in order to have it dealing with priorities.
Other tools may be adapted for model-checking PM-nets. For instance, in MARIA [23], coloured
Petri nets are checked directly on their marking graphs [21], taking priorities into account could
simply consist in changing the transition rule used by the tool.

7. Application to tasks

In this section we present an application of PM-nets to the expression of the concurrent semantics
of tasks in a high-level programming language. The starting point of our approach is B(PN)2

(Basic Petri Net Programming Notation) [6, 17] which comprises, in a simple syntax, most
traditional concepts of parallel programming. Thanks to its simplicity, it is possible to use it as
a test language, and then, to extend or apply the results found for B(PN)2 to“real-life” languages.
The most interesting aspect of B(PN)2 is that it has an original formal semantics in terms of
boxes and M-nets. We propose here to introduce tasks in B(PN)2, with a simple and intuitive
syntax. The presented approach allows one to define tasks (possibly nested, suspendable and
abortable), which are able to interact with other tasks by sending signals and reacting to them.

7.1. Syntax and Semantics of B(PN)2

B(PN)2 is a parallel programming language comprising shared memory parallelism, channel
(FIFO buffer) communication with arbitrary capacities, and allowing the nesting of parallel
operators, blocks and procedures. Figure 12 presents the fragment of the syntax of B(PN)2

which is relevant to the application presented in this section.
An atomic action is a B(PN)2 expression “〈expr〉”, i.e., a term constructed over logical

and arithmetical operators, constants (as for M-nets, Val is the set of the possible values) and
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program ::= program block

block ::= begin scope end

scope ::= com | decl ; scope

com ::= 〈expr〉 | proc- call | com ‖ com | com ; com | do alt-set od

| block | (com)

decl ::= var name : set | var name : chan k of set

| procedure name (fpl) block | decl , decl

proc-call ::= name (epl)

Figure 12. A fragment of the syntax of B(PN)2. Keywords are typeset in bold face, non-terminal in
roman face and italic denotes the values supplied by the program.

identifiers of program variables or channels. A program variable v can appear in an expression
as ′v (pre-value) or v′ (post-value), denoting respectively its value just before and just after
the evaluation of the expression during an execution of the program. A channel variable c can
appear in an expression as c! (sending) or c? (receiving), denoting respectively the value sent or
received in a communication on the channel c. An atomic action can execute if the expression
evaluates to true. Thus, for example, 〈′v > 0∧v′ = c?〉 corresponds to a guarded communication
which requires v to be greater than zero and a communication to be available on channel c, in
which case the value communicated on c is assigned to variable v.

A command “com” is either an atomic action, a procedure call (“proc-call”, consisting in
the name of the procedure followed by the effective parameter list “epl”), one of a number
of command compositions operator or a block comprising some declarations for a command.
Parentheses allow one to combine the various command compositions arbitrarily. The domain
of relevance of a variable, channel or procedure identifier is limited to the part of a B(PN)2

program, called “scope”, which follows its declaration. As usual, new declarations may result in
the masking of the existing identifiers by the new ones. A procedure can be declared with or
without parameters (in which case its formal parameter list “fpl” is empty); each parameter can
be passed by value, by result or by reference. A declaration of a program variable or a channel is
made with the keyword“var”followed by an identifier and a type specification which can be“set”,
or “chan k of set”where set is a set of values in Val. For a type “set”, the identifier describes an
ordinary program variable which may carry values within set. Clause “chan k of set” declares
a channel of capacity k (which can be 0 for handshake communications, 1 or more for bounded
capacities, or ∞ for an unbounded capacity) that may store values within set.

Besides traditional control flow constructs, sequence and parallel composition, there is a com-
mand“do . . . od”which allows one to express all types of loops and conditional statements. The
core of statement “do . . . od” is a set of clauses of two types: repeat commands, “com; repeat”,
and exit commands, “com; exit”. During an execution, there can be zero or more iterations,
each of them being an execution of one of the repeat commands. The loop is terminated by an
execution of one of the exit commands. Each repeat and exit command is typically a sequence
with an initial atomic action, the executability of which determining whether that repeat or exit
command can start. If several are possible, there is a non-deterministic choice between them.
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7.2. PM-net Semantics of B(PN)2

The definition of the M-net semantics of B(PN)2 programs (having no preemptible constructs)
is given in [6] through a semantical function Mnet. A PM-net semantics of such programs is easy
to obtain through the canonical transformation from M-nets to PM-nets which simply adds an
empty priority relation to the M-nets. We show in the next section how to extend B(PN)2 with
tasks and give to them a formal semantics through a semantical function PM. Tasks appear in
B(PN)2 as a new kind of resource, on the same level as the declarations of variables, channels
and procedures.

The semantics of a program is defined via the semantics of its constituting parts. The main
idea in describing a block is (1) to juxtapose the nets for its local resources declarations with the
net for its command followed by a termination net for the declared variables, (2) to synchronise
all matching data/command transitions and (3) to restrict these transitions in order to make
local variables invisible outside of the block.

The access to a program variable v is represented by an action V (v i, vo) which describes the
change of value of v from its current value vi (i for input), to the new value vo (output). Each
declared variable is described by some data PM-net of the corresponding type, e.g., NVar(v, set)
for a variable v of type set or NChan ,k(c, set) for a variable c being a channel of capacity k which
may carry values of type set. The current value of the variable v is stored in a place and may be
changed through a {V̂ (vi, vo)}-labelled transition in the data net, while {Ĉ!(c!)}- and {Ĉ?(c?)}-
labelled transitions are used for sending or receiving values to or from channel c. Sequential
and parallel compositions are directly translated into the corresponding net operations, e.g.,
PM(com1; com2) = PM(com1);PM(com2). The semantics of the “do . . . od” construct involves
the PM-net iteration and choice operators. The semantics of an atomic action“〈expr〉” is PM-net
(λ.γ, ∅) (see figure 1) where λ is a set of actions corresponding to program resources involved
in “expr”, and γ is the guard obtained from “expr” with the program variables appropriately
replaced by the corresponding net variables, e.g., vi for ′v and vo for v′. For instance, we have:

PM

(
〈′v > 0 ∧ v′ = c?〉

)
=

(
{V (vi, vo), C?(c?)}.{vi > 0 ∧ vo = c?} , ∅

)
.

The unique transition of the above PM-net performs a communication with the resource nets
for variable v and for channel c: it reads vi and writes vo with action V (vi, vo), and it gets c? on
the channel with action C?(c?). The guard ensures that vi > 0 and that vo is set to the value
retrieved on the channel.

7.3. Modelling Tasks

We introduce in the syntax of B(PN)2 a new declaration and new commands:

decl ::= · · · | task name block signals

com ::= · · · | start name | signal (id ,sig ) | abort | sleep

A clause “task name block signals” declares a task called name whose body is given in
“block” and where part “signals” declares the reactions to the signals received by the task. This
declaration is very similar to that of a procedure. An instance of a task name can be started
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with a command “start name” which creates a new instance of the task which starts to execute
its body. The task can communicate with the rest of the program through the usual devices
provided by B(PN)2, namely channels and shared variables. When it starts, each task instance is
allocated a unique identifier which is modelled by a read-only resource id , available from the body
of the task. Sending a signal to a task instance may be realized with command“signal (id , sig )”
where id is the identifier of the target task instance and sig is the signal to send (which can
be any value in Val). Commands “abort” and “sleep” are used by a task in order to abort or
suspend itself, respectively. Part signals of the declaration of a task is a (possibly empty) list of
clauses “await sig then command” which specify the command to run in reaction to a signal.
During this reaction, the body of the task is suspended. We assume that there exist signals
kill, suspend and resume, having the intuitively expected meaning, which cannot be used in
a clause await. These signals are automatically handled by the semantics.

In order to manage all the instances identifiers for all the tasks, we define a Task Identifier
Manager PTIM = (NTIM , ∅) which is a global resource for the program, its net part is depicted
in figure 13. This net is initialised when its transition t1 fires and is terminated with transition
t2. Transitions ta allocates a new identifier: it picks a token id from place i1 (which holds the
free identifiers) and put it into i2 (used identifiers). Conversely, transition tf frees an identifier.
Notice that the program cannot terminate until all the tasks instances are terminated, i.e., when
all the identifiers are returned to i1. By limiting the size of set Ident , one may control globally
the maximum number of active tasks in a program.

Given this net, the semantics of a program is:

PM(program block) =
((

({T̂IM init}.∅, ∅) ; PM(block) ; ({ ̂TIM term}.∅, ∅)
) ∥∥∥ PTIM

)

sc {signal , alloc, free ,TIM init ,TIM term}

Where the scoping w.r.t. signal enforces all the communications related to sending and reacting
to signals inside the body of the program.

.

.

e t1

T̂IM init

i1

i.Ident

t2

̂TIM term

x

i2

i.Ident

taâlloc(id) tf f̂ree(id)

Ident Ident

id

id id

id

Figure 13. The net part NTIM of the task instance identifier manager, where Ident is the set of identi-
fiers.

Each task instance has to store locally its allocated identifier. This is made thanks to net
Pid = (Nid, ∅) whose net part is depicted in figure 14. The value of the identifier can be referred
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to in expressions as id, which leads in the semantics to an action ID(id), analogously to what
happens for ordinary program variables.

In order to be able to execute several concurrent instances of a task name , we use PM-net
Pname = (Nname, ∅) whose net part is depicted in figure 15. The principle is to refine the net
which defines the task into transition tX . This way, each time an instance of name is started,
transition ts1 or ts2 fires, putting a token in i2. This enables the execution of a new instance of
the task. When an instance terminates, the corresponding token is returned to i1. In order to
control the maximum number of instances for a given task, one may limit the size of set Iname .
The semantics for starting an instance of a task is simply:

PM(start name) =
(
{name}.∅, ∅

)
.

The scoping w.r.t. name is made at the level of the block which declares the corresponding task
so an instance can be started from everywhere in this block. The termination of the block has
also to terminate the tasks declarations thanks to a scoping w.r.t. name term, as it is usual for
any resource in B(PN)2. Notice that a block cannot terminate until all the task instances it
started have completed, i.e., until all the tokens in Nname are returned to i1.

The semantics of a task declaration is as follows:

PM(task name block signals) = Pname[X ← Ptask‖Pid] sc {save, term , ID},

where

Ptask = ({alloc(id), save(id)}.∅, ∅) ;

πa

(((
π′

s(PM(block )) ; ({SH term}.∅, ∅)
) ∥∥∥ PM(signals)

)

sc {suspend , resume ,SH term}
)
del complete ;

({free(id), term(id)}.∅, ∅)

and where operator del is the same as in definition 4.2 and SH term is used to terminate the
Signal Handler PM(signals) as shown below.

The semantics of a part signals given as a list of await clauses “aw1 · · · awk” is defined as
follows: repeatedly, each signal is awaited and the reaction is executed when it is received; signals
kill, suspend and resume are automatically added, with their expected reactions. Formally,

.

.

e t1

ŝave(id) i.Ident

t3

t̂erm(id)

x

t2ÎD(id)

id id

id

Figure 14. Net part Nid of the local identifier store, where Ident is the set of instance identifiers of a
task.



54 H. Klaudel and F. Pommereau / A class of composable and preemptible high-level Petri nets

.
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e ts1

n̂ame

i1

i.Iname

t2

̂name term

x

i2

i.Iname

ts2 n̂ame tX X

t1

̂name term

Iname\{n}

n

Iname

n

n n

n

Figure 15. Net part Nname of the instance manager of a task where Iname is the set of instances
identifiers.

we have:

PM(aw1 · · · awk) =
(
PM(aw1)� · · ·�PM(awk)

�

(
{ŝignal(id, suspend), ID(id), suspend}.∅ , ∅

)

�

(
{ŝignal(id,resume), ID(id), resume}.∅ , ∅

)

�

(
{ŝignal(id,kill), ID(id), abort (id)}.∅ , ∅

))

∗ ({SH term}.∅, .∅)

PM(await sig then command ) =
(
{ŝignal(id, sig), ID (id), suspend}.∅ , ∅

)
;

PM(command ) ; ({resume}.∅, ∅)

A signal kill is reacted by action abort since not only the body of the task has to be terminated
but also the signal handler. This is possible thanks to operation πa applied to both body and
signal handler of the tasks. One may observe that the other signals are also properly handled
in Ptask. In particular, suspension and resuming are realised through operations π ′

s applied to
the semantics of the body of the task.

Finally, for sending signals, the semantics is simply:

PM(signal (id ,sig )) = ({signal (id, sig)}.∅, ∅)

PM(abort) = ({abort (•)}.∅, ∅)

PM(sleep) = ({sleep}.∅, ∅)

8. Conclusion

We presented what is, to the best of our knowledge, a first attempt to provide an algebraic model
of Petri nets with abortion and suspension, giving them a concurrent semantics. We defined an
algebra of PM-nets, as an extension of the algebra of M-nets, with priority relations between
their transitions and with additional operations πs and πa. These new operators allow one to
transform any PM-net into preemptible equivalents. We advocated that these operations can
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be considered as low-level primitive on the top of which one can build more complex operations.
This point of view was illustrated with an example (allowing preemption to be initiated from
the outside of a net) and with an application to the modelling of tasks in a parallel programming
language. We showed that PM-nets can be considered as a high-level version of so called priority
systems by defining an unfolding operation which transforms a PM-net into a low-level Petri
net with a priority relation on transitions. Then, using results obtained in related areas, we
showed that such nets can be transformed into safe Petri nets (without priorities) which retain
as much as possible of the concurrency. This transformation leads to very large nets which may
probably be intractable in practice, but it shows that safe Petri nets are powerful enough to
model preemption with a concurrent semantics. As an illustration, we presented an application
of the PM-net model to a treatment of tasks in the parallel programming language, B(PN)2,
which is provided with a concurrent semantics based on Petri nets.

Future works may emphasise the links with real-time, for instance by introducing causal
time, already defined in [18] for M-nets, at the level of B(PN)2. This would allow one to express
timed systems using statements like delays and deadlines. Thus, this would turn B(PN)2 into
a full featured real-time programming language. It is already planned to extend existing tools
(PEP and MARIA) in order to have them dealing with the changes defined in this paper.
Another interesting work will be to apply this kind of semantics to other languages. We believe
that, in the present state of the development, these ideas can be used to give a semantics for a
reasonably rich part of the Ada programming language. In particular, the typing system and
tasking features should be the first defined, taking benefits from our experience with B(PN)2.
Access and tagged types may be more difficult to obtain and would need further research on the
subject.
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